1// SPDX-License-Identifier: GPL-2.0
2/*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4 *
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
6 *
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/gpio/consumer.h>
14#include <linux/i2c.h>
15#include <linux/iopoll.h>
16#include <linux/jiffies.h>
17#include <linux/kernel.h>
18#include <linux/limits.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/math64.h>
22#include <linux/pm_runtime.h>
23#include <linux/regmap.h>
24#include <linux/regulator/consumer.h>
25
26#include <linux/iio/iio.h>
27#include <linux/iio/sysfs.h>
28
29/* Memory sections addresses */
30#define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
31#define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
32
33/* EEPROM addresses - used at startup */
34#define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
35#define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
36#define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
37#define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
38#define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
39#define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
40#define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
41#define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
42#define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
43#define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
44#define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
45#define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
46#define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
47#define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
48#define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
49#define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
50#define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
51#define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
52#define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
53#define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
54
55#define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
56#define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
57
58#define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
59#define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
60
61#define MLX90632_EE_MEDICAL_MEAS1 0x24E1 /* Medical measurement 1 16bit */
62#define MLX90632_EE_MEDICAL_MEAS2 0x24E2 /* Medical measurement 2 16bit */
63#define MLX90632_EE_EXTENDED_MEAS1 0x24F1 /* Extended measurement 1 16bit */
64#define MLX90632_EE_EXTENDED_MEAS2 0x24F2 /* Extended measurement 2 16bit */
65#define MLX90632_EE_EXTENDED_MEAS3 0x24F3 /* Extended measurement 3 16bit */
66
67/* Register addresses - volatile */
68#define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
69
70/* Control register address - volatile */
71#define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
72#define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
73#define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */
74#define MLX90632_CFG_SOB_MASK BIT(11)
75
76/* PowerModes statuses */
77#define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
78#define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
79#define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */
80#define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
81#define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */
82
83#define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */
84#define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val)
85 /* Extract Refresh Rate from ee register */
86#define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8)
87
88/* Measurement types */
89#define MLX90632_MTYP_MEDICAL 0
90#define MLX90632_MTYP_EXTENDED 17
91
92/* Measurement type select*/
93#define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
94#define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
95#define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
96
97/* I2C command register - volatile */
98#define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */
99
100/* Device status register - volatile */
101#define MLX90632_REG_STATUS 0x3fff /* Device status register */
102#define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
103#define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
104#define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
105#define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
106#define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
107
108/* RAM_MEAS address-es for each channel */
109#define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
110#define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
111#define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
112
113/* Name important RAM_MEAS channels */
114#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
115#define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
116#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
117#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
118#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
119#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
120#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
121#define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
122
123/* Magic constants */
124#define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
125#define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
126#define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */
127#define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
128#define MLX90632_DSP_VERSION 5 /* DSP version */
129#define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
130#define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
131#define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
132#define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */
133#define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */
134#define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */
135#define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
136#define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
137
138/**
139 * struct mlx90632_data - private data for the MLX90632 device
140 * @client: I2C client of the device
141 * @lock: Internal mutex for multiple reads for single measurement
142 * @regmap: Regmap of the device
143 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
144 * @mtyp: Measurement type physical sensor configuration for extended range
145 * calculations
146 * @object_ambient_temperature: Ambient temperature at object (might differ of
147 * the ambient temperature of sensor.
148 * @regulator: Regulator of the device
149 * @powerstatus: Current POWER status of the device
150 * @interaction_ts: Timestamp of the last temperature read that is used
151 * for power management in jiffies
152 */
153struct mlx90632_data {
154 struct i2c_client *client;
155 struct mutex lock;
156 struct regmap *regmap;
157 u16 emissivity;
158 u8 mtyp;
159 u32 object_ambient_temperature;
160 struct regulator *regulator;
161 int powerstatus;
162 unsigned long interaction_ts;
163};
164
165static const struct regmap_range mlx90632_volatile_reg_range[] = {
166 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
167 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
168 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
169 regmap_reg_range(MLX90632_RAM_1(0),
170 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
171};
172
173static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
174 .yes_ranges = mlx90632_volatile_reg_range,
175 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
176};
177
178static const struct regmap_range mlx90632_read_reg_range[] = {
179 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
180 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
181 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
182 regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2),
183 regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3),
184 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
185 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
186 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
187 regmap_reg_range(MLX90632_RAM_1(0),
188 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
189};
190
191static const struct regmap_access_table mlx90632_readable_regs_tbl = {
192 .yes_ranges = mlx90632_read_reg_range,
193 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
194};
195
196static const struct regmap_range mlx90632_no_write_reg_range[] = {
197 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
198 regmap_reg_range(MLX90632_RAM_1(0),
199 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
200};
201
202static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
203 .no_ranges = mlx90632_no_write_reg_range,
204 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
205};
206
207static const struct regmap_config mlx90632_regmap = {
208 .reg_bits = 16,
209 .val_bits = 16,
210
211 .volatile_table = &mlx90632_volatile_regs_tbl,
212 .rd_table = &mlx90632_readable_regs_tbl,
213 .wr_table = &mlx90632_writeable_regs_tbl,
214
215 .use_single_read = true,
216 .use_single_write = true,
217 .reg_format_endian = REGMAP_ENDIAN_BIG,
218 .val_format_endian = REGMAP_ENDIAN_BIG,
219 .cache_type = REGCACHE_RBTREE,
220};
221
222static int mlx90632_pwr_set_sleep_step(struct regmap *regmap)
223{
224 struct mlx90632_data *data =
225 iio_priv(indio_dev: dev_get_drvdata(dev: regmap_get_device(map: regmap)));
226 int ret;
227
228 if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
229 return 0;
230
231 ret = regmap_write_bits(map: regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
232 MLX90632_PWR_STATUS_SLEEP_STEP);
233 if (ret < 0)
234 return ret;
235
236 data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP;
237 return 0;
238}
239
240static int mlx90632_pwr_continuous(struct regmap *regmap)
241{
242 struct mlx90632_data *data =
243 iio_priv(indio_dev: dev_get_drvdata(dev: regmap_get_device(map: regmap)));
244 int ret;
245
246 if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS)
247 return 0;
248
249 ret = regmap_write_bits(map: regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
250 MLX90632_PWR_STATUS_CONTINUOUS);
251 if (ret < 0)
252 return ret;
253
254 data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS;
255 return 0;
256}
257
258/**
259 * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
260 * If this is not done, the following I2C command(s) will not be accepted.
