1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "extents.h"
14#include "request.h"
15#include "writeback.h"
16#include "features.h"
17
18#include <linux/blkdev.h>
19#include <linux/pagemap.h>
20#include <linux/debugfs.h>
21#include <linux/idr.h>
22#include <linux/kthread.h>
23#include <linux/workqueue.h>
24#include <linux/module.h>
25#include <linux/random.h>
26#include <linux/reboot.h>
27#include <linux/sysfs.h>
28
29unsigned int bch_cutoff_writeback;
30unsigned int bch_cutoff_writeback_sync;
31
32static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35};
36
37static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40};
41
42static struct kobject *bcache_kobj;
43struct mutex bch_register_lock;
44bool bcache_is_reboot;
45LIST_HEAD(bch_cache_sets);
46static LIST_HEAD(uncached_devices);
47
48static int bcache_major;
49static DEFINE_IDA(bcache_device_idx);
50static wait_queue_head_t unregister_wait;
51struct workqueue_struct *bcache_wq;
52struct workqueue_struct *bch_flush_wq;
53struct workqueue_struct *bch_journal_wq;
54
55
56#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
57/* limitation of partitions number on single bcache device */
58#define BCACHE_MINORS 128
59/* limitation of bcache devices number on single system */
60#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61
62/* Superblock */
63
64static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65{
66 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67
68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 if (bch_has_feature_large_bucket(sb)) {
70 unsigned int max, order;
71
72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 order = le16_to_cpu(s->bucket_size);
74 /*
75 * bcache tool will make sure the overflow won't
76 * happen, an error message here is enough.
77 */
78 if (order > max)
79 pr_err("Bucket size (1 << %u) overflows\n",
80 order);
81 bucket_size = 1 << order;
82 } else if (bch_has_feature_obso_large_bucket(sb)) {
83 bucket_size +=
84 le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 }
86 }
87
88 return bucket_size;
89}
90
91static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
92 struct cache_sb_disk *s)
93{
94 const char *err;
95 unsigned int i;
96
97 sb->first_bucket= le16_to_cpu(s->first_bucket);
98 sb->nbuckets = le64_to_cpu(s->nbuckets);
99 sb->bucket_size = get_bucket_size(sb, s);
100
101 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
107
108 err = "Too many buckets";
109 if (sb->nbuckets > LONG_MAX)
110 goto err;
111
112 err = "Not enough buckets";
113 if (sb->nbuckets < 1 << 7)
114 goto err;
115
116 err = "Bad block size (not power of 2)";
117 if (!is_power_of_2(n: sb->block_size))
118 goto err;
119
120 err = "Bad block size (larger than page size)";
121 if (sb->block_size > PAGE_SECTORS)
122 goto err;
123
124 err = "Bad bucket size (not power of 2)";
125 if (!is_power_of_2(n: sb->bucket_size))
126 goto err;
127
128 err = "Bad bucket size (smaller than page size)";
129 if (sb->bucket_size < PAGE_SECTORS)
130 goto err;
131
132 err = "Invalid superblock: device too small";
133 if (get_capacity(disk: bdev->bd_disk) <
134 sb->bucket_size * sb->nbuckets)
135 goto err;
136
137 err = "Bad UUID";
138 if (bch_is_zero(p: sb->set_uuid, n: 16))
139 goto err;
140
141 err = "Bad cache device number in set";
142 if (!sb->nr_in_set ||
143 sb->nr_in_set <= sb->nr_this_dev ||
144 sb->nr_in_set > MAX_CACHES_PER_SET)
145 goto err;
146
147 err = "Journal buckets not sequential";
148 for (i = 0; i < sb->keys; i++)
149 if (sb->d[i] != sb->first_bucket + i)
150 goto err;
151
152 err = "Too many journal buckets";
153 if (sb->first_bucket + sb->keys > sb->nbuckets)
154 goto err;
155
156 err = "Invalid superblock: first bucket comes before end of super";
157 if (sb->first_bucket * sb->bucket_size < 16)
158 goto err;
159
160 err = NULL;
161err:
162 return err;
163}
164
165
166static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 struct cache_sb_disk **res)
168{
169 const char *err;
170 struct cache_sb_disk *s;
171 struct page *page;
172 unsigned int i;
173
174 page = read_cache_page_gfp(mapping: bdev->bd_inode->i_mapping,
175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 if (IS_ERR(ptr: page))
177 return "IO error";
178 s = page_address(page) + offset_in_page(SB_OFFSET);
179
180 sb->offset = le64_to_cpu(s->offset);
181 sb->version = le64_to_cpu(s->version);
182
183 memcpy(sb->magic, s->magic, 16);
184 memcpy(sb->uuid, s->uuid, 16);
185 memcpy(sb->set_uuid, s->set_uuid, 16);
186 memcpy(sb->label, s->label, SB_LABEL_SIZE);
187
188 sb->flags = le64_to_cpu(s->flags);
189 sb->seq = le64_to_cpu(s->seq);
190 sb->last_mount = le32_to_cpu(s->last_mount);
191 sb->keys = le16_to_cpu(s->keys);
192
193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 sb->d[i] = le64_to_cpu(s->d[i]);
195
196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 sb->version, sb->flags, sb->seq, sb->keys);
198
199 err = "Not a bcache superblock (bad offset)";
200 if (sb->offset != SB_SECTOR)
201 goto err;
202
203 err = "Not a bcache superblock (bad magic)";
204 if (memcmp(p: sb->magic, q: bcache_magic, size: 16))
205 goto err;
206
207 err = "Bad checksum";
208 if (s->csum != csum_set(s))
209 goto err;
210
211 err = "Bad UUID";
212 if (bch_is_zero(p: sb->uuid, n: 16))
213 goto err;
214
215 sb->block_size = le16_to_cpu(s->block_size);
216
217 err = "Superblock block size smaller than device block size";
218 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 goto err;
220
221 switch (sb->version) {
222 case BCACHE_SB_VERSION_BDEV:
223 sb->data_offset = BDEV_DATA_START_DEFAULT;
224 break;
225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 sb->data_offset = le64_to_cpu(s->data_offset);
228
229 err = "Bad data offset";
230 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 goto err;
232
233 break;
234 case BCACHE_SB_VERSION_CDEV:
235 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 err = read_super_common(sb, bdev, s);
237 if (err)
238 goto err;
239 break;
240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 /*
242 * Feature bits are needed in read_super_common(),
243 * convert them firstly.
244 */
245 sb->feature_compat = le64_to_cpu(s->feature_compat);
246 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248
249 /* Check incompatible features */
250 err = "Unsupported compatible feature found";
251 if (bch_has_unknown_compat_features(sb))
252 goto err;
253
254 err = "Unsupported read-only compatible feature found";
255 if (bch_has_unknown_ro_compat_features(sb))
256 goto err;
257
258 err = "Unsupported incompatible feature found";
259 if (bch_has_unknown_incompat_features(sb))
260 goto err;
261
262 err = read_super_common(sb, bdev, s);
263 if (err)
264 goto err;
265 break;
266 default:
267 err = "Unsupported superblock version";
268 goto err;
269 }
270
271 sb->last_mount = (u32)ktime_get_real_seconds();
272 *res = s;
273 return NULL;
274err:
275 put_page(page);
276 return err;
277}
278
279static void write_bdev_super_endio(struct bio *bio)
280{
281 struct cached_dev *dc = bio->bi_private;
282
283 if (bio->bi_status)
284 bch_count_backing_io_errors(dc, bio);
285
286 closure_put(cl: &dc->sb_write);
287}
288
289static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 struct bio *bio)
291{
292 unsigned int i;
293
294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 bio->bi_iter.bi_sector = SB_SECTOR;
296 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 offset_in_page(out));
298
299 out->offset = cpu_to_le64(sb->offset);
300
301 memcpy(out->uuid, sb->uuid, 16);
302 memcpy(out->set_uuid, sb->set_uuid, 16);
303 memcpy(out->label, sb->label, SB_LABEL_SIZE);
304
305 out->flags = cpu_to_le64(sb->flags);
306 out->seq = cpu_to_le64(sb->seq);
307
308 out->last_mount = cpu_to_le32(sb->last_mount);
309 out->first_bucket = cpu_to_le16(sb->first_bucket);
310 out->keys = cpu_to_le16(sb->keys);
311
312 for (i = 0; i < sb->keys; i++)
313 out->d[i] = cpu_to_le64(sb->d[i]);
314
315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 out->feature_compat = cpu_to_le64(sb->feature_compat);
317 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 }
320
321 out->version = cpu_to_le64(sb->version);
322 out->csum = csum_set(out);
323
324 pr_debug("ver %llu, flags %llu, seq %llu\n",
325 sb->version, sb->flags, sb->seq);
326
327 submit_bio(bio);
328}
329
330static void bch_write_bdev_super_unlock(struct closure *cl)
331{
332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333
334 up(sem: &dc->sb_write_mutex);
335}
336
337void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338{
339 struct closure *cl = &dc->sb_write;
340 struct bio *bio = &dc->sb_bio;
341
342 down(sem: &dc->sb_write_mutex);
343 closure_init(cl, parent);
344
345 bio_init(bio, bdev: dc->bdev, table: dc->sb_bv, max_vecs: 1, opf: 0);
346 bio->bi_end_io = write_bdev_super_endio;
347 bio->bi_private = dc;
348
349 closure_get(cl);
350 /* I/O request sent to backing device */
351 __write_super(sb: &dc->sb, out: dc->sb_disk, bio);
352
353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
354}
355
356static void write_super_endio(struct bio *bio)
357{
358 struct cache *ca = bio->bi_private;
359
360 /* is_read = 0 */
361 bch_count_io_errors(ca, error: bio->bi_status, is_read: 0,
362 m: "writing superblock");
363 closure_put(cl: &ca->set->sb_write);
364}
365
366static void bcache_write_super_unlock(struct closure *cl)
367{
368 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
369
370 up(sem: &c->sb_write_mutex);
371}
372
373void bcache_write_super(struct cache_set *c)
374{
375 struct closure *cl = &c->sb_write;
376 struct cache *ca = c->cache;
377 struct bio *bio = &ca->sb_bio;
378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
379
380 down(sem: &c->sb_write_mutex);
381 closure_init(cl, parent: &c->cl);
382
383 ca->sb.seq++;
384
385 if (ca->sb.version < version)
386 ca->sb.version = version;
387
388 bio_init(bio, bdev: ca->bdev, table: ca->sb_bv, max_vecs: 1, opf: 0);
389 bio->bi_end_io = write_super_endio;
390 bio->bi_private = ca;
391
392 closure_get(cl);
