1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
5 *
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <linux/of.h>
16#include <linux/slab.h>
17
18#include <asm/smu.h>
19
20#include "windfarm.h"
21#include "windfarm_pid.h"
22
23#define VERSION "0.2"
24
25#define DEBUG
26#undef LOTSA_DEBUG
27
28#ifdef DEBUG
29#define DBG(args...) printk(args)
30#else
31#define DBG(args...) do { } while(0)
32#endif
33
34#ifdef LOTSA_DEBUG
35#define DBG_LOTS(args...) printk(args)
36#else
37#define DBG_LOTS(args...) do { } while(0)
38#endif
39
40/* define this to force CPU overtemp to 60 degree, useful for testing
41 * the overtemp code
42 */
43#undef HACKED_OVERTEMP
44
45/* We currently only handle 2 chips, 4 cores... */
46#define NR_CHIPS 2
47#define NR_CORES 4
48#define NR_CPU_FANS 3 * NR_CHIPS
49
50/* Controls and sensors */
51static struct wf_sensor *sens_cpu_temp[NR_CORES];
52static struct wf_sensor *sens_cpu_power[NR_CORES];
53static struct wf_sensor *hd_temp;
54static struct wf_sensor *slots_power;
55static struct wf_sensor *u4_temp;
56
57static struct wf_control *cpu_fans[NR_CPU_FANS];
58static char *cpu_fan_names[NR_CPU_FANS] = {
59 "cpu-rear-fan-0",
60 "cpu-rear-fan-1",
61 "cpu-front-fan-0",
62 "cpu-front-fan-1",
63 "cpu-pump-0",
64 "cpu-pump-1",
65};
66static struct wf_control *cpufreq_clamp;
67
68/* Second pump isn't required (and isn't actually present) */
69#define CPU_FANS_REQD (NR_CPU_FANS - 2)
70#define FIRST_PUMP 4
71#define LAST_PUMP 5
72
73/* We keep a temperature history for average calculation of 180s */
74#define CPU_TEMP_HIST_SIZE 180
75
76/* Scale factor for fan speed, *100 */
77static int cpu_fan_scale[NR_CPU_FANS] = {
78 100,
79 100,
80 97, /* inlet fans run at 97% of exhaust fan */
81 97,
82 100, /* updated later */
83 100, /* updated later */
84};
85
86static struct wf_control *backside_fan;
87static struct wf_control *slots_fan;
88static struct wf_control *drive_bay_fan;
89
90/* PID loop state */
91static struct wf_cpu_pid_state cpu_pid[NR_CORES];
92static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
93static int cpu_thist_pt;
94static s64 cpu_thist_total;
95static s32 cpu_all_tmax = 100 << 16;
96static int cpu_last_target;
97static struct wf_pid_state backside_pid;
98static int backside_tick;
99static struct wf_pid_state slots_pid;
100static bool slots_started;
101static struct wf_pid_state drive_bay_pid;
102static int drive_bay_tick;
103
104static int nr_cores;
105static int have_all_controls;
106static int have_all_sensors;
107static bool started;
108
109static int failure_state;
110#define FAILURE_SENSOR 1
111#define FAILURE_FAN 2
112#define FAILURE_PERM 4
113#define FAILURE_LOW_OVERTEMP 8
114#define FAILURE_HIGH_OVERTEMP 16
115
116/* Overtemp values */
117#define LOW_OVER_AVERAGE 0
118#define LOW_OVER_IMMEDIATE (10 << 16)
119#define LOW_OVER_CLEAR ((-10) << 16)
120#define HIGH_OVER_IMMEDIATE (14 << 16)
121#define HIGH_OVER_AVERAGE (10 << 16)
122#define HIGH_OVER_IMMEDIATE (14 << 16)
123
124
125/* Implementation... */
126static int create_cpu_loop(int cpu)
127{
128 int chip = cpu / 2;
129 int core = cpu & 1;
130 struct smu_sdbp_header *hdr;
131 struct smu_sdbp_cpupiddata *piddata;
132 struct wf_cpu_pid_param pid;
133 struct wf_control *main_fan = cpu_fans[0];
134 s32 tmax;
135 int fmin;
136
137 /* Get FVT params to get Tmax; if not found, assume default */
138 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
139 if (hdr) {
140 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
141 tmax = fvt->maxtemp << 16;
142 } else
143 tmax = 95 << 16; /* default to 95 degrees C */
144
145 /* We keep a global tmax for overtemp calculations */
146 if (tmax < cpu_all_tmax)
147 cpu_all_tmax = tmax;
148
149 kfree(objp: hdr);
150
151 /* Get PID params from the appropriate SAT */
152 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
153 if (hdr == NULL) {
154 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
155 return -EINVAL;
156 }
157 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158
159 /*
160 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
161 * 515 for the 2-way. That appears to be overkill, so for now,
162 * impose a minimum of 750 or 515.
