1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * STMicroelectronics accelerometers driver
4 *
5 * Copyright 2012-2013 STMicroelectronics Inc.
6 *
7 * Denis Ciocca <denis.ciocca@st.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/sysfs.h>
14#include <linux/slab.h>
15#include <linux/acpi.h>
16#include <linux/iio/iio.h>
17#include <linux/iio/sysfs.h>
18#include <linux/iio/trigger.h>
19
20#include <linux/iio/common/st_sensors.h>
21#include "st_accel.h"
22
23#define ST_ACCEL_NUMBER_DATA_CHANNELS 3
24
25/* DEFAULT VALUE FOR SENSORS */
26#define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
27#define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
28#define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
29
30/* FULLSCALE */
31#define ST_ACCEL_FS_AVL_2G 2
32#define ST_ACCEL_FS_AVL_4G 4
33#define ST_ACCEL_FS_AVL_6G 6
34#define ST_ACCEL_FS_AVL_8G 8
35#define ST_ACCEL_FS_AVL_16G 16
36#define ST_ACCEL_FS_AVL_100G 100
37#define ST_ACCEL_FS_AVL_200G 200
38#define ST_ACCEL_FS_AVL_400G 400
39
40static const struct iio_mount_matrix *
41st_accel_get_mount_matrix(const struct iio_dev *indio_dev,
42 const struct iio_chan_spec *chan)
43{
44 struct st_sensor_data *adata = iio_priv(indio_dev);
45
46 return &adata->mount_matrix;
47}
48
49static const struct iio_chan_spec_ext_info st_accel_mount_matrix_ext_info[] = {
50 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, st_accel_get_mount_matrix),
51 { }
52};
53
54static const struct iio_chan_spec st_accel_8bit_channels[] = {
55 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
56 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
57 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
58 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1,
59 st_accel_mount_matrix_ext_info),
60 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
61 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
62 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
63 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1,
64 st_accel_mount_matrix_ext_info),
65 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
67 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
68 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1,
69 st_accel_mount_matrix_ext_info),
70 IIO_CHAN_SOFT_TIMESTAMP(3)
71};
72
73static const struct iio_chan_spec st_accel_12bit_channels[] = {
74 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
75 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
76 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
77 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
78 st_accel_mount_matrix_ext_info),
79 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
80 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
81 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
82 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
83 st_accel_mount_matrix_ext_info),
84 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
85 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
86 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
87 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
88 st_accel_mount_matrix_ext_info),
89 IIO_CHAN_SOFT_TIMESTAMP(3)
90};
91
92static const struct iio_chan_spec st_accel_16bit_channels[] = {
93 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
94 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
95 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
96 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
97 st_accel_mount_matrix_ext_info),
98 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
99 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
100 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
101 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
102 st_accel_mount_matrix_ext_info),
103 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
104 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
105 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
106 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
107 st_accel_mount_matrix_ext_info),
108 IIO_CHAN_SOFT_TIMESTAMP(3)
109};
110
111static const struct st_sensor_settings st_accel_sensors_settings[] = {
112 {
113 .wai = 0x33,
114 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
115 .sensors_supported = {
116 [0] = LIS3DH_ACCEL_DEV_NAME,
117 [1] = LSM303DLHC_ACCEL_DEV_NAME,
118 [2] = LSM330D_ACCEL_DEV_NAME,
119 [3] = LSM330DL_ACCEL_DEV_NAME,
120 [4] = LSM330DLC_ACCEL_DEV_NAME,
121 [5] = LSM303AGR_ACCEL_DEV_NAME,
122 [6] = LIS2DH12_ACCEL_DEV_NAME,
123 [7] = LIS3DE_ACCEL_DEV_NAME,
124 },
125 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
126 .odr = {
127 .addr = 0x20,
128 .mask = 0xf0,
129 .odr_avl = {
130 { .hz = 1, .value = 0x01, },
131 { .hz = 10, .value = 0x02, },
132 { .hz = 25, .value = 0x03, },
133 { .hz = 50, .value = 0x04, },
134 { .hz = 100, .value = 0x05, },
135 { .hz = 200, .value = 0x06, },
136 { .hz = 400, .value = 0x07, },
137 { .hz = 1600, .value = 0x08, },
138 },
139 },
140 .pw = {
141 .addr = 0x20,
142 .mask = 0xf0,
143 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
144 },
145 .enable_axis = {
146 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
147 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
148 },
149 .fs = {
150 .addr = 0x23,
151 .mask = 0x30,
152 .fs_avl = {
153 [0] = {
154 .num = ST_ACCEL_FS_AVL_2G,
155 .value = 0x00,
156 .gain = IIO_G_TO_M_S_2(1000),
157 },
158 [1] = {
159 .num = ST_ACCEL_FS_AVL_4G,
160 .value = 0x01,
161 .gain = IIO_G_TO_M_S_2(2000),
162 },
163 [2] = {
164 .num = ST_ACCEL_FS_AVL_8G,
