1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009-2011 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/dm-bufio.h>
11
12#include <linux/device-mapper.h>
13#include <linux/dm-io.h>
14#include <linux/slab.h>
15#include <linux/sched/mm.h>
16#include <linux/jiffies.h>
17#include <linux/vmalloc.h>
18#include <linux/shrinker.h>
19#include <linux/module.h>
20#include <linux/rbtree.h>
21#include <linux/stacktrace.h>
22#include <linux/jump_label.h>
23
24#include "dm.h"
25
26#define DM_MSG_PREFIX "bufio"
27
28/*
29 * Memory management policy:
30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34 * dirty buffers.
35 */
36#define DM_BUFIO_MIN_BUFFERS 8
37
38#define DM_BUFIO_MEMORY_PERCENT 2
39#define DM_BUFIO_VMALLOC_PERCENT 25
40#define DM_BUFIO_WRITEBACK_RATIO 3
41#define DM_BUFIO_LOW_WATERMARK_RATIO 16
42
43/*
44 * Check buffer ages in this interval (seconds)
45 */
46#define DM_BUFIO_WORK_TIMER_SECS 30
47
48/*
49 * Free buffers when they are older than this (seconds)
50 */
51#define DM_BUFIO_DEFAULT_AGE_SECS 300
52
53/*
54 * The nr of bytes of cached data to keep around.
55 */
56#define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
57
58/*
59 * Align buffer writes to this boundary.
60 * Tests show that SSDs have the highest IOPS when using 4k writes.
61 */
62#define DM_BUFIO_WRITE_ALIGN 4096
63
64/*
65 * dm_buffer->list_mode
66 */
67#define LIST_CLEAN 0
68#define LIST_DIRTY 1
69#define LIST_SIZE 2
70
71/*--------------------------------------------------------------*/
72
73/*
74 * Rather than use an LRU list, we use a clock algorithm where entries
75 * are held in a circular list. When an entry is 'hit' a reference bit
76 * is set. The least recently used entry is approximated by running a
77 * cursor around the list selecting unreferenced entries. Referenced
78 * entries have their reference bit cleared as the cursor passes them.
79 */
80struct lru_entry {
81 struct list_head list;
82 atomic_t referenced;
83};
84
85struct lru_iter {
86 struct lru *lru;
87 struct list_head list;
88 struct lru_entry *stop;
89 struct lru_entry *e;
90};
91
92struct lru {
93 struct list_head *cursor;
94 unsigned long count;
95
96 struct list_head iterators;
97};
98
99/*--------------*/
100
101static void lru_init(struct lru *lru)
102{
103 lru->cursor = NULL;
104 lru->count = 0;
105 INIT_LIST_HEAD(list: &lru->iterators);
106}
107
108static void lru_destroy(struct lru *lru)
109{
110 WARN_ON_ONCE(lru->cursor);
111 WARN_ON_ONCE(!list_empty(&lru->iterators));
112}
113
114/*
115 * Insert a new entry into the lru.
116 */
117static void lru_insert(struct lru *lru, struct lru_entry *le)
118{
119 /*
120 * Don't be tempted to set to 1, makes the lru aspect
121 * perform poorly.
122 */
123 atomic_set(v: &le->referenced, i: 0);
124
125 if (lru->cursor) {
126 list_add_tail(new: &le->list, head: lru->cursor);
127 } else {
128 INIT_LIST_HEAD(list: &le->list);
129 lru->cursor = &le->list;
130 }
131 lru->count++;
132}
133
134/*--------------*/
135
136/*
137 * Convert a list_head pointer to an lru_entry pointer.
138 */
139static inline struct lru_entry *to_le(struct list_head *l)
140{
141 return container_of(l, struct lru_entry, list);
142}
143
144/*
145 * Initialize an lru_iter and add it to the list of cursors in the lru.
146 */
147static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148{
149 it->lru = lru;
150 it->stop = lru->cursor ? to_le(l: lru->cursor->prev) : NULL;
151 it->e = lru->cursor ? to_le(l: lru->cursor) : NULL;
152 list_add(new: &it->list, head: &lru->iterators);
153}
154
155/*
156 * Remove an lru_iter from the list of cursors in the lru.
157 */
158static inline void lru_iter_end(struct lru_iter *it)
159{
160 list_del(entry: &it->list);
161}
162
163/* Predicate function type to be used with lru_iter_next */
164typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165
166/*
167 * Advance the cursor to the next entry that passes the
168 * predicate, and return that entry. Returns NULL if the
169 * iteration is complete.
170 */
171static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 iter_predicate pred, void *context)
173{
174 struct lru_entry *e;
175
176 while (it->e) {
177 e = it->e;
178
179 /* advance the cursor */
180 if (it->e == it->stop)
181 it->e = NULL;
182 else
183 it->e = to_le(l: it->e->list.next);
184
185 if (pred(e, context))
186 return e;
187 }
188
189 return NULL;
190}
191
192/*
193 * Invalidate a specific lru_entry and update all cursors in
194 * the lru accordingly.
195 */
196static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197{
198 struct lru_iter *it;
199
200 list_for_each_entry(it, &lru->iterators, list) {
201 /* Move c->e forwards if necc. */
202 if (it->e == e) {
203 it->e = to_le(l: it->e->list.next);
204 if (it->e == e)
205 it->e = NULL;
206 }
207
208 /* Move it->stop backwards if necc. */
209 if (it->stop == e) {
210 it->stop = to_le(l: it->stop->list.prev);
211 if (it->stop == e)
212 it->stop = NULL;
213 }
214 }
215}
216
217/*--------------*/
218
219/*
220 * Remove a specific entry from the lru.
221 */
222static void lru_remove(struct lru *lru, struct lru_entry *le)
223{
224 lru_iter_invalidate(lru, e: le);
225 if (lru->count == 1) {
226 lru->cursor = NULL;
227 } else {
228 if (lru->cursor == &le->list)
229 lru->cursor = lru->cursor->next;
230 list_del(entry: &le->list);
231 }
232 lru->count--;
233}
234
235/*
236 * Mark as referenced.
237 */
238static inline void lru_reference(struct lru_entry *le)
239{
240 atomic_set(v: &le->referenced, i: 1);
241}
242
243/*--------------*/
244
245/*
246 * Remove the least recently used entry (approx), that passes the predicate.
247 * Returns NULL on failure.
248 */
249enum evict_result {
250 ER_EVICT,
251 ER_DONT_EVICT,
252 ER_STOP, /* stop looking for something to evict */
253};
254
255typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256
257static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context)
258{
259 unsigned long tested = 0;
260 struct list_head *h = lru->cursor;
261 struct lru_entry *le;
262
263 if (!h)
264 return NULL;
265 /*
266 * In the worst case we have to loop around twice. Once to clear
267 * the reference flags, and then again to discover the predicate
268 * fails for all entries.
269 */
270 while (tested < lru->count) {
271 le = container_of(h, struct lru_entry, list);
272
273 if (atomic_read(v: &le->referenced)) {
274 atomic_set(v: &le->referenced, i: 0);
275 } else {
276 tested++;
277 switch (pred(le, context)) {
278 case ER_EVICT:
279 /*
280 * Adjust the cursor, so we start the next
281 * search from here.
282 */
283 lru->cursor = le->list.next;
284 lru_remove(lru, le);
285 return le;
286
287 case ER_DONT_EVICT:
288 break;
289
290 case ER_STOP:
291 lru->cursor = le->list.next;
292 return NULL;
293 }
294 }
295
296 h = h->next;
297
298 cond_resched();
299 }
300
301 return NULL;
302}
303
304/*--------------------------------------------------------------*/
305
306/*
307 * Buffer state bits.
308 */
309#define B_READING 0
310#define B_WRITING 1
311#define B_DIRTY 2
312
313/*
314 * Describes how the block was allocated:
315 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
316 * See the comment at alloc_buffer_data.
317 */
318enum data_mode {
319 DATA_MODE_SLAB = 0,
320 DATA_MODE_GET_FREE_PAGES = 1,
321 DATA_MODE_VMALLOC = 2,
322 DATA_MODE_LIMIT = 3
323};
324
325struct dm_buffer {
326 /* protected by the locks in dm_buffer_cache */
327 struct rb_node node;
328
329 /* immutable, so don't need protecting */
330 sector_t block;
331 void *data;
332 unsigned char data_mode; /* DATA_MODE_* */
333
334 /*
335 * These two fields are used in isolation, so do not need
336 * a surrounding lock.
337 */
338 atomic_t hold_count;
339 unsigned long last_accessed;
340
341 /*
342 * Everything else is protected by the mutex in
343 * dm_bufio_client
344 */
345 unsigned long state;
346 struct lru_entry lru;
347 unsigned char list_mode; /* LIST_* */
348 blk_status_t read_error;
349 blk_status_t write_error;
350 unsigned int dirty_start;
351 unsigned int dirty_end;
352 unsigned int write_start;
353 unsigned int write_end;
354 struct list_head write_list;
355 struct dm_bufio_client *c;
356 void (*end_io)(struct dm_buffer *b, blk_status_t bs);
357#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
358#define MAX_STACK 10
359 unsigned int stack_len;
360 unsigned long stack_entries[MAX_STACK];
361#endif
362};
363
364/*--------------------------------------------------------------*/
365
366/*
367 * The buffer cache manages buffers, particularly:
368 * - inc/dec of holder count
369 * - setting the last_accessed field
370 * - maintains clean/dirty state along with lru
371 * - selecting buffers that match predicates
372 *
373 * It does *not* handle:
374 * - allocation/freeing of buffers.
375 * - IO
376 * - Eviction or cache sizing.
377 *
378 * cache_get() and cache_put() are threadsafe, you do not need to
379 * protect these calls with a surrounding mutex. All the other
380 * methods are not threadsafe; they do use locking primitives, but
381 * only enough to ensure get/put are threadsafe.
382 */
383
384struct buffer_tree {
385 struct rw_semaphore lock;
386 struct rb_root root;
387} ____cacheline_aligned_in_smp;
388
389struct dm_buffer_cache {
390 struct lru lru[LIST_SIZE];
391 /*
392 * We spread entries across multiple trees to reduce contention
393 * on the locks.
394 */
395 unsigned int num_locks;
396 struct buffer_tree trees[];
397};
398
399static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
400{
401 return dm_hash_locks_index(block, num_locks);
402}
403
404static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
405{
406 down_read(sem: &bc->trees[cache_index(block, num_locks: bc->num_locks)].lock);
407}
408
409static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
410{
411 up_read(sem: &bc->trees[cache_index(block, num_locks: bc->num_locks)].lock);
412}
413
414static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
415{
416 down_write(sem: &bc->trees[cache_index(block, num_locks: bc->num_locks)].lock);
417}
418
419static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
420{
421 up_write(sem: &bc->trees[cache_index(block, num_locks: bc->num_locks)].lock);
422}
423
424/*
425 * Sometimes we want to repeatedly get and drop locks as part of an iteration.
