1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/i2c/chips/lm8323.c
4 *
5 * Copyright (C) 2007-2009 Nokia Corporation
6 *
7 * Written by Daniel Stone <daniel.stone@nokia.com>
8 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 *
10 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 */
12
13#include <linux/module.h>
14#include <linux/i2c.h>
15#include <linux/interrupt.h>
16#include <linux/sched.h>
17#include <linux/mutex.h>
18#include <linux/delay.h>
19#include <linux/input.h>
20#include <linux/leds.h>
21#include <linux/platform_data/lm8323.h>
22#include <linux/pm.h>
23#include <linux/slab.h>
24
25/* Commands to send to the chip. */
26#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
27#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
28#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
29#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
30#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
31#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
32#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
33#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
34#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
35#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
36#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
37#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
38#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
39#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
40#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
41#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
42#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
43#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
44#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
45#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
46#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
47#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
48
49/* Interrupt status. */
50#define INT_KEYPAD 0x01 /* Key event. */
51#define INT_ROTATOR 0x02 /* Rotator event. */
52#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
53#define INT_NOINIT 0x10 /* Lost configuration. */
54#define INT_PWM1 0x20 /* PWM1 stopped. */
55#define INT_PWM2 0x40 /* PWM2 stopped. */
56#define INT_PWM3 0x80 /* PWM3 stopped. */
57
58/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
59#define ERR_BADPAR 0x01 /* Bad parameter. */
60#define ERR_CMDUNK 0x02 /* Unknown command. */
61#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
62#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
63
64/* Configuration keys (CMD_{WRITE,READ}_CFG). */
65#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
66#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
67#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
68#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
69#define CFG_PSIZE 0x20 /* Package size (must be 0). */
70#define CFG_ROTEN 0x40 /* Enable rotator. */
71
72/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
73#define CLK_RCPWM_INTERNAL 0x00
74#define CLK_RCPWM_EXTERNAL 0x03
75#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
76#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
77
78/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
79#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
80#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
81#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
82#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
83
84/* Key event fifo length */
85#define LM8323_FIFO_LEN 15
86
87/* Commands for PWM engine; feed in with PWM_WRITE. */
88/* Load ramp counter from duty cycle field (range 0 - 0xff). */
89#define PWM_SET(v) (0x4000 | ((v) & 0xff))
90/* Go to start of script. */
91#define PWM_GOTOSTART 0x0000
92/*
93 * Stop engine (generates interrupt). If reset is 1, clear the program
94 * counter, else leave it.
95 */
96#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
97/*
98 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
99 * Take t clock scales (up to 63) per step, for n steps (up to 126).
100 * If u is set, ramp up, else ramp down.
101 */
102#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
103 ((n) & 0x7f) | ((u) ? 0 : 0x80))
104/*
105 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
106 * If cnt is zero, execute until PWM_END is encountered.
107 */
108#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
109 ((pos) & 0x3f))
110/*
111 * Wait for trigger. Argument is a mask of channels, shifted by the channel
112 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
113 * from 1, not 0.
114 */
115#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
116/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
117#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
118
119struct lm8323_pwm {
120 int id;
121 int fade_time;
122 int brightness;
123 int desired_brightness;
124 bool enabled;
125 bool running;
126 /* pwm lock */
127 struct mutex lock;
128 struct work_struct work;
129 struct led_classdev cdev;
130 struct lm8323_chip *chip;
131};
132
133struct lm8323_chip {
134 /* device lock */
135 struct mutex lock;
136 struct i2c_client *client;
137 struct input_dev *idev;
138 bool kp_enabled;
139 bool pm_suspend;
140 unsigned keys_down;
141 char phys[32];
142 unsigned short keymap[LM8323_KEYMAP_SIZE];
143 int size_x;
144 int size_y;
145 int debounce_time;
146 int active_time;
147 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
148};
149
150#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
151#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
152#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
153#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
154
155#define LM8323_MAX_DATA 8
156
157/*
158 * To write, we just access the chip's address in write mode, and dump the
159 * command and data out on the bus. The command byte and data are taken as
160 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
161 */
162static int lm8323_write(struct lm8323_chip *lm, int len, ...)
