1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4 * Copyright (c) 2012 Bosch Sensortec GmbH
5 * Copyright (c) 2012 Unixphere AB
6 * Copyright (c) 2014 Intel Corporation
7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 *
9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 *
11 * Datasheet:
12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
17 *
18 * Notice:
19 * The link to the bmp180 datasheet points to an outdated version missing these changes:
20 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
21 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
22 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
23 */
24
25#define pr_fmt(fmt) "bmp280: " fmt
26
27#include <linux/bitops.h>
28#include <linux/bitfield.h>
29#include <linux/device.h>
30#include <linux/module.h>
31#include <linux/nvmem-provider.h>
32#include <linux/regmap.h>
33#include <linux/delay.h>
34#include <linux/iio/iio.h>
35#include <linux/iio/sysfs.h>
36#include <linux/gpio/consumer.h>
37#include <linux/regulator/consumer.h>
38#include <linux/interrupt.h>
39#include <linux/irq.h> /* For irq_get_irq_data() */
40#include <linux/completion.h>
41#include <linux/pm_runtime.h>
42#include <linux/random.h>
43
44#include <asm/unaligned.h>
45
46#include "bmp280.h"
47
48/*
49 * These enums are used for indexing into the array of calibration
50 * coefficients for BMP180.
51 */
52enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
53
54
55enum bmp380_odr {
56 BMP380_ODR_200HZ,
57 BMP380_ODR_100HZ,
58 BMP380_ODR_50HZ,
59 BMP380_ODR_25HZ,
60 BMP380_ODR_12_5HZ,
61 BMP380_ODR_6_25HZ,
62 BMP380_ODR_3_125HZ,
63 BMP380_ODR_1_5625HZ,
64 BMP380_ODR_0_78HZ,
65 BMP380_ODR_0_39HZ,
66 BMP380_ODR_0_2HZ,
67 BMP380_ODR_0_1HZ,
68 BMP380_ODR_0_05HZ,
69 BMP380_ODR_0_02HZ,
70 BMP380_ODR_0_01HZ,
71 BMP380_ODR_0_006HZ,
72 BMP380_ODR_0_003HZ,
73 BMP380_ODR_0_0015HZ,
74};
75
76enum bmp580_odr {
77 BMP580_ODR_240HZ,
78 BMP580_ODR_218HZ,
79 BMP580_ODR_199HZ,
80 BMP580_ODR_179HZ,
81 BMP580_ODR_160HZ,
82 BMP580_ODR_149HZ,
83 BMP580_ODR_140HZ,
84 BMP580_ODR_129HZ,
85 BMP580_ODR_120HZ,
86 BMP580_ODR_110HZ,
87 BMP580_ODR_100HZ,
88 BMP580_ODR_89HZ,
89 BMP580_ODR_80HZ,
90 BMP580_ODR_70HZ,
91 BMP580_ODR_60HZ,
92 BMP580_ODR_50HZ,
93 BMP580_ODR_45HZ,
94 BMP580_ODR_40HZ,
95 BMP580_ODR_35HZ,
96 BMP580_ODR_30HZ,
97 BMP580_ODR_25HZ,
98 BMP580_ODR_20HZ,
99 BMP580_ODR_15HZ,
100 BMP580_ODR_10HZ,
101 BMP580_ODR_5HZ,
102 BMP580_ODR_4HZ,
103 BMP580_ODR_3HZ,
104 BMP580_ODR_2HZ,
105 BMP580_ODR_1HZ,
106 BMP580_ODR_0_5HZ,
107 BMP580_ODR_0_25HZ,
108 BMP580_ODR_0_125HZ,
109};
110
111/*
112 * These enums are used for indexing into the array of compensation
113 * parameters for BMP280.
114 */
115enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
116
117enum {
118 /* Temperature calib indexes */
119 BMP380_T1 = 0,
120 BMP380_T2 = 2,
121 BMP380_T3 = 4,
122 /* Pressure calib indexes */
123 BMP380_P1 = 5,
124 BMP380_P2 = 7,
125 BMP380_P3 = 9,
126 BMP380_P4 = 10,
127 BMP380_P5 = 11,
128 BMP380_P6 = 13,
129 BMP380_P7 = 15,
130 BMP380_P8 = 16,
131 BMP380_P9 = 17,
132 BMP380_P10 = 19,
133 BMP380_P11 = 20,
134};
135
136static const struct iio_chan_spec bmp280_channels[] = {
137 {
138 .type = IIO_PRESSURE,
139 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
140 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
141 },
142 {
143 .type = IIO_TEMP,
144 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
145 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
146 },
147 {
148 .type = IIO_HUMIDITYRELATIVE,
149 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
150 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
151 },
152};
153
154static const struct iio_chan_spec bmp380_channels[] = {
155 {
156 .type = IIO_PRESSURE,
157 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
158 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
159 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
160 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
161 },
162 {
163 .type = IIO_TEMP,
164 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
165 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
166 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
167 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
168 },
169 {
170 .type = IIO_HUMIDITYRELATIVE,
171 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
172 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
173 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
174 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
175 },
176};
177
178static int bmp280_read_calib(struct bmp280_data *data)
179{
180 struct bmp280_calib *calib = &data->calib.bmp280;
181 int ret;
182
183
184 /* Read temperature and pressure calibration values. */
185 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_TEMP_START,
186 val: data->bmp280_cal_buf, val_count: sizeof(data->bmp280_cal_buf));
187 if (ret < 0) {
188 dev_err(data->dev,
189 "failed to read temperature and pressure calibration parameters\n");
190 return ret;
191 }
192
193 /* Toss the temperature and pressure calibration data into the entropy pool */
194 add_device_randomness(buf: data->bmp280_cal_buf, len: sizeof(data->bmp280_cal_buf));
195
196 /* Parse temperature calibration values. */
197 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
198 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
199 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
200
201 /* Parse pressure calibration values. */
202 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
203 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
204 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
205 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
206 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
207 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
208 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
209 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
210 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
211
212 return 0;
213}
214
215static int bme280_read_calib(struct bmp280_data *data)
216{
217 struct bmp280_calib *calib = &data->calib.bmp280;
218 struct device *dev = data->dev;
219 unsigned int tmp;
220 int ret;
221
222 /* Load shared calibration params with bmp280 first */
223 ret = bmp280_read_calib(data);
224 if (ret < 0) {
225 dev_err(dev, "failed to read common bmp280 calibration parameters\n");
226 return ret;
227 }
228
229 /*
230 * Read humidity calibration values.
231 * Due to some odd register addressing we cannot just
232 * do a big bulk read. Instead, we have to read each Hx
233 * value separately and sometimes do some bit shifting...
234 * Humidity data is only available on BME280.
235 */
236
237 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H1, val: &tmp);
238 if (ret < 0) {
239 dev_err(dev, "failed to read H1 comp value\n");
240 return ret;
241 }
242 calib->H1 = tmp;
243
244 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H2,
245 val: &data->le16, val_count: sizeof(data->le16));
246 if (ret < 0) {
247 dev_err(dev, "failed to read H2 comp value\n");
248 return ret;
249 }
250 calib->H2 = sign_extend32(le16_to_cpu(data->le16), index: 15);
251
252 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H3, val: &tmp);
253 if (ret < 0) {
254 dev_err(dev, "failed to read H3 comp value\n");
255 return ret;
256 }
257 calib->H3 = tmp;
258
259 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H4,
260 val: &data->be16, val_count: sizeof(data->be16));
261 if (ret < 0) {
262 dev_err(dev, "failed to read H4 comp value\n");
263 return ret;
264 }
265 calib->H4 = sign_extend32(value: ((be16_to_cpu(data->be16) >> 4) & 0xff0) |
266 (be16_to_cpu(data->be16) & 0xf), index: 11);
267
268 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_COMP_H5,
269 val: &data->le16, val_count: sizeof(data->le16));
270 if (ret < 0) {
271 dev_err(dev, "failed to read H5 comp value\n");
272 return ret;
273 }
274 calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), index: 11);
275
276 ret = regmap_read(map: data->regmap, BMP280_REG_COMP_H6, val: &tmp);
277 if (ret < 0) {
278 dev_err(dev, "failed to read H6 comp value\n");
279 return ret;
280 }
281 calib->H6 = sign_extend32(value: tmp, index: 7);
282
283 return 0;
284}
285/*
286 * Returns humidity in percent, resolution is 0.01 percent. Output value of
287 * "47445" represents 47445/1024 = 46.333 %RH.
288 *
289 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
290 */
291static u32 bmp280_compensate_humidity(struct bmp280_data *data,
292 s32 adc_humidity)
293{
294 struct bmp280_calib *calib = &data->calib.bmp280;
295 s32 var;
296
297 var = ((s32)data->t_fine) - (s32)76800;
298 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
299 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
300 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
301 + (s32)2097152) * calib->H2 + 8192) >> 14);
302 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
303
304 var = clamp_val(var, 0, 419430400);
305
306 return var >> 12;
307};
308
309/*
310 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
311 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
312 * value.