426 * This struct helps avoid redundant drop and gets of the same lock.
427 */
428struct lock_history {
429 struct dm_buffer_cache *cache;
430 bool write;
431 unsigned int previous;
432 unsigned int no_previous;
433};
434
435static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
436{
437 lh->cache = cache;
438 lh->write = write;
439 lh->no_previous = cache->num_locks;
440 lh->previous = lh->no_previous;
441}
442
443static void __lh_lock(struct lock_history *lh, unsigned int index)
444{
445 if (lh->write)
446 down_write(sem: &lh->cache->trees[index].lock);
447 else
448 down_read(sem: &lh->cache->trees[index].lock);
449}
450
451static void __lh_unlock(struct lock_history *lh, unsigned int index)
452{
453 if (lh->write)
454 up_write(sem: &lh->cache->trees[index].lock);
455 else
456 up_read(sem: &lh->cache->trees[index].lock);
457}
458
459/*
460 * Make sure you call this since it will unlock the final lock.
461 */
462static void lh_exit(struct lock_history *lh)
463{
464 if (lh->previous != lh->no_previous) {
465 __lh_unlock(lh, index: lh->previous);
466 lh->previous = lh->no_previous;
467 }
468}
469
470/*
471 * Named 'next' because there is no corresponding
472 * 'up/unlock' call since it's done automatically.
473 */
474static void lh_next(struct lock_history *lh, sector_t b)
475{
476 unsigned int index = cache_index(block: b, num_locks: lh->no_previous); /* no_previous is num_locks */
477
478 if (lh->previous != lh->no_previous) {
479 if (lh->previous != index) {
480 __lh_unlock(lh, index: lh->previous);
481 __lh_lock(lh, index);
482 lh->previous = index;
483 }
484 } else {
485 __lh_lock(lh, index);
486 lh->previous = index;
487 }
488}
489
490static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
491{
492 return container_of(le, struct dm_buffer, lru);
493}
494
495static struct dm_buffer *list_to_buffer(struct list_head *l)
496{
497 struct lru_entry *le = list_entry(l, struct lru_entry, list);
498
499 if (!le)
500 return NULL;
501
502 return le_to_buffer(le);
503}
504
505static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks)
506{
507 unsigned int i;
508
509 bc->num_locks = num_locks;
510
511 for (i = 0; i < bc->num_locks; i++) {
512 init_rwsem(&bc->trees[i].lock);
513 bc->trees[i].root = RB_ROOT;
514 }
515
516 lru_init(lru: &bc->lru[LIST_CLEAN]);
517 lru_init(lru: &bc->lru[LIST_DIRTY]);
518}
519
520static void cache_destroy(struct dm_buffer_cache *bc)
521{
522 unsigned int i;
523
524 for (i = 0; i < bc->num_locks; i++)
525 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
526
527 lru_destroy(lru: &bc->lru[LIST_CLEAN]);
528 lru_destroy(lru: &bc->lru[LIST_DIRTY]);
529}
530
531/*--------------*/
532
533/*
534 * not threadsafe, or racey depending how you look at it
535 */
536static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
537{
538 return bc->lru[list_mode].count;
539}
540
541static inline unsigned long cache_total(struct dm_buffer_cache *bc)
542{
543 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
544}
545
546/*--------------*/
547
548/*
549 * Gets a specific buffer, indexed by block.
550 * If the buffer is found then its holder count will be incremented and
551 * lru_reference will be called.
552 *
553 * threadsafe
554 */
555static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
556{
557 struct rb_node *n = root->rb_node;
558 struct dm_buffer *b;
559
560 while (n) {
561 b = container_of(n, struct dm_buffer, node);
562
563 if (b->block == block)
564 return b;
565
566 n = block < b->block ? n->rb_left : n->rb_right;
567 }
568
569 return NULL;
570}
571
572static void __cache_inc_buffer(struct dm_buffer *b)
573{
574 atomic_inc(v: &b->hold_count);
575 WRITE_ONCE(b->last_accessed, jiffies);
576}
577
578static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
579{
580 struct dm_buffer *b;
581
582 cache_read_lock(bc, block);
583 b = __cache_get(root: &bc->trees[cache_index(block, num_locks: bc->num_locks)].root, block);
584 if (b) {
585 lru_reference(le: &b->lru);
586 __cache_inc_buffer(b);
587 }
588 cache_read_unlock(bc, block);
589
590 return b;
591}
592
593/*--------------*/
594
595/*
596 * Returns true if the hold count hits zero.
597 * threadsafe
598 */
599static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
600{
601 bool r;
602
603 cache_read_lock(bc, block: b->block);
604 BUG_ON(!atomic_read(&b->hold_count));
605 r = atomic_dec_and_test(v: &b->hold_count);
606 cache_read_unlock(bc, block: b->block);
607
608 return r;
609}
610
611/*--------------*/
612
613typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
614
615/*
616 * Evicts a buffer based on a predicate. The oldest buffer that
617 * matches the predicate will be selected. In addition to the
618 * predicate the hold_count of the selected buffer will be zero.
619 */
620struct evict_wrapper {
621 struct lock_history *lh;
622 b_predicate pred;
623 void *context;
624};
625
626/*
627 * Wraps the buffer predicate turning it into an lru predicate. Adds
628 * extra test for hold_count.
629 */
630static enum evict_result __evict_pred(struct lru_entry *le, void *context)
631{
632 struct evict_wrapper *w = context;
633 struct dm_buffer *b = le_to_buffer(le);
634
635 lh_next(lh: w->lh, b: b->block);
636
637 if (atomic_read(v: &b->hold_count))
638 return ER_DONT_EVICT;
639
640 return w->pred(b, w->context);
641}
642
643static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
644 b_predicate pred, void *context,
645 struct lock_history *lh)
646{
647 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
648 struct lru_entry *le;
649 struct dm_buffer *b;
650
651 le = lru_evict(lru: &bc->lru[list_mode], pred: __evict_pred, context: &w);
652 if (!le)
653 return NULL;
654
655 b = le_to_buffer(le);
656 /* __evict_pred will have locked the appropriate tree. */
657 rb_erase(&b->node, &bc->trees[cache_index(block: b->block, num_locks: bc->num_locks)].root);
658
659 return b;
660}
661
662static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
663 b_predicate pred, void *context)
664{
665 struct dm_buffer *b;
666 struct lock_history lh;
667
668 lh_init(lh: &lh, cache: bc, write: true);
669 b = __cache_evict(bc, list_mode, pred, context, lh: &lh);
670 lh_exit(lh: &lh);
671
672 return b;
673}
674
675/*--------------*/
676
677/*
678 * Mark a buffer as clean or dirty. Not threadsafe.
679 */
680static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
681{
682 cache_write_lock(bc, block: b->block);
683 if (list_mode != b->list_mode) {
684 lru_remove(lru: &bc->lru[b->list_mode], le: &b->lru);
685 b->list_mode = list_mode;
686 lru_insert(lru: &bc->lru[b->list_mode], le: &b->lru);
687 }
688 cache_write_unlock(bc, block: b->block);
689}
690
691/*--------------*/
692
693/*
694 * Runs through the lru associated with 'old_mode', if the predicate matches then
695 * it moves them to 'new_mode'. Not threadsafe.
696 */
697static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
698 b_predicate pred, void *context, struct lock_history *lh)
699{
700 struct lru_entry *le;
701 struct dm_buffer *b;
702 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
703
704 while (true) {
705 le = lru_evict(lru: &bc->lru[old_mode], pred: __evict_pred, context: &w);
706 if (!le)
707 break;
708
709 b = le_to_buffer(le);
710 b->list_mode = new_mode;
711 lru_insert(lru: &bc->lru[b->list_mode], le: &b->lru);
712 }
713}
714
715static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
716 b_predicate pred, void *context)
717{
718 struct lock_history lh;
719
720 lh_init(lh: &lh, cache: bc, write: true);
721 __cache_mark_many(bc, old_mode, new_mode, pred, context, lh: &lh);
722 lh_exit(lh: &lh);
723}
724
725/*--------------*/
726
727/*
728 * Iterates through all clean or dirty entries calling a function for each
729 * entry. The callback may terminate the iteration early. Not threadsafe.
730 */
731
732/*
733 * Iterator functions should return one of these actions to indicate
734 * how the iteration should proceed.
735 */
736enum it_action {
737 IT_NEXT,
738 IT_COMPLETE,
739};
740
741typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
742
743static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
744 iter_fn fn, void *context, struct lock_history *lh)
745{
746 struct lru *lru = &bc->lru[list_mode];
747 struct lru_entry *le, *first;
748
749 if (!lru->cursor)
750 return;
751
752 first = le = to_le(l: lru->cursor);
753 do {
754 struct dm_buffer *b = le_to_buffer(le);
755
756 lh_next(lh, b: b->block);
757
758 switch (fn(b, context)) {
759 case IT_NEXT:
760 break;
761
762 case IT_COMPLETE:
763 return;
764 }
765 cond_resched();
766
767 le = to_le(l: le->list.next);
768 } while (le != first);
769}
770
771static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
772 iter_fn fn, void *context)
773{
774 struct lock_history lh;
775
776 lh_init(lh: &lh, cache: bc, write: false);
777 __cache_iterate(bc, list_mode, fn, context, lh: &lh);
778 lh_exit(lh: &lh);
779}
780
781/*--------------*/
782
783/*
784 * Passes ownership of the buffer to the cache. Returns false if the
785 * buffer was already present (in which case ownership does not pass).
786 * eg, a race with another thread.
787 *
788 * Holder count should be 1 on insertion.
789 *
790 * Not threadsafe.
791 */
792static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
793{
794 struct rb_node **new = &root->rb_node, *parent = NULL;
795 struct dm_buffer *found;
796
797 while (*new) {
798 found = container_of(*new, struct dm_buffer, node);
799
800 if (found->block == b->block)
801 return false;
802
803 parent = *new;
804 new = b->block < found->block ?