163{
164 int ret, i;
165 va_list ap;
166 u8 data[LM8323_MAX_DATA];
167
168 va_start(ap, len);
169
170 if (unlikely(len > LM8323_MAX_DATA)) {
171 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
172 va_end(ap);
173 return 0;
174 }
175
176 for (i = 0; i < len; i++)
177 data[i] = va_arg(ap, int);
178
179 va_end(ap);
180
181 /*
182 * If the host is asleep while we send the data, we can get a NACK
183 * back while it wakes up, so try again, once.
184 */
185 ret = i2c_master_send(client: lm->client, buf: data, count: len);
186 if (unlikely(ret == -EREMOTEIO))
187 ret = i2c_master_send(client: lm->client, buf: data, count: len);
188 if (unlikely(ret != len))
189 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
190 len, ret);
191
192 return ret;
193}
194
195/*
196 * To read, we first send the command byte to the chip and end the transaction,
197 * then access the chip in read mode, at which point it will send the data.
198 */
199static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
200{
201 int ret;
202
203 /*
204 * If the host is asleep while we send the byte, we can get a NACK
205 * back while it wakes up, so try again, once.
206 */
207 ret = i2c_master_send(client: lm->client, buf: &cmd, count: 1);
208 if (unlikely(ret == -EREMOTEIO))
209 ret = i2c_master_send(client: lm->client, buf: &cmd, count: 1);
210 if (unlikely(ret != 1)) {
211 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
212 cmd);
213 return 0;
214 }
215
216 ret = i2c_master_recv(client: lm->client, buf, count: len);
217 if (unlikely(ret != len))
218 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
219 len, ret);
220
221 return ret;
222}
223
224/*
225 * Set the chip active time (idle time before it enters halt).
226 */
227static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
228{
229 lm8323_write(lm, len: 2, LM8323_CMD_SET_ACTIVE, time >> 2);
230}
231
232/*
233 * The signals are AT-style: the low 7 bits are the keycode, and the top
234 * bit indicates the state (1 for down, 0 for up).
235 */
236static inline u8 lm8323_whichkey(u8 event)
237{
238 return event & 0x7f;
239}
240
241static inline int lm8323_ispress(u8 event)
242{
243 return (event & 0x80) ? 1 : 0;
244}
245
246static void process_keys(struct lm8323_chip *lm)
247{
248 u8 event;
249 u8 key_fifo[LM8323_FIFO_LEN + 1];
250 int old_keys_down = lm->keys_down;
251 int ret;
252 int i = 0;
253
254 /*
255 * Read all key events from the FIFO at once. Next READ_FIFO clears the
256 * FIFO even if we didn't read all events previously.
257 */
258 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, buf: key_fifo, LM8323_FIFO_LEN);
259
260 if (ret < 0) {
261 dev_err(&lm->client->dev, "Failed reading fifo \n");
262 return;
263 }
264 key_fifo[ret] = 0;
265
266 while ((event = key_fifo[i++])) {
267 u8 key = lm8323_whichkey(event);
268 int isdown = lm8323_ispress(event);
269 unsigned short keycode = lm->keymap[key];
270
271 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
272 key, isdown ? "down" : "up");
273
274 if (lm->kp_enabled) {
275 input_event(dev: lm->idev, EV_MSC, MSC_SCAN, value: key);
276 input_report_key(dev: lm->idev, code: keycode, value: isdown);
277 input_sync(dev: lm->idev);
278 }
279
280 if (isdown)
281 lm->keys_down++;
282 else
283 lm->keys_down--;
284 }
285
286 /*
287 * Errata: We need to ensure that the chip never enters halt mode
288 * during a keypress, so set active time to 0. When it's released,
289 * we can enter halt again, so set the active time back to normal.