165 .value = 0x02,
166 .gain = IIO_G_TO_M_S_2(4000),
167 },
168 [3] = {
169 .num = ST_ACCEL_FS_AVL_16G,
170 .value = 0x03,
171 .gain = IIO_G_TO_M_S_2(12000),
172 },
173 },
174 },
175 .bdu = {
176 .addr = 0x23,
177 .mask = 0x80,
178 },
179 .drdy_irq = {
180 .int1 = {
181 .addr = 0x22,
182 .mask = 0x10,
183 },
184 .addr_ihl = 0x25,
185 .mask_ihl = 0x02,
186 .stat_drdy = {
187 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
188 .mask = 0x07,
189 },
190 },
191 .sim = {
192 .addr = 0x23,
193 .value = BIT(0),
194 },
195 .multi_read_bit = true,
196 .bootime = 2,
197 },
198 {
199 .wai = 0x32,
200 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
201 .sensors_supported = {
202 [0] = LIS331DLH_ACCEL_DEV_NAME,
203 [1] = LSM303DL_ACCEL_DEV_NAME,
204 [2] = LSM303DLH_ACCEL_DEV_NAME,
205 [3] = LSM303DLM_ACCEL_DEV_NAME,
206 },
207 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
208 .odr = {
209 .addr = 0x20,
210 .mask = 0x18,
211 .odr_avl = {
212 { .hz = 50, .value = 0x00, },
213 { .hz = 100, .value = 0x01, },
214 { .hz = 400, .value = 0x02, },
215 { .hz = 1000, .value = 0x03, },
216 },
217 },
218 .pw = {
219 .addr = 0x20,
220 .mask = 0xe0,
221 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
222 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
223 },
224 .enable_axis = {
225 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
226 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
227 },
228 .fs = {
229 .addr = 0x23,
230 .mask = 0x30,
231 .fs_avl = {
232 [0] = {
233 .num = ST_ACCEL_FS_AVL_2G,
234 .value = 0x00,
235 .gain = IIO_G_TO_M_S_2(1000),
236 },
237 [1] = {
238 .num = ST_ACCEL_FS_AVL_4G,
239 .value = 0x01,
240 .gain = IIO_G_TO_M_S_2(2000),
241 },
242 [2] = {
243 .num = ST_ACCEL_FS_AVL_8G,
244 .value = 0x03,
245 .gain = IIO_G_TO_M_S_2(3900),
246 },
247 },
248 },
249 .bdu = {
250 .addr = 0x23,
251 .mask = 0x80,
252 },
253 .drdy_irq = {
254 .int1 = {
255 .addr = 0x22,
256 .mask = 0x02,
257 .addr_od = 0x22,
258 .mask_od = 0x40,
259 },
260 .int2 = {
261 .addr = 0x22,
262 .mask = 0x10,
263 .addr_od = 0x22,
264 .mask_od = 0x40,
265 },
266 .addr_ihl = 0x22,
267 .mask_ihl = 0x80,
268 .stat_drdy = {
269 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
270 .mask = 0x07,
271 },
272 },
273 .sim = {
274 .addr = 0x23,
275 .value = BIT(0),
276 },
277 .multi_read_bit = true,
278 .bootime = 2,
279 },
280 {
281 .wai = 0x40,
282 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
283 .sensors_supported = {
284 [0] = LSM330_ACCEL_DEV_NAME,
285 },
286 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
287 .odr = {
288 .addr = 0x20,
289 .mask = 0xf0,
290 .odr_avl = {
291 { .hz = 3, .value = 0x01, },
292 { .hz = 6, .value = 0x02, },
293 { .hz = 12, .value = 0x03, },
294 { .hz = 25, .value = 0x04, },
295 { .hz = 50, .value = 0x05, },
296 { .hz = 100, .value = 0x06, },
297 { .hz = 200, .value = 0x07, },
298 { .hz = 400, .value = 0x08, },
299 { .hz = 800, .value = 0x09, },
300 { .hz = 1600, .value = 0x0a, },
301 },
302 },
303 .pw = {
304 .addr = 0x20,
305 .mask = 0xf0,
306 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
307 },
308 .enable_axis = {
309 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
310 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
311 },
312 .fs = {
313 .addr = 0x24,
314 .mask = 0x38,
315 .fs_avl = {
316 [0] = {
317 .num = ST_ACCEL_FS_AVL_2G,
318 .value = 0x00,
319 .gain = IIO_G_TO_M_S_2(61),
320 },
321 [1] = {
322 .num = ST_ACCEL_FS_AVL_4G,
323 .value = 0x01,
324 .gain = IIO_G_TO_M_S_2(122),
325 },
326 [2] = {
327 .num = ST_ACCEL_FS_AVL_6G,
328 .value = 0x02,
329 .gain = IIO_G_TO_M_S_2(183),
330 },
331 [3] = {
332 .num = ST_ACCEL_FS_AVL_8G,
333 .value = 0x03,
334 .gain = IIO_G_TO_M_S_2(244),
335 },
336 [4] = {
337 .num = ST_ACCEL_FS_AVL_16G,
338 .value = 0x04,
339 .gain = IIO_G_TO_M_S_2(732),
340 },
341 },
342 },
343 .bdu = {
344 .addr = 0x20,
345 .mask = 0x08,
346 },
347 .drdy_irq = {
348 .int1 = {
349 .addr = 0x23,
350 .mask = 0x80,
351 },
352 .addr_ihl = 0x23,
353 .mask_ihl = 0x40,
354 .stat_drdy = {
355 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
356 .mask = 0x07,
357 },
358 .ig1 = {
359 .en_addr = 0x23,
360 .en_mask = 0x08,
361 },
362 },
363 .sim = {
364 .addr = 0x24,
365 .value = BIT(0),
366 },
367 .multi_read_bit = false,
368 .bootime = 2,
369 },
370 {
371 .wai = 0x3a,
372 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
373 .sensors_supported = {
374 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
375 },
376 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
377 .odr = {
378 .addr = 0x20,
379 .mask = 0x30, /* DF1 and DF0 */
380 .odr_avl = {
381 { .hz = 40, .value = 0x00, },
382 { .hz = 160, .value = 0x01, },
383 { .hz = 640, .value = 0x02, },
384 { .hz = 2560, .value = 0x03, },
385 },
386 },
387 .pw = {
388 .addr = 0x20,
389 .mask = 0xc0,
390 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
391 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
392 },
393 .enable_axis = {
394 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
395 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
396 },
397 .fs = {
398 .addr = 0x21,
399 .mask = 0x80,
400 .fs_avl = {
401 [0] = {
402 .num = ST_ACCEL_FS_AVL_2G,
403 .value = 0x00,
404 .gain = IIO_G_TO_M_S_2(1000),
405 },
406 [1] = {
407 .num = ST_ACCEL_FS_AVL_6G,
408 .value = 0x01,
409 .gain = IIO_G_TO_M_S_2(3000),
410 },
411 },
412 },
413 .bdu = {
414 .addr = 0x21,
415 .mask = 0x40,
416 },
417 /*
418 * Data Alignment Setting - needs to be set to get
419 * left-justified data like all other sensors.