805 &found->node.rb_left : &found->node.rb_right;
806 }
807
808 rb_link_node(node: &b->node, parent, rb_link: new);
809 rb_insert_color(&b->node, root);
810
811 return true;
812}
813
814static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
815{
816 bool r;
817
818 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
819 return false;
820
821 cache_write_lock(bc, block: b->block);
822 BUG_ON(atomic_read(&b->hold_count) != 1);
823 r = __cache_insert(root: &bc->trees[cache_index(block: b->block, num_locks: bc->num_locks)].root, b);
824 if (r)
825 lru_insert(lru: &bc->lru[b->list_mode], le: &b->lru);
826 cache_write_unlock(bc, block: b->block);
827
828 return r;
829}
830
831/*--------------*/
832
833/*
834 * Removes buffer from cache, ownership of the buffer passes back to the caller.
835 * Fails if the hold_count is not one (ie. the caller holds the only reference).
836 *
837 * Not threadsafe.
838 */
839static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
840{
841 bool r;
842
843 cache_write_lock(bc, block: b->block);
844
845 if (atomic_read(v: &b->hold_count) != 1) {
846 r = false;
847 } else {
848 r = true;
849 rb_erase(&b->node, &bc->trees[cache_index(block: b->block, num_locks: bc->num_locks)].root);
850 lru_remove(lru: &bc->lru[b->list_mode], le: &b->lru);
851 }
852
853 cache_write_unlock(bc, block: b->block);
854
855 return r;
856}
857
858/*--------------*/
859
860typedef void (*b_release)(struct dm_buffer *);
861
862static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
863{
864 struct rb_node *n = root->rb_node;
865 struct dm_buffer *b;
866 struct dm_buffer *best = NULL;
867
868 while (n) {
869 b = container_of(n, struct dm_buffer, node);
870
871 if (b->block == block)
872 return b;
873
874 if (block <= b->block) {
875 n = n->rb_left;
876 best = b;
877 } else {
878 n = n->rb_right;
879 }
880 }
881
882 return best;
883}
884
885static void __remove_range(struct dm_buffer_cache *bc,
886 struct rb_root *root,
887 sector_t begin, sector_t end,
888 b_predicate pred, b_release release)
889{
890 struct dm_buffer *b;
891
892 while (true) {
893 cond_resched();
894
895 b = __find_next(root, block: begin);
896 if (!b || (b->block >= end))
897 break;
898
899 begin = b->block + 1;
900
901 if (atomic_read(v: &b->hold_count))
902 continue;
903
904 if (pred(b, NULL) == ER_EVICT) {
905 rb_erase(&b->node, root);
906 lru_remove(lru: &bc->lru[b->list_mode], le: &b->lru);
907 release(b);
908 }
909 }
910}
911
912static void cache_remove_range(struct dm_buffer_cache *bc,
913 sector_t begin, sector_t end,
914 b_predicate pred, b_release release)
915{
916 unsigned int i;
917
918 for (i = 0; i < bc->num_locks; i++) {
919 down_write(sem: &bc->trees[i].lock);
920 __remove_range(bc, root: &bc->trees[i].root, begin, end, pred, release);
921 up_write(sem: &bc->trees[i].lock);
922 }
923}
924
925/*----------------------------------------------------------------*/
926
927/*
928 * Linking of buffers:
929 * All buffers are linked to buffer_cache with their node field.
930 *
931 * Clean buffers that are not being written (B_WRITING not set)
932 * are linked to lru[LIST_CLEAN] with their lru_list field.
933 *
934 * Dirty and clean buffers that are being written are linked to
935 * lru[LIST_DIRTY] with their lru_list field. When the write
936 * finishes, the buffer cannot be relinked immediately (because we
937 * are in an interrupt context and relinking requires process
938 * context), so some clean-not-writing buffers can be held on
939 * dirty_lru too. They are later added to lru in the process
940 * context.
941 */
942struct dm_bufio_client {
943 struct block_device *bdev;
944 unsigned int block_size;
945 s8 sectors_per_block_bits;
946
947 bool no_sleep;
948 struct mutex lock;
949 spinlock_t spinlock;
950
951 int async_write_error;
952
953 void (*alloc_callback)(struct dm_buffer *buf);
954 void (*write_callback)(struct dm_buffer *buf);
955 struct kmem_cache *slab_buffer;
956 struct kmem_cache *slab_cache;
957 struct dm_io_client *dm_io;
958
959 struct list_head reserved_buffers;
960 unsigned int need_reserved_buffers;
961
962 unsigned int minimum_buffers;
963
964 sector_t start;
965
966 struct shrinker *shrinker;
967 struct work_struct shrink_work;
968 atomic_long_t need_shrink;
969
970 wait_queue_head_t free_buffer_wait;
971
972 struct list_head client_list;
973
974 /*
975 * Used by global_cleanup to sort the clients list.
976 */
977 unsigned long oldest_buffer;
978
979 struct dm_buffer_cache cache; /* must be last member */
980};
981
982static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
983
984/*----------------------------------------------------------------*/
985
986#define dm_bufio_in_request() (!!current->bio_list)
987
988static void dm_bufio_lock(struct dm_bufio_client *c)
989{
990 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
991 spin_lock_bh(lock: &c->spinlock);
992 else
993 mutex_lock_nested(lock: &c->lock, dm_bufio_in_request());
994}
995
996static void dm_bufio_unlock(struct dm_bufio_client *c)
997{
998 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
999 spin_unlock_bh(lock: &c->spinlock);
1000 else
1001 mutex_unlock(lock: &c->lock);
1002}
1003
1004/*----------------------------------------------------------------*/
1005
1006/*
1007 * Default cache size: available memory divided by the ratio.
1008 */
1009static unsigned long dm_bufio_default_cache_size;
1010
1011/*
1012 * Total cache size set by the user.
1013 */
1014static unsigned long dm_bufio_cache_size;
1015
1016/*
1017 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1018 * at any time. If it disagrees, the user has changed cache size.
1019 */
1020static unsigned long dm_bufio_cache_size_latch;
1021
1022static DEFINE_SPINLOCK(global_spinlock);
1023
1024/*
1025 * Buffers are freed after this timeout
1026 */
1027static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1028static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1029
1030static unsigned long dm_bufio_peak_allocated;
1031static unsigned long dm_bufio_allocated_kmem_cache;
1032static unsigned long dm_bufio_allocated_get_free_pages;
1033static unsigned long dm_bufio_allocated_vmalloc;
1034static unsigned long dm_bufio_current_allocated;
1035
1036/*----------------------------------------------------------------*/
1037
1038/*
1039 * The current number of clients.
1040 */
1041static int dm_bufio_client_count;
1042
1043/*
1044 * The list of all clients.
1045 */
1046static LIST_HEAD(dm_bufio_all_clients);
1047
1048/*
1049 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1050 */
1051static DEFINE_MUTEX(dm_bufio_clients_lock);
1052
1053static struct workqueue_struct *dm_bufio_wq;
1054static struct delayed_work dm_bufio_cleanup_old_work;
1055static struct work_struct dm_bufio_replacement_work;
1056
1057
1058#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1059static void buffer_record_stack(struct dm_buffer *b)
1060{
1061 b->stack_len = stack_trace_save(store: b->stack_entries, MAX_STACK, skipnr: 2);
1062}
1063#endif
1064
1065/*----------------------------------------------------------------*/
1066
1067static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1068{
1069 unsigned char data_mode;
1070 long diff;
1071
1072 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1073 &dm_bufio_allocated_kmem_cache,
1074 &dm_bufio_allocated_get_free_pages,
1075 &dm_bufio_allocated_vmalloc,
1076 };
1077
1078 data_mode = b->data_mode;
1079 diff = (long)b->c->block_size;
1080 if (unlink)
1081 diff = -diff;
1082
1083 spin_lock(lock: &global_spinlock);
1084
1085 *class_ptr[data_mode] += diff;
1086
1087 dm_bufio_current_allocated += diff;
1088
1089 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1090 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1091
1092 if (!unlink) {
1093 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1094 queue_work(wq: dm_bufio_wq, work: &dm_bufio_replacement_work);
1095 }
1096
1097 spin_unlock(lock: &global_spinlock);
1098}
1099
1100/*
1101 * Change the number of clients and recalculate per-client limit.
1102 */
1103static void __cache_size_refresh(void)
1104{
1105 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1106 return;
1107 if (WARN_ON(dm_bufio_client_count < 0))
1108 return;
1109
1110 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1111
1112 /*
1113 * Use default if set to 0 and report the actual cache size used.
1114 */
1115 if (!dm_bufio_cache_size_latch) {
1116 (void)cmpxchg(&dm_bufio_cache_size, 0,
1117 dm_bufio_default_cache_size);
1118 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1119 }
1120}
1121
1122/*
1123 * Allocating buffer data.
1124 *
1125 * Small buffers are allocated with kmem_cache, to use space optimally.
1126 *
1127 * For large buffers, we choose between get_free_pages and vmalloc.
1128 * Each has advantages and disadvantages.
1129 *
1130 * __get_free_pages can randomly fail if the memory is fragmented.
1131 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1132 * as low as 128M) so using it for caching is not appropriate.
1133 *
1134 * If the allocation may fail we use __get_free_pages. Memory fragmentation
1135 * won't have a fatal effect here, but it just causes flushes of some other
1136 * buffers and more I/O will be performed. Don't use __get_free_pages if it
1137 * always fails (i.e. order > MAX_ORDER).
1138 *
1139 * If the allocation shouldn't fail we use __vmalloc. This is only for the
1140 * initial reserve allocation, so there's no risk of wasting all vmalloc
1141 * space.
1142 */
1143static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1144 unsigned char *data_mode)
1145{
1146 if (unlikely(c->slab_cache != NULL)) {
1147 *data_mode = DATA_MODE_SLAB;
1148 return kmem_cache_alloc(cachep: c->slab_cache, flags: gfp_mask);
1149 }
1150
1151 if (c->block_size <= KMALLOC_MAX_SIZE &&
1152 gfp_mask & __GFP_NORETRY) {
1153 *data_mode = DATA_MODE_GET_FREE_PAGES;
1154 return (void *)__get_free_pages(gfp_mask,
1155 order: c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1156 }
1157
1158 *data_mode = DATA_MODE_VMALLOC;
1159
1160 return __vmalloc(size: c->block_size, gfp_mask);
1161}
1162
1163/*
1164 * Free buffer's data.
1165 */
1166static void free_buffer_data(struct dm_bufio_client *c,
1167 void *data, unsigned char data_mode)
1168{
1169 switch (data_mode) {
1170 case DATA_MODE_SLAB:
1171 kmem_cache_free(s: c->slab_cache, objp: data);
1172 break;
1173
1174 case DATA_MODE_GET_FREE_PAGES:
1175 free_pages(addr: (unsigned long)data,
1176 order: c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1177 break;
1178
1179 case DATA_MODE_VMALLOC:
1180 vfree(addr: data);
1181 break;
1182
1183 default:
1184 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1185 data_mode);
1186 BUG();
1187 }
1188}
1189
1190/*
1191 * Allocate buffer and its data.