290 */
291 if (!old_keys_down && lm->keys_down)
292 lm8323_set_active_time(lm, time: 0);
293 if (old_keys_down && !lm->keys_down)
294 lm8323_set_active_time(lm, time: lm->active_time);
295}
296
297static void lm8323_process_error(struct lm8323_chip *lm)
298{
299 u8 error;
300
301 if (lm8323_read(lm, LM8323_CMD_READ_ERR, buf: &error, len: 1) == 1) {
302 if (error & ERR_FIFOOVER)
303 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
304 if (error & ERR_KEYOVR)
305 dev_vdbg(&lm->client->dev,
306 "more than two keys pressed\n");
307 if (error & ERR_CMDUNK)
308 dev_vdbg(&lm->client->dev,
309 "unknown command submitted\n");
310 if (error & ERR_BADPAR)
311 dev_vdbg(&lm->client->dev, "bad command parameter\n");
312 }
313}
314
315static void lm8323_reset(struct lm8323_chip *lm)
316{
317 /* The docs say we must pass 0xAA as the data byte. */
318 lm8323_write(lm, len: 2, LM8323_CMD_RESET, 0xAA);
319}
320
321static int lm8323_configure(struct lm8323_chip *lm)
322{
323 int keysize = (lm->size_x << 4) | lm->size_y;
324 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
325 int debounce = lm->debounce_time >> 2;
326 int active = lm->active_time >> 2;
327
328 /*
329 * Active time must be greater than the debounce time: if it's
330 * a close-run thing, give ourselves a 12ms buffer.
331 */
332 if (debounce >= active)
333 active = debounce + 3;
334
335 lm8323_write(lm, len: 2, LM8323_CMD_WRITE_CFG, 0);
336 lm8323_write(lm, len: 2, LM8323_CMD_WRITE_CLOCK, clock);
337 lm8323_write(lm, len: 2, LM8323_CMD_SET_KEY_SIZE, keysize);
338 lm8323_set_active_time(lm, time: lm->active_time);
339 lm8323_write(lm, len: 2, LM8323_CMD_SET_DEBOUNCE, debounce);
340 lm8323_write(lm, len: 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
341 lm8323_write(lm, len: 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
342
343 /*
344 * Not much we can do about errors at this point, so just hope
345 * for the best.
346 */
347
348 return 0;
349}
350
351static void pwm_done(struct lm8323_pwm *pwm)
352{
353 mutex_lock(&pwm->lock);
354 pwm->running = false;
355 if (pwm->desired_brightness != pwm->brightness)
356 schedule_work(work: &pwm->work);
357 mutex_unlock(lock: &pwm->lock);
358}
359
360/*
361 * Bottom half: handle the interrupt by posting key events, or dealing with
362 * errors appropriately.
363 */
364static irqreturn_t lm8323_irq(int irq, void *_lm)
365{
366 struct lm8323_chip *lm = _lm;
367 u8 ints;
368 int i;
369
370 mutex_lock(&lm->lock);
371
372 while ((lm8323_read(lm, LM8323_CMD_READ_INT, buf: &ints, len: 1) == 1) && ints) {
373 if (likely(ints & INT_KEYPAD))
374 process_keys(lm);
375 if (ints & INT_ROTATOR) {
376 /* We don't currently support the rotator. */
377 dev_vdbg(&lm->client->dev, "rotator fired\n");
378 }
379 if (ints & INT_ERROR) {
380 dev_vdbg(&lm->client->dev, "error!\n");
381 lm8323_process_error(lm);
382 }
383 if (ints & INT_NOINIT) {
384 dev_err(&lm->client->dev, "chip lost config; "
385 "reinitialising\n");
386 lm8323_configure(lm);
387 }
388 for (i = 0; i < LM8323_NUM_PWMS; i++) {
389 if (ints & (INT_PWM1 << i)) {
390 dev_vdbg(&lm->client->dev,
391 "pwm%d engine completed\n", i);
392 pwm_done(pwm: &lm->pwm[i]);
393 }
394 }
395 }
396
397 mutex_unlock(lock: &lm->lock);
398
399 return IRQ_HANDLED;
400}
401
402/*
403 * Read the chip ID.
404 */
405static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
406{
407 int bytes;
408
409 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, len: 2);
410 if (unlikely(bytes != 2))
411 return -EIO;
412
413 return 0;
414}
415
416static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
417{
418 lm8323_write(lm: pwm->chip, len: 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
419 (cmd & 0xff00) >> 8, cmd & 0x00ff);
420}
421
422/*
423 * Write a script into a given PWM engine, concluding with PWM_END.