261 */
262static void mlx90632_reset_delay(void)
263{
264 usleep_range(min: 150, max: 200);
265}
266
267static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas)
268{
269 unsigned int reg;
270 int ret;
271
272 ret = regmap_read(map: regmap, reg: meas, val: &reg);
273 if (ret < 0)
274 return ret;
275
276 return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg);
277}
278
279static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data)
280{
281 unsigned int refresh_time;
282 int ret;
283
284 if (data->mtyp == MLX90632_MTYP_MEDICAL) {
285 ret = mlx90632_get_measurement_time(regmap: data->regmap,
286 MLX90632_EE_MEDICAL_MEAS1);
287 if (ret < 0)
288 return ret;
289
290 refresh_time = ret;
291
292 ret = mlx90632_get_measurement_time(regmap: data->regmap,
293 MLX90632_EE_MEDICAL_MEAS2);
294 if (ret < 0)
295 return ret;
296
297 refresh_time += ret;
298 } else {
299 ret = mlx90632_get_measurement_time(regmap: data->regmap,
300 MLX90632_EE_EXTENDED_MEAS1);
301 if (ret < 0)
302 return ret;
303
304 refresh_time = ret;
305
306 ret = mlx90632_get_measurement_time(regmap: data->regmap,
307 MLX90632_EE_EXTENDED_MEAS2);
308 if (ret < 0)
309 return ret;
310
311 refresh_time += ret;
312
313 ret = mlx90632_get_measurement_time(regmap: data->regmap,
314 MLX90632_EE_EXTENDED_MEAS3);
315 if (ret < 0)
316 return ret;
317
318 refresh_time += ret;
319 }
320
321 return refresh_time;
322}
323
324/**
325 * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
326 * @data: pointer to mlx90632_data object containing regmap information
327 *
328 * Perform a measurement and return latest measurement cycle position reported
329 * by sensor. This is a blocking function for 500ms, as that is default sensor
330 * refresh rate.
331 */
332static int mlx90632_perform_measurement(struct mlx90632_data *data)
333{
334 unsigned int reg_status;
335 int ret;
336
337 ret = regmap_update_bits(map: data->regmap, MLX90632_REG_STATUS,
338 MLX90632_STAT_DATA_RDY, val: 0);
339 if (ret < 0)
340 return ret;
341
342 ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
343 !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
344 100 * 10000);
345
346 if (ret < 0) {
347 dev_err(&data->client->dev, "data not ready");
348 return -ETIMEDOUT;
349 }
350
351 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
352}
353
354/**
355 * mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement
356 * cycle in step sleep mode
357 * @data: pointer to mlx90632_data object containing regmap information
358 *
359 * Perform a measurement and return 2 as measurement cycle position reported
360 * by sensor. This is a blocking function for amount dependent on the sensor
361 * refresh rate.