420 */
421 .das = {
422 .addr = 0x21,
423 .mask = 0x01,
424 },
425 .drdy_irq = {
426 .int1 = {
427 .addr = 0x21,
428 .mask = 0x04,
429 },
430 .stat_drdy = {
431 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
432 .mask = 0x07,
433 },
434 },
435 .sim = {
436 .addr = 0x21,
437 .value = BIT(1),
438 },
439 .multi_read_bit = true,
440 .bootime = 2, /* guess */
441 },
442 {
443 .wai = 0x3b,
444 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
445 .sensors_supported = {
446 [0] = LIS331DL_ACCEL_DEV_NAME,
447 [1] = LIS302DL_ACCEL_DEV_NAME,
448 },
449 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
450 .odr = {
451 .addr = 0x20,
452 .mask = 0x80,
453 .odr_avl = {
454 { .hz = 100, .value = 0x00, },
455 { .hz = 400, .value = 0x01, },
456 },
457 },
458 .pw = {
459 .addr = 0x20,
460 .mask = 0x40,
461 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
462 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
463 },
464 .enable_axis = {
465 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
466 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
467 },
468 .fs = {
469 .addr = 0x20,
470 .mask = 0x20,
471 /*
472 * TODO: check these resulting gain settings, these are
473 * not in the datsheet
474 */
475 .fs_avl = {
476 [0] = {
477 .num = ST_ACCEL_FS_AVL_2G,
478 .value = 0x00,
479 .gain = IIO_G_TO_M_S_2(18000),
480 },
481 [1] = {
482 .num = ST_ACCEL_FS_AVL_8G,
483 .value = 0x01,
484 .gain = IIO_G_TO_M_S_2(72000),
485 },
486 },
487 },
488 .drdy_irq = {
489 .int1 = {
490 .addr = 0x22,
491 .mask = 0x04,
492 .addr_od = 0x22,
493 .mask_od = 0x40,
494 },
495 .int2 = {
496 .addr = 0x22,
497 .mask = 0x20,
498 .addr_od = 0x22,
499 .mask_od = 0x40,
500 },
501 .addr_ihl = 0x22,
502 .mask_ihl = 0x80,
503 .stat_drdy = {
504 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
505 .mask = 0x07,
506 },
507 },
508 .sim = {
509 .addr = 0x21,
510 .value = BIT(7),
511 },
512 .multi_read_bit = false,
513 .bootime = 2, /* guess */
514 },
515 {
516 .wai = 0x32,
517 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
518 .sensors_supported = {
519 [0] = H3LIS331DL_ACCEL_DEV_NAME,
520 [1] = IIS328DQ_ACCEL_DEV_NAME,
521 },
522 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
523 .odr = {
524 .addr = 0x20,
525 .mask = 0x18,
526 .odr_avl = {
527 { .hz = 50, .value = 0x00, },
528 { .hz = 100, .value = 0x01, },
529 { .hz = 400, .value = 0x02, },
530 { .hz = 1000, .value = 0x03, },
531 },
532 },
533 .pw = {
534 .addr = 0x20,
535 .mask = 0x20,
536 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
537 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
538 },
539 .enable_axis = {
540 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
541 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
542 },
543 .fs = {
544 .addr = 0x23,
545 .mask = 0x30,
546 .fs_avl = {
547 [0] = {
548 .num = ST_ACCEL_FS_AVL_100G,
549 .value = 0x00,
550 .gain = IIO_G_TO_M_S_2(49000),
551 },
552 [1] = {
553 .num = ST_ACCEL_FS_AVL_200G,
554 .value = 0x01,
555 .gain = IIO_G_TO_M_S_2(98000),
556 },
557 [2] = {
558 .num = ST_ACCEL_FS_AVL_400G,
559 .value = 0x03,
560 .gain = IIO_G_TO_M_S_2(195000),
561 },
562 },
563 },
564 .bdu = {
565 .addr = 0x23,
566 .mask = 0x80,
567 },
568 .drdy_irq = {
569 .int1 = {
570 .addr = 0x22,
571 .mask = 0x02,
572 },
573 .int2 = {
574 .addr = 0x22,
575 .mask = 0x10,
576 },
577 .addr_ihl = 0x22,
578 .mask_ihl = 0x80,
579 },
580 .sim = {
581 .addr = 0x23,
582 .value = BIT(0),
583 },
584 .multi_read_bit = true,
585 .bootime = 2,
586 },
587 {
588 /* No WAI register present */
589 .sensors_supported = {
590 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
591 },
592 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
593 .odr = {
594 .addr = 0x20,
595 .mask = 0x30,
596 .odr_avl = {
597 { .hz = 280, .value = 0x00, },
598 { .hz = 560, .value = 0x01, },
599 { .hz = 1120, .value = 0x02, },
600 { .hz = 4480, .value = 0x03, },
601 },
602 },
603 .pw = {
604 .addr = 0x20,
605 .mask = 0xc0,
606 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
607 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
608 },
609 .enable_axis = {
610 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
611 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
612 },
613 .fs = {
614 .fs_avl = {
615 [0] = {
616 .num = ST_ACCEL_FS_AVL_2G,
617 .gain = IIO_G_TO_M_S_2(488),
618 },
619 },
620 },
621 /*
622 * The part has a BDU bit but if set the data is never
623 * updated so don't set it.