424 * If 'kill' is nonzero, the engine will be shut down at the end
425 * of the script, producing a zero output. Otherwise the engine
426 * will be kept running at the final PWM level indefinitely.
427 */
428static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
429 int len, const u16 *cmds)
430{
431 int i;
432
433 for (i = 0; i < len; i++)
434 lm8323_write_pwm_one(pwm, pos: i, cmd: cmds[i]);
435
436 lm8323_write_pwm_one(pwm, pos: i++, PWM_END(kill));
437 lm8323_write(lm: pwm->chip, len: 2, LM8323_CMD_START_PWM, pwm->id);
438 pwm->running = true;
439}
440
441static void lm8323_pwm_work(struct work_struct *work)
442{
443 struct lm8323_pwm *pwm = work_to_pwm(work);
444 int div512, perstep, steps, hz, up, kill;
445 u16 pwm_cmds[3];
446 int num_cmds = 0;
447
448 mutex_lock(&pwm->lock);
449
450 /*
451 * Do nothing if we're already at the requested level,
452 * or previous setting is not yet complete. In the latter
453 * case we will be called again when the previous PWM script
454 * finishes.
455 */
456 if (pwm->running || pwm->desired_brightness == pwm->brightness)
457 goto out;
458
459 kill = (pwm->desired_brightness == 0);
460 up = (pwm->desired_brightness > pwm->brightness);
461 steps = abs(pwm->desired_brightness - pwm->brightness);
462
463 /*
464 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
465 * 32768Hz), and number of ticks per step.
466 */
467 if ((pwm->fade_time / steps) > (32768 / 512)) {
468 div512 = 1;
469 hz = 32768 / 512;
470 } else {
471 div512 = 0;
472 hz = 32768 / 16;
473 }
474
475 perstep = (hz * pwm->fade_time) / (steps * 1000);
476
477 if (perstep == 0)
478 perstep = 1;
479 else if (perstep > 63)
480 perstep = 63;
481
482 while (steps) {
483 int s;
484
485 s = min(126, steps);
486 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
487 steps -= s;
488 }
489
490 lm8323_write_pwm(pwm, kill, len: num_cmds, cmds: pwm_cmds);
491 pwm->brightness = pwm->desired_brightness;
492
493 out:
494 mutex_unlock(lock: &pwm->lock);
495}
496
497static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
498 enum led_brightness brightness)
499{
500 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
501 struct lm8323_chip *lm = pwm->chip;
502
503 mutex_lock(&pwm->lock);
504 pwm->desired_brightness = brightness;
505 mutex_unlock(lock: &pwm->lock);
506
507 if (in_interrupt()) {
508 schedule_work(work: &pwm->work);
509 } else {
510 /*
511 * Schedule PWM work as usual unless we are going into suspend
512 */
513 mutex_lock(&lm->lock);
514 if (likely(!lm->pm_suspend))
515 schedule_work(work: &pwm->work);
516 else
517 lm8323_pwm_work(work: &pwm->work);
518 mutex_unlock(lock: &lm->lock);
519 }
520}
521
522static ssize_t lm8323_pwm_show_time(struct device *dev,
523 struct device_attribute *attr, char *buf)
524{
525 struct led_classdev *led_cdev = dev_get_drvdata(dev);
526 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
527
528 return sprintf(buf, fmt: "%d\n", pwm->fade_time);
529}
530
531static ssize_t lm8323_pwm_store_time(struct device *dev,
532 struct device_attribute *attr, const char *buf, size_t len)
533{
534 struct led_classdev *led_cdev = dev_get_drvdata(dev);
535 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
536 int ret, time;
537
538 ret = kstrtoint(s: buf, base: 10, res: &time);
539 /* Numbers only, please. */