313 *
314 * Taken from datasheet, Section 3.11.3, "Compensation formula".
315 */
316static s32 bmp280_compensate_temp(struct bmp280_data *data,
317 s32 adc_temp)
318{
319 struct bmp280_calib *calib = &data->calib.bmp280;
320 s32 var1, var2;
321
322 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
323 ((s32)calib->T2)) >> 11;
324 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
325 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
326 ((s32)calib->T3)) >> 14;
327 data->t_fine = var1 + var2;
328
329 return (data->t_fine * 5 + 128) >> 8;
330}
331
332/*
333 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
334 * integer bits and 8 fractional bits). Output value of "24674867"
335 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
336 *
337 * Taken from datasheet, Section 3.11.3, "Compensation formula".
338 */
339static u32 bmp280_compensate_press(struct bmp280_data *data,
340 s32 adc_press)
341{
342 struct bmp280_calib *calib = &data->calib.bmp280;
343 s64 var1, var2, p;
344
345 var1 = ((s64)data->t_fine) - 128000;
346 var2 = var1 * var1 * (s64)calib->P6;
347 var2 += (var1 * (s64)calib->P5) << 17;
348 var2 += ((s64)calib->P4) << 35;
349 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
350 ((var1 * (s64)calib->P2) << 12);
351 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
352
353 if (var1 == 0)
354 return 0;
355
356 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
357 p = div64_s64(dividend: p, divisor: var1);
358 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
359 var2 = ((s64)(calib->P8) * p) >> 19;
360 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
361
362 return (u32)p;
363}
364
365static int bmp280_read_temp(struct bmp280_data *data,
366 int *val, int *val2)
367{
368 s32 adc_temp, comp_temp;
369 int ret;
370
371 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_TEMP_MSB,
372 val: data->buf, val_count: sizeof(data->buf));
373 if (ret < 0) {
374 dev_err(data->dev, "failed to read temperature\n");
375 return ret;
376 }
377
378 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
379 if (adc_temp == BMP280_TEMP_SKIPPED) {
380 /* reading was skipped */
381 dev_err(data->dev, "reading temperature skipped\n");
382 return -EIO;
383 }
384 comp_temp = bmp280_compensate_temp(data, adc_temp);
385
386 /*
387 * val might be NULL if we're called by the read_press routine,
388 * who only cares about the carry over t_fine value.
389 */
390 if (val) {
391 *val = comp_temp * 10;
392 return IIO_VAL_INT;
393 }
394
395 return 0;
396}
397
398static int bmp280_read_press(struct bmp280_data *data,
399 int *val, int *val2)
400{
401 u32 comp_press;
402 s32 adc_press;
403 int ret;
404
405 /* Read and compensate temperature so we get a reading of t_fine. */
406 ret = bmp280_read_temp(data, NULL, NULL);
407 if (ret < 0)
408 return ret;
409
410 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_PRESS_MSB,
411 val: data->buf, val_count: sizeof(data->buf));
412 if (ret < 0) {
413 dev_err(data->dev, "failed to read pressure\n");
414 return ret;
415 }
416
417 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
418 if (adc_press == BMP280_PRESS_SKIPPED) {
419 /* reading was skipped */
420 dev_err(data->dev, "reading pressure skipped\n");
421 return -EIO;
422 }
423 comp_press = bmp280_compensate_press(data, adc_press);
424
425 *val = comp_press;
426 *val2 = 256000;
427
428 return IIO_VAL_FRACTIONAL;
429}
430
431static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
432{
433 u32 comp_humidity;
434 s32 adc_humidity;
435 int ret;
436
437 /* Read and compensate temperature so we get a reading of t_fine. */
438 ret = bmp280_read_temp(data, NULL, NULL);
439 if (ret < 0)
440 return ret;
441
442 ret = regmap_bulk_read(map: data->regmap, BMP280_REG_HUMIDITY_MSB,
443 val: &data->be16, val_count: sizeof(data->be16));
444 if (ret < 0) {
445 dev_err(data->dev, "failed to read humidity\n");
446 return ret;
447 }
448
449 adc_humidity = be16_to_cpu(data->be16);
450 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
451 /* reading was skipped */
452 dev_err(data->dev, "reading humidity skipped\n");
453 return -EIO;
454 }
455 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
456
457 *val = comp_humidity * 1000 / 1024;
458
459 return IIO_VAL_INT;
460}
461
462static int bmp280_read_raw(struct iio_dev *indio_dev,
463 struct iio_chan_spec const *chan,
464 int *val, int *val2, long mask)
465{
466 struct bmp280_data *data = iio_priv(indio_dev);
467 int ret;
468
469 pm_runtime_get_sync(dev: data->dev);
470 mutex_lock(&data->lock);
471
472 switch (mask) {
473 case IIO_CHAN_INFO_PROCESSED:
474 switch (chan->type) {
475 case IIO_HUMIDITYRELATIVE:
476 ret = data->chip_info->read_humid(data, val, val2);
477 break;
478 case IIO_PRESSURE:
479 ret = data->chip_info->read_press(data, val, val2);
480 break;
481 case IIO_TEMP:
482 ret = data->chip_info->read_temp(data, val, val2);
483 break;
484 default:
485 ret = -EINVAL;
486 break;
487 }
488 break;
489 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
490 switch (chan->type) {
491 case IIO_HUMIDITYRELATIVE:
492 *val = 1 << data->oversampling_humid;
493 ret = IIO_VAL_INT;
494 break;
495 case IIO_PRESSURE:
496 *val = 1 << data->oversampling_press;
497 ret = IIO_VAL_INT;
498 break;
499 case IIO_TEMP:
500 *val = 1 << data->oversampling_temp;
501 ret = IIO_VAL_INT;
502 break;
503 default:
504 ret = -EINVAL;
505 break;
506 }
507 break;
508 case IIO_CHAN_INFO_SAMP_FREQ:
509 if (!data->chip_info->sampling_freq_avail) {
510 ret = -EINVAL;
511 break;
512 }
513
514 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
515 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
516 ret = IIO_VAL_INT_PLUS_MICRO;
517 break;
518 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
519 if (!data->chip_info->iir_filter_coeffs_avail) {
520 ret = -EINVAL;
521 break;
522 }
523
524 *val = (1 << data->iir_filter_coeff) - 1;
525 ret = IIO_VAL_INT;
526 break;
527 default:
528 ret = -EINVAL;
529 break;
530 }
531
532 mutex_unlock(lock: &data->lock);
533 pm_runtime_mark_last_busy(dev: data->dev);
534 pm_runtime_put_autosuspend(dev: data->dev);
535
536 return ret;
537}
538
539static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
540 int val)
541{
542 const int *avail = data->chip_info->oversampling_humid_avail;
543 const int n = data->chip_info->num_oversampling_humid_avail;
544 int ret, prev;
545 int i;
546
547 for (i = 0; i < n; i++) {
548 if (avail[i] == val) {
549 prev = data->oversampling_humid;
550 data->oversampling_humid = ilog2(val);
551
552 ret = data->chip_info->chip_config(data);
553 if (ret) {
554 data->oversampling_humid = prev;
555 data->chip_info->chip_config(data);
556 return ret;
557 }
558 return 0;
559 }
560 }
561 return -EINVAL;
562}
563
564static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
565 int val)
566{
567 const int *avail = data->chip_info->oversampling_temp_avail;
568 const int n = data->chip_info->num_oversampling_temp_avail;
569 int ret, prev;
570 int i;
571
572 for (i = 0; i < n; i++) {
573 if (avail[i] == val) {
574 prev = data->oversampling_temp;
575 data->oversampling_temp = ilog2(val);
576
577 ret = data->chip_info->chip_config(data);
578 if (ret) {
579 data->oversampling_temp = prev;
580 data->chip_info->chip_config(data);
581 return ret;
582 }
583 return 0;
584 }
585 }
586 return -EINVAL;
587}
588
589static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
590 int val)
591{
592 const int *avail = data->chip_info->oversampling_press_avail;
593 const int n = data->chip_info->num_oversampling_press_avail;
594 int ret, prev;
595 int i;
596
597 for (i = 0; i < n; i++) {
598 if (avail[i] == val) {
599 prev = data->oversampling_press;
600 data->oversampling_press = ilog2(val);
601
602 ret = data->chip_info->chip_config(data);
603 if (ret) {
604 data->oversampling_press = prev;
605 data->chip_info->chip_config(data);
606 return ret;
607 }
608 return 0;
609 }
610 }
611 return -EINVAL;
612}
613
614static int bmp280_write_sampling_frequency(struct bmp280_data *data,
615 int val, int val2)
616{
617 const int (*avail)[2] = data->chip_info->sampling_freq_avail;
618 const int n = data->chip_info->num_sampling_freq_avail;
619 int ret, prev;
620 int i;
621
622 for (i = 0; i < n; i++) {
623 if (avail[i][0] == val && avail[i][1] == val2) {
624 prev = data->sampling_freq;
625 data->sampling_freq = i;
626
627 ret = data->chip_info->chip_config(data);
628 if (ret) {
629 data->sampling_freq = prev;
630 data->chip_info->chip_config(data);
631 return ret;
632 }
633 return 0;
634 }
635 }
636 return -EINVAL;
637}
638
639static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
640{
641 const int *avail = data->chip_info->iir_filter_coeffs_avail;
642 const int n = data->chip_info->num_iir_filter_coeffs_avail;
643 int ret, prev;
644 int i;
645
646 for (i = 0; i < n; i++) {
647 if (avail[i] - 1 == val) {
648 prev = data->iir_filter_coeff;
649 data->iir_filter_coeff = i;
650
651 ret = data->chip_info->chip_config(data);
652 if (ret) {
653 data->iir_filter_coeff = prev;
654 data->chip_info->chip_config(data);
655 return ret;
656
657 }
658 return 0;
659 }
660 }
661 return -EINVAL;
662}
663
664static int bmp280_write_raw(struct iio_dev *indio_dev,
665 struct iio_chan_spec const *chan,
666 int val, int val2, long mask)
667{
668 struct bmp280_data *data = iio_priv(indio_dev);
669 int ret = 0;
670
671 /*
672 * Helper functions to update sensor running configuration.