393 __write_super(sb: &ca->sb, out: ca->sb_disk, bio);
394
395 closure_return_with_destructor(cl, bcache_write_super_unlock);
396}
397
398/* UUID io */
399
400static void uuid_endio(struct bio *bio)
401{
402 struct closure *cl = bio->bi_private;
403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
404
405 cache_set_err_on(bio->bi_status, c, "accessing uuids");
406 bch_bbio_free(bio, c);
407 closure_put(cl);
408}
409
410static void uuid_io_unlock(struct closure *cl)
411{
412 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
413
414 up(sem: &c->uuid_write_mutex);
415}
416
417static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
418 struct closure *parent)
419{
420 struct closure *cl = &c->uuid_write;
421 struct uuid_entry *u;
422 unsigned int i;
423 char buf[80];
424
425 BUG_ON(!parent);
426 down(sem: &c->uuid_write_mutex);
427 closure_init(cl, parent);
428
429 for (i = 0; i < KEY_PTRS(k); i++) {
430 struct bio *bio = bch_bbio_alloc(c);
431
432 bio->bi_opf = opf | REQ_SYNC | REQ_META;
433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
434
435 bio->bi_end_io = uuid_endio;
436 bio->bi_private = cl;
437 bch_bio_map(bio, base: c->uuids);
438
439 bch_submit_bbio(bio, c, k, ptr: i);
440
441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
442 break;
443 }
444
445 bch_extent_to_text(buf, size: sizeof(buf), k);
446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
447 "wrote" : "read", buf);
448
449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
450 if (!bch_is_zero(p: u->uuid, n: 16))
451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
452 u - c->uuids, u->uuid, u->label,
453 u->first_reg, u->last_reg, u->invalidated);
454
455 closure_return_with_destructor(cl, uuid_io_unlock);
456}
457
458static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
459{
460 struct bkey *k = &j->uuid_bucket;
461
462 if (__bch_btree_ptr_invalid(c, k))
463 return "bad uuid pointer";
464
465 bkey_copy(&c->uuid_bucket, k);
466 uuid_io(c, opf: REQ_OP_READ, k, parent: cl);
467
468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
469 struct uuid_entry_v0 *u0 = (void *) c->uuids;
470 struct uuid_entry *u1 = (void *) c->uuids;
471 int i;
472
473 closure_sync(cl);
474
475 /*
476 * Since the new uuid entry is bigger than the old, we have to
477 * convert starting at the highest memory address and work down
478 * in order to do it in place
479 */
480
481 for (i = c->nr_uuids - 1;
482 i >= 0;
483 --i) {
484 memcpy(u1[i].uuid, u0[i].uuid, 16);
485 memcpy(u1[i].label, u0[i].label, 32);
486
487 u1[i].first_reg = u0[i].first_reg;
488 u1[i].last_reg = u0[i].last_reg;
489 u1[i].invalidated = u0[i].invalidated;
490
491 u1[i].flags = 0;
492 u1[i].sectors = 0;
493 }
494 }
495
496 return NULL;
497}
498
499static int __uuid_write(struct cache_set *c)
500{
501 BKEY_PADDED(key) k;
502 struct closure cl;
503 struct cache *ca = c->cache;
504 unsigned int size;
505
506 closure_init_stack(cl: &cl);
507 lockdep_assert_held(&bch_register_lock);
508
509 if (bch_bucket_alloc_set(c, reserve: RESERVE_BTREE, k: &k.key, wait: true))
510 return 1;
511
512 size = meta_bucket_pages(sb: &ca->sb) * PAGE_SECTORS;
513 SET_KEY_SIZE(k: &k.key, v: size);
514 uuid_io(c, opf: REQ_OP_WRITE, k: &k.key, parent: &cl);
515 closure_sync(cl: &cl);
516
517 /* Only one bucket used for uuid write */
518 atomic_long_add(i: ca->sb.bucket_size, v: &ca->meta_sectors_written);
519
520 bkey_copy(&c->uuid_bucket, &k.key);
521 bkey_put(c, k: &k.key);
522 return 0;
523}
524
525int bch_uuid_write(struct cache_set *c)
526{
527 int ret = __uuid_write(c);
528
529 if (!ret)
530 bch_journal_meta(c, NULL);
531
532 return ret;
533}
534
535static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
536{
537 struct uuid_entry *u;
538
539 for (u = c->uuids;
540 u < c->uuids + c->nr_uuids; u++)
541 if (!memcmp(p: u->uuid, q: uuid, size: 16))
542 return u;
543
544 return NULL;
545}
546
547static struct uuid_entry *uuid_find_empty(struct cache_set *c)
548{
549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
550
551 return uuid_find(c, uuid: zero_uuid);
552}
553
554/*
555 * Bucket priorities/gens:
556 *
557 * For each bucket, we store on disk its
558 * 8 bit gen
559 * 16 bit priority
560 *
561 * See alloc.c for an explanation of the gen. The priority is used to implement
562 * lru (and in the future other) cache replacement policies; for most purposes
563 * it's just an opaque integer.
564 *
565 * The gens and the priorities don't have a whole lot to do with each other, and
566 * it's actually the gens that must be written out at specific times - it's no
567 * big deal if the priorities don't get written, if we lose them we just reuse
568 * buckets in suboptimal order.
569 *
570 * On disk they're stored in a packed array, and in as many buckets are required
571 * to fit them all. The buckets we use to store them form a list; the journal
572 * header points to the first bucket, the first bucket points to the second
573 * bucket, et cetera.
574 *
575 * This code is used by the allocation code; periodically (whenever it runs out
576 * of buckets to allocate from) the allocation code will invalidate some
577 * buckets, but it can't use those buckets until their new gens are safely on
578 * disk.
579 */
580
581static void prio_endio(struct bio *bio)
582{
583 struct cache *ca = bio->bi_private;
584
585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
586 bch_bbio_free(bio, c: ca->set);
587 closure_put(cl: &ca->prio);
588}
589
590static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
591{
592 struct closure *cl = &ca->prio;
593 struct bio *bio = bch_bbio_alloc(c: ca->set);
594
595 closure_init_stack(cl);
596
597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
598 bio_set_dev(bio, bdev: ca->bdev);
599 bio->bi_iter.bi_size = meta_bucket_bytes(sb: &ca->sb);
600
601 bio->bi_end_io = prio_endio;
602 bio->bi_private = ca;
603 bio->bi_opf = opf | REQ_SYNC | REQ_META;
604 bch_bio_map(bio, base: ca->disk_buckets);
605
606 closure_bio_submit(c: ca->set, bio, cl: &ca->prio);
607 closure_sync(cl);
608}
609
610int bch_prio_write(struct cache *ca, bool wait)
611{
612 int i;
613 struct bucket *b;
614 struct closure cl;
615
616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
617 fifo_used(&ca->free[RESERVE_PRIO]),
618 fifo_used(&ca->free[RESERVE_NONE]),
619 fifo_used(&ca->free_inc));
620
621 /*
622 * Pre-check if there are enough free buckets. In the non-blocking
623 * scenario it's better to fail early rather than starting to allocate
624 * buckets and do a cleanup later in case of failure.
625 */
626 if (!wait) {
627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
628 fifo_used(&ca->free[RESERVE_NONE]);
629 if (prio_buckets(ca) > avail)
630 return -ENOMEM;
631 }
632
633 closure_init_stack(cl: &cl);
634
635 lockdep_assert_held(&ca->set->bucket_lock);
636
637 ca->disk_buckets->seq++;
638
639 atomic_long_add(i: ca->sb.bucket_size * prio_buckets(ca),
640 v: &ca->meta_sectors_written);
641
642 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
643 long bucket;
644 struct prio_set *p = ca->disk_buckets;
645 struct bucket_disk *d = p->data;
646 struct bucket_disk *end = d + prios_per_bucket(ca);
647
648 for (b = ca->buckets + i * prios_per_bucket(ca);
649 b < ca->buckets + ca->sb.nbuckets && d < end;
650 b++, d++) {
651 d->prio = cpu_to_le16(b->prio);
652 d->gen = b->gen;
653 }
654
655 p->next_bucket = ca->prio_buckets[i + 1];
656 p->magic = pset_magic(sb: &ca->sb);
657 p->csum = bch_crc64(p: &p->magic, len: meta_bucket_bytes(sb: &ca->sb) - 8);
658
659 bucket = bch_bucket_alloc(ca, reserve: RESERVE_PRIO, wait);
660 BUG_ON(bucket == -1);
661
662 mutex_unlock(lock: &ca->set->bucket_lock);
663 prio_io(ca, bucket, opf: REQ_OP_WRITE);
664 mutex_lock(&ca->set->bucket_lock);
665
666 ca->prio_buckets[i] = bucket;
667 atomic_dec_bug(&ca->buckets[bucket].pin);
668 }
669
670 mutex_unlock(lock: &ca->set->bucket_lock);
671
672 bch_journal_meta(c: ca->set, cl: &cl);
673 closure_sync(cl: &cl);
674
675 mutex_lock(&ca->set->bucket_lock);
676
677 /*
678 * Don't want the old priorities to get garbage collected until after we
679 * finish writing the new ones, and they're journalled
680 */
681 for (i = 0; i < prio_buckets(ca); i++) {
682 if (ca->prio_last_buckets[i])
683 __bch_bucket_free(ca,
684 b: &ca->buckets[ca->prio_last_buckets[i]]);
685
686 ca->prio_last_buckets[i] = ca->prio_buckets[i];
687 }
688 return 0;
689}
690
691static int prio_read(struct cache *ca, uint64_t bucket)
692{
693 struct prio_set *p = ca->disk_buckets;
694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
695 struct bucket *b;
696 unsigned int bucket_nr = 0;
697 int ret = -EIO;
698
699 for (b = ca->buckets;
700 b < ca->buckets + ca->sb.nbuckets;
701 b++, d++) {
702 if (d == end) {
703 ca->prio_buckets[bucket_nr] = bucket;
704 ca->prio_last_buckets[bucket_nr] = bucket;
705 bucket_nr++;
706
707 prio_io(ca, bucket, opf: REQ_OP_READ);
708
709 if (p->csum !=
710 bch_crc64(p: &p->magic, len: meta_bucket_bytes(sb: &ca->sb) - 8)) {
711 pr_warn("bad csum reading priorities\n");
712 goto out;
713 }
714
715 if (p->magic != pset_magic(sb: &ca->sb)) {
716 pr_warn("bad magic reading priorities\n");
717 goto out;
718 }
719
720 bucket = p->next_bucket;
721 d = p->data;
722 }
723
724 b->prio = le16_to_cpu(d->prio);
725 b->gen = b->last_gc = d->gen;
726 }
727
728 ret = 0;
729out:
730 return ret;
731}
732
733/* Bcache device */
734
735static int open_dev(struct gendisk *disk, blk_mode_t mode)
736{
737 struct bcache_device *d = disk->private_data;
738
739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
740 return -ENXIO;
741
742 closure_get(cl: &d->cl);
743 return 0;
744}
745
746static void release_dev(struct gendisk *b)
747{
748 struct bcache_device *d = b->private_data;
749
750 closure_put(cl: &d->cl);
751}
752
753static int ioctl_dev(struct block_device *b, blk_mode_t mode,
754 unsigned int cmd, unsigned long arg)
755{
756 struct bcache_device *d = b->bd_disk->private_data;
757
758 return d->ioctl(d, mode, cmd, arg);
759}
760
761static const struct block_device_operations bcache_cached_ops = {