362 */
363static int mlx90632_perform_measurement_burst(struct mlx90632_data *data)
364{
365 unsigned int reg_status;
366 int ret;
367
368 ret = regmap_write_bits(map: data->regmap, MLX90632_REG_CONTROL,
369 MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK);
370 if (ret < 0)
371 return ret;
372
373 ret = mlx90632_calculate_dataset_ready_time(data);
374 if (ret < 0)
375 return ret;
376
377 msleep(msecs: ret); /* Wait minimum time for dataset to be ready */
378
379 ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS,
380 reg_status,
381 (reg_status & MLX90632_STAT_BUSY) == 0,
382 10000, 100 * 10000);
383 if (ret < 0) {
384 dev_err(&data->client->dev, "data not ready");
385 return -ETIMEDOUT;
386 }
387
388 return 2;
389}
390
391static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type)
392{
393 int current_powerstatus;
394 int ret;
395
396 if (data->mtyp == type)
397 return 0;
398
399 current_powerstatus = data->powerstatus;
400 ret = mlx90632_pwr_continuous(regmap: data->regmap);
401 if (ret < 0)
402 return ret;
403
404 ret = regmap_write(map: data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
405 if (ret < 0)
406 return ret;
407
408 mlx90632_reset_delay();
409
410 ret = regmap_update_bits(map: data->regmap, MLX90632_REG_CONTROL,
411 mask: (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
412 val: (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
413 if (ret < 0)
414 return ret;
415
416 data->mtyp = type;
417 data->powerstatus = MLX90632_PWR_STATUS_HALT;
418
419 if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
420 return mlx90632_pwr_set_sleep_step(regmap: data->regmap);
421
422 return mlx90632_pwr_continuous(regmap: data->regmap);
423}
424
425static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
426 uint8_t *channel_old)
427{
428 switch (perform_ret) {
429 case 1:
430 *channel_new = 1;
431 *channel_old = 2;
432 break;
433 case 2:
434 *channel_new = 2;
435 *channel_old = 1;
436 break;
437 default:
438 return -ECHRNG;
439 }
440
441 return 0;
442}
443
444static int mlx90632_read_ambient_raw(struct regmap *regmap,
445 s16 *ambient_new_raw, s16 *ambient_old_raw)
446{
447 unsigned int read_tmp;
448 int ret;
449
450 ret = regmap_read(map: regmap, MLX90632_RAM_3(1), val: &read_tmp);
451 if (ret < 0)
452 return ret;
453 *ambient_new_raw = (s16)read_tmp;
454
455 ret = regmap_read(map: regmap, MLX90632_RAM_3(2), val: &read_tmp);
456 if (ret < 0)
457 return ret;
458 *ambient_old_raw = (s16)read_tmp;
459
460 return ret;
461}
462
463static int mlx90632_read_object_raw(struct regmap *regmap,
464 int perform_measurement_ret,
465 s16 *object_new_raw, s16 *object_old_raw)
466{
467 unsigned int read_tmp;
468 u8 channel_old = 0;
469 u8 channel = 0;
470 s16 read;
471 int ret;
472
473 ret = mlx90632_channel_new_select(perform_ret: perform_measurement_ret, channel_new: &channel,
474 channel_old: &channel_old);
475 if (ret != 0)
476 return ret;
477
478 ret = regmap_read(map: regmap, MLX90632_RAM_2(channel), val: &read_tmp);
479 if (ret < 0)
480 return ret;
481
482 read = (s16)read_tmp;
483
484 ret = regmap_read(map: regmap, MLX90632_RAM_1(channel), val: &read_tmp);
485 if (ret < 0)
486 return ret;
487 *object_new_raw = (read + (s16)read_tmp) / 2;
488
489 ret = regmap_read(map: regmap, MLX90632_RAM_2(channel_old), val: &read_tmp);
490 if (ret < 0)
491 return ret;
492 read = (s16)read_tmp;
493
494 ret = regmap_read(map: regmap, MLX90632_RAM_1(channel_old), val: &read_tmp);
495 if (ret < 0)
496 return ret;
497 *object_old_raw = (read + (s16)read_tmp) / 2;
498
499 return ret;
500}
501
502static int mlx90632_read_all_channel(struct mlx90632_data *data,
503 s16 *ambient_new_raw, s16 *ambient_old_raw,
504 s16 *object_new_raw, s16 *object_old_raw)
505{
506 s32 measurement;
507 int ret;
508
509 mutex_lock(&data->lock);
510 ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL);
511 if (ret < 0)
512 goto read_unlock;
513
514 switch (data->powerstatus) {
515 case MLX90632_PWR_STATUS_CONTINUOUS:
516 ret = mlx90632_perform_measurement(data);
517 if (ret < 0)
518 goto read_unlock;
519
520 break;
521 case MLX90632_PWR_STATUS_SLEEP_STEP:
522 ret = mlx90632_perform_measurement_burst(data);
523 if (ret < 0)
524 goto read_unlock;
525
526 break;
527 default:
528 ret = -EOPNOTSUPP;
529 goto read_unlock;
530 }
531
532 measurement = ret; /* If we came here ret holds the measurement position */
533
534 ret = mlx90632_read_ambient_raw(regmap: data->regmap, ambient_new_raw,
535 ambient_old_raw);
536 if (ret < 0)
537 goto read_unlock;
538
539 ret = mlx90632_read_object_raw(regmap: data->regmap, perform_measurement_ret: measurement,
540 object_new_raw, object_old_raw);
541read_unlock:
542 mutex_unlock(lock: &data->lock);
543 return ret;
544}
545
546static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
547 s16 *ambient_new_raw, s16 *ambient_old_raw)