1192 */
1193static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1194{
1195 struct dm_buffer *b = kmem_cache_alloc(cachep: c->slab_buffer, flags: gfp_mask);
1196
1197 if (!b)
1198 return NULL;
1199
1200 b->c = c;
1201
1202 b->data = alloc_buffer_data(c, gfp_mask, data_mode: &b->data_mode);
1203 if (!b->data) {
1204 kmem_cache_free(s: c->slab_buffer, objp: b);
1205 return NULL;
1206 }
1207 adjust_total_allocated(b, unlink: false);
1208
1209#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1210 b->stack_len = 0;
1211#endif
1212 return b;
1213}
1214
1215/*
1216 * Free buffer and its data.
1217 */
1218static void free_buffer(struct dm_buffer *b)
1219{
1220 struct dm_bufio_client *c = b->c;
1221
1222 adjust_total_allocated(b, unlink: true);
1223 free_buffer_data(c, data: b->data, data_mode: b->data_mode);
1224 kmem_cache_free(s: c->slab_buffer, objp: b);
1225}
1226
1227/*
1228 *--------------------------------------------------------------------------
1229 * Submit I/O on the buffer.
1230 *
1231 * Bio interface is faster but it has some problems:
1232 * the vector list is limited (increasing this limit increases
1233 * memory-consumption per buffer, so it is not viable);
1234 *
1235 * the memory must be direct-mapped, not vmalloced;
1236 *
1237 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1238 * it is not vmalloced, try using the bio interface.
1239 *
1240 * If the buffer is big, if it is vmalloced or if the underlying device
1241 * rejects the bio because it is too large, use dm-io layer to do the I/O.
1242 * The dm-io layer splits the I/O into multiple requests, avoiding the above
1243 * shortcomings.
1244 *--------------------------------------------------------------------------
1245 */
1246
1247/*
1248 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1249 * that the request was handled directly with bio interface.
1250 */
1251static void dmio_complete(unsigned long error, void *context)
1252{
1253 struct dm_buffer *b = context;
1254
1255 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1256}
1257
1258static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1259 unsigned int n_sectors, unsigned int offset)
1260{
1261 int r;
1262 struct dm_io_request io_req = {
1263 .bi_opf = op,
1264 .notify.fn = dmio_complete,
1265 .notify.context = b,
1266 .client = b->c->dm_io,
1267 };
1268 struct dm_io_region region = {
1269 .bdev = b->c->bdev,
1270 .sector = sector,
1271 .count = n_sectors,
1272 };
1273
1274 if (b->data_mode != DATA_MODE_VMALLOC) {
1275 io_req.mem.type = DM_IO_KMEM;
1276 io_req.mem.ptr.addr = (char *)b->data + offset;
1277 } else {
1278 io_req.mem.type = DM_IO_VMA;
1279 io_req.mem.ptr.vma = (char *)b->data + offset;
1280 }
1281
1282 r = dm_io(io_req: &io_req, num_regions: 1, region: &region, NULL);
1283 if (unlikely(r))
1284 b->end_io(b, errno_to_blk_status(errno: r));
1285}
1286
1287static void bio_complete(struct bio *bio)
1288{
1289 struct dm_buffer *b = bio->bi_private;
1290 blk_status_t status = bio->bi_status;
1291
1292 bio_uninit(bio);
1293 kfree(objp: bio);
1294 b->end_io(b, status);
1295}
1296
1297static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1298 unsigned int n_sectors, unsigned int offset)
1299{
1300 struct bio *bio;
1301 char *ptr;
1302 unsigned int len;
1303
1304 bio = bio_kmalloc(nr_vecs: 1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1305 if (!bio) {
1306 use_dmio(b, op, sector, n_sectors, offset);
1307 return;
1308 }
1309 bio_init(bio, bdev: b->c->bdev, table: bio->bi_inline_vecs, max_vecs: 1, opf: op);
1310 bio->bi_iter.bi_sector = sector;
1311 bio->bi_end_io = bio_complete;
1312 bio->bi_private = b;
1313
1314 ptr = (char *)b->data + offset;
1315 len = n_sectors << SECTOR_SHIFT;
1316
1317 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1318
1319 submit_bio(bio);
1320}
1321
1322static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1323{
1324 sector_t sector;
1325
1326 if (likely(c->sectors_per_block_bits >= 0))
1327 sector = block << c->sectors_per_block_bits;
1328 else
1329 sector = block * (c->block_size >> SECTOR_SHIFT);
1330 sector += c->start;
1331
1332 return sector;
1333}
1334
1335static void submit_io(struct dm_buffer *b, enum req_op op,
1336 void (*end_io)(struct dm_buffer *, blk_status_t))
1337{
1338 unsigned int n_sectors;
1339 sector_t sector;
1340 unsigned int offset, end;
1341
1342 b->end_io = end_io;
1343
1344 sector = block_to_sector(c: b->c, block: b->block);
1345
1346 if (op != REQ_OP_WRITE) {
1347 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1348 offset = 0;
1349 } else {
1350 if (b->c->write_callback)
1351 b->c->write_callback(b);
1352 offset = b->write_start;
1353 end = b->write_end;
1354 offset &= -DM_BUFIO_WRITE_ALIGN;
1355 end += DM_BUFIO_WRITE_ALIGN - 1;
1356 end &= -DM_BUFIO_WRITE_ALIGN;
1357 if (unlikely(end > b->c->block_size))
1358 end = b->c->block_size;
1359
1360 sector += offset >> SECTOR_SHIFT;
1361 n_sectors = (end - offset) >> SECTOR_SHIFT;
1362 }
1363
1364 if (b->data_mode != DATA_MODE_VMALLOC)
1365 use_bio(b, op, sector, n_sectors, offset);
1366 else
1367 use_dmio(b, op, sector, n_sectors, offset);
1368}
1369
1370/*
1371 *--------------------------------------------------------------
1372 * Writing dirty buffers
1373 *--------------------------------------------------------------
1374 */
1375
1376/*
1377 * The endio routine for write.
1378 *
1379 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1380 * it.
1381 */
1382static void write_endio(struct dm_buffer *b, blk_status_t status)
1383{
1384 b->write_error = status;
1385 if (unlikely(status)) {
1386 struct dm_bufio_client *c = b->c;
1387
1388 (void)cmpxchg(&c->async_write_error, 0,
1389 blk_status_to_errno(status));
1390 }
1391
1392 BUG_ON(!test_bit(B_WRITING, &b->state));
1393
1394 smp_mb__before_atomic();
1395 clear_bit(B_WRITING, addr: &b->state);
1396 smp_mb__after_atomic();
1397
1398 wake_up_bit(word: &b->state, B_WRITING);
1399}
1400
1401/*
1402 * Initiate a write on a dirty buffer, but don't wait for it.
1403 *
1404 * - If the buffer is not dirty, exit.
1405 * - If there some previous write going on, wait for it to finish (we can't
1406 * have two writes on the same buffer simultaneously).
1407 * - Submit our write and don't wait on it. We set B_WRITING indicating
1408 * that there is a write in progress.
1409 */
1410static void __write_dirty_buffer(struct dm_buffer *b,
1411 struct list_head *write_list)
1412{
1413 if (!test_bit(B_DIRTY, &b->state))
1414 return;
1415
1416 clear_bit(B_DIRTY, addr: &b->state);
1417 wait_on_bit_lock_io(word: &b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1418
1419 b->write_start = b->dirty_start;
1420 b->write_end = b->dirty_end;
1421
1422 if (!write_list)
1423 submit_io(b, op: REQ_OP_WRITE, end_io: write_endio);
1424 else
1425 list_add_tail(new: &b->write_list, head: write_list);
1426}
1427
1428static void __flush_write_list(struct list_head *write_list)
1429{
1430 struct blk_plug plug;
1431
1432 blk_start_plug(&plug);
1433 while (!list_empty(head: write_list)) {
1434 struct dm_buffer *b =
1435 list_entry(write_list->next, struct dm_buffer, write_list);
1436 list_del(entry: &b->write_list);
1437 submit_io(b, op: REQ_OP_WRITE, end_io: write_endio);
1438 cond_resched();
1439 }
1440 blk_finish_plug(&plug);
1441}
1442
1443/*
1444 * Wait until any activity on the buffer finishes. Possibly write the
1445 * buffer if it is dirty. When this function finishes, there is no I/O
1446 * running on the buffer and the buffer is not dirty.
1447 */
1448static void __make_buffer_clean(struct dm_buffer *b)
1449{
1450 BUG_ON(atomic_read(&b->hold_count));
1451
1452 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1453 if (!smp_load_acquire(&b->state)) /* fast case */
1454 return;
1455
1456 wait_on_bit_io(word: &b->state, B_READING, TASK_UNINTERRUPTIBLE);
1457 __write_dirty_buffer(b, NULL);
1458 wait_on_bit_io(word: &b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1459}
1460
1461static enum evict_result is_clean(struct dm_buffer *b, void *context)
1462{
1463 struct dm_bufio_client *c = context;
1464
1465 /* These should never happen */
1466 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1467 return ER_DONT_EVICT;
1468 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1469 return ER_DONT_EVICT;
1470 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1471 return ER_DONT_EVICT;
1472
1473 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1474 unlikely(test_bit(B_READING, &b->state)))
1475 return ER_DONT_EVICT;
1476
1477 return ER_EVICT;
1478}
1479
1480static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1481{
1482 /* These should never happen */
1483 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1484 return ER_DONT_EVICT;
1485 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1486 return ER_DONT_EVICT;
1487
1488 return ER_EVICT;
1489}
1490
1491/*
1492 * Find some buffer that is not held by anybody, clean it, unlink it and
1493 * return it.
1494 */
1495static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1496{
1497 struct dm_buffer *b;
1498
1499 b = cache_evict(bc: &c->cache, LIST_CLEAN, pred: is_clean, context: c);
1500 if (b) {
1501 /* this also waits for pending reads */
1502 __make_buffer_clean(b);
1503 return b;
1504 }
1505
1506 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1507 return NULL;
1508
1509 b = cache_evict(bc: &c->cache, LIST_DIRTY, pred: is_dirty, NULL);
1510 if (b) {
1511 __make_buffer_clean(b);
1512 return b;
1513 }
1514
1515 return NULL;
1516}
1517
1518/*
1519 * Wait until some other threads free some buffer or release hold count on
1520 * some buffer.
1521 *
1522 * This function is entered with c->lock held, drops it and regains it
1523 * before exiting.