762 .submit_bio = cached_dev_submit_bio,
763 .open = open_dev,
764 .release = release_dev,
765 .ioctl = ioctl_dev,
766 .owner = THIS_MODULE,
767};
768
769static const struct block_device_operations bcache_flash_ops = {
770 .submit_bio = flash_dev_submit_bio,
771 .open = open_dev,
772 .release = release_dev,
773 .ioctl = ioctl_dev,
774 .owner = THIS_MODULE,
775};
776
777void bcache_device_stop(struct bcache_device *d)
778{
779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, addr: &d->flags))
780 /*
781 * closure_fn set to
782 * - cached device: cached_dev_flush()
783 * - flash dev: flash_dev_flush()
784 */
785 closure_queue(cl: &d->cl);
786}
787
788static void bcache_device_unlink(struct bcache_device *d)
789{
790 lockdep_assert_held(&bch_register_lock);
791
792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, addr: &d->flags)) {
793 struct cache *ca = d->c->cache;
794
795 sysfs_remove_link(kobj: &d->c->kobj, name: d->name);
796 sysfs_remove_link(kobj: &d->kobj, name: "cache");
797
798 bd_unlink_disk_holder(bdev: ca->bdev, disk: d->disk);
799 }
800}
801
802static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
803 const char *name)
804{
805 struct cache *ca = c->cache;
806 int ret;
807
808 bd_link_disk_holder(bdev: ca->bdev, disk: d->disk);
809
810 snprintf(buf: d->name, BCACHEDEVNAME_SIZE,
811 fmt: "%s%u", name, d->id);
812
813 ret = sysfs_create_link(kobj: &d->kobj, target: &c->kobj, name: "cache");
814 if (ret < 0)
815 pr_err("Couldn't create device -> cache set symlink\n");
816
817 ret = sysfs_create_link(kobj: &c->kobj, target: &d->kobj, name: d->name);
818 if (ret < 0)
819 pr_err("Couldn't create cache set -> device symlink\n");
820
821 clear_bit(BCACHE_DEV_UNLINK_DONE, addr: &d->flags);
822}
823
824static void bcache_device_detach(struct bcache_device *d)
825{
826 lockdep_assert_held(&bch_register_lock);
827
828 atomic_dec(v: &d->c->attached_dev_nr);
829
830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
831 struct uuid_entry *u = d->c->uuids + d->id;
832
833 SET_UUID_FLASH_ONLY(k: u, v: 0);
834 memcpy(u->uuid, invalid_uuid, 16);
835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
836 bch_uuid_write(c: d->c);
837 }
838
839 bcache_device_unlink(d);
840
841 d->c->devices[d->id] = NULL;
842 closure_put(cl: &d->c->caching);
843 d->c = NULL;
844}
845
846static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
847 unsigned int id)
848{
849 d->id = id;
850 d->c = c;
851 c->devices[id] = d;
852
853 if (id >= c->devices_max_used)
854 c->devices_max_used = id + 1;
855
856 closure_get(cl: &c->caching);
857}
858
859static inline int first_minor_to_idx(int first_minor)
860{
861 return (first_minor/BCACHE_MINORS);
862}
863
864static inline int idx_to_first_minor(int idx)
865{
866 return (idx * BCACHE_MINORS);
867}
868
869static void bcache_device_free(struct bcache_device *d)
870{
871 struct gendisk *disk = d->disk;
872
873 lockdep_assert_held(&bch_register_lock);
874
875 if (disk)
876 pr_info("%s stopped\n", disk->disk_name);
877 else
878 pr_err("bcache device (NULL gendisk) stopped\n");
879
880 if (d->c)
881 bcache_device_detach(d);
882
883 if (disk) {
884 ida_simple_remove(&bcache_device_idx,
885 first_minor_to_idx(disk->first_minor));
886 put_disk(disk);
887 }
888
889 bioset_exit(&d->bio_split);
890 kvfree(addr: d->full_dirty_stripes);
891 kvfree(addr: d->stripe_sectors_dirty);
892
893 closure_debug_destroy(cl: &d->cl);
894}
895
896static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
897 sector_t sectors, struct block_device *cached_bdev,
898 const struct block_device_operations *ops)
899{
900 struct request_queue *q;
901 const size_t max_stripes = min_t(size_t, INT_MAX,
902 SIZE_MAX / sizeof(atomic_t));
903 uint64_t n;
904 int idx;
905
906 if (!d->stripe_size)
907 d->stripe_size = 1 << 31;
908
909 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
910 if (!n || n > max_stripes) {
911 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
912 n);
913 return -ENOMEM;
914 }
915 d->nr_stripes = n;
916
917 n = d->nr_stripes * sizeof(atomic_t);
918 d->stripe_sectors_dirty = kvzalloc(size: n, GFP_KERNEL);
919 if (!d->stripe_sectors_dirty)
920 return -ENOMEM;
921
922 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
923 d->full_dirty_stripes = kvzalloc(size: n, GFP_KERNEL);
924 if (!d->full_dirty_stripes)
925 goto out_free_stripe_sectors_dirty;
926
927 idx = ida_simple_get(&bcache_device_idx, 0,
928 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
929 if (idx < 0)
930 goto out_free_full_dirty_stripes;
931
932 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
933 flags: BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
934 goto out_ida_remove;
935
936 d->disk = blk_alloc_disk(NUMA_NO_NODE);
937 if (!d->disk)
938 goto out_bioset_exit;
939
940 set_capacity(disk: d->disk, size: sectors);
941 snprintf(buf: d->disk->disk_name, DISK_NAME_LEN, fmt: "bcache%i", idx);
942
943 d->disk->major = bcache_major;
944 d->disk->first_minor = idx_to_first_minor(idx);
945 d->disk->minors = BCACHE_MINORS;
946 d->disk->fops = ops;
947 d->disk->private_data = d;
948
949 q = d->disk->queue;
950 q->limits.max_hw_sectors = UINT_MAX;
951 q->limits.max_sectors = UINT_MAX;
952 q->limits.max_segment_size = UINT_MAX;
953 q->limits.max_segments = BIO_MAX_VECS;
954 blk_queue_max_discard_sectors(q, UINT_MAX);
955 q->limits.discard_granularity = 512;
956 q->limits.io_min = block_size;
957 q->limits.logical_block_size = block_size;
958 q->limits.physical_block_size = block_size;
959
960 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
961 /*
962 * This should only happen with BCACHE_SB_VERSION_BDEV.
963 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
964 */
965 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
966 d->disk->disk_name, q->limits.logical_block_size,
967 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
968
969 /* This also adjusts physical block size/min io size if needed */
970 blk_queue_logical_block_size(q, bdev_logical_block_size(bdev: cached_bdev));
971 }
972
973 blk_queue_flag_set(QUEUE_FLAG_NONROT, q: d->disk->queue);
974
975 blk_queue_write_cache(q, enabled: true, fua: true);
976
977 return 0;
978
979out_bioset_exit:
980 bioset_exit(&d->bio_split);
981out_ida_remove:
982 ida_simple_remove(&bcache_device_idx, idx);
983out_free_full_dirty_stripes:
984 kvfree(addr: d->full_dirty_stripes);
985out_free_stripe_sectors_dirty:
986 kvfree(addr: d->stripe_sectors_dirty);
987 return -ENOMEM;
988
989}
990
991/* Cached device */
992
993static void calc_cached_dev_sectors(struct cache_set *c)
994{
995 uint64_t sectors = 0;
996 struct cached_dev *dc;
997
998 list_for_each_entry(dc, &c->cached_devs, list)
999 sectors += bdev_nr_sectors(bdev: dc->bdev);
1000
1001 c->cached_dev_sectors = sectors;
1002}
1003
1004#define BACKING_DEV_OFFLINE_TIMEOUT 5
1005static int cached_dev_status_update(void *arg)
1006{
1007 struct cached_dev *dc = arg;
1008 struct request_queue *q;
1009
1010 /*
1011 * If this delayed worker is stopping outside, directly quit here.
1012 * dc->io_disable might be set via sysfs interface, so check it
1013 * here too.
1014 */
1015 while (!kthread_should_stop() && !dc->io_disable) {
1016 q = bdev_get_queue(bdev: dc->bdev);
1017 if (blk_queue_dying(q))
1018 dc->offline_seconds++;
1019 else
1020 dc->offline_seconds = 0;
1021
1022 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1023 pr_err("%pg: device offline for %d seconds\n",
1024 dc->bdev,
1025 BACKING_DEV_OFFLINE_TIMEOUT);
1026 pr_err("%s: disable I/O request due to backing device offline\n",
1027 dc->disk.name);
1028 dc->io_disable = true;
1029 /* let others know earlier that io_disable is true */
1030 smp_mb();
1031 bcache_device_stop(d: &dc->disk);
1032 break;
1033 }
1034 schedule_timeout_interruptible(HZ);
1035 }
1036
1037 wait_for_kthread_stop();
1038 return 0;
1039}
1040
1041
1042int bch_cached_dev_run(struct cached_dev *dc)
1043{
1044 int ret = 0;
1045 struct bcache_device *d = &dc->disk;
1046 char *buf = kmemdup_nul(s: dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1047 char *env[] = {
1048 "DRIVER=bcache",
1049 kasprintf(GFP_KERNEL, fmt: "CACHED_UUID=%pU", dc->sb.uuid),
1050 kasprintf(GFP_KERNEL, fmt: "CACHED_LABEL=%s", buf ? : ""),
1051 NULL,
1052 };
1053
1054 if (dc->io_disable) {
1055 pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
1056 ret = -EIO;
1057 goto out;
1058 }
1059
1060 if (atomic_xchg(v: &dc->running, new: 1)) {
1061 pr_info("cached dev %pg is running already\n", dc->bdev);
1062 ret = -EBUSY;
1063 goto out;
1064 }
1065
1066 if (!d->c &&
1067 BDEV_STATE(k: &dc->sb) != BDEV_STATE_NONE) {
1068 struct closure cl;
1069
1070 closure_init_stack(cl: &cl);
1071
1072 SET_BDEV_STATE(k: &dc->sb, BDEV_STATE_STALE);
1073 bch_write_bdev_super(dc, parent: &cl);
1074 closure_sync(cl: &cl);
1075 }
1076
1077 ret = add_disk(disk: d->disk);
1078 if (ret)
1079 goto out;
1080 bd_link_disk_holder(bdev: dc->bdev, disk: dc->disk.disk);
1081 /*
1082 * won't show up in the uevent file, use udevadm monitor -e instead
1083 * only class / kset properties are persistent
1084 */
1085 kobject_uevent_env(kobj: &disk_to_dev(d->disk)->kobj, action: KOBJ_CHANGE, envp: env);
1086
1087 if (sysfs_create_link(kobj: &d->kobj, target: &disk_to_dev(d->disk)->kobj, name: "dev") ||
1088 sysfs_create_link(kobj: &disk_to_dev(d->disk)->kobj,
1089 target: &d->kobj, name: "bcache")) {
1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1091 ret = -ENOMEM;
1092 goto out;
1093 }
1094
1095 dc->status_update_thread = kthread_run(cached_dev_status_update,
1096 dc, "bcache_status_update");
1097 if (IS_ERR(ptr: dc->status_update_thread)) {
1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1099 }
1100
1101out:
1102 kfree(objp: env[1]);
1103 kfree(objp: env[2]);
1104 kfree(objp: buf);
1105 return ret;
1106}
1107
1108/*
1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1110 * work dc->writeback_rate_update is running. Wait until the routine
1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1113 * seconds, give up waiting here and continue to cancel it too.