548{
549 unsigned int read_tmp;
550 int ret;
551
552 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, val: &read_tmp);
553 if (ret < 0)
554 return ret;
555 *ambient_new_raw = (s16)read_tmp;
556
557 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, val: &read_tmp);
558 if (ret < 0)
559 return ret;
560 *ambient_old_raw = (s16)read_tmp;
561
562 return 0;
563}
564
565static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
566{
567 unsigned int read_tmp;
568 s32 read;
569 int ret;
570
571 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, val: &read_tmp);
572 if (ret < 0)
573 return ret;
574 read = (s16)read_tmp;
575
576 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, val: &read_tmp);
577 if (ret < 0)
578 return ret;
579 read = read - (s16)read_tmp;
580
581 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, val: &read_tmp);
582 if (ret < 0)
583 return ret;
584 read = read - (s16)read_tmp;
585
586 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, val: &read_tmp);
587 if (ret < 0)
588 return ret;
589 read = (read + (s16)read_tmp) / 2;
590
591 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, val: &read_tmp);
592 if (ret < 0)
593 return ret;
594 read = read + (s16)read_tmp;
595
596 ret = regmap_read(map: regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, val: &read_tmp);
597 if (ret < 0)
598 return ret;
599 read = read + (s16)read_tmp;
600
601 if (read > S16_MAX || read < S16_MIN)
602 return -ERANGE;
603
604 *object_new_raw = read;
605
606 return 0;
607}
608
609static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
610 s16 *ambient_new_raw, s16 *ambient_old_raw)
611{
612 s32 ret, meas;
613
614 mutex_lock(&data->lock);
615 ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED);
616 if (ret < 0)
617 goto read_unlock;
618
619 switch (data->powerstatus) {
620 case MLX90632_PWR_STATUS_CONTINUOUS:
621 ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
622 50000, 800000, false, data);
623 if (ret)
624 goto read_unlock;
625 break;
626 case MLX90632_PWR_STATUS_SLEEP_STEP:
627 ret = mlx90632_perform_measurement_burst(data);
628 if (ret < 0)
629 goto read_unlock;
630 break;
631 default:
632 ret = -EOPNOTSUPP;
633 goto read_unlock;
634 }
635
636 ret = mlx90632_read_object_raw_extended(regmap: data->regmap, object_new_raw);
637 if (ret < 0)
638 goto read_unlock;
639
640 ret = mlx90632_read_ambient_raw_extended(regmap: data->regmap, ambient_new_raw, ambient_old_raw);
641
642read_unlock:
643 mutex_unlock(lock: &data->lock);
644 return ret;
645}
646
647static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
648 s32 *reg_value)
649{
650 unsigned int read;
651 u32 value;
652 int ret;
653
654 ret = regmap_read(map: regmap, reg: reg_lsb, val: &read);
655 if (ret < 0)
656 return ret;
657
658 value = read;
659
660 ret = regmap_read(map: regmap, reg: reg_lsb + 1, val: &read);
661 if (ret < 0)
662 return ret;
663
664 *reg_value = (read << 16) | (value & 0xffff);
665
666 return 0;
667}
668
669static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
670 s16 ambient_old_raw, s16 Gb)
671{
672 s64 VR_Ta, kGb, tmp;
673
674 kGb = ((s64)Gb * 1000LL) >> 10ULL;
675 VR_Ta = (s64)ambient_old_raw * 1000000LL +
676 kGb * div64_s64(dividend: ((s64)ambient_new_raw * 1000LL),
677 divisor: (MLX90632_REF_3));
678 tmp = div64_s64(
679 dividend: div64_s64(dividend: ((s64)ambient_new_raw * 1000000000000LL),
680 divisor: (MLX90632_REF_3)), divisor: VR_Ta);
681 return div64_s64(dividend: tmp << 19ULL, divisor: 1000LL);
682}
683
684static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
685 s16 ambient_new_raw,
686 s16 ambient_old_raw, s16 Ka)
687{
688 s64 VR_IR, kKa, tmp;
689
690 kKa = ((s64)Ka * 1000LL) >> 10ULL;
691 VR_IR = (s64)ambient_old_raw * 1000000LL +
692 kKa * div64_s64(dividend: ((s64)ambient_new_raw * 1000LL),
693 divisor: (MLX90632_REF_3));
694 tmp = div64_s64(
695 dividend: div64_s64(dividend: ((s64)((object_new_raw + object_old_raw) / 2)
696 * 1000000000000LL), divisor: (MLX90632_REF_12)),
697 divisor: VR_IR);
698 return div64_s64(dividend: (tmp << 19ULL), divisor: 1000LL);
699}
700
701static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
702 s16 ambient_old_raw, s16 Ka)
703{
704 s64 VR_IR, kKa, tmp;
705
706 kKa = ((s64)Ka * 1000LL) >> 10ULL;
707 VR_IR = (s64)ambient_old_raw * 1000000LL +
708 kKa * div64_s64(dividend: (s64)ambient_new_raw * 1000LL,
709 MLX90632_REF_3);
710 tmp = div64_s64(
711 dividend: div64_s64(dividend: (s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
712 divisor: VR_IR);
713 return div64_s64(dividend: tmp << 19ULL, divisor: 1000LL);
714}
715
716static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
717 s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
718{
719 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
720
721 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