163 */
164 fmin = (nr_cores > 2) ? 750 : 515;
165
166 /* Initialize PID loop */
167 pid.interval = 1; /* seconds */
168 pid.history_len = piddata->history_len;
169 pid.gd = piddata->gd;
170 pid.gp = piddata->gp;
171 pid.gr = piddata->gr / piddata->history_len;
172 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
173 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
174 pid.tmax = tmax;
175 pid.min = main_fan->ops->get_min(main_fan);
176 pid.max = main_fan->ops->get_max(main_fan);
177 if (pid.min < fmin)
178 pid.min = fmin;
179
180 wf_cpu_pid_init(st: &cpu_pid[cpu], param: &pid);
181
182 kfree(objp: hdr);
183
184 return 0;
185}
186
187static void cpu_max_all_fans(void)
188{
189 int i;
190
191 /* We max all CPU fans in case of a sensor error. We also do the
192 * cpufreq clamping now, even if it's supposedly done later by the
193 * generic code anyway, we do it earlier here to react faster
194 */
195 if (cpufreq_clamp)
196 wf_control_set_max(ct: cpufreq_clamp);
197 for (i = 0; i < NR_CPU_FANS; ++i)
198 if (cpu_fans[i])
199 wf_control_set_max(ct: cpu_fans[i]);
200}
201
202static int cpu_check_overtemp(s32 temp)
203{
204 int new_state = 0;
205 s32 t_avg, t_old;
206
207 /* First check for immediate overtemps */
208 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
209 new_state |= FAILURE_LOW_OVERTEMP;
210 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
211 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
212 " temperature !\n");
213 }
214 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
215 new_state |= FAILURE_HIGH_OVERTEMP;
216 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
217 printk(KERN_ERR "windfarm: Critical overtemp due to"
218 " immediate CPU temperature !\n");
219 }
220
221 /* We calculate a history of max temperatures and use that for the
222 * overtemp management
223 */
224 t_old = cpu_thist[cpu_thist_pt];
225 cpu_thist[cpu_thist_pt] = temp;
226 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
227 cpu_thist_total -= t_old;
228 cpu_thist_total += temp;
229 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
230
231 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
232 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
233
234 /* Now check for average overtemps */
235 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
236 new_state |= FAILURE_LOW_OVERTEMP;
237 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
238 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
239 " temperature !\n");
240 }
241 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
242 new_state |= FAILURE_HIGH_OVERTEMP;
243 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
244 printk(KERN_ERR "windfarm: Critical overtemp due to"
245 " average CPU temperature !\n");
246 }
247
248 /* Now handle overtemp conditions. We don't currently use the windfarm
249 * overtemp handling core as it's not fully suited to the needs of those
250 * new machine. This will be fixed later.