1114 */
1115static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1116{
1117 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1118
1119 do {
1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1121 &dc->disk.flags))
1122 break;
1123 time_out--;
1124 schedule_timeout_interruptible(timeout: 1);
1125 } while (time_out > 0);
1126
1127 if (time_out == 0)
1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1129
1130 cancel_delayed_work_sync(dwork: &dc->writeback_rate_update);
1131}
1132
1133static void cached_dev_detach_finish(struct work_struct *w)
1134{
1135 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1136 struct cache_set *c = dc->disk.c;
1137
1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1139 BUG_ON(refcount_read(&dc->count));
1140
1141
1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, addr: &dc->disk.flags))
1143 cancel_writeback_rate_update_dwork(dc);
1144
1145 if (!IS_ERR_OR_NULL(ptr: dc->writeback_thread)) {
1146 kthread_stop(k: dc->writeback_thread);
1147 dc->writeback_thread = NULL;
1148 }
1149
1150 mutex_lock(&bch_register_lock);
1151
1152 bcache_device_detach(d: &dc->disk);
1153 list_move(list: &dc->list, head: &uncached_devices);
1154 calc_cached_dev_sectors(c);
1155
1156 clear_bit(BCACHE_DEV_DETACHING, addr: &dc->disk.flags);
1157 clear_bit(BCACHE_DEV_UNLINK_DONE, addr: &dc->disk.flags);
1158
1159 mutex_unlock(lock: &bch_register_lock);
1160
1161 pr_info("Caching disabled for %pg\n", dc->bdev);
1162
1163 /* Drop ref we took in cached_dev_detach() */
1164 closure_put(cl: &dc->disk.cl);
1165}
1166
1167void bch_cached_dev_detach(struct cached_dev *dc)
1168{
1169 lockdep_assert_held(&bch_register_lock);
1170
1171 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1172 return;
1173
1174 if (test_and_set_bit(BCACHE_DEV_DETACHING, addr: &dc->disk.flags))
1175 return;
1176
1177 /*
1178 * Block the device from being closed and freed until we're finished
1179 * detaching
1180 */
1181 closure_get(cl: &dc->disk.cl);
1182
1183 bch_writeback_queue(dc);
1184
1185 cached_dev_put(dc);
1186}
1187
1188int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1189 uint8_t *set_uuid)
1190{
1191 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1192 struct uuid_entry *u;
1193 struct cached_dev *exist_dc, *t;
1194 int ret = 0;
1195
1196 if ((set_uuid && memcmp(p: set_uuid, q: c->set_uuid, size: 16)) ||
1197 (!set_uuid && memcmp(p: dc->sb.set_uuid, q: c->set_uuid, size: 16)))
1198 return -ENOENT;
1199
1200 if (dc->disk.c) {
1201 pr_err("Can't attach %pg: already attached\n", dc->bdev);
1202 return -EINVAL;
1203 }
1204
1205 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1206 pr_err("Can't attach %pg: shutting down\n", dc->bdev);
1207 return -EINVAL;
1208 }
1209
1210 if (dc->sb.block_size < c->cache->sb.block_size) {
1211 /* Will die */
1212 pr_err("Couldn't attach %pg: block size less than set's block size\n",
1213 dc->bdev);
1214 return -EINVAL;
1215 }
1216
1217 /* Check whether already attached */
1218 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1219 if (!memcmp(p: dc->sb.uuid, q: exist_dc->sb.uuid, size: 16)) {
1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n",
1221 dc->bdev);
1222
1223 return -EINVAL;
1224 }
1225 }
1226
1227 u = uuid_find(c, uuid: dc->sb.uuid);
1228
1229 if (u &&
1230 (BDEV_STATE(k: &dc->sb) == BDEV_STATE_STALE ||
1231 BDEV_STATE(k: &dc->sb) == BDEV_STATE_NONE)) {
1232 memcpy(u->uuid, invalid_uuid, 16);
1233 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1234 u = NULL;
1235 }
1236
1237 if (!u) {
1238 if (BDEV_STATE(k: &dc->sb) == BDEV_STATE_DIRTY) {
1239 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
1240 return -ENOENT;
1241 }
1242
1243 u = uuid_find_empty(c);
1244 if (!u) {
1245 pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
1246 return -EINVAL;
1247 }
1248 }
1249
1250 /*
1251 * Deadlocks since we're called via sysfs...
1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253 */
1254
1255 if (bch_is_zero(p: u->uuid, n: 16)) {
1256 struct closure cl;
1257
1258 closure_init_stack(cl: &cl);
1259
1260 memcpy(u->uuid, dc->sb.uuid, 16);
1261 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262 u->first_reg = u->last_reg = rtime;
1263 bch_uuid_write(c);
1264
1265 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266 SET_BDEV_STATE(k: &dc->sb, BDEV_STATE_CLEAN);
1267
1268 bch_write_bdev_super(dc, parent: &cl);
1269 closure_sync(cl: &cl);
1270 } else {
1271 u->last_reg = rtime;
1272 bch_uuid_write(c);
1273 }
1274
1275 bcache_device_attach(d: &dc->disk, c, id: u - c->uuids);
1276 list_move(list: &dc->list, head: &c->cached_devs);
1277 calc_cached_dev_sectors(c);
1278
1279 /*
1280 * dc->c must be set before dc->count != 0 - paired with the mb in
1281 * cached_dev_get()
1282 */
1283 smp_wmb();
1284 refcount_set(r: &dc->count, n: 1);
1285
1286 /* Block writeback thread, but spawn it */
1287 down_write(sem: &dc->writeback_lock);
1288 if (bch_cached_dev_writeback_start(dc)) {
1289 up_write(sem: &dc->writeback_lock);
1290 pr_err("Couldn't start writeback facilities for %s\n",
1291 dc->disk.disk->disk_name);
1292 return -ENOMEM;
1293 }
1294
1295 if (BDEV_STATE(k: &dc->sb) == BDEV_STATE_DIRTY) {
1296 atomic_set(v: &dc->has_dirty, i: 1);
1297 bch_writeback_queue(dc);
1298 }
1299
1300 bch_sectors_dirty_init(d: &dc->disk);
1301
1302 ret = bch_cached_dev_run(dc);
1303 if (ret && (ret != -EBUSY)) {
1304 up_write(sem: &dc->writeback_lock);
1305 /*
1306 * bch_register_lock is held, bcache_device_stop() is not
1307 * able to be directly called. The kthread and kworker
1308 * created previously in bch_cached_dev_writeback_start()
1309 * have to be stopped manually here.
1310 */
1311 kthread_stop(k: dc->writeback_thread);
1312 cancel_writeback_rate_update_dwork(dc);
1313 pr_err("Couldn't run cached device %pg\n", dc->bdev);
1314 return ret;
1315 }
1316
1317 bcache_device_link(d: &dc->disk, c, name: "bdev");
1318 atomic_inc(v: &c->attached_dev_nr);
1319
1320 if (bch_has_feature_obso_large_bucket(sb: &(c->cache->sb))) {
1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1322 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1323 set_disk_ro(disk: dc->disk.disk, read_only: 1);
1324 }
1325
1326 /* Allow the writeback thread to proceed */
1327 up_write(sem: &dc->writeback_lock);
1328
1329 pr_info("Caching %pg as %s on set %pU\n",
1330 dc->bdev,
1331 dc->disk.disk->disk_name,
1332 dc->disk.c->set_uuid);
1333 return 0;
1334}
1335
1336/* when dc->disk.kobj released */
1337void bch_cached_dev_release(struct kobject *kobj)
1338{
1339 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1340 disk.kobj);
1341 kfree(objp: dc);
1342 module_put(THIS_MODULE);
1343}
1344
1345static void cached_dev_free(struct closure *cl)
1346{
1347 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1348
1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, addr: &dc->disk.flags))
1350 cancel_writeback_rate_update_dwork(dc);
1351
1352 if (!IS_ERR_OR_NULL(ptr: dc->writeback_thread))
1353 kthread_stop(k: dc->writeback_thread);
1354 if (!IS_ERR_OR_NULL(ptr: dc->status_update_thread))
1355 kthread_stop(k: dc->status_update_thread);
1356
1357 mutex_lock(&bch_register_lock);
1358
1359 if (atomic_read(v: &dc->running)) {
1360 bd_unlink_disk_holder(bdev: dc->bdev, disk: dc->disk.disk);
1361 del_gendisk(gp: dc->disk.disk);
1362 }
1363 bcache_device_free(d: &dc->disk);
1364 list_del(entry: &dc->list);
1365
1366 mutex_unlock(lock: &bch_register_lock);
1367
1368 if (dc->sb_disk)
1369 put_page(virt_to_page(dc->sb_disk));
1370
1371 if (dc->bdev_handle)
1372 bdev_release(handle: dc->bdev_handle);
1373
1374 wake_up(&unregister_wait);
1375
1376 kobject_put(kobj: &dc->disk.kobj);
1377}
1378
1379static void cached_dev_flush(struct closure *cl)
1380{
1381 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1382 struct bcache_device *d = &dc->disk;
1383
1384 mutex_lock(&bch_register_lock);
1385 bcache_device_unlink(d);
1386 mutex_unlock(lock: &bch_register_lock);
1387
1388 bch_cache_accounting_destroy(acc: &dc->accounting);
1389 kobject_del(kobj: &d->kobj);
1390
1391 continue_at(cl, cached_dev_free, system_wq);
1392}
1393
1394static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1395{
1396 int ret;
1397 struct io *io;
1398 struct request_queue *q = bdev_get_queue(bdev: dc->bdev);
1399
1400 __module_get(THIS_MODULE);
1401 INIT_LIST_HEAD(list: &dc->list);
1402 closure_init(cl: &dc->disk.cl, NULL);
1403 set_closure_fn(cl: &dc->disk.cl, fn: cached_dev_flush, wq: system_wq);
1404 kobject_init(kobj: &dc->disk.kobj, ktype: &bch_cached_dev_ktype);
1405 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1406 sema_init(sem: &dc->sb_write_mutex, val: 1);
1407 INIT_LIST_HEAD(list: &dc->io_lru);
1408 spin_lock_init(&dc->io_lock);
1409 bch_cache_accounting_init(acc: &dc->accounting, parent: &dc->disk.cl);
1410
1411 dc->sequential_cutoff = 4 << 20;
1412
1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1414 list_add(new: &io->lru, head: &dc->io_lru);
1415 hlist_add_head(n: &io->hash, h: dc->io_hash + RECENT_IO);
1416 }
1417
1418 dc->disk.stripe_size = q->limits.io_opt >> 9;
1419
1420 if (dc->disk.stripe_size)
1421 dc->partial_stripes_expensive =
1422 q->limits.raid_partial_stripes_expensive;
1423
1424 ret = bcache_device_init(d: &dc->disk, block_size,
1425 sectors: bdev_nr_sectors(bdev: dc->bdev) - dc->sb.data_offset,
1426 cached_bdev: dc->bdev, ops: &bcache_cached_ops);
1427 if (ret)
1428 return ret;
1429
1430 blk_queue_io_opt(q: dc->disk.disk->queue,
1431 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1432
1433 atomic_set(v: &dc->io_errors, i: 0);
1434 dc->io_disable = false;
1435 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1436 /* default to auto */
1437 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1438
1439 bch_cached_dev_request_init(dc);
1440 bch_cached_dev_writeback_init(dc);
1441 return 0;
1442}
1443
1444/* Cached device - bcache superblock */
1445
1446static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1447 struct bdev_handle *bdev_handle,