722 Gb);
723 Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
724 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
725 Ablock = Asub * (Bsub * Bsub);
726 Bblock = (div64_s64(dividend: Bsub * 10000000LL, divisor: P_G)) << 20ULL;
727 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
728
729 sum = div64_s64(dividend: Ablock, divisor: 1000000LL) + Bblock + Cblock;
730
731 return div64_s64(dividend: sum, divisor: 10000000LL);
732}
733
734static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
735 s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
736 s32 Ga, s16 Ha, s16 Hb,
737 u16 emissivity)
738{
739 s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
740 s64 Ha_customer, Hb_customer;
741
742 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
743 Hb_customer = ((s64)Hb * 100) >> 10ULL;
744
745 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
746 * 1000LL)) >> 36LL;
747 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
748 Alpha_corr = div64_s64(dividend: (((s64)(Fa * 10000000000LL) >> 46LL)
749 * Ha_customer), divisor: 1000LL);
750 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
751 Alpha_corr = emissivity * div64_s64(dividend: Alpha_corr, divisor: 100000LL);
752 Alpha_corr = div64_s64(dividend: Alpha_corr, divisor: 1000LL);
753 ir_Alpha = div64_s64(dividend: (s64)object * 10000000LL, divisor: Alpha_corr);
754
755 return (int_sqrt64(x: int_sqrt64(x: ir_Alpha * 1000000000000LL + TAdut4))
756 - 27315 - Hb_customer) * 10;
757}
758
759static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
760{
761 return (div64_s64(dividend: TAdut, divisor: scale) + 27315) *
762 (div64_s64(dividend: TAdut, divisor: scale) + 27315) *
763 (div64_s64(dividend: TAdut, divisor: scale) + 27315) *
764 (div64_s64(dividend: TAdut, divisor: scale) + 27315);
765}
766
767static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
768 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
769 u16 tmp_emi)
770{
771 s64 kTA, kTA0, TAdut, TAdut4;
772 s64 temp = 25000;
773 s8 i;
774
775 kTA = (Ea * 1000LL) >> 16LL;
776 kTA0 = (Eb * 1000LL) >> 8LL;
777 TAdut = div64_s64(dividend: ((ambient - kTA0) * 1000000LL), divisor: kTA) + 25 * 1000000LL;
778 TAdut4 = mlx90632_calc_ta4(TAdut, scale: 10000LL);
779
780 /* Iterations of calculation as described in datasheet */
781 for (i = 0; i < 5; ++i) {
782 temp = mlx90632_calc_temp_object_iteration(prev_object_temp: temp, object, TAdut, TAdut4,
783 Fa, Fb, Ga, Ha, Hb,
784 emissivity: tmp_emi);
785 }
786 return temp;
787}
788
789static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
790 s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
791 s16 Ha, s16 Hb, u16 tmp_emi)
792{
793 s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
794 s64 temp = 25000;
795 s8 i;
796
797 kTA = (Ea * 1000LL) >> 16LL;
798 kTA0 = (Eb * 1000LL) >> 8LL;
799 TAdut = div64_s64(dividend: (ambient - kTA0) * 1000000LL, divisor: kTA) + 25 * 1000000LL;
800 Tr4 = mlx90632_calc_ta4(TAdut: reflected, scale: 10);
801 TAdut4 = mlx90632_calc_ta4(TAdut, scale: 10000LL);
802 TaTr4 = Tr4 - div64_s64(dividend: Tr4 - TAdut4, divisor: tmp_emi) * 1000;
803
804 /* Iterations of calculation as described in datasheet */
805 for (i = 0; i < 5; ++i) {
806 temp = mlx90632_calc_temp_object_iteration(prev_object_temp: temp, object, TAdut, TAdut4: TaTr4,
807 Fa: Fa / 2, Fb, Ga, Ha, Hb,
808 emissivity: tmp_emi);
809 }
810
811 return temp;
812}
813
814static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
815{
816 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
817 s32 Ea, Eb, Fa, Fb, Ga;
818 unsigned int read_tmp;
819 s64 object, ambient;
820 s16 Ha, Hb, Gb, Ka;
821 int ret;
822
823 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_Ea, reg_value: &Ea);
824 if (ret < 0)
825 return ret;
826 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_Eb, reg_value: &Eb);
827 if (ret < 0)
828 return ret;
829 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_Fa, reg_value: &Fa);
830 if (ret < 0)
831 return ret;
832 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_Fb, reg_value: &Fb);
833 if (ret < 0)
834 return ret;
835 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_Ga, reg_value: &Ga);
836 if (ret < 0)
837 return ret;
838 ret = regmap_read(map: data->regmap, MLX90632_EE_Ha, val: &read_tmp);
839 if (ret < 0)
840 return ret;
841 Ha = (s16)read_tmp;
842 ret = regmap_read(map: data->regmap, MLX90632_EE_Hb, val: &read_tmp);
843 if (ret < 0)
844 return ret;
845 Hb = (s16)read_tmp;
846 ret = regmap_read(map: data->regmap, MLX90632_EE_Gb, val: &read_tmp);
847 if (ret < 0)
848 return ret;
849 Gb = (s16)read_tmp;
850 ret = regmap_read(map: data->regmap, MLX90632_EE_Ka, val: &read_tmp);
851 if (ret < 0)
852 return ret;
853 Ka = (s16)read_tmp;
854
855 ret = mlx90632_read_all_channel(data,