1524 */
1525static void __wait_for_free_buffer(struct dm_bufio_client *c)
1526{
1527 DECLARE_WAITQUEUE(wait, current);
1528
1529 add_wait_queue(wq_head: &c->free_buffer_wait, wq_entry: &wait);
1530 set_current_state(TASK_UNINTERRUPTIBLE);
1531 dm_bufio_unlock(c);
1532
1533 /*
1534 * It's possible to miss a wake up event since we don't always
1535 * hold c->lock when wake_up is called. So we have a timeout here,
1536 * just in case.
1537 */
1538 io_schedule_timeout(timeout: 5 * HZ);
1539
1540 remove_wait_queue(wq_head: &c->free_buffer_wait, wq_entry: &wait);
1541
1542 dm_bufio_lock(c);
1543}
1544
1545enum new_flag {
1546 NF_FRESH = 0,
1547 NF_READ = 1,
1548 NF_GET = 2,
1549 NF_PREFETCH = 3
1550};
1551
1552/*
1553 * Allocate a new buffer. If the allocation is not possible, wait until
1554 * some other thread frees a buffer.
1555 *
1556 * May drop the lock and regain it.
1557 */
1558static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1559{
1560 struct dm_buffer *b;
1561 bool tried_noio_alloc = false;
1562
1563 /*
1564 * dm-bufio is resistant to allocation failures (it just keeps
1565 * one buffer reserved in cases all the allocations fail).
1566 * So set flags to not try too hard:
1567 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1568 * mutex and wait ourselves.
1569 * __GFP_NORETRY: don't retry and rather return failure
1570 * __GFP_NOMEMALLOC: don't use emergency reserves
1571 * __GFP_NOWARN: don't print a warning in case of failure
1572 *
1573 * For debugging, if we set the cache size to 1, no new buffers will
1574 * be allocated.
1575 */
1576 while (1) {
1577 if (dm_bufio_cache_size_latch != 1) {
1578 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1579 if (b)
1580 return b;
1581 }
1582
1583 if (nf == NF_PREFETCH)
1584 return NULL;
1585
1586 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1587 dm_bufio_unlock(c);
1588 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1589 dm_bufio_lock(c);
1590 if (b)
1591 return b;
1592 tried_noio_alloc = true;
1593 }
1594
1595 if (!list_empty(head: &c->reserved_buffers)) {
1596 b = list_to_buffer(l: c->reserved_buffers.next);
1597 list_del(entry: &b->lru.list);
1598 c->need_reserved_buffers++;
1599
1600 return b;
1601 }
1602
1603 b = __get_unclaimed_buffer(c);
1604 if (b)
1605 return b;
1606
1607 __wait_for_free_buffer(c);
1608 }
1609}
1610
1611static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1612{
1613 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1614
1615 if (!b)
1616 return NULL;
1617
1618 if (c->alloc_callback)
1619 c->alloc_callback(b);
1620
1621 return b;
1622}
1623
1624/*
1625 * Free a buffer and wake other threads waiting for free buffers.
1626 */
1627static void __free_buffer_wake(struct dm_buffer *b)
1628{
1629 struct dm_bufio_client *c = b->c;
1630
1631 b->block = -1;
1632 if (!c->need_reserved_buffers)
1633 free_buffer(b);
1634 else {
1635 list_add(new: &b->lru.list, head: &c->reserved_buffers);
1636 c->need_reserved_buffers--;
1637 }
1638
1639 /*
1640 * We hold the bufio lock here, so no one can add entries to the
1641 * wait queue anyway.
1642 */
1643 if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1644 wake_up(&c->free_buffer_wait);
1645}
1646
1647static enum evict_result cleaned(struct dm_buffer *b, void *context)
1648{
1649 if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1650 return ER_DONT_EVICT; /* should never happen */
1651
1652 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1653 return ER_DONT_EVICT;
1654 else
1655 return ER_EVICT;
1656}
1657
1658static void __move_clean_buffers(struct dm_bufio_client *c)
1659{
1660 cache_mark_many(bc: &c->cache, LIST_DIRTY, LIST_CLEAN, pred: cleaned, NULL);
1661}
1662
1663struct write_context {
1664 int no_wait;
1665 struct list_head *write_list;
1666};
1667
1668static enum it_action write_one(struct dm_buffer *b, void *context)
1669{
1670 struct write_context *wc = context;
1671
1672 if (wc->no_wait && test_bit(B_WRITING, &b->state))
1673 return IT_COMPLETE;
1674
1675 __write_dirty_buffer(b, write_list: wc->write_list);
1676 return IT_NEXT;
1677}
1678
1679static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1680 struct list_head *write_list)
1681{
1682 struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1683
1684 __move_clean_buffers(c);
1685 cache_iterate(bc: &c->cache, LIST_DIRTY, fn: write_one, context: &wc);
1686}
1687
1688/*
1689 * Check if we're over watermark.
1690 * If we are over threshold_buffers, start freeing buffers.
1691 * If we're over "limit_buffers", block until we get under the limit.
1692 */
1693static void __check_watermark(struct dm_bufio_client *c,
1694 struct list_head *write_list)
1695{
1696 if (cache_count(bc: &c->cache, LIST_DIRTY) >
1697 cache_count(bc: &c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1698 __write_dirty_buffers_async(c, no_wait: 1, write_list);
1699}
1700
1701/*
1702 *--------------------------------------------------------------
1703 * Getting a buffer
1704 *--------------------------------------------------------------
1705 */
1706
1707static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1708{
1709 /*
1710 * Relying on waitqueue_active() is racey, but we sleep
1711 * with schedule_timeout anyway.
1712 */
1713 if (cache_put(bc: &c->cache, b) &&
1714 unlikely(waitqueue_active(&c->free_buffer_wait)))
1715 wake_up(&c->free_buffer_wait);
1716}
1717
1718/*
1719 * This assumes you have already checked the cache to see if the buffer
1720 * is already present (it will recheck after dropping the lock for allocation).
1721 */
1722static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1723 enum new_flag nf, int *need_submit,
1724 struct list_head *write_list)
1725{
1726 struct dm_buffer *b, *new_b = NULL;
1727
1728 *need_submit = 0;
1729
1730 /* This can't be called with NF_GET */
1731 if (WARN_ON_ONCE(nf == NF_GET))
1732 return NULL;
1733
1734 new_b = __alloc_buffer_wait(c, nf);
1735 if (!new_b)
1736 return NULL;
1737
1738 /*
1739 * We've had a period where the mutex was unlocked, so need to
1740 * recheck the buffer tree.
1741 */
1742 b = cache_get(bc: &c->cache, block);
1743 if (b) {
1744 __free_buffer_wake(b: new_b);
1745 goto found_buffer;
1746 }
1747
1748 __check_watermark(c, write_list);
1749
1750 b = new_b;
1751 atomic_set(v: &b->hold_count, i: 1);
1752 WRITE_ONCE(b->last_accessed, jiffies);
1753 b->block = block;
1754 b->read_error = 0;
1755 b->write_error = 0;
1756 b->list_mode = LIST_CLEAN;
1757
1758 if (nf == NF_FRESH)
1759 b->state = 0;
1760 else {
1761 b->state = 1 << B_READING;
1762 *need_submit = 1;
1763 }
1764
1765 /*
1766 * We mustn't insert into the cache until the B_READING state
1767 * is set. Otherwise another thread could get it and use
1768 * it before it had been read.
1769 */
1770 cache_insert(bc: &c->cache, b);
1771
1772 return b;
1773
1774found_buffer:
1775 if (nf == NF_PREFETCH) {
1776 cache_put_and_wake(c, b);
1777 return NULL;
1778 }
1779
1780 /*
1781 * Note: it is essential that we don't wait for the buffer to be
1782 * read if dm_bufio_get function is used. Both dm_bufio_get and
1783 * dm_bufio_prefetch can be used in the driver request routine.
1784 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1785 * the same buffer, it would deadlock if we waited.
1786 */
1787 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1788 cache_put_and_wake(c, b);
1789 return NULL;
1790 }
1791
1792 return b;
1793}
1794
1795/*
1796 * The endio routine for reading: set the error, clear the bit and wake up
1797 * anyone waiting on the buffer.
1798 */
1799static void read_endio(struct dm_buffer *b, blk_status_t status)
1800{
1801 b->read_error = status;
1802
1803 BUG_ON(!test_bit(B_READING, &b->state));
1804
1805 smp_mb__before_atomic();
1806 clear_bit(B_READING, addr: &b->state);
1807 smp_mb__after_atomic();
1808
1809 wake_up_bit(word: &b->state, B_READING);
1810}
1811
1812/*
1813 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1814 * functions is similar except that dm_bufio_new doesn't read the
1815 * buffer from the disk (assuming that the caller overwrites all the data
1816 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1817 */
1818static void *new_read(struct dm_bufio_client *c, sector_t block,
1819 enum new_flag nf, struct dm_buffer **bp)
1820{
1821 int need_submit = 0;
1822 struct dm_buffer *b;
1823
1824 LIST_HEAD(write_list);
1825
1826 *bp = NULL;
1827
1828 /*
1829 * Fast path, hopefully the block is already in the cache. No need
1830 * to get the client lock for this.
1831 */
1832 b = cache_get(bc: &c->cache, block);
1833 if (b) {
1834 if (nf == NF_PREFETCH) {
1835 cache_put_and_wake(c, b);
1836 return NULL;
1837 }
1838
1839 /*
1840 * Note: it is essential that we don't wait for the buffer to be
1841 * read if dm_bufio_get function is used. Both dm_bufio_get and
1842 * dm_bufio_prefetch can be used in the driver request routine.
1843 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1844 * the same buffer, it would deadlock if we waited.