673 * If an error happens applying new settings, will try restore
674 * previous parameters to ensure the sensor is left in a known
675 * working configuration.
676 */
677 switch (mask) {
678 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
679 pm_runtime_get_sync(dev: data->dev);
680 mutex_lock(&data->lock);
681 switch (chan->type) {
682 case IIO_HUMIDITYRELATIVE:
683 ret = bmp280_write_oversampling_ratio_humid(data, val);
684 break;
685 case IIO_PRESSURE:
686 ret = bmp280_write_oversampling_ratio_press(data, val);
687 break;
688 case IIO_TEMP:
689 ret = bmp280_write_oversampling_ratio_temp(data, val);
690 break;
691 default:
692 ret = -EINVAL;
693 break;
694 }
695 mutex_unlock(lock: &data->lock);
696 pm_runtime_mark_last_busy(dev: data->dev);
697 pm_runtime_put_autosuspend(dev: data->dev);
698 break;
699 case IIO_CHAN_INFO_SAMP_FREQ:
700 pm_runtime_get_sync(dev: data->dev);
701 mutex_lock(&data->lock);
702 ret = bmp280_write_sampling_frequency(data, val, val2);
703 mutex_unlock(lock: &data->lock);
704 pm_runtime_mark_last_busy(dev: data->dev);
705 pm_runtime_put_autosuspend(dev: data->dev);
706 break;
707 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
708 pm_runtime_get_sync(dev: data->dev);
709 mutex_lock(&data->lock);
710 ret = bmp280_write_iir_filter_coeffs(data, val);
711 mutex_unlock(lock: &data->lock);
712 pm_runtime_mark_last_busy(dev: data->dev);
713 pm_runtime_put_autosuspend(dev: data->dev);
714 break;
715 default:
716 return -EINVAL;
717 }
718
719 return ret;
720}
721
722static int bmp280_read_avail(struct iio_dev *indio_dev,
723 struct iio_chan_spec const *chan,
724 const int **vals, int *type, int *length,
725 long mask)
726{
727 struct bmp280_data *data = iio_priv(indio_dev);
728
729 switch (mask) {
730 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
731 switch (chan->type) {
732 case IIO_PRESSURE:
733 *vals = data->chip_info->oversampling_press_avail;
734 *length = data->chip_info->num_oversampling_press_avail;
735 break;
736 case IIO_TEMP:
737 *vals = data->chip_info->oversampling_temp_avail;
738 *length = data->chip_info->num_oversampling_temp_avail;
739 break;
740 default:
741 return -EINVAL;
742 }
743 *type = IIO_VAL_INT;
744 return IIO_AVAIL_LIST;
745 case IIO_CHAN_INFO_SAMP_FREQ:
746 *vals = (const int *)data->chip_info->sampling_freq_avail;
747 *type = IIO_VAL_INT_PLUS_MICRO;
748 /* Values are stored in a 2D matrix */
749 *length = data->chip_info->num_sampling_freq_avail;
750 return IIO_AVAIL_LIST;
751 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
752 *vals = data->chip_info->iir_filter_coeffs_avail;
753 *type = IIO_VAL_INT;
754 *length = data->chip_info->num_iir_filter_coeffs_avail;
755 return IIO_AVAIL_LIST;
756 default:
757 return -EINVAL;
758 }
759}
760
761static const struct iio_info bmp280_info = {
762 .read_raw = &bmp280_read_raw,
763 .read_avail = &bmp280_read_avail,
764 .write_raw = &bmp280_write_raw,
765};
766
767static int bmp280_chip_config(struct bmp280_data *data)
768{
769 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
770 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
771 int ret;
772
773 ret = regmap_write_bits(map: data->regmap, BMP280_REG_CTRL_MEAS,
774 BMP280_OSRS_TEMP_MASK |
775 BMP280_OSRS_PRESS_MASK |
776 BMP280_MODE_MASK,
777 val: osrs | BMP280_MODE_NORMAL);
778 if (ret < 0) {
779 dev_err(data->dev,
780 "failed to write ctrl_meas register\n");
781 return ret;
782 }
783
784 ret = regmap_update_bits(map: data->regmap, BMP280_REG_CONFIG,
785 BMP280_FILTER_MASK,
786 BMP280_FILTER_4X);
787 if (ret < 0) {
788 dev_err(data->dev,
789 "failed to write config register\n");
790 return ret;
791 }
792
793 return ret;
794}
795
796static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
797
798const struct bmp280_chip_info bmp280_chip_info = {
799 .id_reg = BMP280_REG_ID,
800 .chip_id = BMP280_CHIP_ID,
801 .regmap_config = &bmp280_regmap_config,
802 .start_up_time = 2000,
803 .channels = bmp280_channels,
804 .num_channels = 2,
805
806 .oversampling_temp_avail = bmp280_oversampling_avail,
807 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
808 /*
809 * Oversampling config values on BMx280 have one additional setting
810 * that other generations of the family don't:
811 * The value 0 means the measurement is bypassed instead of
812 * oversampling set to x1.
813 *
814 * To account for this difference, and preserve the same common
815 * config logic, this is handled later on chip_config callback
816 * incrementing one unit the oversampling setting.
817 */
818 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
819
820 .oversampling_press_avail = bmp280_oversampling_avail,
821 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
822 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
823
824 .chip_config = bmp280_chip_config,
825 .read_temp = bmp280_read_temp,
826 .read_press = bmp280_read_press,
827 .read_calib = bmp280_read_calib,
828};
829EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
830
831static int bme280_chip_config(struct bmp280_data *data)
832{
833 u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
834 int ret;
835
836 /*
837 * Oversampling of humidity must be set before oversampling of
838 * temperature/pressure is set to become effective.
839 */
840 ret = regmap_update_bits(map: data->regmap, BMP280_REG_CTRL_HUMIDITY,
841 BMP280_OSRS_HUMIDITY_MASK, val: osrs);
842
843 if (ret < 0)
844 return ret;
845
846 return bmp280_chip_config(data);
847}
848
849const struct bmp280_chip_info bme280_chip_info = {
850 .id_reg = BMP280_REG_ID,
851 .chip_id = BME280_CHIP_ID,
852 .regmap_config = &bmp280_regmap_config,
853 .start_up_time = 2000,
854 .channels = bmp280_channels,
855 .num_channels = 3,
856
857 .oversampling_temp_avail = bmp280_oversampling_avail,
858 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
859 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
860
861 .oversampling_press_avail = bmp280_oversampling_avail,
862 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
863 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
864
865 .oversampling_humid_avail = bmp280_oversampling_avail,
866 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
867 .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1,
868
869 .chip_config = bme280_chip_config,
870 .read_temp = bmp280_read_temp,
871 .read_press = bmp280_read_press,
872 .read_humid = bmp280_read_humid,
873 .read_calib = bme280_read_calib,
874};
875EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
876
877/*
878 * Helper function to send a command to BMP3XX sensors.
879 *
880 * Sensor processes commands written to the CMD register and signals
881 * execution result through "cmd_rdy" and "cmd_error" flags available on
882 * STATUS and ERROR registers.