856 ambient_new_raw: &ambient_new_raw, ambient_old_raw: &ambient_old_raw,
857 object_new_raw: &object_new_raw, object_old_raw: &object_old_raw);
858 if (ret < 0)
859 return ret;
860
861 if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
862 data->mtyp == MLX90632_MTYP_EXTENDED) {
863 ret = mlx90632_read_all_channel_extended(data, object_new_raw: &object_new_raw,
864 ambient_new_raw: &ambient_new_raw, ambient_old_raw: &ambient_old_raw);
865 if (ret < 0)
866 return ret;
867
868 /* Use extended mode calculations */
869 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
870 ambient_old_raw, Gb);
871 object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
872 ambient_new_raw,
873 ambient_old_raw, Ka);
874 *val = mlx90632_calc_temp_object_extended(object, ambient,
875 reflected: data->object_ambient_temperature,
876 Ea, Eb, Fa, Fb, Ga,
877 Ha, Hb, tmp_emi: data->emissivity);
878 return 0;
879 }
880
881 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
882 ambient_old_raw, Gb);
883 object = mlx90632_preprocess_temp_obj(object_new_raw,
884 object_old_raw,
885 ambient_new_raw,
886 ambient_old_raw, Ka);
887
888 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
889 Ha, Hb, tmp_emi: data->emissivity);
890 return 0;
891}
892
893static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
894{
895 s16 ambient_new_raw, ambient_old_raw;
896 unsigned int read_tmp;
897 s32 PT, PR, PG, PO;
898 int ret;
899 s16 Gb;
900
901 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_P_R, reg_value: &PR);
902 if (ret < 0)
903 return ret;
904 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_P_G, reg_value: &PG);
905 if (ret < 0)
906 return ret;
907 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_P_T, reg_value: &PT);
908 if (ret < 0)
909 return ret;
910 ret = mlx90632_read_ee_register(regmap: data->regmap, MLX90632_EE_P_O, reg_value: &PO);
911 if (ret < 0)
912 return ret;
913 ret = regmap_read(map: data->regmap, MLX90632_EE_Gb, val: &read_tmp);
914 if (ret < 0)
915 return ret;
916 Gb = (s16)read_tmp;
917
918 ret = mlx90632_read_ambient_raw(regmap: data->regmap, ambient_new_raw: &ambient_new_raw,
919 ambient_old_raw: &ambient_old_raw);
920 if (ret < 0)
921 return ret;
922 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
923 P_T: PT, P_R: PR, P_G: PG, P_O: PO, Gb);
924 return ret;
925}
926
927static int mlx90632_get_refresh_rate(struct mlx90632_data *data,
928 int *refresh_rate)
929{
930 unsigned int meas1;
931 int ret;
932
933 ret = regmap_read(map: data->regmap, MLX90632_EE_MEDICAL_MEAS1, val: &meas1);
934 if (ret < 0)
935 return ret;
936
937 *refresh_rate = MLX90632_REFRESH_RATE(meas1);
938
939 return ret;
940}
941
942static const int mlx90632_freqs[][2] = {
943 {0, 500000},
944 {1, 0},
945 {2, 0},
946 {4, 0},
947 {8, 0},
948 {16, 0},
949 {32, 0},
950 {64, 0}
951};
952
953/**
954 * mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode
955 * @data: pointer to mlx90632_data object containing interaction_ts information
956 *
957 * Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the
958 * interaction_ts for each function call with the jiffies to enable measurement between function
959 * calls. Initial value of the interaction_ts needs to be set before this function call.
960 */
961static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data)
962{
963 unsigned long now;
964 int ret;
965
966 now = jiffies;
967 if (time_in_range(now, data->interaction_ts,
968 data->interaction_ts +
969 msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) {
970 if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) {
971 ret = mlx90632_pwr_continuous(regmap: data->regmap);
972 if (ret < 0)
973 return ret;
974 }
975 }
976
977 data->interaction_ts = now;
978
979 return 0;
980}
981
982static int mlx90632_read_raw(struct iio_dev *indio_dev,
983 struct iio_chan_spec const *channel, int *val,
984 int *val2, long mask)
985{
986 struct mlx90632_data *data = iio_priv(indio_dev);
987 int ret;
988 int cr;
989
990 pm_runtime_get_sync(dev: &data->client->dev);
991 ret = mlx90632_pm_interraction_wakeup(data);
992 if (ret < 0)
993 goto mlx90632_read_raw_pm;
994
995 switch (mask) {
996 case IIO_CHAN_INFO_PROCESSED:
997 switch (channel->channel2) {
998 case IIO_MOD_TEMP_AMBIENT:
999 ret = mlx90632_calc_ambient_dsp105(data, val);
1000 if (ret < 0)
1001 goto mlx90632_read_raw_pm;
1002
1003 ret = IIO_VAL_INT;
1004 break;
1005 case IIO_MOD_TEMP_OBJECT:
1006 ret = mlx90632_calc_object_dsp105(data, val);
1007 if (ret < 0)
1008 goto mlx90632_read_raw_pm;
1009
1010 ret = IIO_VAL_INT;
1011 break;
1012 default:
1013 ret = -EINVAL;
1014 break;
1015 }
1016 break;
1017 case IIO_CHAN_INFO_CALIBEMISSIVITY:
1018 if (data->emissivity == 1000) {
1019 *val = 1;
1020 *val2 = 0;
1021 } else {
1022 *val = 0;
1023 *val2 = data->emissivity * 1000;
1024 }
1025 ret = IIO_VAL_INT_PLUS_MICRO;