1845 */
1846 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1847 cache_put_and_wake(c, b);
1848 return NULL;
1849 }
1850 }
1851
1852 if (!b) {
1853 if (nf == NF_GET)
1854 return NULL;
1855
1856 dm_bufio_lock(c);
1857 b = __bufio_new(c, block, nf, need_submit: &need_submit, write_list: &write_list);
1858 dm_bufio_unlock(c);
1859 }
1860
1861#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1862 if (b && (atomic_read(v: &b->hold_count) == 1))
1863 buffer_record_stack(b);
1864#endif
1865
1866 __flush_write_list(write_list: &write_list);
1867
1868 if (!b)
1869 return NULL;
1870
1871 if (need_submit)
1872 submit_io(b, op: REQ_OP_READ, end_io: read_endio);
1873
1874 wait_on_bit_io(word: &b->state, B_READING, TASK_UNINTERRUPTIBLE);
1875
1876 if (b->read_error) {
1877 int error = blk_status_to_errno(status: b->read_error);
1878
1879 dm_bufio_release(b);
1880
1881 return ERR_PTR(error);
1882 }
1883
1884 *bp = b;
1885
1886 return b->data;
1887}
1888
1889void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1890 struct dm_buffer **bp)
1891{
1892 return new_read(c, block, nf: NF_GET, bp);
1893}
1894EXPORT_SYMBOL_GPL(dm_bufio_get);
1895
1896void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1897 struct dm_buffer **bp)
1898{
1899 if (WARN_ON_ONCE(dm_bufio_in_request()))
1900 return ERR_PTR(error: -EINVAL);
1901
1902 return new_read(c, block, nf: NF_READ, bp);
1903}
1904EXPORT_SYMBOL_GPL(dm_bufio_read);
1905
1906void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1907 struct dm_buffer **bp)
1908{
1909 if (WARN_ON_ONCE(dm_bufio_in_request()))
1910 return ERR_PTR(error: -EINVAL);
1911
1912 return new_read(c, block, nf: NF_FRESH, bp);
1913}
1914EXPORT_SYMBOL_GPL(dm_bufio_new);
1915
1916void dm_bufio_prefetch(struct dm_bufio_client *c,
1917 sector_t block, unsigned int n_blocks)
1918{
1919 struct blk_plug plug;
1920
1921 LIST_HEAD(write_list);
1922
1923 if (WARN_ON_ONCE(dm_bufio_in_request()))
1924 return; /* should never happen */
1925
1926 blk_start_plug(&plug);
1927
1928 for (; n_blocks--; block++) {
1929 int need_submit;
1930 struct dm_buffer *b;
1931
1932 b = cache_get(bc: &c->cache, block);
1933 if (b) {
1934 /* already in cache */
1935 cache_put_and_wake(c, b);
1936 continue;
1937 }
1938
1939 dm_bufio_lock(c);
1940 b = __bufio_new(c, block, nf: NF_PREFETCH, need_submit: &need_submit,
1941 write_list: &write_list);
1942 if (unlikely(!list_empty(&write_list))) {
1943 dm_bufio_unlock(c);
1944 blk_finish_plug(&plug);
1945 __flush_write_list(write_list: &write_list);
1946 blk_start_plug(&plug);
1947 dm_bufio_lock(c);
1948 }
1949 if (unlikely(b != NULL)) {
1950 dm_bufio_unlock(c);
1951
1952 if (need_submit)
1953 submit_io(b, op: REQ_OP_READ, end_io: read_endio);
1954 dm_bufio_release(b);
1955
1956 cond_resched();
1957
1958 if (!n_blocks)
1959 goto flush_plug;
1960 dm_bufio_lock(c);
1961 }
1962 dm_bufio_unlock(c);
1963 }
1964
1965flush_plug:
1966 blk_finish_plug(&plug);
1967}
1968EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1969
1970void dm_bufio_release(struct dm_buffer *b)
1971{
1972 struct dm_bufio_client *c = b->c;
1973
1974 /*
1975 * If there were errors on the buffer, and the buffer is not
1976 * to be written, free the buffer. There is no point in caching
1977 * invalid buffer.
1978 */
1979 if ((b->read_error || b->write_error) &&
1980 !test_bit_acquire(B_READING, &b->state) &&
1981 !test_bit(B_WRITING, &b->state) &&
1982 !test_bit(B_DIRTY, &b->state)) {
1983 dm_bufio_lock(c);
1984
1985 /* cache remove can fail if there are other holders */
1986 if (cache_remove(bc: &c->cache, b)) {
1987 __free_buffer_wake(b);
1988 dm_bufio_unlock(c);
1989 return;
1990 }
1991
1992 dm_bufio_unlock(c);
1993 }
1994
1995 cache_put_and_wake(c, b);
1996}
1997EXPORT_SYMBOL_GPL(dm_bufio_release);
1998
1999void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2000 unsigned int start, unsigned int end)
2001{
2002 struct dm_bufio_client *c = b->c;
2003
2004 BUG_ON(start >= end);
2005 BUG_ON(end > b->c->block_size);
2006
2007 dm_bufio_lock(c);
2008
2009 BUG_ON(test_bit(B_READING, &b->state));
2010
2011 if (!test_and_set_bit(B_DIRTY, addr: &b->state)) {
2012 b->dirty_start = start;
2013 b->dirty_end = end;
2014 cache_mark(bc: &c->cache, b, LIST_DIRTY);
2015 } else {
2016 if (start < b->dirty_start)
2017 b->dirty_start = start;
2018 if (end > b->dirty_end)
2019 b->dirty_end = end;
2020 }
2021
2022 dm_bufio_unlock(c);
2023}
2024EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2025
2026void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2027{
2028 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2029}
2030EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2031
2032void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2033{
2034 LIST_HEAD(write_list);
2035
2036 if (WARN_ON_ONCE(dm_bufio_in_request()))
2037 return; /* should never happen */
2038
2039 dm_bufio_lock(c);
2040 __write_dirty_buffers_async(c, no_wait: 0, write_list: &write_list);
2041 dm_bufio_unlock(c);
2042 __flush_write_list(write_list: &write_list);
2043}
2044EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2045
2046/*
2047 * For performance, it is essential that the buffers are written asynchronously
2048 * and simultaneously (so that the block layer can merge the writes) and then
2049 * waited upon.
2050 *
2051 * Finally, we flush hardware disk cache.
2052 */
2053static bool is_writing(struct lru_entry *e, void *context)
2054{
2055 struct dm_buffer *b = le_to_buffer(le: e);
2056
2057 return test_bit(B_WRITING, &b->state);
2058}
2059
2060int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2061{
2062 int a, f;
2063 unsigned long nr_buffers;
2064 struct lru_entry *e;
2065 struct lru_iter it;
2066
2067 LIST_HEAD(write_list);
2068
2069 dm_bufio_lock(c);
2070 __write_dirty_buffers_async(c, no_wait: 0, write_list: &write_list);
2071 dm_bufio_unlock(c);
2072 __flush_write_list(write_list: &write_list);
2073 dm_bufio_lock(c);
2074
2075 nr_buffers = cache_count(bc: &c->cache, LIST_DIRTY);
2076 lru_iter_begin(lru: &c->cache.lru[LIST_DIRTY], it: &it);
2077 while ((e = lru_iter_next(it: &it, pred: is_writing, context: c))) {
2078 struct dm_buffer *b = le_to_buffer(le: e);
2079 __cache_inc_buffer(b);
2080
2081 BUG_ON(test_bit(B_READING, &b->state));
2082
2083 if (nr_buffers) {
2084 nr_buffers--;
2085 dm_bufio_unlock(c);
2086 wait_on_bit_io(word: &b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2087 dm_bufio_lock(c);
2088 } else {
2089 wait_on_bit_io(word: &b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2090 }
2091
2092 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2093 cache_mark(bc: &c->cache, b, LIST_CLEAN);
2094
2095 cache_put_and_wake(c, b);
2096
2097 cond_resched();
2098 }
2099 lru_iter_end(it: &it);
2100
2101 wake_up(&c->free_buffer_wait);
2102 dm_bufio_unlock(c);
2103
2104 a = xchg(&c->async_write_error, 0);
2105 f = dm_bufio_issue_flush(c);
2106 if (a)
2107 return a;
2108
2109 return f;
2110}
2111EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2112
2113/*
2114 * Use dm-io to send an empty barrier to flush the device.
2115 */
2116int dm_bufio_issue_flush(struct dm_bufio_client *c)
2117{
2118 struct dm_io_request io_req = {
2119 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2120 .mem.type = DM_IO_KMEM,
2121 .mem.ptr.addr = NULL,
2122 .client = c->dm_io,
2123 };
2124 struct dm_io_region io_reg = {
2125 .bdev = c->bdev,
2126 .sector = 0,
2127 .count = 0,
2128 };
2129
2130 if (WARN_ON_ONCE(dm_bufio_in_request()))
2131 return -EINVAL;
2132
2133 return dm_io(io_req: &io_req, num_regions: 1, region: &io_reg, NULL);
2134}
2135EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2136
2137/*
2138 * Use dm-io to send a discard request to flush the device.
2139 */
2140int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2141{
2142 struct dm_io_request io_req = {
2143 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2144 .mem.type = DM_IO_KMEM,
2145 .mem.ptr.addr = NULL,
2146 .client = c->dm_io,
2147 };
2148 struct dm_io_region io_reg = {
2149 .bdev = c->bdev,
2150 .sector = block_to_sector(c, block),
2151 .count = block_to_sector(c, block: count),
2152 };
2153
2154 if (WARN_ON_ONCE(dm_bufio_in_request()))
2155 return -EINVAL; /* discards are optional */
2156
2157 return dm_io(io_req: &io_req, num_regions: 1, region: &io_reg, NULL);
2158}
2159EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2160
2161static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2162{
2163 struct dm_buffer *b;
2164
2165 b = cache_get(bc: &c->cache, block);
2166 if (b) {
2167 if (likely(!smp_load_acquire(&b->state))) {
2168 if (cache_remove(bc: &c->cache, b))
2169 __free_buffer_wake(b);
2170 else
2171 cache_put_and_wake(c, b);
2172 } else {
2173 cache_put_and_wake(c, b);
2174 }
2175 }
2176
2177 return b ? true : false;
2178}
2179
2180/*
2181 * Free the given buffer.
2182 *
2183 * This is just a hint, if the buffer is in use or dirty, this function
2184 * does nothing.