883 */
884static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
885{
886 unsigned int reg;
887 int ret;
888
889 /* Check if device is ready to process a command */
890 ret = regmap_read(map: data->regmap, BMP380_REG_STATUS, val: &reg);
891 if (ret) {
892 dev_err(data->dev, "failed to read error register\n");
893 return ret;
894 }
895 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
896 dev_err(data->dev, "device is not ready to accept commands\n");
897 return -EBUSY;
898 }
899
900 /* Send command to process */
901 ret = regmap_write(map: data->regmap, BMP380_REG_CMD, val: cmd);
902 if (ret) {
903 dev_err(data->dev, "failed to send command to device\n");
904 return ret;
905 }
906 /* Wait for 2ms for command to be processed */
907 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
908 /* Check for command processing error */
909 ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &reg);
910 if (ret) {
911 dev_err(data->dev, "error reading ERROR reg\n");
912 return ret;
913 }
914 if (reg & BMP380_ERR_CMD_MASK) {
915 dev_err(data->dev, "error processing command 0x%X\n", cmd);
916 return -EINVAL;
917 }
918
919 return 0;
920}
921
922/*
923 * Returns temperature in Celsius dregrees, resolution is 0.01º C. Output value of
924 * "5123" equals 51.2º C. t_fine carries fine temperature as global value.
925 *
926 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
927 * https://github.com/BoschSensortec/BMP3-Sensor-API.
928 */
929static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
930{
931 s64 var1, var2, var3, var4, var5, var6, comp_temp;
932 struct bmp380_calib *calib = &data->calib.bmp380;
933
934 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
935 var2 = var1 * ((s64) calib->T2);
936 var3 = var1 * var1;
937 var4 = var3 * ((s64) calib->T3);
938 var5 = (var2 << 18) + var4;
939 var6 = var5 >> 32;
940 data->t_fine = (s32) var6;
941 comp_temp = (var6 * 25) >> 14;
942
943 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
944 return (s32) comp_temp;
945}
946
947/*
948 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
949 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
950 *
951 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
952 * https://github.com/BoschSensortec/BMP3-Sensor-API.
953 */
954static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
955{
956 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
957 struct bmp380_calib *calib = &data->calib.bmp380;
958 u32 comp_press;
959
960 var1 = (s64)data->t_fine * (s64)data->t_fine;
961 var2 = var1 >> 6;
962 var3 = (var2 * ((s64) data->t_fine)) >> 8;
963 var4 = ((s64)calib->P8 * var3) >> 5;
964 var5 = ((s64)calib->P7 * var1) << 4;
965 var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
966 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
967 var2 = ((s64)calib->P4 * var3) >> 5;
968 var4 = ((s64)calib->P3 * var1) << 2;
969 var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
970 ((s64)data->t_fine << 21);
971 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
972 var2 + var4 + var5;
973 var1 = (sensitivity >> 24) * (s64)adc_press;
974 var2 = (s64)calib->P10 * (s64)data->t_fine;
975 var3 = var2 + ((s64)calib->P9 << 16);
976 var4 = (var3 * (s64)adc_press) >> 13;
977
978 /*
979 * Dividing by 10 followed by multiplying by 10 to avoid
980 * possible overflow caused by (uncomp_data->pressure * partial_data4).
981 */
982 var5 = ((s64)adc_press * div_s64(dividend: var4, divisor: 10)) >> 9;
983 var5 *= 10;
984 var6 = (s64)adc_press * (s64)adc_press;
985 var2 = ((s64)calib->P11 * var6) >> 16;
986 var3 = (var2 * (s64)adc_press) >> 7;
987 var4 = (offset >> 2) + var1 + var5 + var3;
988 comp_press = ((u64)var4 * 25) >> 40;
989
990 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
991 return comp_press;
992}
993
994static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2)
995{
996 s32 comp_temp;
997 u32 adc_temp;
998 int ret;
999
1000 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_TEMP_XLSB,
1001 val: data->buf, val_count: sizeof(data->buf));
1002 if (ret) {
1003 dev_err(data->dev, "failed to read temperature\n");
1004 return ret;
1005 }
1006
1007 adc_temp = get_unaligned_le24(p: data->buf);
1008 if (adc_temp == BMP380_TEMP_SKIPPED) {
1009 dev_err(data->dev, "reading temperature skipped\n");
1010 return -EIO;
1011 }
1012 comp_temp = bmp380_compensate_temp(data, adc_temp);
1013
1014 /*
1015 * Val might be NULL if we're called by the read_press routine,
1016 * who only cares about the carry over t_fine value.
1017 */
1018 if (val) {
1019 /* IIO reports temperatures in milli Celsius */
1020 *val = comp_temp * 10;
1021 return IIO_VAL_INT;
1022 }
1023
1024 return 0;
1025}
1026
1027static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
1028{
1029 s32 comp_press;
1030 u32 adc_press;
1031 int ret;
1032
1033 /* Read and compensate for temperature so we get a reading of t_fine */
1034 ret = bmp380_read_temp(data, NULL, NULL);
1035 if (ret)
1036 return ret;
1037
1038 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_PRESS_XLSB,
1039 val: data->buf, val_count: sizeof(data->buf));
1040 if (ret) {
1041 dev_err(data->dev, "failed to read pressure\n");
1042 return ret;
1043 }
1044
1045 adc_press = get_unaligned_le24(p: data->buf);
1046 if (adc_press == BMP380_PRESS_SKIPPED) {
1047 dev_err(data->dev, "reading pressure skipped\n");
1048 return -EIO;
1049 }
1050 comp_press = bmp380_compensate_press(data, adc_press);
1051
1052 *val = comp_press;
1053 /* Compensated pressure is in cPa (centipascals) */
1054 *val2 = 100000;
1055
1056 return IIO_VAL_FRACTIONAL;
1057}
1058
1059static int bmp380_read_calib(struct bmp280_data *data)
1060{
1061 struct bmp380_calib *calib = &data->calib.bmp380;
1062 int ret;
1063
1064 /* Read temperature and pressure calibration data */
1065 ret = regmap_bulk_read(map: data->regmap, BMP380_REG_CALIB_TEMP_START,
1066 val: data->bmp380_cal_buf, val_count: sizeof(data->bmp380_cal_buf));
1067 if (ret) {
1068 dev_err(data->dev,
1069 "failed to read temperature calibration parameters\n");
1070 return ret;
1071 }
1072
1073 /* Toss the temperature calibration data into the entropy pool */
1074 add_device_randomness(buf: data->bmp380_cal_buf, len: sizeof(data->bmp380_cal_buf));
1075
1076 /* Parse calibration values */
1077 calib->T1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T1]);
1078 calib->T2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_T2]);
1079 calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1080 calib->P1 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P1]);
1081 calib->P2 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P2]);
1082 calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1083 calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1084 calib->P5 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P5]);
1085 calib->P6 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P6]);
1086 calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1087 calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1088 calib->P9 = get_unaligned_le16(p: &data->bmp380_cal_buf[BMP380_P9]);
1089 calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1090 calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1091
1092 return 0;
1093}
1094
1095static const int bmp380_odr_table[][2] = {
1096 [BMP380_ODR_200HZ] = {200, 0},
1097 [BMP380_ODR_100HZ] = {100, 0},
1098 [BMP380_ODR_50HZ] = {50, 0},
1099 [BMP380_ODR_25HZ] = {25, 0},
1100 [BMP380_ODR_12_5HZ] = {12, 500000},
1101 [BMP380_ODR_6_25HZ] = {6, 250000},
1102 [BMP380_ODR_3_125HZ] = {3, 125000},
1103 [BMP380_ODR_1_5625HZ] = {1, 562500},
1104 [BMP380_ODR_0_78HZ] = {0, 781250},
1105 [BMP380_ODR_0_39HZ] = {0, 390625},
1106 [BMP380_ODR_0_2HZ] = {0, 195313},
1107 [BMP380_ODR_0_1HZ] = {0, 97656},
1108 [BMP380_ODR_0_05HZ] = {0, 48828},
1109 [BMP380_ODR_0_02HZ] = {0, 24414},
1110 [BMP380_ODR_0_01HZ] = {0, 12207},
1111 [BMP380_ODR_0_006HZ] = {0, 6104},
1112 [BMP380_ODR_0_003HZ] = {0, 3052},
1113 [BMP380_ODR_0_0015HZ] = {0, 1526},
1114};
1115
1116static int bmp380_preinit(struct bmp280_data *data)
1117{
1118 /* BMP3xx requires soft-reset as part of initialization */
1119 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1120}
1121
1122static int bmp380_chip_config(struct bmp280_data *data)
1123{
1124 bool change = false, aux;
1125 unsigned int tmp;
1126 u8 osrs;
1127 int ret;
1128
1129 /* Configure power control register */
1130 ret = regmap_update_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1131 BMP380_CTRL_SENSORS_MASK,
1132 BMP380_CTRL_SENSORS_PRESS_EN |
1133 BMP380_CTRL_SENSORS_TEMP_EN);
1134 if (ret) {
1135 dev_err(data->dev,
1136 "failed to write operation control register\n");
1137 return ret;
1138 }
1139
1140 /* Configure oversampling */
1141 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1142 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1143
1144 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_OSR,
1145 BMP380_OSRS_TEMP_MASK |
1146 BMP380_OSRS_PRESS_MASK,
1147 val: osrs, change: &aux);
1148 if (ret) {
1149 dev_err(data->dev, "failed to write oversampling register\n");
1150 return ret;
1151 }
1152 change = change || aux;
1153
1154 /* Configure output data rate */
1155 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_ODR,
1156 BMP380_ODRS_MASK, val: data->sampling_freq, change: &aux);
1157 if (ret) {
1158 dev_err(data->dev, "failed to write ODR selection register\n");
1159 return ret;
1160 }
1161 change = change || aux;
1162
1163 /* Set filter data */
1164 ret = regmap_update_bits_check(map: data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1165 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1166 change: &aux);
1167 if (ret) {
1168 dev_err(data->dev, "failed to write config register\n");
1169 return ret;
1170 }
1171 change = change || aux;
1172
1173 if (change) {
1174 /*
1175 * The configurations errors are detected on the fly during a measurement
1176 * cycle. If the sampling frequency is too low, it's faster to reset
1177 * the measurement loop than wait until the next measurement is due.