251 */
252 if (new_state) {
253 /* High overtemp -> immediate shutdown */
254 if (new_state & FAILURE_HIGH_OVERTEMP)
255 machine_power_off();
256 if ((failure_state & new_state) != new_state)
257 cpu_max_all_fans();
258 failure_state |= new_state;
259 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
260 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
261 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
262 failure_state &= ~FAILURE_LOW_OVERTEMP;
263 }
264
265 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
266}
267
268static void cpu_fans_tick(void)
269{
270 int err, cpu;
271 s32 greatest_delta = 0;
272 s32 temp, power, t_max = 0;
273 int i, t, target = 0;
274 struct wf_sensor *sr;
275 struct wf_control *ct;
276 struct wf_cpu_pid_state *sp;
277
278 DBG_LOTS(KERN_DEBUG);
279 for (cpu = 0; cpu < nr_cores; ++cpu) {
280 /* Get CPU core temperature */
281 sr = sens_cpu_temp[cpu];
282 err = sr->ops->get_value(sr, &temp);
283 if (err) {
284 DBG("\n");
285 printk(KERN_WARNING "windfarm: CPU %d temperature "
286 "sensor error %d\n", cpu, err);
287 failure_state |= FAILURE_SENSOR;
288 cpu_max_all_fans();
289 return;
290 }
291
292 /* Keep track of highest temp */
293 t_max = max(t_max, temp);
294
295 /* Get CPU power */
296 sr = sens_cpu_power[cpu];
297 err = sr->ops->get_value(sr, &power);
298 if (err) {
299 DBG("\n");
300 printk(KERN_WARNING "windfarm: CPU %d power "
301 "sensor error %d\n", cpu, err);
302 failure_state |= FAILURE_SENSOR;
303 cpu_max_all_fans();
304 return;
305 }
306
307 /* Run PID */
308 sp = &cpu_pid[cpu];
309 t = wf_cpu_pid_run(st: sp, power, temp);
310
311 if (cpu == 0 || sp->last_delta > greatest_delta) {
312 greatest_delta = sp->last_delta;
313 target = t;
314 }
315 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
316 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
317 }
318 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
319
320 /* Darwin limits decrease to 20 per iteration */
321 if (target < (cpu_last_target - 20))
322 target = cpu_last_target - 20;
323 cpu_last_target = target;
324 for (cpu = 0; cpu < nr_cores; ++cpu)
325 cpu_pid[cpu].target = target;
326
327 /* Handle possible overtemps */
328 if (cpu_check_overtemp(temp: t_max))
329 return;
330
331 /* Set fans */
332 for (i = 0; i < NR_CPU_FANS; ++i) {
333 ct = cpu_fans[i];
334 if (ct == NULL)
335 continue;
336 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
337 if (err) {
338 printk(KERN_WARNING "windfarm: fan %s reports "
339 "error %d\n", ct->name, err);
340 failure_state |= FAILURE_FAN;
341 break;
342 }
343 }
344}
345
346/* Backside/U4 fan */
347static struct wf_pid_param backside_param = {
348 .interval = 5,
349 .history_len = 2,
350 .gd = 48 << 20,
351 .gp = 5 << 20,
352 .gr = 0,
353 .itarget = 64 << 16,
354 .additive = 1,
355};
356
357static void backside_fan_tick(void)
358{
359 s32 temp;
360 int speed;
361 int err;
362
363 if (!backside_fan || !u4_temp)
364 return;
365 if (!backside_tick) {
366 /* first time; initialize things */
367 printk(KERN_INFO "windfarm: Backside control loop started.\n");
368 backside_param.min = backside_fan->ops->get_min(backside_fan);
369 backside_param.max = backside_fan->ops->get_max(backside_fan);
370 wf_pid_init(st: &backside_pid, param: &backside_param);
371 backside_tick = 1;
372 }
373 if (--backside_tick > 0)
374 return;
375 backside_tick = backside_pid.param.interval;
376
377 err = u4_temp->ops->get_value(u4_temp, &temp);
378 if (err) {
379 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
380 err);
381 failure_state |= FAILURE_SENSOR;
382 wf_control_set_max(ct: backside_fan);
383 return;
384 }
385 speed = wf_pid_run(st: &backside_pid, sample: temp);
386 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
387 FIX32TOPRINT(temp), speed);
388
389 err = backside_fan->ops->set_value(backside_fan, speed);
390 if (err) {
391 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
392 failure_state |= FAILURE_FAN;
393 }
394}
395
396/* Drive bay fan */
397static struct wf_pid_param drive_bay_prm = {
398 .interval = 5,
399 .history_len = 2,
400 .gd = 30 << 20,
401 .gp = 5 << 20,
402 .gr = 0,
403 .itarget = 40 << 16,
404 .additive = 1,
405};
406
407static void drive_bay_fan_tick(void)
408{
409 s32 temp;
410 int speed;
411 int err;