2185 */
2186void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2187{
2188 dm_bufio_lock(c);
2189 forget_buffer(c, block);
2190 dm_bufio_unlock(c);
2191}
2192EXPORT_SYMBOL_GPL(dm_bufio_forget);
2193
2194static enum evict_result idle(struct dm_buffer *b, void *context)
2195{
2196 return b->state ? ER_DONT_EVICT : ER_EVICT;
2197}
2198
2199void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2200{
2201 dm_bufio_lock(c);
2202 cache_remove_range(bc: &c->cache, begin: block, end: block + n_blocks, pred: idle, release: __free_buffer_wake);
2203 dm_bufio_unlock(c);
2204}
2205EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2206
2207void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2208{
2209 c->minimum_buffers = n;
2210}
2211EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2212
2213unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2214{
2215 return c->block_size;
2216}
2217EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2218
2219sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2220{
2221 sector_t s = bdev_nr_sectors(bdev: c->bdev);
2222
2223 if (s >= c->start)
2224 s -= c->start;
2225 else
2226 s = 0;
2227 if (likely(c->sectors_per_block_bits >= 0))
2228 s >>= c->sectors_per_block_bits;
2229 else
2230 sector_div(s, c->block_size >> SECTOR_SHIFT);
2231 return s;
2232}
2233EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2234
2235struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2236{
2237 return c->dm_io;
2238}
2239EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2240
2241sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2242{
2243 return b->block;
2244}
2245EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2246
2247void *dm_bufio_get_block_data(struct dm_buffer *b)
2248{
2249 return b->data;
2250}
2251EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2252
2253void *dm_bufio_get_aux_data(struct dm_buffer *b)
2254{
2255 return b + 1;
2256}
2257EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2258
2259struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2260{
2261 return b->c;
2262}
2263EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2264
2265static enum it_action warn_leak(struct dm_buffer *b, void *context)
2266{
2267 bool *warned = context;
2268
2269 WARN_ON(!(*warned));
2270 *warned = true;
2271 DMERR("leaked buffer %llx, hold count %u, list %d",
2272 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2273#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2274 stack_trace_print(trace: b->stack_entries, nr_entries: b->stack_len, spaces: 1);
2275 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2276 atomic_set(v: &b->hold_count, i: 0);
2277#endif
2278 return IT_NEXT;
2279}
2280
2281static void drop_buffers(struct dm_bufio_client *c)
2282{
2283 int i;
2284 struct dm_buffer *b;
2285
2286 if (WARN_ON(dm_bufio_in_request()))
2287 return; /* should never happen */
2288
2289 /*
2290 * An optimization so that the buffers are not written one-by-one.
2291 */
2292 dm_bufio_write_dirty_buffers_async(c);
2293
2294 dm_bufio_lock(c);
2295
2296 while ((b = __get_unclaimed_buffer(c)))
2297 __free_buffer_wake(b);
2298
2299 for (i = 0; i < LIST_SIZE; i++) {
2300 bool warned = false;
2301
2302 cache_iterate(bc: &c->cache, list_mode: i, fn: warn_leak, context: &warned);
2303 }
2304
2305#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2306 while ((b = __get_unclaimed_buffer(c)))
2307 __free_buffer_wake(b);
2308#endif
2309
2310 for (i = 0; i < LIST_SIZE; i++)
2311 WARN_ON(cache_count(&c->cache, i));
2312
2313 dm_bufio_unlock(c);
2314}
2315
2316static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2317{
2318 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2319
2320 if (likely(c->sectors_per_block_bits >= 0))
2321 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2322 else
2323 retain_bytes /= c->block_size;
2324
2325 return retain_bytes;
2326}
2327
2328static void __scan(struct dm_bufio_client *c)
2329{
2330 int l;
2331 struct dm_buffer *b;
2332 unsigned long freed = 0;
2333 unsigned long retain_target = get_retain_buffers(c);
2334 unsigned long count = cache_total(bc: &c->cache);
2335
2336 for (l = 0; l < LIST_SIZE; l++) {
2337 while (true) {
2338 if (count - freed <= retain_target)
2339 atomic_long_set(v: &c->need_shrink, i: 0);
2340 if (!atomic_long_read(v: &c->need_shrink))
2341 break;
2342
2343 b = cache_evict(bc: &c->cache, list_mode: l,
2344 pred: l == LIST_CLEAN ? is_clean : is_dirty, context: c);
2345 if (!b)
2346 break;
2347
2348 __make_buffer_clean(b);
2349 __free_buffer_wake(b);
2350
2351 atomic_long_dec(v: &c->need_shrink);
2352 freed++;
2353 cond_resched();
2354 }
2355 }
2356}
2357
2358static void shrink_work(struct work_struct *w)
2359{
2360 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2361
2362 dm_bufio_lock(c);
2363 __scan(c);
2364 dm_bufio_unlock(c);
2365}
2366
2367static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2368{
2369 struct dm_bufio_client *c;
2370
2371 c = shrink->private_data;
2372 atomic_long_add(i: sc->nr_to_scan, v: &c->need_shrink);
2373 queue_work(wq: dm_bufio_wq, work: &c->shrink_work);
2374
2375 return sc->nr_to_scan;
2376}
2377
2378static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2379{
2380 struct dm_bufio_client *c = shrink->private_data;
2381 unsigned long count = cache_total(bc: &c->cache);
2382 unsigned long retain_target = get_retain_buffers(c);
2383 unsigned long queued_for_cleanup = atomic_long_read(v: &c->need_shrink);
2384
2385 if (unlikely(count < retain_target))
2386 count = 0;
2387 else
2388 count -= retain_target;
2389
2390 if (unlikely(count < queued_for_cleanup))
2391 count = 0;
2392 else
2393 count -= queued_for_cleanup;
2394
2395 return count;
2396}
2397
2398/*
2399 * Create the buffering interface
2400 */
2401struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2402 unsigned int reserved_buffers, unsigned int aux_size,
2403 void (*alloc_callback)(struct dm_buffer *),
2404 void (*write_callback)(struct dm_buffer *),
2405 unsigned int flags)
2406{
2407 int r;
2408 unsigned int num_locks;
2409 struct dm_bufio_client *c;
2410 char slab_name[27];
2411
2412 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2413 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2414 r = -EINVAL;
2415 goto bad_client;
2416 }
2417
2418 num_locks = dm_num_hash_locks();
2419 c = kzalloc(size: sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2420 if (!c) {
2421 r = -ENOMEM;
2422 goto bad_client;
2423 }
2424 cache_init(bc: &c->cache, num_locks);
2425
2426 c->bdev = bdev;
2427 c->block_size = block_size;
2428 if (is_power_of_2(n: block_size))
2429 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2430 else
2431 c->sectors_per_block_bits = -1;
2432
2433 c->alloc_callback = alloc_callback;
2434 c->write_callback = write_callback;
2435
2436 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2437 c->no_sleep = true;
2438 static_branch_inc(&no_sleep_enabled);
2439 }
2440
2441 mutex_init(&c->lock);
2442 spin_lock_init(&c->spinlock);
2443 INIT_LIST_HEAD(list: &c->reserved_buffers);
2444 c->need_reserved_buffers = reserved_buffers;
2445
2446 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2447
2448 init_waitqueue_head(&c->free_buffer_wait);
2449 c->async_write_error = 0;
2450
2451 c->dm_io = dm_io_client_create();
2452 if (IS_ERR(ptr: c->dm_io)) {
2453 r = PTR_ERR(ptr: c->dm_io);
2454 goto bad_dm_io;
2455 }
2456
2457 if (block_size <= KMALLOC_MAX_SIZE &&
2458 (block_size < PAGE_SIZE || !is_power_of_2(n: block_size))) {
2459 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2460
2461 snprintf(buf: slab_name, size: sizeof(slab_name), fmt: "dm_bufio_cache-%u", block_size);
2462 c->slab_cache = kmem_cache_create(name: slab_name, size: block_size, align,
2463 SLAB_RECLAIM_ACCOUNT, NULL);
2464 if (!c->slab_cache) {
2465 r = -ENOMEM;
2466 goto bad;
2467 }
2468 }
2469 if (aux_size)
2470 snprintf(buf: slab_name, size: sizeof(slab_name), fmt: "dm_bufio_buffer-%u", aux_size);
2471 else
2472 snprintf(buf: slab_name, size: sizeof(slab_name), fmt: "dm_bufio_buffer");
2473 c->slab_buffer = kmem_cache_create(name: slab_name, size: sizeof(struct dm_buffer) + aux_size,
2474 align: 0, SLAB_RECLAIM_ACCOUNT, NULL);
2475 if (!c->slab_buffer) {
2476 r = -ENOMEM;
2477 goto bad;
2478 }
2479
2480 while (c->need_reserved_buffers) {
2481 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2482
2483 if (!b) {
2484 r = -ENOMEM;
2485 goto bad;
2486 }
2487 __free_buffer_wake(b);
2488 }
2489
2490 INIT_WORK(&c->shrink_work, shrink_work);
2491 atomic_long_set(v: &c->need_shrink, i: 0);
2492
2493 c->shrinker = shrinker_alloc(flags: 0, fmt: "dm-bufio:(%u:%u)",
2494 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2495 if (!c->shrinker) {
2496 r = -ENOMEM;
2497 goto bad;
2498 }
2499
2500 c->shrinker->count_objects = dm_bufio_shrink_count;
2501 c->shrinker->scan_objects = dm_bufio_shrink_scan;
2502 c->shrinker->seeks = 1;
2503 c->shrinker->batch = 0;
2504 c->shrinker->private_data = c;
2505
2506 shrinker_register(shrinker: c->shrinker);
2507
2508 mutex_lock(&dm_bufio_clients_lock);
2509 dm_bufio_client_count++;
2510 list_add(new: &c->client_list, head: &dm_bufio_all_clients);
2511 __cache_size_refresh();
2512 mutex_unlock(lock: &dm_bufio_clients_lock);
2513
2514 return c;
2515
2516bad:
2517 while (!list_empty(head: &c->reserved_buffers)) {
2518 struct dm_buffer *b = list_to_buffer(l: c->reserved_buffers.next);
2519
2520 list_del(entry: &b->lru.list);
2521 free_buffer(b);
2522 }
2523 kmem_cache_destroy(s: c->slab_cache);
2524 kmem_cache_destroy(s: c->slab_buffer);
2525 dm_io_client_destroy(client: c->dm_io);
2526bad_dm_io:
2527 mutex_destroy(lock: &c->lock);
2528 if (c->no_sleep)
2529 static_branch_dec(&no_sleep_enabled);
2530 kfree(objp: c);
2531bad_client:
2532 return ERR_PTR(error: r);
2533}
2534EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2535
2536/*
2537 * Free the buffering interface.
2538 * It is required that there are no references on any buffers.