1178 *
1179 * Resets sensor measurement loop toggling between sleep and normal
1180 * operating modes.
1181 */
1182 ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1183 BMP380_MODE_MASK,
1184 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1185 if (ret) {
1186 dev_err(data->dev, "failed to set sleep mode\n");
1187 return ret;
1188 }
1189 usleep_range(min: 2000, max: 2500);
1190 ret = regmap_write_bits(map: data->regmap, BMP380_REG_POWER_CONTROL,
1191 BMP380_MODE_MASK,
1192 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1193 if (ret) {
1194 dev_err(data->dev, "failed to set normal mode\n");
1195 return ret;
1196 }
1197 /*
1198 * Waits for measurement before checking configuration error flag.
1199 * Selected longest measure time indicated in section 3.9.1
1200 * in the datasheet.
1201 */
1202 msleep(msecs: 80);
1203
1204 /* Check config error flag */
1205 ret = regmap_read(map: data->regmap, BMP380_REG_ERROR, val: &tmp);
1206 if (ret) {
1207 dev_err(data->dev,
1208 "failed to read error register\n");
1209 return ret;
1210 }
1211 if (tmp & BMP380_ERR_CONF_MASK) {
1212 dev_warn(data->dev,
1213 "sensor flagged configuration as incompatible\n");
1214 return -EINVAL;
1215 }
1216 }
1217
1218 return 0;
1219}
1220
1221static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1222static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1223
1224const struct bmp280_chip_info bmp380_chip_info = {
1225 .id_reg = BMP380_REG_ID,
1226 .chip_id = BMP380_CHIP_ID,
1227 .regmap_config = &bmp380_regmap_config,
1228 .start_up_time = 2000,
1229 .channels = bmp380_channels,
1230 .num_channels = 2,
1231
1232 .oversampling_temp_avail = bmp380_oversampling_avail,
1233 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1234 .oversampling_temp_default = ilog2(1),
1235
1236 .oversampling_press_avail = bmp380_oversampling_avail,
1237 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1238 .oversampling_press_default = ilog2(4),
1239
1240 .sampling_freq_avail = bmp380_odr_table,
1241 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1242 .sampling_freq_default = BMP380_ODR_50HZ,
1243
1244 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1245 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1246 .iir_filter_coeff_default = 2,
1247
1248 .chip_config = bmp380_chip_config,
1249 .read_temp = bmp380_read_temp,
1250 .read_press = bmp380_read_press,
1251 .read_calib = bmp380_read_calib,
1252 .preinit = bmp380_preinit,
1253};
1254EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1255
1256static int bmp580_soft_reset(struct bmp280_data *data)
1257{
1258 unsigned int reg;
1259 int ret;
1260
1261 ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1262 if (ret) {
1263 dev_err(data->dev, "failed to send reset command to device\n");
1264 return ret;
1265 }
1266 usleep_range(min: 2000, max: 2500);
1267
1268 /* Dummy read of chip_id */
1269 ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: &reg);
1270 if (ret) {
1271 dev_err(data->dev, "failed to reestablish comms after reset\n");
1272 return ret;
1273 }
1274
1275 ret = regmap_read(map: data->regmap, BMP580_REG_INT_STATUS, val: &reg);
1276 if (ret) {
1277 dev_err(data->dev, "error reading interrupt status register\n");
1278 return ret;
1279 }
1280 if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1281 dev_err(data->dev, "error resetting sensor\n");
1282 return -EINVAL;
1283 }
1284
1285 return 0;
1286}
1287
1288/**
1289 * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1290 * @data: sensor data struct
1291 * @is_write: flag to signal write operation
1292 */
1293static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1294{
1295 unsigned long timeout, poll;
1296 unsigned int reg;
1297 int ret;
1298
1299 /* Check NVM ready flag */
1300 ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: &reg);
1301 if (ret) {
1302 dev_err(data->dev, "failed to check nvm status\n");
1303 return ret;
1304 }
1305 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1306 dev_err(data->dev, "sensor's nvm is not ready\n");
1307 return -EIO;
1308 }
1309
1310 /* Start NVM operation sequence */
1311 ret = regmap_write(map: data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0);
1312 if (ret) {
1313 dev_err(data->dev, "failed to send nvm operation's first sequence\n");
1314 return ret;
1315 }
1316 if (is_write) {
1317 /* Send NVM write sequence */
1318 ret = regmap_write(map: data->regmap, BMP580_REG_CMD,
1319 BMP580_CMD_NVM_WRITE_SEQ_1);
1320 if (ret) {
1321 dev_err(data->dev, "failed to send nvm write sequence\n");
1322 return ret;
1323 }
1324 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1325 poll = 2000;
1326 timeout = 12000;
1327 } else {
1328 /* Send NVM read sequence */
1329 ret = regmap_write(map: data->regmap, BMP580_REG_CMD,
1330 BMP580_CMD_NVM_READ_SEQ_1);
1331 if (ret) {
1332 dev_err(data->dev, "failed to send nvm read sequence\n");
1333 return ret;
1334 }
1335 /* Datasheet says on 4.8.1.1 it takes approximately 200us */
1336 poll = 50;
1337 timeout = 400;
1338 }
1339 if (ret) {
1340 dev_err(data->dev, "failed to write command sequence\n");
1341 return -EIO;
1342 }
1343
1344 /* Wait until NVM is ready again */
1345 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1346 (reg & BMP580_STATUS_NVM_RDY_MASK),
1347 poll, timeout);
1348 if (ret) {
1349 dev_err(data->dev, "error checking nvm operation status\n");
1350 return ret;
1351 }
1352
1353 /* Check NVM error flags */
1354 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1355 dev_err(data->dev, "error processing nvm operation\n");
1356 return -EIO;
1357 }
1358
1359 return 0;
1360}
1361
1362/*
1363 * Contrary to previous sensors families, compensation algorithm is builtin.
1364 * We are only required to read the register raw data and adapt the ranges
1365 * for what is expected on IIO ABI.
1366 */
1367
1368static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2)
1369{
1370 s32 raw_temp;
1371 int ret;
1372
1373 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_TEMP_XLSB, val: data->buf,
1374 val_count: sizeof(data->buf));
1375 if (ret) {
1376 dev_err(data->dev, "failed to read temperature\n");
1377 return ret;
1378 }
1379
1380 raw_temp = get_unaligned_le24(p: data->buf);
1381 if (raw_temp == BMP580_TEMP_SKIPPED) {
1382 dev_err(data->dev, "reading temperature skipped\n");
1383 return -EIO;
1384 }
1385
1386 /*
1387 * Temperature is returned in Celsius degrees in fractional
1388 * form down 2^16. We reescale by x1000 to return milli Celsius
1389 * to respect IIO ABI.
1390 */
1391 *val = raw_temp * 1000;
1392 *val2 = 16;
1393 return IIO_VAL_FRACTIONAL_LOG2;
1394}
1395
1396static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2)
1397{
1398 u32 raw_press;
1399 int ret;
1400
1401 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_PRESS_XLSB, val: data->buf,
1402 val_count: sizeof(data->buf));
1403 if (ret) {
1404 dev_err(data->dev, "failed to read pressure\n");
1405 return ret;
1406 }
1407
1408 raw_press = get_unaligned_le24(p: data->buf);
1409 if (raw_press == BMP580_PRESS_SKIPPED) {
1410 dev_err(data->dev, "reading pressure skipped\n");
1411 return -EIO;
1412 }
1413 /*
1414 * Pressure is returned in Pascals in fractional form down 2^16.
1415 * We reescale /1000 to convert to kilopascal to respect IIO ABI.