540 if (ret)
541 return ret;
542
543 pwm->fade_time = time;
544
545 return strlen(buf);
546}
547static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
548
549static struct attribute *lm8323_pwm_attrs[] = {
550 &dev_attr_time.attr,
551 NULL
552};
553ATTRIBUTE_GROUPS(lm8323_pwm);
554
555static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
556 const char *name)
557{
558 struct lm8323_pwm *pwm;
559 int err;
560
561 BUG_ON(id > 3);
562
563 pwm = &lm->pwm[id - 1];
564
565 pwm->id = id;
566 pwm->fade_time = 0;
567 pwm->brightness = 0;
568 pwm->desired_brightness = 0;
569 pwm->running = false;
570 pwm->enabled = false;
571 INIT_WORK(&pwm->work, lm8323_pwm_work);
572 mutex_init(&pwm->lock);
573 pwm->chip = lm;
574
575 if (name) {
576 pwm->cdev.name = name;
577 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
578 pwm->cdev.groups = lm8323_pwm_groups;
579
580 err = devm_led_classdev_register(parent: dev, led_cdev: &pwm->cdev);
581 if (err) {
582 dev_err(dev, "couldn't register PWM %d: %d\n", id, err);
583 return err;
584 }
585 pwm->enabled = true;
586 }
587
588 return 0;
589}
590
591static ssize_t lm8323_show_disable(struct device *dev,
592 struct device_attribute *attr, char *buf)
593{
594 struct lm8323_chip *lm = dev_get_drvdata(dev);
595
596 return sprintf(buf, fmt: "%u\n", !lm->kp_enabled);
597}
598
599static ssize_t lm8323_set_disable(struct device *dev,
600 struct device_attribute *attr,
601 const char *buf, size_t count)
602{
603 struct lm8323_chip *lm = dev_get_drvdata(dev);
604 int ret;
605 unsigned int i;
606
607 ret = kstrtouint(s: buf, base: 10, res: &i);
608 if (ret)
609 return ret;
610
611 mutex_lock(&lm->lock);
612 lm->kp_enabled = !i;
613 mutex_unlock(lock: &lm->lock);
614
615 return count;
616}
617static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
618
619static struct attribute *lm8323_attrs[] = {
620 &dev_attr_disable_kp.attr,
621 NULL,
622};
623ATTRIBUTE_GROUPS(lm8323);
624
625static int lm8323_probe(struct i2c_client *client)
626{
627 struct lm8323_platform_data *pdata = dev_get_platdata(dev: &client->dev);
628 struct input_dev *idev;
629 struct lm8323_chip *lm;
630 int pwm;
631 int i, err;
632 unsigned long tmo;
633 u8 data[2];
634
635 if (!pdata || !pdata->size_x || !pdata->size_y) {
636 dev_err(&client->dev, "missing platform_data\n");
637 return -EINVAL;
638 }
639
640 if (pdata->size_x > 8) {
641 dev_err(&client->dev, "invalid x size %d specified\n",
642 pdata->size_x);
643 return -EINVAL;
644 }
645
646 if (pdata->size_y > 12) {
647 dev_err(&client->dev, "invalid y size %d specified\n",
648 pdata->size_y);
649 return -EINVAL;
650 }
651
652 lm = devm_kzalloc(dev: &client->dev, size: sizeof(*lm), GFP_KERNEL);
653 if (!lm)
654 return -ENOMEM;
655
656 idev = devm_input_allocate_device(&client->dev);
657 if (!idev)
658 return -ENOMEM;
659
660 lm->client = client;
661 lm->idev = idev;
662 mutex_init(&lm->lock);
663
664 lm->size_x = pdata->size_x;
665 lm->size_y = pdata->size_y;
666 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
667 lm->size_x, lm->size_y);
668
669 lm->debounce_time = pdata->debounce_time;
670 lm->active_time = pdata->active_time;
671
672 lm8323_reset(lm);
673
674 /*
675 * Nothing's set up to service the IRQ yet, so just spin for max.
676 * 100ms until we can configure.