1448 struct cached_dev *dc)
1449{
1450 const char *err = "cannot allocate memory";
1451 struct cache_set *c;
1452 int ret = -ENOMEM;
1453
1454 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1455 dc->bdev_handle = bdev_handle;
1456 dc->bdev = bdev_handle->bdev;
1457 dc->sb_disk = sb_disk;
1458
1459 if (cached_dev_init(dc, block_size: sb->block_size << 9))
1460 goto err;
1461
1462 err = "error creating kobject";
1463 if (kobject_add(kobj: &dc->disk.kobj, bdev_kobj(dc->bdev), fmt: "bcache"))
1464 goto err;
1465 if (bch_cache_accounting_add_kobjs(acc: &dc->accounting, parent: &dc->disk.kobj))
1466 goto err;
1467
1468 pr_info("registered backing device %pg\n", dc->bdev);
1469
1470 list_add(new: &dc->list, head: &uncached_devices);
1471 /* attach to a matched cache set if it exists */
1472 list_for_each_entry(c, &bch_cache_sets, list)
1473 bch_cached_dev_attach(dc, c, NULL);
1474
1475 if (BDEV_STATE(k: &dc->sb) == BDEV_STATE_NONE ||
1476 BDEV_STATE(k: &dc->sb) == BDEV_STATE_STALE) {
1477 err = "failed to run cached device";
1478 ret = bch_cached_dev_run(dc);
1479 if (ret)
1480 goto err;
1481 }
1482
1483 return 0;
1484err:
1485 pr_notice("error %pg: %s\n", dc->bdev, err);
1486 bcache_device_stop(d: &dc->disk);
1487 return ret;
1488}
1489
1490/* Flash only volumes */
1491
1492/* When d->kobj released */
1493void bch_flash_dev_release(struct kobject *kobj)
1494{
1495 struct bcache_device *d = container_of(kobj, struct bcache_device,
1496 kobj);
1497 kfree(objp: d);
1498}
1499
1500static void flash_dev_free(struct closure *cl)
1501{
1502 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1503
1504 mutex_lock(&bch_register_lock);
1505 atomic_long_sub(i: bcache_dev_sectors_dirty(d),
1506 v: &d->c->flash_dev_dirty_sectors);
1507 del_gendisk(gp: d->disk);
1508 bcache_device_free(d);
1509 mutex_unlock(lock: &bch_register_lock);
1510 kobject_put(kobj: &d->kobj);
1511}
1512
1513static void flash_dev_flush(struct closure *cl)
1514{
1515 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1516
1517 mutex_lock(&bch_register_lock);
1518 bcache_device_unlink(d);
1519 mutex_unlock(lock: &bch_register_lock);
1520 kobject_del(kobj: &d->kobj);
1521 continue_at(cl, flash_dev_free, system_wq);
1522}
1523
1524static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1525{
1526 int err = -ENOMEM;
1527 struct bcache_device *d = kzalloc(size: sizeof(struct bcache_device),
1528 GFP_KERNEL);
1529 if (!d)
1530 goto err_ret;
1531
1532 closure_init(cl: &d->cl, NULL);
1533 set_closure_fn(cl: &d->cl, fn: flash_dev_flush, wq: system_wq);
1534
1535 kobject_init(kobj: &d->kobj, ktype: &bch_flash_dev_ktype);
1536
1537 if (bcache_device_init(d, block_bytes(c->cache), sectors: u->sectors,
1538 NULL, ops: &bcache_flash_ops))
1539 goto err;
1540
1541 bcache_device_attach(d, c, id: u - c->uuids);
1542 bch_sectors_dirty_init(d);
1543 bch_flash_dev_request_init(d);
1544 err = add_disk(disk: d->disk);
1545 if (err)
1546 goto err;
1547
1548 err = kobject_add(kobj: &d->kobj, parent: &disk_to_dev(d->disk)->kobj, fmt: "bcache");
1549 if (err)
1550 goto err;
1551
1552 bcache_device_link(d, c, name: "volume");
1553
1554 if (bch_has_feature_obso_large_bucket(sb: &c->cache->sb)) {
1555 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1556 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1557 set_disk_ro(disk: d->disk, read_only: 1);
1558 }
1559
1560 return 0;
1561err:
1562 kobject_put(kobj: &d->kobj);
1563err_ret:
1564 return err;
1565}
1566
1567static int flash_devs_run(struct cache_set *c)
1568{
1569 int ret = 0;
1570 struct uuid_entry *u;
1571
1572 for (u = c->uuids;
1573 u < c->uuids + c->nr_uuids && !ret;
1574 u++)
1575 if (UUID_FLASH_ONLY(k: u))
1576 ret = flash_dev_run(c, u);
1577
1578 return ret;
1579}
1580
1581int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1582{
1583 struct uuid_entry *u;
1584
1585 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1586 return -EINTR;
1587
1588 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1589 return -EPERM;
1590
1591 u = uuid_find_empty(c);
1592 if (!u) {
1593 pr_err("Can't create volume, no room for UUID\n");
1594 return -EINVAL;
1595 }
1596
1597 get_random_bytes(buf: u->uuid, len: 16);
1598 memset(u->label, 0, 32);
1599 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1600
1601 SET_UUID_FLASH_ONLY(k: u, v: 1);
1602 u->sectors = size >> 9;
1603
1604 bch_uuid_write(c);
1605
1606 return flash_dev_run(c, u);
1607}
1608
1609bool bch_cached_dev_error(struct cached_dev *dc)
1610{
1611 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1612 return false;
1613
1614 dc->io_disable = true;
1615 /* make others know io_disable is true earlier */
1616 smp_mb();
1617
1618 pr_err("stop %s: too many IO errors on backing device %pg\n",
1619 dc->disk.disk->disk_name, dc->bdev);
1620
1621 bcache_device_stop(d: &dc->disk);
1622 return true;
1623}
1624
1625/* Cache set */
1626
1627__printf(2, 3)
1628bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1629{
1630 struct va_format vaf;
1631 va_list args;
1632
1633 if (c->on_error != ON_ERROR_PANIC &&
1634 test_bit(CACHE_SET_STOPPING, &c->flags))
1635 return false;
1636
1637 if (test_and_set_bit(CACHE_SET_IO_DISABLE, addr: &c->flags))
1638 pr_info("CACHE_SET_IO_DISABLE already set\n");
1639
1640 /*
1641 * XXX: we can be called from atomic context
1642 * acquire_console_sem();
1643 */
1644
1645 va_start(args, fmt);
1646
1647 vaf.fmt = fmt;
1648 vaf.va = &args;
1649
1650 pr_err("error on %pU: %pV, disabling caching\n",
1651 c->set_uuid, &vaf);
1652
1653 va_end(args);
1654
1655 if (c->on_error == ON_ERROR_PANIC)
1656 panic(fmt: "panic forced after error\n");
1657
1658 bch_cache_set_unregister(c);
1659 return true;
1660}
1661
1662/* When c->kobj released */
1663void bch_cache_set_release(struct kobject *kobj)
1664{
1665 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1666
1667 kfree(objp: c);
1668 module_put(THIS_MODULE);
1669}
1670
1671static void cache_set_free(struct closure *cl)
1672{
1673 struct cache_set *c = container_of(cl, struct cache_set, cl);
1674 struct cache *ca;
1675
1676 debugfs_remove(dentry: c->debug);
1677
1678 bch_open_buckets_free(c);
1679 bch_btree_cache_free(c);
1680 bch_journal_free(c);
1681
1682 mutex_lock(&bch_register_lock);
1683 bch_bset_sort_state_free(state: &c->sort);
1684 free_pages(addr: (unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1685
1686 ca = c->cache;
1687 if (ca) {
1688 ca->set = NULL;
1689 c->cache = NULL;
1690 kobject_put(kobj: &ca->kobj);
1691 }
1692
1693
1694 if (c->moving_gc_wq)
1695 destroy_workqueue(wq: c->moving_gc_wq);
1696 bioset_exit(&c->bio_split);
1697 mempool_exit(pool: &c->fill_iter);
1698 mempool_exit(pool: &c->bio_meta);
1699 mempool_exit(pool: &c->search);
1700 kfree(objp: c->devices);
1701
1702 list_del(entry: &c->list);
1703 mutex_unlock(lock: &bch_register_lock);
1704
1705 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1706 wake_up(&unregister_wait);
1707
1708 closure_debug_destroy(cl: &c->cl);
1709 kobject_put(kobj: &c->kobj);
1710}
1711
1712static void cache_set_flush(struct closure *cl)
1713{
1714 struct cache_set *c = container_of(cl, struct cache_set, caching);
1715 struct cache *ca = c->cache;
1716 struct btree *b;
1717
1718 bch_cache_accounting_destroy(acc: &c->accounting);
1719
1720 kobject_put(kobj: &c->internal);
1721 kobject_del(kobj: &c->kobj);
1722
1723 if (!IS_ERR_OR_NULL(ptr: c->gc_thread))
1724 kthread_stop(k: c->gc_thread);
1725
1726 if (!IS_ERR(ptr: c->root))
1727 list_add(new: &c->root->list, head: &c->btree_cache);
1728
1729 /*
1730 * Avoid flushing cached nodes if cache set is retiring
1731 * due to too many I/O errors detected.
1732 */
1733 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1734 list_for_each_entry(b, &c->btree_cache, list) {
1735 mutex_lock(&b->write_lock);
1736 if (btree_node_dirty(b))
1737 __bch_btree_node_write(b, NULL);
1738 mutex_unlock(lock: &b->write_lock);
1739 }
1740
1741 if (ca->alloc_thread)
1742 kthread_stop(k: ca->alloc_thread);
1743
1744 if (c->journal.cur) {
1745 cancel_delayed_work_sync(dwork: &c->journal.work);
1746 /* flush last journal entry if needed */
1747 c->journal.work.work.func(&c->journal.work.work);
1748 }
1749
1750 closure_return(cl);
1751}
1752
1753/*
1754 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1755 * cache set is unregistering due to too many I/O errors. In this condition,
1756 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1757 * value and whether the broken cache has dirty data:
1758 *
1759 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1760 * BCH_CACHED_STOP_AUTO 0 NO
1761 * BCH_CACHED_STOP_AUTO 1 YES
1762 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1763 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1764 *
1765 * The expected behavior is, if stop_when_cache_set_failed is configured to
1766 * "auto" via sysfs interface, the bcache device will not be stopped if the
1767 * backing device is clean on the broken cache device.
1768 */
1769static void conditional_stop_bcache_device(struct cache_set *c,
1770 struct bcache_device *d,
1771 struct cached_dev *dc)
1772{
1773 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1774 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1775 d->disk->disk_name, c->set_uuid);
1776 bcache_device_stop(d);
1777 } else if (atomic_read(v: &dc->has_dirty)) {
1778 /*
1779 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1780 * and dc->has_dirty == 1
1781 */
1782 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1783 d->disk->disk_name);
1784 /*
1785 * There might be a small time gap that cache set is
1786 * released but bcache device is not. Inside this time
1787 * gap, regular I/O requests will directly go into
1788 * backing device as no cache set attached to. This
1789 * behavior may also introduce potential inconsistence
1790 * data in writeback mode while cache is dirty.
1791 * Therefore before calling bcache_device_stop() due
1792 * to a broken cache device, dc->io_disable should be
1793 * explicitly set to true.