624 */
625 .bdu = {
626 },
627 .drdy_irq = {
628 .int1 = {
629 .addr = 0x21,
630 .mask = 0x04,
631 },
632 .stat_drdy = {
633 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
634 .mask = 0x07,
635 },
636 },
637 .sim = {
638 .addr = 0x21,
639 .value = BIT(1),
640 },
641 .multi_read_bit = false,
642 .bootime = 2,
643 },
644 {
645 .wai = 0x33,
646 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
647 .sensors_supported = {
648 [0] = LNG2DM_ACCEL_DEV_NAME,
649 },
650 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
651 .odr = {
652 .addr = 0x20,
653 .mask = 0xf0,
654 .odr_avl = {
655 { .hz = 1, .value = 0x01, },
656 { .hz = 10, .value = 0x02, },
657 { .hz = 25, .value = 0x03, },
658 { .hz = 50, .value = 0x04, },
659 { .hz = 100, .value = 0x05, },
660 { .hz = 200, .value = 0x06, },
661 { .hz = 400, .value = 0x07, },
662 { .hz = 1600, .value = 0x08, },
663 },
664 },
665 .pw = {
666 .addr = 0x20,
667 .mask = 0xf0,
668 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
669 },
670 .enable_axis = {
671 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
672 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
673 },
674 .fs = {
675 .addr = 0x23,
676 .mask = 0x30,
677 .fs_avl = {
678 [0] = {
679 .num = ST_ACCEL_FS_AVL_2G,
680 .value = 0x00,
681 .gain = IIO_G_TO_M_S_2(15600),
682 },
683 [1] = {
684 .num = ST_ACCEL_FS_AVL_4G,
685 .value = 0x01,
686 .gain = IIO_G_TO_M_S_2(31200),
687 },
688 [2] = {
689 .num = ST_ACCEL_FS_AVL_8G,
690 .value = 0x02,
691 .gain = IIO_G_TO_M_S_2(62500),
692 },
693 [3] = {
694 .num = ST_ACCEL_FS_AVL_16G,
695 .value = 0x03,
696 .gain = IIO_G_TO_M_S_2(187500),
697 },
698 },
699 },
700 .drdy_irq = {
701 .int1 = {
702 .addr = 0x22,
703 .mask = 0x10,
704 },
705 .addr_ihl = 0x25,
706 .mask_ihl = 0x02,
707 .stat_drdy = {
708 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
709 .mask = 0x07,
710 },
711 },
712 .sim = {
713 .addr = 0x23,
714 .value = BIT(0),
715 },
716 .multi_read_bit = true,
717 .bootime = 2,
718 },
719 {
720 .wai = 0x44,
721 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
722 .sensors_supported = {
723 [0] = LIS2DW12_ACCEL_DEV_NAME,
724 },
725 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
726 .odr = {
727 .addr = 0x20,
728 .mask = 0xf0,
729 .odr_avl = {
730 { .hz = 1, .value = 0x01, },
731 { .hz = 12, .value = 0x02, },
732 { .hz = 25, .value = 0x03, },
733 { .hz = 50, .value = 0x04, },
734 { .hz = 100, .value = 0x05, },
735 { .hz = 200, .value = 0x06, },
736 },
737 },
738 .pw = {
739 .addr = 0x20,
740 .mask = 0xf0,
741 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
742 },
743 .fs = {
744 .addr = 0x25,
745 .mask = 0x30,
746 .fs_avl = {
747 [0] = {
748 .num = ST_ACCEL_FS_AVL_2G,
749 .value = 0x00,
750 .gain = IIO_G_TO_M_S_2(976),
751 },
752 [1] = {
753 .num = ST_ACCEL_FS_AVL_4G,
754 .value = 0x01,
755 .gain = IIO_G_TO_M_S_2(1952),
756 },
757 [2] = {
758 .num = ST_ACCEL_FS_AVL_8G,
759 .value = 0x02,
760 .gain = IIO_G_TO_M_S_2(3904),
761 },
762 [3] = {
763 .num = ST_ACCEL_FS_AVL_16G,
764 .value = 0x03,
765 .gain = IIO_G_TO_M_S_2(7808),
766 },
767 },
768 },
769 .bdu = {
770 .addr = 0x21,
771 .mask = 0x08,
772 },
773 .drdy_irq = {
774 .int1 = {
775 .addr = 0x23,
776 .mask = 0x01,
777 .addr_od = 0x22,
778 .mask_od = 0x20,
779 },
780 .int2 = {
781 .addr = 0x24,
782 .mask = 0x01,
783 .addr_od = 0x22,
784 .mask_od = 0x20,