412
413 if (!drive_bay_fan || !hd_temp)
414 return;
415 if (!drive_bay_tick) {
416 /* first time; initialize things */
417 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
418 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
419 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
420 wf_pid_init(st: &drive_bay_pid, param: &drive_bay_prm);
421 drive_bay_tick = 1;
422 }
423 if (--drive_bay_tick > 0)
424 return;
425 drive_bay_tick = drive_bay_pid.param.interval;
426
427 err = hd_temp->ops->get_value(hd_temp, &temp);
428 if (err) {
429 printk(KERN_WARNING "windfarm: drive bay temp sensor "
430 "error %d\n", err);
431 failure_state |= FAILURE_SENSOR;
432 wf_control_set_max(ct: drive_bay_fan);
433 return;
434 }
435 speed = wf_pid_run(st: &drive_bay_pid, sample: temp);
436 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
437 FIX32TOPRINT(temp), speed);
438
439 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
440 if (err) {
441 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
442 failure_state |= FAILURE_FAN;
443 }
444}
445
446/* PCI slots area fan */
447/* This makes the fan speed proportional to the power consumed */
448static struct wf_pid_param slots_param = {
449 .interval = 1,
450 .history_len = 2,
451 .gd = 0,
452 .gp = 0,
453 .gr = 0x1277952,
454 .itarget = 0,
455 .min = 1560,
456 .max = 3510,
457};
458
459static void slots_fan_tick(void)
460{
461 s32 power;
462 int speed;
463 int err;
464
465 if (!slots_fan || !slots_power)
466 return;
467 if (!slots_started) {
468 /* first time; initialize things */
469 printk(KERN_INFO "windfarm: Slots control loop started.\n");
470 wf_pid_init(st: &slots_pid, param: &slots_param);
471 slots_started = true;
472 }
473
474 err = slots_power->ops->get_value(slots_power, &power);
475 if (err) {
476 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
477 err);
478 failure_state |= FAILURE_SENSOR;
479 wf_control_set_max(ct: slots_fan);
480 return;
481 }
482 speed = wf_pid_run(st: &slots_pid, sample: power);
483 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
484 FIX32TOPRINT(power), speed);
485
486 err = slots_fan->ops->set_value(slots_fan, speed);
487 if (err) {
488 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
489 failure_state |= FAILURE_FAN;
490 }
491}
492
493static void set_fail_state(void)
494{
495 int i;
496
497 if (cpufreq_clamp)
498 wf_control_set_max(ct: cpufreq_clamp);
499 for (i = 0; i < NR_CPU_FANS; ++i)
500 if (cpu_fans[i])
501 wf_control_set_max(ct: cpu_fans[i]);
502 if (backside_fan)
503 wf_control_set_max(ct: backside_fan);
504 if (slots_fan)
505 wf_control_set_max(ct: slots_fan);
506 if (drive_bay_fan)
507 wf_control_set_max(ct: drive_bay_fan);
508}
509
510static void pm112_tick(void)
511{
512 int i, last_failure;
513
514 if (!started) {
515 started = true;
516 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
517 for (i = 0; i < nr_cores; ++i) {
518 if (create_cpu_loop(cpu: i) < 0) {
519 failure_state = FAILURE_PERM;
520 set_fail_state();
521 break;
522 }
523 }
524 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
525
526#ifdef HACKED_OVERTEMP
527 cpu_all_tmax = 60 << 16;
528#endif
529 }
530
531 /* Permanent failure, bail out */
532 if (failure_state & FAILURE_PERM)
533 return;
534 /* Clear all failure bits except low overtemp which will be eventually
535 * cleared by the control loop itself
536 */
537 last_failure = failure_state;
538 failure_state &= FAILURE_LOW_OVERTEMP;
539 cpu_fans_tick();
540 backside_fan_tick();
541 slots_fan_tick();
542 drive_bay_fan_tick();
543
544 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
545 last_failure, failure_state);
546
547 /* Check for failures. Any failure causes cpufreq clamping */
548 if (failure_state && last_failure == 0 && cpufreq_clamp)
549 wf_control_set_max(ct: cpufreq_clamp);
550 if (failure_state == 0 && last_failure && cpufreq_clamp)
551 wf_control_set_min(ct: cpufreq_clamp);
552
553 /* That's it for now, we might want to deal with other failures
554 * differently in the future though
555 */
556}
557
558static void pm112_new_control(struct wf_control *ct)
559{
560 int i, max_exhaust;
561
562 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
563 if (wf_get_control(ct) == 0)
564 cpufreq_clamp = ct;
565 }
566