1794 */
1795 dc->io_disable = true;
1796 /* make others know io_disable is true earlier */
1797 smp_mb();
1798 bcache_device_stop(d);
1799 } else {
1800 /*
1801 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1802 * and dc->has_dirty == 0
1803 */
1804 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1805 d->disk->disk_name);
1806 }
1807}
1808
1809static void __cache_set_unregister(struct closure *cl)
1810{
1811 struct cache_set *c = container_of(cl, struct cache_set, caching);
1812 struct cached_dev *dc;
1813 struct bcache_device *d;
1814 size_t i;
1815
1816 mutex_lock(&bch_register_lock);
1817
1818 for (i = 0; i < c->devices_max_used; i++) {
1819 d = c->devices[i];
1820 if (!d)
1821 continue;
1822
1823 if (!UUID_FLASH_ONLY(k: &c->uuids[i]) &&
1824 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1825 dc = container_of(d, struct cached_dev, disk);
1826 bch_cached_dev_detach(dc);
1827 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1828 conditional_stop_bcache_device(c, d, dc);
1829 } else {
1830 bcache_device_stop(d);
1831 }
1832 }
1833
1834 mutex_unlock(lock: &bch_register_lock);
1835
1836 continue_at(cl, cache_set_flush, system_wq);
1837}
1838
1839void bch_cache_set_stop(struct cache_set *c)
1840{
1841 if (!test_and_set_bit(CACHE_SET_STOPPING, addr: &c->flags))
1842 /* closure_fn set to __cache_set_unregister() */
1843 closure_queue(cl: &c->caching);
1844}
1845
1846void bch_cache_set_unregister(struct cache_set *c)
1847{
1848 set_bit(CACHE_SET_UNREGISTERING, addr: &c->flags);
1849 bch_cache_set_stop(c);
1850}
1851
1852#define alloc_meta_bucket_pages(gfp, sb) \
1853 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1854
1855struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1856{
1857 int iter_size;
1858 struct cache *ca = container_of(sb, struct cache, sb);
1859 struct cache_set *c = kzalloc(size: sizeof(struct cache_set), GFP_KERNEL);
1860
1861 if (!c)
1862 return NULL;
1863
1864 __module_get(THIS_MODULE);
1865 closure_init(cl: &c->cl, NULL);
1866 set_closure_fn(cl: &c->cl, fn: cache_set_free, wq: system_wq);
1867
1868 closure_init(cl: &c->caching, parent: &c->cl);
1869 set_closure_fn(cl: &c->caching, fn: __cache_set_unregister, wq: system_wq);
1870
1871 /* Maybe create continue_at_noreturn() and use it here? */
1872 closure_set_stopped(cl: &c->cl);
1873 closure_put(cl: &c->cl);
1874
1875 kobject_init(kobj: &c->kobj, ktype: &bch_cache_set_ktype);
1876 kobject_init(kobj: &c->internal, ktype: &bch_cache_set_internal_ktype);
1877
1878 bch_cache_accounting_init(acc: &c->accounting, parent: &c->cl);
1879
1880 memcpy(c->set_uuid, sb->set_uuid, 16);
1881
1882 c->cache = ca;
1883 c->cache->set = c;
1884 c->bucket_bits = ilog2(sb->bucket_size);
1885 c->block_bits = ilog2(sb->block_size);
1886 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1887 c->devices_max_used = 0;
1888 atomic_set(v: &c->attached_dev_nr, i: 0);
1889 c->btree_pages = meta_bucket_pages(sb);
1890 if (c->btree_pages > BTREE_MAX_PAGES)
1891 c->btree_pages = max_t(int, c->btree_pages / 4,
1892 BTREE_MAX_PAGES);
1893
1894 sema_init(sem: &c->sb_write_mutex, val: 1);
1895 mutex_init(&c->bucket_lock);
1896 init_waitqueue_head(&c->btree_cache_wait);
1897 spin_lock_init(&c->btree_cannibalize_lock);
1898 init_waitqueue_head(&c->bucket_wait);
1899 init_waitqueue_head(&c->gc_wait);
1900 sema_init(sem: &c->uuid_write_mutex, val: 1);
1901
1902 spin_lock_init(&c->btree_gc_time.lock);
1903 spin_lock_init(&c->btree_split_time.lock);
1904 spin_lock_init(&c->btree_read_time.lock);
1905
1906 bch_moving_init_cache_set(c);
1907
1908 INIT_LIST_HEAD(list: &c->list);
1909 INIT_LIST_HEAD(list: &c->cached_devs);
1910 INIT_LIST_HEAD(list: &c->btree_cache);
1911 INIT_LIST_HEAD(list: &c->btree_cache_freeable);
1912 INIT_LIST_HEAD(list: &c->btree_cache_freed);
1913 INIT_LIST_HEAD(list: &c->data_buckets);
1914
1915 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1916 sizeof(struct btree_iter_set);
1917
1918 c->devices = kcalloc(n: c->nr_uuids, size: sizeof(void *), GFP_KERNEL);
1919 if (!c->devices)
1920 goto err;
1921
1922 if (mempool_init_slab_pool(pool: &c->search, min_nr: 32, kc: bch_search_cache))
1923 goto err;
1924
1925 if (mempool_init_kmalloc_pool(pool: &c->bio_meta, min_nr: 2,
1926 size: sizeof(struct bbio) +
1927 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1928 goto err;
1929
1930 if (mempool_init_kmalloc_pool(pool: &c->fill_iter, min_nr: 1, size: iter_size))
1931 goto err;
1932
1933 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1934 flags: BIOSET_NEED_RESCUER))
1935 goto err;
1936
1937 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1938 if (!c->uuids)
1939 goto err;
1940
1941 c->moving_gc_wq = alloc_workqueue(fmt: "bcache_gc", flags: WQ_MEM_RECLAIM, max_active: 0);
1942 if (!c->moving_gc_wq)
1943 goto err;
1944
1945 if (bch_journal_alloc(c))
1946 goto err;
1947
1948 if (bch_btree_cache_alloc(c))
1949 goto err;
1950
1951 if (bch_open_buckets_alloc(c))
1952 goto err;
1953
1954 if (bch_bset_sort_state_init(state: &c->sort, ilog2(c->btree_pages)))
1955 goto err;
1956
1957 c->congested_read_threshold_us = 2000;
1958 c->congested_write_threshold_us = 20000;
1959 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1960 c->idle_max_writeback_rate_enabled = 1;
1961 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1962
1963 return c;
1964err:
1965 bch_cache_set_unregister(c);
1966 return NULL;
1967}
1968
1969static int run_cache_set(struct cache_set *c)
1970{
1971 const char *err = "cannot allocate memory";
1972 struct cached_dev *dc, *t;
1973 struct cache *ca = c->cache;
1974 struct closure cl;
1975 LIST_HEAD(journal);
1976 struct journal_replay *l;
1977
1978 closure_init_stack(cl: &cl);
1979
1980 c->nbuckets = ca->sb.nbuckets;
1981 set_gc_sectors(c);
1982
1983 if (CACHE_SYNC(k: &c->cache->sb)) {
1984 struct bkey *k;
1985 struct jset *j;
1986
1987 err = "cannot allocate memory for journal";
1988 if (bch_journal_read(c, list: &journal))
1989 goto err;
1990
1991 pr_debug("btree_journal_read() done\n");
1992
1993 err = "no journal entries found";
1994 if (list_empty(head: &journal))
1995 goto err;
1996
1997 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1998
1999 err = "IO error reading priorities";
2000 if (prio_read(ca, bucket: j->prio_bucket[ca->sb.nr_this_dev]))
2001 goto err;
2002
2003 /*
2004 * If prio_read() fails it'll call cache_set_error and we'll
2005 * tear everything down right away, but if we perhaps checked
2006 * sooner we could avoid journal replay.
2007 */
2008
2009 k = &j->btree_root;
2010
2011 err = "bad btree root";
2012 if (__bch_btree_ptr_invalid(c, k))
2013 goto err;
2014
2015 err = "error reading btree root";
2016 c->root = bch_btree_node_get(c, NULL, k,
2017 level: j->btree_level,
2018 write: true, NULL);
2019 if (IS_ERR_OR_NULL(ptr: c->root))
2020 goto err;
2021
2022 list_del_init(entry: &c->root->list);
2023 rw_unlock(w: true, b: c->root);
2024
2025 err = uuid_read(c, j, cl: &cl);
2026 if (err)
2027 goto err;
2028
2029 err = "error in recovery";
2030 if (bch_btree_check(c))
2031 goto err;
2032
2033 bch_journal_mark(c, list: &journal);
2034 bch_initial_gc_finish(c);
2035 pr_debug("btree_check() done\n");
2036
2037 /*
2038 * bcache_journal_next() can't happen sooner, or
2039 * btree_gc_finish() will give spurious errors about last_gc >
2040 * gc_gen - this is a hack but oh well.
2041 */
2042 bch_journal_next(j: &c->journal);
2043
2044 err = "error starting allocator thread";
2045 if (bch_cache_allocator_start(ca))
2046 goto err;
2047
2048 /*
2049 * First place it's safe to allocate: btree_check() and
2050 * btree_gc_finish() have to run before we have buckets to
2051 * allocate, and bch_bucket_alloc_set() might cause a journal
2052 * entry to be written so bcache_journal_next() has to be called
2053 * first.
2054 *
2055 * If the uuids were in the old format we have to rewrite them
2056 * before the next journal entry is written:
2057 */
2058 if (j->version < BCACHE_JSET_VERSION_UUID)
2059 __uuid_write(c);
2060
2061 err = "bcache: replay journal failed";
2062 if (bch_journal_replay(c, list: &journal))
2063 goto err;
2064 } else {
2065 unsigned int j;
2066
2067 pr_notice("invalidating existing data\n");
2068 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2069 2, SB_JOURNAL_BUCKETS);
2070
2071 for (j = 0; j < ca->sb.keys; j++)
2072 ca->sb.d[j] = ca->sb.first_bucket + j;
2073
2074 bch_initial_gc_finish(c);
2075
2076 err = "error starting allocator thread";
2077 if (bch_cache_allocator_start(ca))
2078 goto err;
2079
2080 mutex_lock(&c->bucket_lock);
2081 bch_prio_write(ca, wait: true);
2082 mutex_unlock(lock: &c->bucket_lock);
2083
2084 err = "cannot allocate new UUID bucket";
2085 if (__uuid_write(c))
2086 goto err;
2087
2088 err = "cannot allocate new btree root";
2089 c->root = __bch_btree_node_alloc(c, NULL, level: 0, wait: true, NULL);
2090 if (IS_ERR(ptr: c->root))
2091 goto err;
2092
2093 mutex_lock(&c->root->write_lock);
2094 bkey_copy_key(dest: &c->root->key, src: &MAX_KEY);
2095 bch_btree_node_write(b: c->root, parent: &cl);
2096 mutex_unlock(lock: &c->root->write_lock);
2097
2098 bch_btree_set_root(b: c->root);
2099 rw_unlock(w: true, b: c->root);
2100
2101 /*
2102 * We don't want to write the first journal entry until
2103 * everything is set up - fortunately journal entries won't be
2104 * written until the SET_CACHE_SYNC() here:
2105 */
2106 SET_CACHE_SYNC(k: &c->cache->sb, v: true);
2107
2108 bch_journal_next(j: &c->journal);
2109 bch_journal_meta(c, cl: &cl);
2110 }
2111
2112 err = "error starting gc thread";
2113 if (bch_gc_thread_start(c))
2114 goto err;
2115
2116 closure_sync(cl: &cl);
2117 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2118 bcache_write_super(c);
2119
2120 if (bch_has_feature_obso_large_bucket(sb: &c->cache->sb))
2121 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2122
2123 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2124 bch_cached_dev_attach(dc, c, NULL);
2125
2126 flash_devs_run(c);
2127
2128 bch_journal_space_reserve(j: &c->journal);
2129 set_bit(CACHE_SET_RUNNING, addr: &c->flags);
2130 return 0;
2131err:
2132 while (!list_empty(head: &journal)) {
2133 l = list_first_entry(&journal, struct journal_replay, list);
2134 list_del(entry: &l->list);
2135 kfree(objp: l);
2136 }
2137
2138 closure_sync(cl: &cl);
2139
2140 bch_cache_set_error(c, fmt: "%s", err);
2141
2142 return -EIO;
2143}
2144
2145static const char *register_cache_set(struct cache *ca)
2146{
2147 char buf[12];
2148 const char *err = "cannot allocate memory";
2149 struct cache_set *c;
2150
2151 list_for_each_entry(c, &bch_cache_sets, list)
2152 if (!memcmp(p: c->set_uuid, q: ca->sb.set_uuid, size: 16)) {
2153 if (c->cache)
2154 return "duplicate cache set member";
2155
2156 goto found;
2157 }
2158
2159 c = bch_cache_set_alloc(sb: &ca->sb);
2160 if (!c)
2161 return err;
2162
2163 err = "error creating kobject";
2164 if (kobject_add(kobj: &c->kobj, parent: bcache_kobj, fmt: "%pU", c->set_uuid) ||