785 },
786 .addr_ihl = 0x22,
787 .mask_ihl = 0x08,
788 .stat_drdy = {
789 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
790 .mask = 0x01,
791 },
792 },
793 .sim = {
794 .addr = 0x21,
795 .value = BIT(0),
796 },
797 .multi_read_bit = false,
798 .bootime = 2,
799 },
800 {
801 .wai = 0x11,
802 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
803 .sensors_supported = {
804 [0] = LIS3DHH_ACCEL_DEV_NAME,
805 },
806 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
807 .odr = {
808 /* just ODR = 1100Hz available */
809 .odr_avl = {
810 { .hz = 1100, .value = 0x00, },
811 },
812 },
813 .pw = {
814 .addr = 0x20,
815 .mask = 0x80,
816 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
817 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
818 },
819 .fs = {
820 .fs_avl = {
821 [0] = {
822 .num = ST_ACCEL_FS_AVL_2G,
823 .gain = IIO_G_TO_M_S_2(76),
824 },
825 },
826 },
827 .bdu = {
828 .addr = 0x20,
829 .mask = 0x01,
830 },
831 .drdy_irq = {
832 .int1 = {
833 .addr = 0x21,
834 .mask = 0x80,
835 .addr_od = 0x23,
836 .mask_od = 0x04,
837 },
838 .int2 = {
839 .addr = 0x22,
840 .mask = 0x80,
841 .addr_od = 0x23,
842 .mask_od = 0x08,
843 },
844 .stat_drdy = {
845 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
846 .mask = 0x07,
847 },
848 },
849 .multi_read_bit = false,
850 .bootime = 2,
851 },
852 {
853 .wai = 0x33,
854 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
855 .sensors_supported = {
856 [0] = LIS2DE12_ACCEL_DEV_NAME,
857 },
858 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
859 .odr = {
860 .addr = 0x20,
861 .mask = 0xf0,
862 .odr_avl = {
863 { .hz = 1, .value = 0x01, },
864 { .hz = 10, .value = 0x02, },
865 { .hz = 25, .value = 0x03, },
866 { .hz = 50, .value = 0x04, },
867 { .hz = 100, .value = 0x05, },
868 { .hz = 200, .value = 0x06, },
869 { .hz = 400, .value = 0x07, },
870 { .hz = 1620, .value = 0x08, },
871 { .hz = 5376, .value = 0x09, },
872 },
873 },
874 .pw = {
875 .addr = 0x20,
876 .mask = 0xf0,
877 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
878 },
879 .enable_axis = {
880 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
881 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
882 },
883 .fs = {
884 .addr = 0x23,
885 .mask = 0x30,
886 .fs_avl = {
887 [0] = {
888 .num = ST_ACCEL_FS_AVL_2G,
889 .value = 0x00,
890 .gain = IIO_G_TO_M_S_2(15600),
891 },
892 [1] = {
893 .num = ST_ACCEL_FS_AVL_4G,
894 .value = 0x01,
895 .gain = IIO_G_TO_M_S_2(31200),
896 },
897 [2] = {
898 .num = ST_ACCEL_FS_AVL_8G,
899 .value = 0x02,
900 .gain = IIO_G_TO_M_S_2(62500),
901 },
902 [3] = {
903 .num = ST_ACCEL_FS_AVL_16G,
904 .value = 0x03,
905 .gain = IIO_G_TO_M_S_2(187500),
906 },
907 },
908 },
909 .drdy_irq = {
910 .int1 = {
911 .addr = 0x22,
912 .mask = 0x10,
913 },
914 .addr_ihl = 0x25,
915 .mask_ihl = 0x02,
916 .stat_drdy = {
917 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
918 .mask = 0x07,
919 },
920 },
921 .sim = {
922 .addr = 0x23,
923 .value = BIT(0),
924 },
925 .multi_read_bit = true,
926 .bootime = 2,
927 },
928 {
929 .wai = 0x41,
930 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
931 .sensors_supported = {
932 [0] = LIS2HH12_ACCEL_DEV_NAME,
933 [1] = LSM303C_ACCEL_DEV_NAME,
934 },
935 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
936 .odr = {
937 .addr = 0x20,
938 .mask = 0x70,
939 .odr_avl = {