567 for (i = 0; i < NR_CPU_FANS; ++i) {
568 if (!strcmp(ct->name, cpu_fan_names[i])) {
569 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
570 cpu_fans[i] = ct;
571 break;
572 }
573 }
574 if (i >= NR_CPU_FANS) {
575 /* not a CPU fan, try the others */
576 if (!strcmp(ct->name, "backside-fan")) {
577 if (backside_fan == NULL && wf_get_control(ct) == 0)
578 backside_fan = ct;
579 } else if (!strcmp(ct->name, "slots-fan")) {
580 if (slots_fan == NULL && wf_get_control(ct) == 0)
581 slots_fan = ct;
582 } else if (!strcmp(ct->name, "drive-bay-fan")) {
583 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
584 drive_bay_fan = ct;
585 }
586 return;
587 }
588
589 for (i = 0; i < CPU_FANS_REQD; ++i)
590 if (cpu_fans[i] == NULL)
591 return;
592
593 /* work out pump scaling factors */
594 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
595 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
596 if ((ct = cpu_fans[i]) != NULL)
597 cpu_fan_scale[i] =
598 ct->ops->get_max(ct) * 100 / max_exhaust;
599
600 have_all_controls = 1;
601}
602
603static void pm112_new_sensor(struct wf_sensor *sr)
604{
605 unsigned int i;
606
607 if (!strncmp(sr->name, "cpu-temp-", 9)) {
608 i = sr->name[9] - '0';
609 if (sr->name[10] == 0 && i < NR_CORES &&
610 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
611 sens_cpu_temp[i] = sr;
612
613 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
614 i = sr->name[10] - '0';
615 if (sr->name[11] == 0 && i < NR_CORES &&
616 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
617 sens_cpu_power[i] = sr;
618 } else if (!strcmp(sr->name, "hd-temp")) {
619 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
620 hd_temp = sr;
621 } else if (!strcmp(sr->name, "slots-power")) {
622 if (slots_power == NULL && wf_get_sensor(sr) == 0)
623 slots_power = sr;
624 } else if (!strcmp(sr->name, "backside-temp")) {
625 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
626 u4_temp = sr;
627 } else
628 return;
629
630 /* check if we have all the sensors we need */
631 for (i = 0; i < nr_cores; ++i)
632 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
633 return;
634
635 have_all_sensors = 1;
636}
637
638static int pm112_wf_notify(struct notifier_block *self,
639 unsigned long event, void *data)
640{
641 switch (event) {
642 case WF_EVENT_NEW_SENSOR:
643 pm112_new_sensor(sr: data);
644 break;
645 case WF_EVENT_NEW_CONTROL:
646 pm112_new_control(ct: data);
647 break;
648 case WF_EVENT_TICK:
649 if (have_all_controls && have_all_sensors)
650 pm112_tick();
651 }
652 return 0;
653}
654
655static struct notifier_block pm112_events = {
656 .notifier_call = pm112_wf_notify,
657};
658
659static int wf_pm112_probe(struct platform_device *dev)
660{
661 wf_register_client(nb: &pm112_events);
662 return 0;
663}
664
665static int wf_pm112_remove(struct platform_device *dev)
666{
667 wf_unregister_client(nb: &pm112_events);
668 /* should release all sensors and controls */
669 return 0;
670}
671
672static struct platform_driver wf_pm112_driver = {
673 .probe = wf_pm112_probe,
674 .remove = wf_pm112_remove,
675 .driver = {
676 .name = "windfarm",
677 },
678};
679
680static int __init wf_pm112_init(void)
681{
682 struct device_node *cpu;
683
684 if (!of_machine_is_compatible(compat: "PowerMac11,2"))
685 return -ENODEV;
686
687 /* Count the number of CPU cores */
688 nr_cores = 0;
689 for_each_node_by_type(cpu, "cpu")
690 ++nr_cores;
691
692 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
693
694#ifdef MODULE
695 request_module("windfarm_smu_controls");
696 request_module("windfarm_smu_sensors");
697 request_module("windfarm_smu_sat");
698 request_module("windfarm_lm75_sensor");
699 request_module("windfarm_max6690_sensor");
700 request_module("windfarm_cpufreq_clamp");
701
702#endif /* MODULE */
703
704 platform_driver_register(&wf_pm112_driver);
705 return 0;
706}
707
708static void __exit wf_pm112_exit(void)
709{
710 platform_driver_unregister(&wf_pm112_driver);
711}
712
713module_init(wf_pm112_init);
714module_exit(wf_pm112_exit);
715
716MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
717MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
718MODULE_LICENSE("GPL");
719MODULE_ALIAS("platform:windfarm");
720

source code of linux/drivers/macintosh/windfarm_pm112.c