1026 break;
1027 case IIO_CHAN_INFO_CALIBAMBIENT:
1028 *val = data->object_ambient_temperature;
1029 ret = IIO_VAL_INT;
1030 break;
1031 case IIO_CHAN_INFO_SAMP_FREQ:
1032 ret = mlx90632_get_refresh_rate(data, refresh_rate: &cr);
1033 if (ret < 0)
1034 goto mlx90632_read_raw_pm;
1035
1036 *val = mlx90632_freqs[cr][0];
1037 *val2 = mlx90632_freqs[cr][1];
1038 ret = IIO_VAL_INT_PLUS_MICRO;
1039 break;
1040 default:
1041 ret = -EINVAL;
1042 break;
1043 }
1044
1045mlx90632_read_raw_pm:
1046 pm_runtime_mark_last_busy(dev: &data->client->dev);
1047 pm_runtime_put_autosuspend(dev: &data->client->dev);
1048 return ret;
1049}
1050
1051static int mlx90632_write_raw(struct iio_dev *indio_dev,
1052 struct iio_chan_spec const *channel, int val,
1053 int val2, long mask)
1054{
1055 struct mlx90632_data *data = iio_priv(indio_dev);
1056
1057 switch (mask) {
1058 case IIO_CHAN_INFO_CALIBEMISSIVITY:
1059 /* Confirm we are within 0 and 1.0 */
1060 if (val < 0 || val2 < 0 || val > 1 ||
1061 (val == 1 && val2 != 0))
1062 return -EINVAL;
1063 data->emissivity = val * 1000 + val2 / 1000;
1064 return 0;
1065 case IIO_CHAN_INFO_CALIBAMBIENT:
1066 data->object_ambient_temperature = val;
1067 return 0;
1068 default:
1069 return -EINVAL;
1070 }
1071}
1072
1073static int mlx90632_read_avail(struct iio_dev *indio_dev,
1074 struct iio_chan_spec const *chan,
1075 const int **vals, int *type, int *length,
1076 long mask)
1077{
1078 switch (mask) {
1079 case IIO_CHAN_INFO_SAMP_FREQ:
1080 *vals = (int *)mlx90632_freqs;
1081 *type = IIO_VAL_INT_PLUS_MICRO;
1082 *length = 2 * ARRAY_SIZE(mlx90632_freqs);
1083 return IIO_AVAIL_LIST;
1084 default:
1085 return -EINVAL;
1086 }
1087}
1088
1089static const struct iio_chan_spec mlx90632_channels[] = {
1090 {
1091 .type = IIO_TEMP,
1092 .modified = 1,
1093 .channel2 = IIO_MOD_TEMP_AMBIENT,
1094 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
1095 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1096 .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1097 },
1098 {
1099 .type = IIO_TEMP,
1100 .modified = 1,
1101 .channel2 = IIO_MOD_TEMP_OBJECT,
1102 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
1103 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
1104 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1105 .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1106 },
1107};
1108
1109static const struct iio_info mlx90632_info = {
1110 .read_raw = mlx90632_read_raw,
1111 .write_raw = mlx90632_write_raw,
1112 .read_avail = mlx90632_read_avail,
1113};
1114
1115static void mlx90632_sleep(void *_data)
1116{
1117 struct mlx90632_data *data = _data;
1118
1119 mlx90632_pwr_set_sleep_step(regmap: data->regmap);
1120}
1121
1122static int mlx90632_suspend(struct mlx90632_data *data)
1123{
1124 regcache_mark_dirty(map: data->regmap);
1125
1126 dev_dbg(&data->client->dev, "Requesting suspend");
1127 return mlx90632_pwr_set_sleep_step(regmap: data->regmap);
1128}
1129
1130static int mlx90632_wakeup(struct mlx90632_data *data)
1131{
1132 int ret;
1133
1134 ret = regcache_sync(map: data->regmap);
1135 if (ret < 0) {
1136 dev_err(&data->client->dev,
1137 "Failed to sync regmap registers: %d\n", ret);
1138 return ret;
1139 }
1140
1141 dev_dbg(&data->client->dev, "Requesting wake-up\n");
1142 return mlx90632_pwr_continuous(regmap: data->regmap);
1143}
1144
1145static void mlx90632_disable_regulator(void *_data)
1146{
1147 struct mlx90632_data *data = _data;
1148 int ret;
1149
1150 ret = regulator_disable(regulator: data->regulator);
1151 if (ret < 0)
1152 dev_err(regmap_get_device(data->regmap),
1153 "Failed to disable power regulator: %d\n", ret);
1154}
1155
1156static int mlx90632_enable_regulator(struct mlx90632_data *data)
1157{
1158 int ret;
1159
1160 ret = regulator_enable(regulator: data->regulator);
1161 if (ret < 0) {
1162 dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
1163 return ret;
1164 }
1165
1166 mlx90632_reset_delay();
1167
1168 return ret;
1169}
1170
1171static int mlx90632_probe(struct i2c_client *client)
1172{
1173 const struct i2c_device_id *id = i2c_client_get_device_id(client);
1174 struct mlx90632_data *mlx90632;
1175 struct iio_dev *indio_dev;
1176 struct regmap *regmap;
1177 unsigned int read;
1178 int ret;
1179
1180 indio_dev = devm_iio_device_alloc(parent: &client->dev, sizeof_priv: sizeof(*mlx90632));
1181 if (!indio_dev) {
1182 dev_err(&client->dev, "Failed to allocate device\n");
1183 return -ENOMEM;
1184 }
1185
1186 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
1187 if (IS_ERR(ptr: regmap)) {
1188 ret = PTR_ERR(ptr: regmap);
1189 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1190 return ret;
1191 }
1192
1193 mlx90632 = iio_priv(indio_dev);
1194 i2c_set_clientdata(client, data: indio_dev);
1195 mlx90632->client = client;
1196 mlx90632->regmap = regmap;