940 { .hz = 10, .value = 0x01, },
941 { .hz = 50, .value = 0x02, },
942 { .hz = 100, .value = 0x03, },
943 { .hz = 200, .value = 0x04, },
944 { .hz = 400, .value = 0x05, },
945 { .hz = 800, .value = 0x06, },
946 },
947 },
948 .pw = {
949 .addr = 0x20,
950 .mask = 0x70,
951 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
952 },
953 .enable_axis = {
954 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
955 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
956 },
957 .fs = {
958 .addr = 0x23,
959 .mask = 0x30,
960 .fs_avl = {
961 [0] = {
962 .num = ST_ACCEL_FS_AVL_2G,
963 .value = 0x00,
964 .gain = IIO_G_TO_M_S_2(61),
965 },
966 [1] = {
967 .num = ST_ACCEL_FS_AVL_4G,
968 .value = 0x02,
969 .gain = IIO_G_TO_M_S_2(122),
970 },
971 [2] = {
972 .num = ST_ACCEL_FS_AVL_8G,
973 .value = 0x03,
974 .gain = IIO_G_TO_M_S_2(244),
975 },
976 },
977 },
978 .bdu = {
979 .addr = 0x20,
980 .mask = 0x08,
981 },
982 .drdy_irq = {
983 .int1 = {
984 .addr = 0x22,
985 .mask = 0x01,
986 },
987 .int2 = {
988 .addr = 0x25,
989 .mask = 0x01,
990 },
991 .addr_ihl = 0x24,
992 .mask_ihl = 0x02,
993 .stat_drdy = {
994 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
995 .mask = 0x07,
996 },
997 },
998 .sim = {
999 .addr = 0x23,
1000 .value = BIT(0),
1001 },
1002 .multi_read_bit = true,
1003 .bootime = 2,
1004 },
1005 {
1006 .wai = 0x49,
1007 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
1008 .sensors_supported = {
1009 [0] = LSM9DS0_IMU_DEV_NAME,
1010 [1] = LSM303D_IMU_DEV_NAME,
1011 },
1012 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
1013 .odr = {
1014 .addr = 0x20,
1015 .mask = GENMASK(7, 4),
1016 .odr_avl = {
1017 { 3, 0x01, },
1018 { 6, 0x02, },
1019 { 12, 0x03, },
1020 { 25, 0x04, },
1021 { 50, 0x05, },
1022 { 100, 0x06, },
1023 { 200, 0x07, },
1024 { 400, 0x08, },
1025 { 800, 0x09, },
1026 { 1600, 0x0a, },
1027 },
1028 },
1029 .pw = {
1030 .addr = 0x20,
1031 .mask = GENMASK(7, 4),
1032 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
1033 },
1034 .enable_axis = {
1035 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
1036 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
1037 },
1038 .fs = {
1039 .addr = 0x21,
1040 .mask = GENMASK(5, 3),
1041 .fs_avl = {
1042 [0] = {
1043 .num = ST_ACCEL_FS_AVL_2G,
1044 .value = 0x00,
1045 .gain = IIO_G_TO_M_S_2(61),
1046 },
1047 [1] = {
1048 .num = ST_ACCEL_FS_AVL_4G,
1049 .value = 0x01,
1050 .gain = IIO_G_TO_M_S_2(122),
1051 },
1052 [2] = {
1053 .num = ST_ACCEL_FS_AVL_6G,
1054 .value = 0x02,
1055 .gain = IIO_G_TO_M_S_2(183),
1056 },
1057 [3] = {
1058 .num = ST_ACCEL_FS_AVL_8G,
1059 .value = 0x03,
1060 .gain = IIO_G_TO_M_S_2(244),
1061 },
1062 [4] = {
1063 .num = ST_ACCEL_FS_AVL_16G,
1064 .value = 0x04,
1065 .gain = IIO_G_TO_M_S_2(732),
1066 },
1067 },
1068 },
1069 .bdu = {
1070 .addr = 0x20,
1071 .mask = BIT(3),
1072 },
1073 .drdy_irq = {
1074 .int1 = {
1075 .addr = 0x22,
1076 .mask = BIT(2),
1077 },
1078 .int2 = {
1079 .addr = 0x23,
1080 .mask = BIT(3),
1081 },
1082 .stat_drdy = {
1083 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1084 .mask = GENMASK(2, 0),
1085 },
1086 },
1087 .sim = {
1088 .addr = 0x21,
1089 .value = BIT(0),
1090 },
1091 .multi_read_bit = true,
1092 .bootime = 2,
1093 },
1094 {
1095 /*
1096 * Not an ST part. Register-compatible with the LIS2DH, even
1097 * though the WAI value is different.