677 */
678 tmo = jiffies + msecs_to_jiffies(m: 100);
679 while (lm8323_read(lm, LM8323_CMD_READ_INT, buf: data, len: 1) == 1) {
680 if (data[0] & INT_NOINIT)
681 break;
682
683 if (time_after(jiffies, tmo)) {
684 dev_err(&client->dev,
685 "timeout waiting for initialisation\n");
686 break;
687 }
688
689 msleep(msecs: 1);
690 }
691
692 lm8323_configure(lm);
693
694 /* If a true probe check the device */
695 if (lm8323_read_id(lm, buf: data) != 0) {
696 dev_err(&client->dev, "device not found\n");
697 return -ENODEV;
698 }
699
700 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
701 err = init_pwm(lm, id: pwm + 1, dev: &client->dev,
702 name: pdata->pwm_names[pwm]);
703 if (err)
704 return err;
705 }
706
707 lm->kp_enabled = true;
708
709 idev->name = pdata->name ? : "LM8323 keypad";
710 snprintf(buf: lm->phys, size: sizeof(lm->phys),
711 fmt: "%s/input-kp", dev_name(dev: &client->dev));
712 idev->phys = lm->phys;
713
714 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
715 __set_bit(MSC_SCAN, idev->mscbit);
716 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
717 __set_bit(pdata->keymap[i], idev->keybit);
718 lm->keymap[i] = pdata->keymap[i];
719 }
720 __clear_bit(KEY_RESERVED, idev->keybit);
721
722 if (pdata->repeat)
723 __set_bit(EV_REP, idev->evbit);
724
725 err = input_register_device(idev);
726 if (err) {
727 dev_dbg(&client->dev, "error registering input device\n");
728 return err;
729 }
730
731 err = devm_request_threaded_irq(dev: &client->dev, irq: client->irq,
732 NULL, thread_fn: lm8323_irq,
733 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
734 devname: "lm8323", dev_id: lm);
735 if (err) {
736 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
737 return err;
738 }
739
740 i2c_set_clientdata(client, data: lm);
741
742 device_init_wakeup(dev: &client->dev, enable: 1);
743 enable_irq_wake(irq: client->irq);
744
745 return 0;
746}
747
748/*
749 * We don't need to explicitly suspend the chip, as it already switches off
750 * when there's no activity.
751 */
752static int lm8323_suspend(struct device *dev)
753{
754 struct i2c_client *client = to_i2c_client(dev);
755 struct lm8323_chip *lm = i2c_get_clientdata(client);
756 int i;
757
758 irq_set_irq_wake(irq: client->irq, on: 0);
759 disable_irq(irq: client->irq);
760
761 mutex_lock(&lm->lock);
762 lm->pm_suspend = true;
763 mutex_unlock(lock: &lm->lock);
764
765 for (i = 0; i < 3; i++)
766 if (lm->pwm[i].enabled)
767 led_classdev_suspend(led_cdev: &lm->pwm[i].cdev);
768
769 return 0;
770}
771
772static int lm8323_resume(struct device *dev)
773{
774 struct i2c_client *client = to_i2c_client(dev);
775 struct lm8323_chip *lm = i2c_get_clientdata(client);
776 int i;
777
778 mutex_lock(&lm->lock);
779 lm->pm_suspend = false;
780 mutex_unlock(lock: &lm->lock);
781
782 for (i = 0; i < 3; i++)
783 if (lm->pwm[i].enabled)
784 led_classdev_resume(led_cdev: &lm->pwm[i].cdev);
785
786 enable_irq(irq: client->irq);
787 irq_set_irq_wake(irq: client->irq, on: 1);
788
789 return 0;
790}
791
792static DEFINE_SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
793
794static const struct i2c_device_id lm8323_id[] = {
795 { "lm8323", 0 },
796 { }
797};
798
799static struct i2c_driver lm8323_i2c_driver = {
800 .driver = {
801 .name = "lm8323",
802 .pm = pm_sleep_ptr(&lm8323_pm_ops),
803 .dev_groups = lm8323_groups,
804 },
805 .probe = lm8323_probe,
806 .id_table = lm8323_id,
807};
808MODULE_DEVICE_TABLE(i2c, lm8323_id);
809
810module_i2c_driver(lm8323_i2c_driver);
811
812MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
813MODULE_AUTHOR("Daniel Stone");
814MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
815MODULE_DESCRIPTION("LM8323 keypad driver");
816MODULE_LICENSE("GPL");
817
818

source code of linux/drivers/input/keyboard/lm8323.c