2539 */
2540void dm_bufio_client_destroy(struct dm_bufio_client *c)
2541{
2542 unsigned int i;
2543
2544 drop_buffers(c);
2545
2546 shrinker_free(shrinker: c->shrinker);
2547 flush_work(work: &c->shrink_work);
2548
2549 mutex_lock(&dm_bufio_clients_lock);
2550
2551 list_del(entry: &c->client_list);
2552 dm_bufio_client_count--;
2553 __cache_size_refresh();
2554
2555 mutex_unlock(lock: &dm_bufio_clients_lock);
2556
2557 WARN_ON(c->need_reserved_buffers);
2558
2559 while (!list_empty(head: &c->reserved_buffers)) {
2560 struct dm_buffer *b = list_to_buffer(l: c->reserved_buffers.next);
2561
2562 list_del(entry: &b->lru.list);
2563 free_buffer(b);
2564 }
2565
2566 for (i = 0; i < LIST_SIZE; i++)
2567 if (cache_count(bc: &c->cache, list_mode: i))
2568 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2569
2570 for (i = 0; i < LIST_SIZE; i++)
2571 WARN_ON(cache_count(&c->cache, i));
2572
2573 cache_destroy(bc: &c->cache);
2574 kmem_cache_destroy(s: c->slab_cache);
2575 kmem_cache_destroy(s: c->slab_buffer);
2576 dm_io_client_destroy(client: c->dm_io);
2577 mutex_destroy(lock: &c->lock);
2578 if (c->no_sleep)
2579 static_branch_dec(&no_sleep_enabled);
2580 kfree(objp: c);
2581}
2582EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2583
2584void dm_bufio_client_reset(struct dm_bufio_client *c)
2585{
2586 drop_buffers(c);
2587 flush_work(work: &c->shrink_work);
2588}
2589EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2590
2591void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2592{
2593 c->start = start;
2594}
2595EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2596
2597/*--------------------------------------------------------------*/
2598
2599static unsigned int get_max_age_hz(void)
2600{
2601 unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2602
2603 if (max_age > UINT_MAX / HZ)
2604 max_age = UINT_MAX / HZ;
2605
2606 return max_age * HZ;
2607}
2608
2609static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2610{
2611 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2612}
2613
2614struct evict_params {
2615 gfp_t gfp;
2616 unsigned long age_hz;
2617
2618 /*
2619 * This gets updated with the largest last_accessed (ie. most
2620 * recently used) of the evicted buffers. It will not be reinitialised
2621 * by __evict_many(), so you can use it across multiple invocations.
2622 */
2623 unsigned long last_accessed;
2624};
2625
2626/*
2627 * We may not be able to evict this buffer if IO pending or the client
2628 * is still using it.
2629 *
2630 * And if GFP_NOFS is used, we must not do any I/O because we hold
2631 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2632 * rerouted to different bufio client.
2633 */
2634static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2635{
2636 struct evict_params *params = context;
2637
2638 if (!(params->gfp & __GFP_FS) ||
2639 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2640 if (test_bit_acquire(B_READING, &b->state) ||
2641 test_bit(B_WRITING, &b->state) ||
2642 test_bit(B_DIRTY, &b->state))
2643 return ER_DONT_EVICT;
2644 }
2645
2646 return older_than(b, age_hz: params->age_hz) ? ER_EVICT : ER_STOP;
2647}
2648
2649static unsigned long __evict_many(struct dm_bufio_client *c,
2650 struct evict_params *params,
2651 int list_mode, unsigned long max_count)
2652{
2653 unsigned long count;
2654 unsigned long last_accessed;
2655 struct dm_buffer *b;
2656
2657 for (count = 0; count < max_count; count++) {
2658 b = cache_evict(bc: &c->cache, list_mode, pred: select_for_evict, context: params);
2659 if (!b)
2660 break;
2661
2662 last_accessed = READ_ONCE(b->last_accessed);
2663 if (time_after_eq(params->last_accessed, last_accessed))
2664 params->last_accessed = last_accessed;
2665
2666 __make_buffer_clean(b);
2667 __free_buffer_wake(b);
2668
2669 cond_resched();
2670 }
2671
2672 return count;
2673}
2674
2675static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2676{
2677 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2678 unsigned long retain = get_retain_buffers(c);
2679 unsigned long count;
2680 LIST_HEAD(write_list);
2681
2682 dm_bufio_lock(c);
2683
2684 __check_watermark(c, write_list: &write_list);
2685 if (unlikely(!list_empty(&write_list))) {
2686 dm_bufio_unlock(c);
2687 __flush_write_list(write_list: &write_list);
2688 dm_bufio_lock(c);
2689 }
2690
2691 count = cache_total(bc: &c->cache);
2692 if (count > retain)
2693 __evict_many(c, params: &params, LIST_CLEAN, max_count: count - retain);
2694
2695 dm_bufio_unlock(c);
2696}
2697
2698static void cleanup_old_buffers(void)
2699{
2700 unsigned long max_age_hz = get_max_age_hz();
2701 struct dm_bufio_client *c;
2702
2703 mutex_lock(&dm_bufio_clients_lock);
2704
2705 __cache_size_refresh();
2706
2707 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2708 evict_old_buffers(c, age_hz: max_age_hz);
2709
2710 mutex_unlock(lock: &dm_bufio_clients_lock);
2711}
2712
2713static void work_fn(struct work_struct *w)
2714{
2715 cleanup_old_buffers();
2716
2717 queue_delayed_work(wq: dm_bufio_wq, dwork: &dm_bufio_cleanup_old_work,
2718 DM_BUFIO_WORK_TIMER_SECS * HZ);
2719}
2720
2721/*--------------------------------------------------------------*/
2722
2723/*
2724 * Global cleanup tries to evict the oldest buffers from across _all_
2725 * the clients. It does this by repeatedly evicting a few buffers from
2726 * the client that holds the oldest buffer. It's approximate, but hopefully
2727 * good enough.
2728 */
2729static struct dm_bufio_client *__pop_client(void)
2730{
2731 struct list_head *h;
2732
2733 if (list_empty(head: &dm_bufio_all_clients))
2734 return NULL;
2735
2736 h = dm_bufio_all_clients.next;
2737 list_del(entry: h);
2738 return container_of(h, struct dm_bufio_client, client_list);
2739}
2740
2741/*
2742 * Inserts the client in the global client list based on its
2743 * 'oldest_buffer' field.
2744 */
2745static void __insert_client(struct dm_bufio_client *new_client)
2746{
2747 struct dm_bufio_client *c;
2748 struct list_head *h = dm_bufio_all_clients.next;
2749
2750 while (h != &dm_bufio_all_clients) {
2751 c = container_of(h, struct dm_bufio_client, client_list);
2752 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2753 break;
2754 h = h->next;
2755 }
2756
2757 list_add_tail(new: &new_client->client_list, head: h);
2758}
2759
2760static unsigned long __evict_a_few(unsigned long nr_buffers)
2761{
2762 unsigned long count;
2763 struct dm_bufio_client *c;
2764 struct evict_params params = {
2765 .gfp = GFP_KERNEL,
2766 .age_hz = 0,
2767 /* set to jiffies in case there are no buffers in this client */
2768 .last_accessed = jiffies
2769 };
2770
2771 c = __pop_client();
2772 if (!c)
2773 return 0;
2774
2775 dm_bufio_lock(c);
2776 count = __evict_many(c, params: &params, LIST_CLEAN, max_count: nr_buffers);
2777 dm_bufio_unlock(c);
2778
2779 if (count)
2780 c->oldest_buffer = params.last_accessed;
2781 __insert_client(new_client: c);
2782
2783 return count;
2784}
2785
2786static void check_watermarks(void)
2787{
2788 LIST_HEAD(write_list);
2789 struct dm_bufio_client *c;
2790
2791 mutex_lock(&dm_bufio_clients_lock);
2792 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2793 dm_bufio_lock(c);
2794 __check_watermark(c, write_list: &write_list);
2795 dm_bufio_unlock(c);
2796 }
2797 mutex_unlock(lock: &dm_bufio_clients_lock);
2798
2799 __flush_write_list(write_list: &write_list);
2800}
2801
2802static void evict_old(void)
2803{
2804 unsigned long threshold = dm_bufio_cache_size -
2805 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2806
2807 mutex_lock(&dm_bufio_clients_lock);
2808 while (dm_bufio_current_allocated > threshold) {
2809 if (!__evict_a_few(nr_buffers: 64))
2810 break;
2811 cond_resched();
2812 }
2813 mutex_unlock(lock: &dm_bufio_clients_lock);
2814}
2815
2816static void do_global_cleanup(struct work_struct *w)
2817{
2818 check_watermarks();
2819 evict_old();
2820}
2821
2822/*
2823 *--------------------------------------------------------------
2824 * Module setup
2825 *--------------------------------------------------------------
2826 */
2827
2828/*
2829 * This is called only once for the whole dm_bufio module.
2830 * It initializes memory limit.
2831 */
2832static int __init dm_bufio_init(void)
2833{
2834 __u64 mem;
2835
2836 dm_bufio_allocated_kmem_cache = 0;
2837 dm_bufio_allocated_get_free_pages = 0;
2838 dm_bufio_allocated_vmalloc = 0;
2839 dm_bufio_current_allocated = 0;
2840
2841 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2842 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2843
2844 if (mem > ULONG_MAX)
2845 mem = ULONG_MAX;
2846
2847#ifdef CONFIG_MMU
2848 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2849 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2850#endif
2851
2852 dm_bufio_default_cache_size = mem;
2853
2854 mutex_lock(&dm_bufio_clients_lock);
2855 __cache_size_refresh();
2856 mutex_unlock(lock: &dm_bufio_clients_lock);
2857
2858 dm_bufio_wq = alloc_workqueue(fmt: "dm_bufio_cache", flags: WQ_MEM_RECLAIM, max_active: 0);
2859 if (!dm_bufio_wq)
2860 return -ENOMEM;
2861
2862 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2863 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2864 queue_delayed_work(wq: dm_bufio_wq, dwork: &dm_bufio_cleanup_old_work,
2865 DM_BUFIO_WORK_TIMER_SECS * HZ);
2866
2867 return 0;
2868}
2869
2870/*
2871 * This is called once when unloading the dm_bufio module.
2872 */
2873static void __exit dm_bufio_exit(void)
2874{
2875 int bug = 0;
2876
2877 cancel_delayed_work_sync(dwork: &dm_bufio_cleanup_old_work);
2878 destroy_workqueue(wq: dm_bufio_wq);
2879
2880 if (dm_bufio_client_count) {
2881 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2882 __func__, dm_bufio_client_count);
2883 bug = 1;
2884 }
2885
2886 if (dm_bufio_current_allocated) {
2887 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2888 __func__, dm_bufio_current_allocated);
2889 bug = 1;
2890 }
2891
2892 if (dm_bufio_allocated_get_free_pages) {
2893 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2894 __func__, dm_bufio_allocated_get_free_pages);
2895 bug = 1;
2896 }
2897
2898 if (dm_bufio_allocated_vmalloc) {
2899 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2900 __func__, dm_bufio_allocated_vmalloc);
2901 bug = 1;
2902 }
2903
2904 WARN_ON(bug); /* leaks are not worth crashing the system */
2905}
2906
2907module_init(dm_bufio_init)
2908module_exit(dm_bufio_exit)
2909
2910module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2911MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2912
2913module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2914MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2915
2916module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2917MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2918
2919module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2920MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2921
2922module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2923MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2924
2925module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2926MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2927
2928module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2929MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2930
2931module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2932MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2933
2934MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2935MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2936MODULE_LICENSE("GPL");
2937

source code of linux/drivers/md/dm-bufio.c