1098 */
1099 .wai = 0x11,
1100 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
1101 .sensors_supported = {
1102 [0] = SC7A20_ACCEL_DEV_NAME,
1103 },
1104 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
1105 .odr = {
1106 .addr = 0x20,
1107 .mask = 0xf0,
1108 .odr_avl = {
1109 { .hz = 1, .value = 0x01, },
1110 { .hz = 10, .value = 0x02, },
1111 { .hz = 25, .value = 0x03, },
1112 { .hz = 50, .value = 0x04, },
1113 { .hz = 100, .value = 0x05, },
1114 { .hz = 200, .value = 0x06, },
1115 { .hz = 400, .value = 0x07, },
1116 { .hz = 1600, .value = 0x08, },
1117 },
1118 },
1119 .pw = {
1120 .addr = 0x20,
1121 .mask = 0xf0,
1122 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
1123 },
1124 .enable_axis = {
1125 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
1126 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
1127 },
1128 .fs = {
1129 .addr = 0x23,
1130 .mask = 0x30,
1131 .fs_avl = {
1132 [0] = {
1133 .num = ST_ACCEL_FS_AVL_2G,
1134 .value = 0x00,
1135 .gain = IIO_G_TO_M_S_2(1000),
1136 },
1137 [1] = {
1138 .num = ST_ACCEL_FS_AVL_4G,
1139 .value = 0x01,
1140 .gain = IIO_G_TO_M_S_2(2000),
1141 },
1142 [2] = {
1143 .num = ST_ACCEL_FS_AVL_8G,
1144 .value = 0x02,
1145 .gain = IIO_G_TO_M_S_2(4000),
1146 },
1147 [3] = {
1148 .num = ST_ACCEL_FS_AVL_16G,
1149 .value = 0x03,
1150 .gain = IIO_G_TO_M_S_2(12000),
1151 },
1152 },
1153 },
1154 .bdu = {
1155 .addr = 0x23,
1156 .mask = 0x80,
1157 },
1158 .drdy_irq = {
1159 .int1 = {
1160 .addr = 0x22,
1161 .mask = 0x10,
1162 },
1163 .addr_ihl = 0x25,
1164 .mask_ihl = 0x02,
1165 .stat_drdy = {
1166 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1167 .mask = 0x07,
1168 },
1169 },
1170 .sim = {
1171 .addr = 0x23,
1172 .value = BIT(0),
1173 },
1174 .multi_read_bit = true,
1175 .bootime = 2,
1176 },
1177};
1178
1179/* Default accel DRDY is available on INT1 pin */
1180static const struct st_sensors_platform_data default_accel_pdata = {
1181 .drdy_int_pin = 1,
1182};
1183
1184static int st_accel_read_raw(struct iio_dev *indio_dev,
1185 struct iio_chan_spec const *ch, int *val,
1186 int *val2, long mask)
1187{
1188 int err;
1189 struct st_sensor_data *adata = iio_priv(indio_dev);
1190
1191 switch (mask) {
1192 case IIO_CHAN_INFO_RAW:
1193 err = st_sensors_read_info_raw(indio_dev, ch, val);
1194 if (err < 0)
1195 goto read_error;
1196
1197 return IIO_VAL_INT;
1198 case IIO_CHAN_INFO_SCALE:
1199 *val = adata->current_fullscale->gain / 1000000;
1200 *val2 = adata->current_fullscale->gain % 1000000;
1201 return IIO_VAL_INT_PLUS_MICRO;
1202 case IIO_CHAN_INFO_SAMP_FREQ:
1203 *val = adata->odr;
1204 return IIO_VAL_INT;
1205 default:
1206 return -EINVAL;
1207 }
1208
1209read_error:
1210 return err;
1211}
1212
1213static int st_accel_write_raw(struct iio_dev *indio_dev,
1214 struct iio_chan_spec const *chan, int val, int val2, long mask)
1215{
1216 switch (mask) {
1217 case IIO_CHAN_INFO_SCALE: {
1218 int gain;
1219
1220 gain = val * 1000000 + val2;
1221 return st_sensors_set_fullscale_by_gain(indio_dev, scale: gain);
1222 }
1223 case IIO_CHAN_INFO_SAMP_FREQ:
1224 if (val2)
1225 return -EINVAL;
1226
1227 return st_sensors_set_odr(indio_dev, odr: val);
1228 default:
1229 return -EINVAL;
1230 }
1231}
1232
1233static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
1234static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
1235
1236static struct attribute *st_accel_attributes[] = {
1237 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1238 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1239 NULL,
1240};
1241
1242static const struct attribute_group st_accel_attribute_group = {
1243 .attrs = st_accel_attributes,
1244};
1245
1246static const struct iio_info accel_info = {
1247 .attrs = &st_accel_attribute_group,
1248 .read_raw = &st_accel_read_raw,
1249 .write_raw = &st_accel_write_raw,
1250 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
1251};
1252
1253#ifdef CONFIG_IIO_TRIGGER
1254static const struct iio_trigger_ops st_accel_trigger_ops = {
1255 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
1256 .validate_device = st_sensors_validate_device,
1257};
1258#define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
1259#else
1260#define ST_ACCEL_TRIGGER_OPS NULL
1261#endif
1262
1263#ifdef CONFIG_ACPI
1264/* Read ST-specific _ONT orientation data from ACPI and generate an
1265 * appropriate mount matrix.
1266 */
1267static int apply_acpi_orientation(struct iio_dev *indio_dev)
1268{
1269 struct st_sensor_data *adata = iio_priv(indio_dev);
1270 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1271 struct acpi_device *adev;
1272 union acpi_object *ont;
1273 union acpi_object *elements;
1274 acpi_status status;
1275 int ret = -EINVAL;
1276 unsigned int val;
1277 int i, j;
1278 int final_ont[3][3] = { { 0 }, };
1279
1280 /* For some reason, ST's _ONT translation does not apply directly
1281 * to the data read from the sensor. Another translation must be
1282 * performed first, as described by the matrix below. Perhaps
1283 * ST required this specific translation for the first product
1284 * where the device was mounted?
1285 */
1286 const int default_ont[3][3] = {
1287 { 0, 1, 0 },
1288 { -1, 0, 0 },
1289 { 0, 0, -1 },
1290 };
1291
1292
1293 adev = ACPI_COMPANION(indio_dev->dev.parent);
1294 if (!adev)
1295 return -ENXIO;
1296
1297 /* Read _ONT data, which should be a package of 6 integers. */
1298 status = acpi_evaluate_object(object: adev->handle, pathname: "_ONT", NULL, return_object_buffer: &buffer);
1299 if (status == AE_NOT_FOUND) {
1300 return -ENXIO;
1301 } else if (ACPI_FAILURE(status)) {
1302 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
1303 status);
1304 return status;
1305 }
1306
1307 ont = buffer.pointer;
1308 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
1309 goto out;
1310
1311 /* The first 3 integers provide axis order information.