1416 */
1417 *val = raw_press;
1418 *val2 = 64000; /* 2^6 * 1000 */
1419 return IIO_VAL_FRACTIONAL;
1420}
1421
1422static const int bmp580_odr_table[][2] = {
1423 [BMP580_ODR_240HZ] = {240, 0},
1424 [BMP580_ODR_218HZ] = {218, 0},
1425 [BMP580_ODR_199HZ] = {199, 0},
1426 [BMP580_ODR_179HZ] = {179, 0},
1427 [BMP580_ODR_160HZ] = {160, 0},
1428 [BMP580_ODR_149HZ] = {149, 0},
1429 [BMP580_ODR_140HZ] = {140, 0},
1430 [BMP580_ODR_129HZ] = {129, 0},
1431 [BMP580_ODR_120HZ] = {120, 0},
1432 [BMP580_ODR_110HZ] = {110, 0},
1433 [BMP580_ODR_100HZ] = {100, 0},
1434 [BMP580_ODR_89HZ] = {89, 0},
1435 [BMP580_ODR_80HZ] = {80, 0},
1436 [BMP580_ODR_70HZ] = {70, 0},
1437 [BMP580_ODR_60HZ] = {60, 0},
1438 [BMP580_ODR_50HZ] = {50, 0},
1439 [BMP580_ODR_45HZ] = {45, 0},
1440 [BMP580_ODR_40HZ] = {40, 0},
1441 [BMP580_ODR_35HZ] = {35, 0},
1442 [BMP580_ODR_30HZ] = {30, 0},
1443 [BMP580_ODR_25HZ] = {25, 0},
1444 [BMP580_ODR_20HZ] = {20, 0},
1445 [BMP580_ODR_15HZ] = {15, 0},
1446 [BMP580_ODR_10HZ] = {10, 0},
1447 [BMP580_ODR_5HZ] = {5, 0},
1448 [BMP580_ODR_4HZ] = {4, 0},
1449 [BMP580_ODR_3HZ] = {3, 0},
1450 [BMP580_ODR_2HZ] = {2, 0},
1451 [BMP580_ODR_1HZ] = {1, 0},
1452 [BMP580_ODR_0_5HZ] = {0, 500000},
1453 [BMP580_ODR_0_25HZ] = {0, 250000},
1454 [BMP580_ODR_0_125HZ] = {0, 125000},
1455};
1456
1457static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1458
1459static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1460 size_t bytes)
1461{
1462 struct bmp280_data *data = priv;
1463 u16 *dst = val;
1464 int ret, addr;
1465
1466 pm_runtime_get_sync(dev: data->dev);
1467 mutex_lock(&data->lock);
1468
1469 /* Set sensor in standby mode */
1470 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1471 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1472 BMP580_ODR_DEEPSLEEP_DIS |
1473 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1474 if (ret) {
1475 dev_err(data->dev, "failed to change sensor to standby mode\n");
1476 goto exit;
1477 }
1478 /* Wait standby transition time */
1479 usleep_range(min: 2500, max: 3000);
1480
1481 while (bytes >= sizeof(*dst)) {
1482 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1483
1484 ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR,
1485 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1486 if (ret) {
1487 dev_err(data->dev, "error writing nvm address\n");
1488 goto exit;
1489 }
1490
1491 ret = bmp580_nvm_operation(data, is_write: false);
1492 if (ret)
1493 goto exit;
1494
1495 ret = regmap_bulk_read(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16,
1496 val_count: sizeof(data->le16));
1497 if (ret) {
1498 dev_err(data->dev, "error reading nvm data regs\n");
1499 goto exit;
1500 }
1501
1502 *dst++ = le16_to_cpu(data->le16);
1503 bytes -= sizeof(*dst);
1504 offset += sizeof(*dst);
1505 }
1506exit:
1507 /* Restore chip config */
1508 data->chip_info->chip_config(data);
1509 mutex_unlock(lock: &data->lock);
1510 pm_runtime_mark_last_busy(dev: data->dev);
1511 pm_runtime_put_autosuspend(dev: data->dev);
1512 return ret;
1513}
1514
1515static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
1516 size_t bytes)
1517{
1518 struct bmp280_data *data = priv;
1519 u16 *buf = val;
1520 int ret, addr;
1521
1522 pm_runtime_get_sync(dev: data->dev);
1523 mutex_lock(&data->lock);
1524
1525 /* Set sensor in standby mode */
1526 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1527 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1528 BMP580_ODR_DEEPSLEEP_DIS |
1529 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1530 if (ret) {
1531 dev_err(data->dev, "failed to change sensor to standby mode\n");
1532 goto exit;
1533 }
1534 /* Wait standby transition time */
1535 usleep_range(min: 2500, max: 3000);
1536
1537 while (bytes >= sizeof(*buf)) {
1538 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1539
1540 ret = regmap_write(map: data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN |
1541 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1542 if (ret) {
1543 dev_err(data->dev, "error writing nvm address\n");
1544 goto exit;
1545 }
1546 data->le16 = cpu_to_le16(*buf++);
1547
1548 ret = regmap_bulk_write(map: data->regmap, BMP580_REG_NVM_DATA_LSB, val: &data->le16,
1549 val_count: sizeof(data->le16));
1550 if (ret) {
1551 dev_err(data->dev, "error writing LSB NVM data regs\n");
1552 goto exit;
1553 }
1554
1555 ret = bmp580_nvm_operation(data, is_write: true);
1556 if (ret)
1557 goto exit;
1558
1559 /* Disable programming mode bit */
1560 ret = regmap_update_bits(map: data->regmap, BMP580_REG_NVM_ADDR,
1561 BMP580_NVM_PROG_EN, val: 0);
1562 if (ret) {
1563 dev_err(data->dev, "error resetting nvm write\n");
1564 goto exit;
1565 }
1566
1567 bytes -= sizeof(*buf);
1568 offset += sizeof(*buf);
1569 }
1570exit:
1571 /* Restore chip config */
1572 data->chip_info->chip_config(data);
1573 mutex_unlock(lock: &data->lock);
1574 pm_runtime_mark_last_busy(dev: data->dev);
1575 pm_runtime_put_autosuspend(dev: data->dev);
1576 return ret;
1577}
1578
1579static int bmp580_preinit(struct bmp280_data *data)
1580{
1581 struct nvmem_config config = {
1582 .dev = data->dev,
1583 .priv = data,
1584 .name = "bmp580_nvmem",
1585 .word_size = sizeof(u16),
1586 .stride = sizeof(u16),
1587 .size = 3 * sizeof(u16),
1588 .reg_read = bmp580_nvmem_read,
1589 .reg_write = bmp580_nvmem_write,
1590 };
1591 unsigned int reg;
1592 int ret;
1593
1594 /* Issue soft-reset command */
1595 ret = bmp580_soft_reset(data);
1596 if (ret)
1597 return ret;
1598
1599 /* Post powerup sequence */
1600 ret = regmap_read(map: data->regmap, BMP580_REG_CHIP_ID, val: &reg);
1601 if (ret)
1602 return ret;
1603
1604 /* Print warn message if we don't know the chip id */
1605 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
1606 dev_warn(data->dev, "preinit: unexpected chip_id\n");
1607
1608 ret = regmap_read(map: data->regmap, BMP580_REG_STATUS, val: &reg);
1609 if (ret)
1610 return ret;
1611
1612 /* Check nvm status */
1613 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
1614 dev_err(data->dev, "preinit: nvm error on powerup sequence\n");
1615 return -EIO;
1616 }
1617
1618 /* Register nvmem device */
1619 return PTR_ERR_OR_ZERO(ptr: devm_nvmem_register(dev: config.dev, cfg: &config));
1620}
1621
1622static int bmp580_chip_config(struct bmp280_data *data)
1623{
1624 bool change = false, aux;
1625 unsigned int tmp;
1626 u8 reg_val;
1627 int ret;
1628
1629 /* Sets sensor in standby mode */
1630 ret = regmap_update_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1631 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1632 BMP580_ODR_DEEPSLEEP_DIS |
1633 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1634 if (ret) {
1635 dev_err(data->dev, "failed to change sensor to standby mode\n");
1636 return ret;
1637 }
1638 /* From datasheet's table 4: electrical characteristics */
1639 usleep_range(min: 2500, max: 3000);
1640
1641 /* Set default DSP mode settings */
1642 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
1643 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
1644
1645 ret = regmap_update_bits(map: data->regmap, BMP580_REG_DSP_CONFIG,
1646 BMP580_DSP_COMP_MASK |
1647 BMP580_DSP_SHDW_IIR_TEMP_EN |
1648 BMP580_DSP_SHDW_IIR_PRESS_EN, val: reg_val);
1649
1650 /* Configure oversampling */
1651 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
1652 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
1653 BMP580_OSR_PRESS_EN;
1654
1655 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_OSR_CONFIG,
1656 BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK |
1657 BMP580_OSR_PRESS_EN,
1658 val: reg_val, change: &aux);
1659 if (ret) {
1660 dev_err(data->dev, "failed to write oversampling register\n");
1661 return ret;
1662 }
1663 change = change || aux;
1664
1665 /* Configure output data rate */
1666 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
1667 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
1668 change: &aux);
1669 if (ret) {
1670 dev_err(data->dev, "failed to write ODR configuration register\n");
1671 return ret;
1672 }
1673 change = change || aux;
1674
1675 /* Set filter data */
1676 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
1677 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
1678
1679 ret = regmap_update_bits_check(map: data->regmap, BMP580_REG_DSP_IIR,
1680 BMP580_DSP_IIR_PRESS_MASK |
1681 BMP580_DSP_IIR_TEMP_MASK,
1682 val: reg_val, change: &aux);
1683 if (ret) {
1684 dev_err(data->dev, "failed to write config register\n");
1685 return ret;
1686 }
1687 change = change || aux;
1688
1689 /* Restore sensor to normal operation mode */
1690 ret = regmap_write_bits(map: data->regmap, BMP580_REG_ODR_CONFIG,
1691 BMP580_MODE_MASK,
1692 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
1693 if (ret) {
1694 dev_err(data->dev, "failed to set normal mode\n");
1695 return ret;
1696 }
1697 /* From datasheet's table 4: electrical characteristics */
1698 usleep_range(min: 3000, max: 3500);
1699
1700 if (change) {
1701 /*
1702 * Check if ODR and OSR settings are valid or we are
1703 * operating in a degraded mode.