1197 mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
1198 mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT;
1199
1200 mutex_init(&mlx90632->lock);
1201 indio_dev->name = id->name;
1202 indio_dev->modes = INDIO_DIRECT_MODE;
1203 indio_dev->info = &mlx90632_info;
1204 indio_dev->channels = mlx90632_channels;
1205 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
1206
1207 mlx90632->regulator = devm_regulator_get(dev: &client->dev, id: "vdd");
1208 if (IS_ERR(ptr: mlx90632->regulator))
1209 return dev_err_probe(dev: &client->dev, err: PTR_ERR(ptr: mlx90632->regulator),
1210 fmt: "failed to get vdd regulator");
1211
1212 ret = mlx90632_enable_regulator(data: mlx90632);
1213 if (ret < 0)
1214 return ret;
1215
1216 ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
1217 mlx90632);
1218 if (ret < 0) {
1219 dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
1220 ret);
1221 return ret;
1222 }
1223
1224 ret = mlx90632_wakeup(data: mlx90632);
1225 if (ret < 0) {
1226 dev_err(&client->dev, "Wakeup failed: %d\n", ret);
1227 return ret;
1228 }
1229
1230 ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632);
1231 if (ret < 0) {
1232 dev_err(&client->dev, "Failed to setup low power cleanup action %d\n",
1233 ret);
1234 return ret;
1235 }
1236
1237 ret = regmap_read(map: mlx90632->regmap, MLX90632_EE_VERSION, val: &read);
1238 if (ret < 0) {
1239 dev_err(&client->dev, "read of version failed: %d\n", ret);
1240 return ret;
1241 }
1242 read = read & MLX90632_ID_MASK;
1243 if (read == MLX90632_ID_MEDICAL) {
1244 dev_dbg(&client->dev,
1245 "Detected Medical EEPROM calibration %x\n", read);
1246 } else if (read == MLX90632_ID_CONSUMER) {
1247 dev_dbg(&client->dev,
1248 "Detected Consumer EEPROM calibration %x\n", read);
1249 } else if (read == MLX90632_ID_EXTENDED) {
1250 dev_dbg(&client->dev,
1251 "Detected Extended range EEPROM calibration %x\n", read);
1252 mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
1253 } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
1254 dev_dbg(&client->dev,
1255 "Detected Unknown EEPROM calibration %x\n", read);
1256 } else {
1257 dev_err(&client->dev,
1258 "Wrong DSP version %x (expected %x)\n",
1259 read, MLX90632_DSP_VERSION);
1260 return -EPROTONOSUPPORT;
1261 }
1262
1263 mlx90632->emissivity = 1000;
1264 mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
1265 mlx90632->interaction_ts = jiffies; /* Set initial value */
1266
1267 pm_runtime_get_noresume(dev: &client->dev);
1268 pm_runtime_set_active(dev: &client->dev);
1269
1270 ret = devm_pm_runtime_enable(dev: &client->dev);
1271 if (ret)
1272 return ret;
1273
1274 pm_runtime_set_autosuspend_delay(dev: &client->dev, MLX90632_SLEEP_DELAY_MS);
1275 pm_runtime_use_autosuspend(dev: &client->dev);
1276 pm_runtime_put_autosuspend(dev: &client->dev);
1277
1278 return devm_iio_device_register(&client->dev, indio_dev);
1279}
1280
1281static const struct i2c_device_id mlx90632_id[] = {
1282 { "mlx90632", 0 },
1283 { }
1284};
1285MODULE_DEVICE_TABLE(i2c, mlx90632_id);
1286
1287static const struct of_device_id mlx90632_of_match[] = {
1288 { .compatible = "melexis,mlx90632" },
1289 { }
1290};
1291MODULE_DEVICE_TABLE(of, mlx90632_of_match);
1292
1293static int mlx90632_pm_suspend(struct device *dev)
1294{
1295 struct mlx90632_data *data = iio_priv(indio_dev: dev_get_drvdata(dev));
1296 int ret;
1297
1298 ret = mlx90632_suspend(data);
1299 if (ret < 0)
1300 return ret;
1301
1302 ret = regulator_disable(regulator: data->regulator);
1303 if (ret < 0)
1304 dev_err(regmap_get_device(data->regmap),
1305 "Failed to disable power regulator: %d\n", ret);
1306
1307 return ret;
1308}
1309
1310static int mlx90632_pm_resume(struct device *dev)
1311{
1312 struct mlx90632_data *data = iio_priv(indio_dev: dev_get_drvdata(dev));
1313 int ret;
1314
1315 ret = mlx90632_enable_regulator(data);
1316 if (ret < 0)
1317 return ret;
1318
1319 return mlx90632_wakeup(data);
1320}
1321
1322static int mlx90632_pm_runtime_suspend(struct device *dev)
1323{
1324 struct mlx90632_data *data = iio_priv(indio_dev: dev_get_drvdata(dev));
1325
1326 return mlx90632_pwr_set_sleep_step(regmap: data->regmap);
1327}
1328
1329static const struct dev_pm_ops mlx90632_pm_ops = {
1330 SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume)
1331 RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL)
1332};
1333
1334static struct i2c_driver mlx90632_driver = {
1335 .driver = {
1336 .name = "mlx90632",
1337 .of_match_table = mlx90632_of_match,
1338 .pm = pm_ptr(&mlx90632_pm_ops),
1339 },
1340 .probe = mlx90632_probe,
1341 .id_table = mlx90632_id,
1342};
1343module_i2c_driver(mlx90632_driver);
1344
1345MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1346MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
1347MODULE_LICENSE("GPL v2");
1348

source code of linux/drivers/iio/temperature/mlx90632.c