2165 kobject_add(kobj: &c->internal, parent: &c->kobj, fmt: "internal"))
2166 goto err;
2167
2168 if (bch_cache_accounting_add_kobjs(acc: &c->accounting, parent: &c->kobj))
2169 goto err;
2170
2171 bch_debug_init_cache_set(c);
2172
2173 list_add(new: &c->list, head: &bch_cache_sets);
2174found:
2175 sprintf(buf, fmt: "cache%i", ca->sb.nr_this_dev);
2176 if (sysfs_create_link(kobj: &ca->kobj, target: &c->kobj, name: "set") ||
2177 sysfs_create_link(kobj: &c->kobj, target: &ca->kobj, name: buf))
2178 goto err;
2179
2180 kobject_get(kobj: &ca->kobj);
2181 ca->set = c;
2182 ca->set->cache = ca;
2183
2184 err = "failed to run cache set";
2185 if (run_cache_set(c) < 0)
2186 goto err;
2187
2188 return NULL;
2189err:
2190 bch_cache_set_unregister(c);
2191 return err;
2192}
2193
2194/* Cache device */
2195
2196/* When ca->kobj released */
2197void bch_cache_release(struct kobject *kobj)
2198{
2199 struct cache *ca = container_of(kobj, struct cache, kobj);
2200 unsigned int i;
2201
2202 if (ca->set) {
2203 BUG_ON(ca->set->cache != ca);
2204 ca->set->cache = NULL;
2205 }
2206
2207 free_pages(addr: (unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2208 kfree(objp: ca->prio_buckets);
2209 vfree(addr: ca->buckets);
2210
2211 free_heap(&ca->heap);
2212 free_fifo(&ca->free_inc);
2213
2214 for (i = 0; i < RESERVE_NR; i++)
2215 free_fifo(&ca->free[i]);
2216
2217 if (ca->sb_disk)
2218 put_page(virt_to_page(ca->sb_disk));
2219
2220 if (ca->bdev_handle)
2221 bdev_release(handle: ca->bdev_handle);
2222
2223 kfree(objp: ca);
2224 module_put(THIS_MODULE);
2225}
2226
2227static int cache_alloc(struct cache *ca)
2228{
2229 size_t free;
2230 size_t btree_buckets;
2231 struct bucket *b;
2232 int ret = -ENOMEM;
2233 const char *err = NULL;
2234
2235 __module_get(THIS_MODULE);
2236 kobject_init(kobj: &ca->kobj, ktype: &bch_cache_ktype);
2237
2238 bio_init(bio: &ca->journal.bio, NULL, table: ca->journal.bio.bi_inline_vecs, max_vecs: 8, opf: 0);
2239
2240 /*
2241 * when ca->sb.njournal_buckets is not zero, journal exists,
2242 * and in bch_journal_replay(), tree node may split,
2243 * so bucket of RESERVE_BTREE type is needed,
2244 * the worst situation is all journal buckets are valid journal,
2245 * and all the keys need to replay,
2246 * so the number of RESERVE_BTREE type buckets should be as much
2247 * as journal buckets
2248 */
2249 btree_buckets = ca->sb.njournal_buckets ?: 8;
2250 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2251 if (!free) {
2252 ret = -EPERM;
2253 err = "ca->sb.nbuckets is too small";
2254 goto err_free;
2255 }
2256
2257 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2258 GFP_KERNEL)) {
2259 err = "ca->free[RESERVE_BTREE] alloc failed";
2260 goto err_btree_alloc;
2261 }
2262
2263 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2264 GFP_KERNEL)) {
2265 err = "ca->free[RESERVE_PRIO] alloc failed";
2266 goto err_prio_alloc;
2267 }
2268
2269 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2270 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2271 goto err_movinggc_alloc;
2272 }
2273
2274 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2275 err = "ca->free[RESERVE_NONE] alloc failed";
2276 goto err_none_alloc;
2277 }
2278
2279 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2280 err = "ca->free_inc alloc failed";
2281 goto err_free_inc_alloc;
2282 }
2283
2284 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2285 err = "ca->heap alloc failed";
2286 goto err_heap_alloc;
2287 }
2288
2289 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2290 ca->sb.nbuckets));
2291 if (!ca->buckets) {
2292 err = "ca->buckets alloc failed";
2293 goto err_buckets_alloc;
2294 }
2295
2296 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2297 prio_buckets(ca), 2),
2298 GFP_KERNEL);
2299 if (!ca->prio_buckets) {
2300 err = "ca->prio_buckets alloc failed";
2301 goto err_prio_buckets_alloc;
2302 }
2303
2304 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2305 if (!ca->disk_buckets) {
2306 err = "ca->disk_buckets alloc failed";
2307 goto err_disk_buckets_alloc;
2308 }
2309
2310 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2311
2312 for_each_bucket(b, ca)
2313 atomic_set(v: &b->pin, i: 0);
2314 return 0;
2315
2316err_disk_buckets_alloc:
2317 kfree(objp: ca->prio_buckets);
2318err_prio_buckets_alloc:
2319 vfree(addr: ca->buckets);
2320err_buckets_alloc:
2321 free_heap(&ca->heap);
2322err_heap_alloc:
2323 free_fifo(&ca->free_inc);
2324err_free_inc_alloc:
2325 free_fifo(&ca->free[RESERVE_NONE]);
2326err_none_alloc:
2327 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2328err_movinggc_alloc:
2329 free_fifo(&ca->free[RESERVE_PRIO]);
2330err_prio_alloc:
2331 free_fifo(&ca->free[RESERVE_BTREE]);
2332err_btree_alloc:
2333err_free:
2334 module_put(THIS_MODULE);
2335 if (err)
2336 pr_notice("error %pg: %s\n", ca->bdev, err);
2337 return ret;
2338}
2339
2340static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2341 struct bdev_handle *bdev_handle,
2342 struct cache *ca)
2343{
2344 const char *err = NULL; /* must be set for any error case */
2345 int ret = 0;
2346
2347 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2348 ca->bdev_handle = bdev_handle;
2349 ca->bdev = bdev_handle->bdev;
2350 ca->sb_disk = sb_disk;
2351
2352 if (bdev_max_discard_sectors(bdev: (bdev_handle->bdev)))
2353 ca->discard = CACHE_DISCARD(k: &ca->sb);
2354
2355 ret = cache_alloc(ca);
2356 if (ret != 0) {
2357 if (ret == -ENOMEM)
2358 err = "cache_alloc(): -ENOMEM";
2359 else if (ret == -EPERM)
2360 err = "cache_alloc(): cache device is too small";
2361 else
2362 err = "cache_alloc(): unknown error";
2363 pr_notice("error %pg: %s\n", bdev_handle->bdev, err);
2364 /*
2365 * If we failed here, it means ca->kobj is not initialized yet,
2366 * kobject_put() won't be called and there is no chance to
2367 * call bdev_release() to bdev in bch_cache_release(). So
2368 * we explicitly call bdev_release() here.
2369 */
2370 bdev_release(handle: bdev_handle);
2371 return ret;
2372 }
2373
2374 if (kobject_add(kobj: &ca->kobj, bdev_kobj(bdev_handle->bdev), fmt: "bcache")) {
2375 pr_notice("error %pg: error calling kobject_add\n",
2376 bdev_handle->bdev);
2377 ret = -ENOMEM;
2378 goto out;
2379 }
2380
2381 mutex_lock(&bch_register_lock);
2382 err = register_cache_set(ca);
2383 mutex_unlock(lock: &bch_register_lock);
2384
2385 if (err) {
2386 ret = -ENODEV;
2387 goto out;
2388 }
2389
2390 pr_info("registered cache device %pg\n", ca->bdev_handle->bdev);
2391
2392out:
2393 kobject_put(kobj: &ca->kobj);
2394 return ret;
2395}
2396
2397/* Global interfaces/init */
2398
2399static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2400 const char *buffer, size_t size);
2401static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2402 struct kobj_attribute *attr,
2403 const char *buffer, size_t size);
2404
2405kobj_attribute_write(register, register_bcache);
2406kobj_attribute_write(register_quiet, register_bcache);
2407kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2408
2409static bool bch_is_open_backing(dev_t dev)
2410{
2411 struct cache_set *c, *tc;
2412 struct cached_dev *dc, *t;
2413
2414 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2415 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2416 if (dc->bdev->bd_dev == dev)
2417 return true;
2418 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2419 if (dc->bdev->bd_dev == dev)
2420 return true;
2421 return false;
2422}
2423
2424static bool bch_is_open_cache(dev_t dev)
2425{
2426 struct cache_set *c, *tc;
2427
2428 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2429 struct cache *ca = c->cache;
2430
2431 if (ca->bdev->bd_dev == dev)
2432 return true;
2433 }
2434
2435 return false;
2436}
2437
2438static bool bch_is_open(dev_t dev)
2439{
2440 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2441}
2442
2443struct async_reg_args {
2444 struct delayed_work reg_work;
2445 char *path;
2446 struct cache_sb *sb;
2447 struct cache_sb_disk *sb_disk;
2448 struct bdev_handle *bdev_handle;
2449 void *holder;
2450};
2451
2452static void register_bdev_worker(struct work_struct *work)
2453{
2454 int fail = false;
2455 struct async_reg_args *args =
2456 container_of(work, struct async_reg_args, reg_work.work);
2457
2458 mutex_lock(&bch_register_lock);
2459 if (register_bdev(sb: args->sb, sb_disk: args->sb_disk, bdev_handle: args->bdev_handle,
2460 dc: args->holder) < 0)
2461 fail = true;
2462 mutex_unlock(lock: &bch_register_lock);
2463
2464 if (fail)
2465 pr_info("error %s: fail to register backing device\n",
2466 args->path);
2467 kfree(objp: args->sb);
2468 kfree(objp: args->path);
2469 kfree(objp: args);
2470 module_put(THIS_MODULE);
2471}
2472
2473static void register_cache_worker(struct work_struct *work)
2474{
2475 int fail = false;
2476 struct async_reg_args *args =
2477 container_of(work, struct async_reg_args, reg_work.work);
2478
2479 /* blkdev_put() will be called in bch_cache_release() */
2480 if (register_cache(sb: args->sb, sb_disk: args->sb_disk, bdev_handle: args->bdev_handle,
2481 ca: args->holder))
2482 fail = true;
2483
2484 if (fail)
2485 pr_info("error %s: fail to register cache device\n",
2486 args->path);
2487 kfree(objp: args->sb);
2488 kfree(objp: args->path);
2489 kfree(objp: args);
2490 module_put(THIS_MODULE);
2491}
2492
2493static void register_device_async(struct async_reg_args *args)
2494{
2495 if (SB_IS_BDEV(sb: args->sb))
2496 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2497 else
2498 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2499
2500 /* 10 jiffies is enough for a delay */
2501 queue_delayed_work(wq: system_wq, dwork: &args->reg_work, delay: 10);
2502}
2503
2504static void *alloc_holder_object(struct cache_sb *sb)
2505{
2506 if (SB_IS_BDEV(sb))
2507 return kzalloc(size: sizeof(struct cached_dev), GFP_KERNEL);
2508 return kzalloc(size: sizeof(struct cache), GFP_KERNEL);
2509}
2510
2511static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2512 const char *buffer, size_t size)
2513{
2514 const char *err;
2515 char *path = NULL;
2516 struct cache_sb *sb;
2517 struct cache_sb_disk *sb_disk;
2518 struct bdev_handle *bdev_handle, *bdev_handle2;
2519 void *holder = NULL;
2520 ssize_t ret;
2521 bool async_registration = false;
2522 bool quiet = false;
2523
2524#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2525 async_registration = true;
2526#endif
2527
2528 ret = -EBUSY;
2529 err = "failed to reference bcache module";
2530 if (!try_module_get(THIS_MODULE))
2531 goto out;
2532
2533 /* For latest state of bcache_is_reboot */
2534 smp_mb();
2535 err = "bcache is in reboot";
2536 if (bcache_is_reboot)
2537 goto out_module_put;
2538
2539 ret = -ENOMEM;
2540 err = "cannot allocate memory";
2541 path = kstrndup(s: buffer, len: size, GFP_KERNEL);
2542 if (!path)
2543 goto out_module_put;
2544
2545 sb = kmalloc(size: sizeof(struct cache_sb), GFP_KERNEL);
2546 if (!sb)