1704 */
1705 ret = regmap_read(map: data->regmap, BMP580_REG_EFF_OSR, val: &tmp);
1706 if (ret) {
1707 dev_err(data->dev, "error reading effective OSR register\n");
1708 return ret;
1709 }
1710 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
1711 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
1712 /* Set current OSR settings from data on effective OSR */
1713 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
1714 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
1715 return -EINVAL;
1716 }
1717 }
1718
1719 return 0;
1720}
1721
1722static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
1723
1724const struct bmp280_chip_info bmp580_chip_info = {
1725 .id_reg = BMP580_REG_CHIP_ID,
1726 .chip_id = BMP580_CHIP_ID,
1727 .regmap_config = &bmp580_regmap_config,
1728 .start_up_time = 2000,
1729 .channels = bmp380_channels,
1730 .num_channels = 2,
1731
1732 .oversampling_temp_avail = bmp580_oversampling_avail,
1733 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1734 .oversampling_temp_default = ilog2(1),
1735
1736 .oversampling_press_avail = bmp580_oversampling_avail,
1737 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1738 .oversampling_press_default = ilog2(4),
1739
1740 .sampling_freq_avail = bmp580_odr_table,
1741 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
1742 .sampling_freq_default = BMP580_ODR_50HZ,
1743
1744 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1745 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1746 .iir_filter_coeff_default = 2,
1747
1748 .chip_config = bmp580_chip_config,
1749 .read_temp = bmp580_read_temp,
1750 .read_press = bmp580_read_press,
1751 .preinit = bmp580_preinit,
1752};
1753EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
1754
1755static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
1756{
1757 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
1758 unsigned int delay_us;
1759 unsigned int ctrl;
1760 int ret;
1761
1762 if (data->use_eoc)
1763 reinit_completion(x: &data->done);
1764
1765 ret = regmap_write(map: data->regmap, BMP280_REG_CTRL_MEAS, val: ctrl_meas);
1766 if (ret)
1767 return ret;
1768
1769 if (data->use_eoc) {
1770 /*
1771 * If we have a completion interrupt, use it, wait up to
1772 * 100ms. The longest conversion time listed is 76.5 ms for
1773 * advanced resolution mode.
1774 */
1775 ret = wait_for_completion_timeout(x: &data->done,
1776 timeout: 1 + msecs_to_jiffies(m: 100));
1777 if (!ret)
1778 dev_err(data->dev, "timeout waiting for completion\n");
1779 } else {
1780 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
1781 delay_us = 4500;
1782 else
1783 delay_us =
1784 conversion_time_max[data->oversampling_press];
1785
1786 usleep_range(min: delay_us, max: delay_us + 1000);
1787 }
1788
1789 ret = regmap_read(map: data->regmap, BMP280_REG_CTRL_MEAS, val: &ctrl);
1790 if (ret)
1791 return ret;
1792
1793 /* The value of this bit reset to "0" after conversion is complete */
1794 if (ctrl & BMP180_MEAS_SCO)
1795 return -EIO;
1796
1797 return 0;
1798}
1799
1800static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
1801{
1802 int ret;
1803
1804 ret = bmp180_measure(data,
1805 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
1806 BMP180_MEAS_SCO);
1807 if (ret)
1808 return ret;
1809
1810 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB,
1811 val: &data->be16, val_count: sizeof(data->be16));
1812 if (ret)
1813 return ret;
1814
1815 *val = be16_to_cpu(data->be16);
1816
1817 return 0;
1818}
1819
1820static int bmp180_read_calib(struct bmp280_data *data)
1821{
1822 struct bmp180_calib *calib = &data->calib.bmp180;
1823 int ret;
1824 int i;
1825
1826 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_CALIB_START,
1827 val: data->bmp180_cal_buf, val_count: sizeof(data->bmp180_cal_buf));
1828
1829 if (ret < 0)
1830 return ret;
1831
1832 /* None of the words has the value 0 or 0xFFFF */
1833 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
1834 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
1835 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
1836 return -EIO;
1837 }
1838
1839 /* Toss the calibration data into the entropy pool */
1840 add_device_randomness(buf: data->bmp180_cal_buf, len: sizeof(data->bmp180_cal_buf));
1841
1842 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
1843 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
1844 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
1845 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
1846 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
1847 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
1848 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
1849 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
1850 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
1851 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
1852 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
1853
1854 return 0;
1855}
1856
1857/*
1858 * Returns temperature in DegC, resolution is 0.1 DegC.
1859 * t_fine carries fine temperature as global value.
1860 *
1861 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1862 */
1863static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
1864{
1865 struct bmp180_calib *calib = &data->calib.bmp180;
1866 s32 x1, x2;
1867
1868 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
1869 x2 = (calib->MC << 11) / (x1 + calib->MD);
1870 data->t_fine = x1 + x2;
1871
1872 return (data->t_fine + 8) >> 4;
1873}
1874
1875static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2)
1876{
1877 s32 adc_temp, comp_temp;
1878 int ret;
1879
1880 ret = bmp180_read_adc_temp(data, val: &adc_temp);
1881 if (ret)
1882 return ret;
1883
1884 comp_temp = bmp180_compensate_temp(data, adc_temp);
1885
1886 /*
1887 * val might be NULL if we're called by the read_press routine,
1888 * who only cares about the carry over t_fine value.
1889 */
1890 if (val) {
1891 *val = comp_temp * 100;
1892 return IIO_VAL_INT;
1893 }
1894
1895 return 0;
1896}
1897
1898static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
1899{
1900 u8 oss = data->oversampling_press;
1901 int ret;
1902
1903 ret = bmp180_measure(data,
1904 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
1905 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
1906 BMP180_MEAS_SCO);
1907 if (ret)
1908 return ret;
1909
1910 ret = regmap_bulk_read(map: data->regmap, BMP180_REG_OUT_MSB,
1911 val: data->buf, val_count: sizeof(data->buf));
1912 if (ret)
1913 return ret;
1914
1915 *val = get_unaligned_be24(p: data->buf) >> (8 - oss);
1916
1917 return 0;
1918}
1919
1920/*
1921 * Returns pressure in Pa, resolution is 1 Pa.