1312 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
1313 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
1314 */
1315 elements = ont->package.elements;
1316 for (i = 0; i < 3; i++) {
1317 if (elements[i].type != ACPI_TYPE_INTEGER)
1318 goto out;
1319
1320 val = elements[i].integer.value;
1321 if (val > 2)
1322 goto out;
1323
1324 /* Avoiding full matrix multiplication, we simply reorder the
1325 * columns in the default_ont matrix according to the
1326 * ordering provided by _ONT.
1327 */
1328 final_ont[0][i] = default_ont[0][val];
1329 final_ont[1][i] = default_ont[1][val];
1330 final_ont[2][i] = default_ont[2][val];
1331 }
1332
1333 /* The final 3 integers provide sign flip information.
1334 * 0 means no change, 1 means flip.
1335 * e.g. 0 0 1 means that Z data should be sign-flipped.
1336 * This is applied after the axis reordering from above.
1337 */
1338 elements += 3;
1339 for (i = 0; i < 3; i++) {
1340 if (elements[i].type != ACPI_TYPE_INTEGER)
1341 goto out;
1342
1343 val = elements[i].integer.value;
1344 if (val != 0 && val != 1)
1345 goto out;
1346 if (!val)
1347 continue;
1348
1349 /* Flip the values in the indicated column */
1350 final_ont[0][i] *= -1;
1351 final_ont[1][i] *= -1;
1352 final_ont[2][i] *= -1;
1353 }
1354
1355 /* Convert our integer matrix to a string-based iio_mount_matrix */
1356 for (i = 0; i < 3; i++) {
1357 for (j = 0; j < 3; j++) {
1358 int matrix_val = final_ont[i][j];
1359 char *str_value;
1360
1361 switch (matrix_val) {
1362 case -1:
1363 str_value = "-1";
1364 break;
1365 case 0:
1366 str_value = "0";
1367 break;
1368 case 1:
1369 str_value = "1";
1370 break;
1371 default:
1372 goto out;
1373 }
1374 adata->mount_matrix.rotation[i * 3 + j] = str_value;
1375 }
1376 }
1377
1378 ret = 0;
1379 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1380
1381out:
1382 kfree(objp: buffer.pointer);
1383 if (ret)
1384 dev_dbg(&indio_dev->dev,
1385 "failed to apply ACPI orientation data: %d\n", ret);
1386
1387 return ret;
1388}
1389#else /* !CONFIG_ACPI */
1390static int apply_acpi_orientation(struct iio_dev *indio_dev)
1391{
1392 return -EINVAL;
1393}
1394#endif
1395
1396/*
1397 * st_accel_get_settings() - get sensor settings from device name
1398 * @name: device name buffer reference.
1399 *
1400 * Return: valid reference on success, NULL otherwise.
1401 */
1402const struct st_sensor_settings *st_accel_get_settings(const char *name)
1403{
1404 int index = st_sensors_get_settings_index(name,
1405 list: st_accel_sensors_settings,
1406 ARRAY_SIZE(st_accel_sensors_settings));
1407 if (index < 0)
1408 return NULL;
1409
1410 return &st_accel_sensors_settings[index];
1411}
1412EXPORT_SYMBOL_NS(st_accel_get_settings, IIO_ST_SENSORS);
1413
1414int st_accel_common_probe(struct iio_dev *indio_dev)
1415{
1416 struct st_sensor_data *adata = iio_priv(indio_dev);
1417 struct device *parent = indio_dev->dev.parent;
1418 struct st_sensors_platform_data *pdata = dev_get_platdata(dev: parent);
1419 int err;
1420
1421 indio_dev->modes = INDIO_DIRECT_MODE;
1422 indio_dev->info = &accel_info;
1423
1424 err = st_sensors_verify_id(indio_dev);
1425 if (err < 0)
1426 return err;
1427
1428 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1429 indio_dev->channels = adata->sensor_settings->ch;
1430 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1431
1432 /*
1433 * First try specific ACPI methods to retrieve orientation then try the
1434 * generic function.
1435 */
1436 err = apply_acpi_orientation(indio_dev);
1437 if (err) {
1438 err = iio_read_mount_matrix(dev: parent, matrix: &adata->mount_matrix);
1439 if (err)
1440 return err;
1441 }
1442
1443 adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0];
1444 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1445
1446 if (!pdata)
1447 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1448
1449 err = st_sensors_init_sensor(indio_dev, pdata);
1450 if (err < 0)
1451 return err;
1452
1453 err = st_accel_allocate_ring(indio_dev);
1454 if (err < 0)
1455 return err;
1456
1457 if (adata->irq > 0) {
1458 err = st_sensors_allocate_trigger(indio_dev,
1459 ST_ACCEL_TRIGGER_OPS);
1460 if (err < 0)
1461 return err;
1462 }
1463
1464 return devm_iio_device_register(parent, indio_dev);
1465}
1466EXPORT_SYMBOL_NS(st_accel_common_probe, IIO_ST_SENSORS);
1467
1468MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
1469MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1470MODULE_LICENSE("GPL v2");
1471MODULE_IMPORT_NS(IIO_ST_SENSORS);
1472

source code of linux/drivers/iio/accel/st_accel_core.c