2547 goto out_free_path;
2548
2549 ret = -EINVAL;
2550 err = "failed to open device";
2551 bdev_handle = bdev_open_by_path(path: strim(path), BLK_OPEN_READ, NULL, NULL);
2552 if (IS_ERR(ptr: bdev_handle))
2553 goto out_free_sb;
2554
2555 err = "failed to set blocksize";
2556 if (set_blocksize(bdev: bdev_handle->bdev, size: 4096))
2557 goto out_blkdev_put;
2558
2559 err = read_super(sb, bdev: bdev_handle->bdev, res: &sb_disk);
2560 if (err)
2561 goto out_blkdev_put;
2562
2563 holder = alloc_holder_object(sb);
2564 if (!holder) {
2565 ret = -ENOMEM;
2566 err = "cannot allocate memory";
2567 goto out_put_sb_page;
2568 }
2569
2570 /* Now reopen in exclusive mode with proper holder */
2571 bdev_handle2 = bdev_open_by_dev(dev: bdev_handle->bdev->bd_dev,
2572 BLK_OPEN_READ | BLK_OPEN_WRITE, holder, NULL);
2573 bdev_release(handle: bdev_handle);
2574 bdev_handle = bdev_handle2;
2575 if (IS_ERR(ptr: bdev_handle)) {
2576 ret = PTR_ERR(ptr: bdev_handle);
2577 bdev_handle = NULL;
2578 if (ret == -EBUSY) {
2579 dev_t dev;
2580
2581 mutex_lock(&bch_register_lock);
2582 if (lookup_bdev(pathname: strim(path), dev: &dev) == 0 &&
2583 bch_is_open(dev))
2584 err = "device already registered";
2585 else
2586 err = "device busy";
2587 mutex_unlock(lock: &bch_register_lock);
2588 if (attr == &ksysfs_register_quiet) {
2589 quiet = true;
2590 ret = size;
2591 }
2592 }
2593 goto out_free_holder;
2594 }
2595
2596 err = "failed to register device";
2597
2598 if (async_registration) {
2599 /* register in asynchronous way */
2600 struct async_reg_args *args =
2601 kzalloc(size: sizeof(struct async_reg_args), GFP_KERNEL);
2602
2603 if (!args) {
2604 ret = -ENOMEM;
2605 err = "cannot allocate memory";
2606 goto out_free_holder;
2607 }
2608
2609 args->path = path;
2610 args->sb = sb;
2611 args->sb_disk = sb_disk;
2612 args->bdev_handle = bdev_handle;
2613 args->holder = holder;
2614 register_device_async(args);
2615 /* No wait and returns to user space */
2616 goto async_done;
2617 }
2618
2619 if (SB_IS_BDEV(sb)) {
2620 mutex_lock(&bch_register_lock);
2621 ret = register_bdev(sb, sb_disk, bdev_handle, dc: holder);
2622 mutex_unlock(lock: &bch_register_lock);
2623 /* blkdev_put() will be called in cached_dev_free() */
2624 if (ret < 0)
2625 goto out_free_sb;
2626 } else {
2627 /* blkdev_put() will be called in bch_cache_release() */
2628 ret = register_cache(sb, sb_disk, bdev_handle, ca: holder);
2629 if (ret)
2630 goto out_free_sb;
2631 }
2632
2633 kfree(objp: sb);
2634 kfree(objp: path);
2635 module_put(THIS_MODULE);
2636async_done:
2637 return size;
2638
2639out_free_holder:
2640 kfree(objp: holder);
2641out_put_sb_page:
2642 put_page(virt_to_page(sb_disk));
2643out_blkdev_put:
2644 if (bdev_handle)
2645 bdev_release(handle: bdev_handle);
2646out_free_sb:
2647 kfree(objp: sb);
2648out_free_path:
2649 kfree(objp: path);
2650 path = NULL;
2651out_module_put:
2652 module_put(THIS_MODULE);
2653out:
2654 if (!quiet)
2655 pr_info("error %s: %s\n", path?path:"", err);
2656 return ret;
2657}
2658
2659
2660struct pdev {
2661 struct list_head list;
2662 struct cached_dev *dc;
2663};
2664
2665static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2666 struct kobj_attribute *attr,
2667 const char *buffer,
2668 size_t size)
2669{
2670 LIST_HEAD(pending_devs);
2671 ssize_t ret = size;
2672 struct cached_dev *dc, *tdc;
2673 struct pdev *pdev, *tpdev;
2674 struct cache_set *c, *tc;
2675
2676 mutex_lock(&bch_register_lock);
2677 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2678 pdev = kmalloc(size: sizeof(struct pdev), GFP_KERNEL);
2679 if (!pdev)
2680 break;
2681 pdev->dc = dc;
2682 list_add(new: &pdev->list, head: &pending_devs);
2683 }
2684
2685 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2686 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2687 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2688 char *set_uuid = c->set_uuid;
2689
2690 if (!memcmp(p: pdev_set_uuid, q: set_uuid, size: 16)) {
2691 list_del(entry: &pdev->list);
2692 kfree(objp: pdev);
2693 break;
2694 }
2695 }
2696 }
2697 mutex_unlock(lock: &bch_register_lock);
2698
2699 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2700 pr_info("delete pdev %p\n", pdev);
2701 list_del(entry: &pdev->list);
2702 bcache_device_stop(d: &pdev->dc->disk);
2703 kfree(objp: pdev);
2704 }
2705
2706 return ret;
2707}
2708
2709static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2710{
2711 if (bcache_is_reboot)
2712 return NOTIFY_DONE;
2713
2714 if (code == SYS_DOWN ||
2715 code == SYS_HALT ||
2716 code == SYS_POWER_OFF) {
2717 DEFINE_WAIT(wait);
2718 unsigned long start = jiffies;
2719 bool stopped = false;
2720
2721 struct cache_set *c, *tc;
2722 struct cached_dev *dc, *tdc;
2723
2724 mutex_lock(&bch_register_lock);
2725
2726 if (bcache_is_reboot)
2727 goto out;
2728
2729 /* New registration is rejected since now */
2730 bcache_is_reboot = true;
2731 /*
2732 * Make registering caller (if there is) on other CPU
2733 * core know bcache_is_reboot set to true earlier
2734 */
2735 smp_mb();
2736
2737 if (list_empty(head: &bch_cache_sets) &&
2738 list_empty(head: &uncached_devices))
2739 goto out;
2740
2741 mutex_unlock(lock: &bch_register_lock);
2742
2743 pr_info("Stopping all devices:\n");
2744
2745 /*
2746 * The reason bch_register_lock is not held to call
2747 * bch_cache_set_stop() and bcache_device_stop() is to
2748 * avoid potential deadlock during reboot, because cache
2749 * set or bcache device stopping process will acquire
2750 * bch_register_lock too.
2751 *
2752 * We are safe here because bcache_is_reboot sets to
2753 * true already, register_bcache() will reject new
2754 * registration now. bcache_is_reboot also makes sure
2755 * bcache_reboot() won't be re-entered on by other thread,
2756 * so there is no race in following list iteration by
2757 * list_for_each_entry_safe().
2758 */
2759 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2760 bch_cache_set_stop(c);
2761
2762 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2763 bcache_device_stop(d: &dc->disk);
2764
2765
2766 /*
2767 * Give an early chance for other kthreads and
2768 * kworkers to stop themselves
2769 */
2770 schedule();
2771
2772 /* What's a condition variable? */
2773 while (1) {
2774 long timeout = start + 10 * HZ - jiffies;
2775
2776 mutex_lock(&bch_register_lock);
2777 stopped = list_empty(head: &bch_cache_sets) &&
2778 list_empty(head: &uncached_devices);
2779
2780 if (timeout < 0 || stopped)
2781 break;
2782
2783 prepare_to_wait(wq_head: &unregister_wait, wq_entry: &wait,
2784 TASK_UNINTERRUPTIBLE);
2785
2786 mutex_unlock(lock: &bch_register_lock);
2787 schedule_timeout(timeout);
2788 }
2789
2790 finish_wait(wq_head: &unregister_wait, wq_entry: &wait);
2791
2792 if (stopped)
2793 pr_info("All devices stopped\n");
2794 else
2795 pr_notice("Timeout waiting for devices to be closed\n");
2796out:
2797 mutex_unlock(lock: &bch_register_lock);
2798 }
2799
2800 return NOTIFY_DONE;
2801}
2802
2803static struct notifier_block reboot = {
2804 .notifier_call = bcache_reboot,
2805 .priority = INT_MAX, /* before any real devices */
2806};
2807
2808static void bcache_exit(void)
2809{
2810 bch_debug_exit();
2811 bch_request_exit();
2812 if (bcache_kobj)
2813 kobject_put(kobj: bcache_kobj);
2814 if (bcache_wq)
2815 destroy_workqueue(wq: bcache_wq);
2816 if (bch_journal_wq)
2817 destroy_workqueue(wq: bch_journal_wq);
2818 if (bch_flush_wq)
2819 destroy_workqueue(wq: bch_flush_wq);
2820 bch_btree_exit();
2821
2822 if (bcache_major)
2823 unregister_blkdev(major: bcache_major, name: "bcache");
2824 unregister_reboot_notifier(&reboot);
2825 mutex_destroy(lock: &bch_register_lock);
2826}
2827
2828/* Check and fixup module parameters */
2829static void check_module_parameters(void)
2830{
2831 if (bch_cutoff_writeback_sync == 0)
2832 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2833 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2834 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2835 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2836 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2837 }
2838
2839 if (bch_cutoff_writeback == 0)
2840 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2841 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2842 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2843 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2844 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2845 }
2846
2847 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2848 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2849 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2850 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2851 }
2852}
2853
2854static int __init bcache_init(void)
2855{
2856 static const struct attribute *files[] = {
2857 &ksysfs_register.attr,
2858 &ksysfs_register_quiet.attr,
2859 &ksysfs_pendings_cleanup.attr,
2860 NULL
2861 };
2862
2863 check_module_parameters();
2864
2865 mutex_init(&bch_register_lock);
2866 init_waitqueue_head(&unregister_wait);
2867 register_reboot_notifier(&reboot);
2868
2869 bcache_major = register_blkdev(0, "bcache");
2870 if (bcache_major < 0) {
2871 unregister_reboot_notifier(&reboot);
2872 mutex_destroy(lock: &bch_register_lock);
2873 return bcache_major;
2874 }
2875
2876 if (bch_btree_init())
2877 goto err;
2878
2879 bcache_wq = alloc_workqueue(fmt: "bcache", flags: WQ_MEM_RECLAIM, max_active: 0);
2880 if (!bcache_wq)
2881 goto err;
2882
2883 /*
2884 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2885 *
2886 * 1. It used `system_wq` before which also does no memory reclaim.
2887 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2888 * reduced throughput can be observed.
2889 *
2890 * We still want to user our own queue to not congest the `system_wq`.
2891 */
2892 bch_flush_wq = alloc_workqueue(fmt: "bch_flush", flags: 0, max_active: 0);
2893 if (!bch_flush_wq)
2894 goto err;
2895
2896 bch_journal_wq = alloc_workqueue(fmt: "bch_journal", flags: WQ_MEM_RECLAIM, max_active: 0);
2897 if (!bch_journal_wq)
2898 goto err;
2899
2900 bcache_kobj = kobject_create_and_add(name: "bcache", parent: fs_kobj);
2901 if (!bcache_kobj)
2902 goto err;
2903
2904 if (bch_request_init() ||
2905 sysfs_create_files(kobj: bcache_kobj, attr: files))
2906 goto err;
2907
2908 bch_debug_init();
2909
2910 bcache_is_reboot = false;
2911
2912 return 0;
2913err:
2914 bcache_exit();
2915 return -ENOMEM;
2916}
2917
2918/*
2919 * Module hooks
2920 */
2921module_exit(bcache_exit);
2922module_init(bcache_init);
2923
2924module_param(bch_cutoff_writeback, uint, 0);
2925MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2926
2927module_param(bch_cutoff_writeback_sync, uint, 0);
2928MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2929
2930MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2931MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2932MODULE_LICENSE("GPL");
2933

source code of linux/drivers/md/bcache/super.c