1922 *
1923 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1924 */
1925static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
1926{
1927 struct bmp180_calib *calib = &data->calib.bmp180;
1928 s32 oss = data->oversampling_press;
1929 s32 x1, x2, x3, p;
1930 s32 b3, b6;
1931 u32 b4, b7;
1932
1933 b6 = data->t_fine - 4000;
1934 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
1935 x2 = calib->AC2 * b6 >> 11;
1936 x3 = x1 + x2;
1937 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
1938 x1 = calib->AC3 * b6 >> 13;
1939 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
1940 x3 = (x1 + x2 + 2) >> 2;
1941 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
1942 b7 = ((u32)adc_press - b3) * (50000 >> oss);
1943 if (b7 < 0x80000000)
1944 p = (b7 * 2) / b4;
1945 else
1946 p = (b7 / b4) * 2;
1947
1948 x1 = (p >> 8) * (p >> 8);
1949 x1 = (x1 * 3038) >> 16;
1950 x2 = (-7357 * p) >> 16;
1951
1952 return p + ((x1 + x2 + 3791) >> 4);
1953}
1954
1955static int bmp180_read_press(struct bmp280_data *data,
1956 int *val, int *val2)
1957{
1958 u32 comp_press;
1959 s32 adc_press;
1960 int ret;
1961
1962 /* Read and compensate temperature so we get a reading of t_fine. */
1963 ret = bmp180_read_temp(data, NULL, NULL);
1964 if (ret)
1965 return ret;
1966
1967 ret = bmp180_read_adc_press(data, val: &adc_press);
1968 if (ret)
1969 return ret;
1970
1971 comp_press = bmp180_compensate_press(data, adc_press);
1972
1973 *val = comp_press;
1974 *val2 = 1000;
1975
1976 return IIO_VAL_FRACTIONAL;
1977}
1978
1979static int bmp180_chip_config(struct bmp280_data *data)
1980{
1981 return 0;
1982}
1983
1984static const int bmp180_oversampling_temp_avail[] = { 1 };
1985static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
1986
1987const struct bmp280_chip_info bmp180_chip_info = {
1988 .id_reg = BMP280_REG_ID,
1989 .chip_id = BMP180_CHIP_ID,
1990 .regmap_config = &bmp180_regmap_config,
1991 .start_up_time = 2000,
1992 .channels = bmp280_channels,
1993 .num_channels = 2,
1994
1995 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
1996 .num_oversampling_temp_avail =
1997 ARRAY_SIZE(bmp180_oversampling_temp_avail),
1998 .oversampling_temp_default = 0,
1999
2000 .oversampling_press_avail = bmp180_oversampling_press_avail,
2001 .num_oversampling_press_avail =
2002 ARRAY_SIZE(bmp180_oversampling_press_avail),
2003 .oversampling_press_default = BMP180_MEAS_PRESS_8X,
2004
2005 .chip_config = bmp180_chip_config,
2006 .read_temp = bmp180_read_temp,
2007 .read_press = bmp180_read_press,
2008 .read_calib = bmp180_read_calib,
2009};
2010EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2011
2012static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2013{
2014 struct bmp280_data *data = d;
2015
2016 complete(&data->done);
2017
2018 return IRQ_HANDLED;
2019}
2020
2021static int bmp085_fetch_eoc_irq(struct device *dev,
2022 const char *name,
2023 int irq,
2024 struct bmp280_data *data)
2025{
2026 unsigned long irq_trig;
2027 int ret;
2028
2029 irq_trig = irqd_get_trigger_type(d: irq_get_irq_data(irq));
2030 if (irq_trig != IRQF_TRIGGER_RISING) {
2031 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2032 irq_trig = IRQF_TRIGGER_RISING;
2033 }
2034
2035 init_completion(x: &data->done);
2036
2037 ret = devm_request_threaded_irq(dev,
2038 irq,
2039 handler: bmp085_eoc_irq,
2040 NULL,
2041 irqflags: irq_trig,
2042 devname: name,
2043 dev_id: data);
2044 if (ret) {
2045 /* Bail out without IRQ but keep the driver in place */
2046 dev_err(dev, "unable to request DRDY IRQ\n");
2047 return 0;
2048 }
2049
2050 data->use_eoc = true;
2051 return 0;
2052}
2053
2054static void bmp280_pm_disable(void *data)
2055{
2056 struct device *dev = data;
2057
2058 pm_runtime_get_sync(dev);
2059 pm_runtime_put_noidle(dev);
2060 pm_runtime_disable(dev);
2061}
2062
2063static void bmp280_regulators_disable(void *data)
2064{
2065 struct regulator_bulk_data *supplies = data;
2066
2067 regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: supplies);
2068}
2069
2070int bmp280_common_probe(struct device *dev,
2071 struct regmap *regmap,
2072 const struct bmp280_chip_info *chip_info,
2073 const char *name,
2074 int irq)
2075{
2076 struct iio_dev *indio_dev;
2077 struct bmp280_data *data;
2078 struct gpio_desc *gpiod;
2079 unsigned int chip_id;
2080 int ret;
2081
2082 indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*data));
2083 if (!indio_dev)
2084 return -ENOMEM;
2085
2086 data = iio_priv(indio_dev);
2087 mutex_init(&data->lock);
2088 data->dev = dev;
2089
2090 indio_dev->name = name;
2091 indio_dev->info = &bmp280_info;
2092 indio_dev->modes = INDIO_DIRECT_MODE;
2093
2094 data->chip_info = chip_info;
2095
2096 /* Apply initial values from chip info structure */
2097 indio_dev->channels = chip_info->channels;
2098 indio_dev->num_channels = chip_info->num_channels;
2099 data->oversampling_press = chip_info->oversampling_press_default;
2100 data->oversampling_humid = chip_info->oversampling_humid_default;
2101 data->oversampling_temp = chip_info->oversampling_temp_default;
2102 data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2103 data->sampling_freq = chip_info->sampling_freq_default;
2104 data->start_up_time = chip_info->start_up_time;
2105
2106 /* Bring up regulators */
2107 regulator_bulk_set_supply_names(consumers: data->supplies,
2108 supply_names: bmp280_supply_names,
2109 BMP280_NUM_SUPPLIES);
2110
2111 ret = devm_regulator_bulk_get(dev,
2112 BMP280_NUM_SUPPLIES, consumers: data->supplies);
2113 if (ret) {
2114 dev_err(dev, "failed to get regulators\n");
2115 return ret;
2116 }
2117
2118 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2119 if (ret) {
2120 dev_err(dev, "failed to enable regulators\n");
2121 return ret;
2122 }
2123
2124 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2125 data->supplies);
2126 if (ret)
2127 return ret;
2128
2129 /* Wait to make sure we started up properly */
2130 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
2131
2132 /* Bring chip out of reset if there is an assigned GPIO line */
2133 gpiod = devm_gpiod_get_optional(dev, con_id: "reset", flags: GPIOD_OUT_HIGH);
2134 /* Deassert the signal */
2135 if (gpiod) {
2136 dev_info(dev, "release reset\n");
2137 gpiod_set_value(desc: gpiod, value: 0);
2138 }
2139
2140 data->regmap = regmap;
2141
2142 ret = regmap_read(map: regmap, reg: data->chip_info->id_reg, val: &chip_id);
2143 if (ret < 0)
2144 return ret;
2145 if (chip_id != data->chip_info->chip_id) {
2146 dev_err(dev, "bad chip id: expected %x got %x\n",
2147 data->chip_info->chip_id, chip_id);
2148 return -EINVAL;
2149 }
2150
2151 if (data->chip_info->preinit) {
2152 ret = data->chip_info->preinit(data);
2153 if (ret)
2154 return dev_err_probe(dev: data->dev, err: ret,
2155 fmt: "error running preinit tasks\n");
2156 }
2157
2158 ret = data->chip_info->chip_config(data);
2159 if (ret < 0)
2160 return ret;
2161
2162 dev_set_drvdata(dev, data: indio_dev);
2163
2164 /*
2165 * Some chips have calibration parameters "programmed into the devices'
2166 * non-volatile memory during production". Let's read them out at probe
2167 * time once. They will not change.
2168 */
2169
2170 if (data->chip_info->read_calib) {
2171 ret = data->chip_info->read_calib(data);
2172 if (ret < 0)
2173 return dev_err_probe(dev: data->dev, err: ret,
2174 fmt: "failed to read calibration coefficients\n");
2175 }
2176
2177 /*
2178 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2179 * however as it happens, the BMP085 shares the chip ID of BMP180
2180 * so we look for an IRQ if we have that.
2181 */
2182 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) {
2183 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2184 if (ret)
2185 return ret;
2186 }
2187
2188 /* Enable runtime PM */
2189 pm_runtime_get_noresume(dev);
2190 pm_runtime_set_active(dev);
2191 pm_runtime_enable(dev);
2192 /*
2193 * Set autosuspend to two orders of magnitude larger than the
2194 * start-up time.
2195 */
2196 pm_runtime_set_autosuspend_delay(dev, delay: data->start_up_time / 10);
2197 pm_runtime_use_autosuspend(dev);
2198 pm_runtime_put(dev);
2199
2200 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2201 if (ret)
2202 return ret;
2203
2204 return devm_iio_device_register(dev, indio_dev);
2205}
2206EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2207
2208static int bmp280_runtime_suspend(struct device *dev)
2209{
2210 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2211 struct bmp280_data *data = iio_priv(indio_dev);
2212
2213 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2214}
2215
2216static int bmp280_runtime_resume(struct device *dev)
2217{
2218 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2219 struct bmp280_data *data = iio_priv(indio_dev);
2220 int ret;
2221
2222 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, consumers: data->supplies);
2223 if (ret)
2224 return ret;
2225 usleep_range(min: data->start_up_time, max: data->start_up_time + 100);
2226 return data->chip_info->chip_config(data);
2227}
2228
2229EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2230 bmp280_runtime_resume, NULL);
2231
2232MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2233MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2234MODULE_LICENSE("GPL v2");
2235

source code of linux/drivers/iio/pressure/bmp280-core.c