1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11#include <linux/completion.h>
12#include <linux/err.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/key.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-integrity.h>
20#include <linux/mempool.h>
21#include <linux/slab.h>
22#include <linux/crypto.h>
23#include <linux/workqueue.h>
24#include <linux/kthread.h>
25#include <linux/backing-dev.h>
26#include <linux/atomic.h>
27#include <linux/scatterlist.h>
28#include <linux/rbtree.h>
29#include <linux/ctype.h>
30#include <asm/page.h>
31#include <asm/unaligned.h>
32#include <crypto/hash.h>
33#include <crypto/md5.h>
34#include <crypto/skcipher.h>
35#include <crypto/aead.h>
36#include <crypto/authenc.h>
37#include <crypto/utils.h>
38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39#include <linux/key-type.h>
40#include <keys/user-type.h>
41#include <keys/encrypted-type.h>
42#include <keys/trusted-type.h>
43
44#include <linux/device-mapper.h>
45
46#include "dm-audit.h"
47
48#define DM_MSG_PREFIX "crypt"
49
50/*
51 * context holding the current state of a multi-part conversion
52 */
53struct convert_context {
54 struct completion restart;
55 struct bio *bio_in;
56 struct bio *bio_out;
57 struct bvec_iter iter_in;
58 struct bvec_iter iter_out;
59 u64 cc_sector;
60 atomic_t cc_pending;
61 union {
62 struct skcipher_request *req;
63 struct aead_request *req_aead;
64 } r;
65
66};
67
68/*
69 * per bio private data
70 */
71struct dm_crypt_io {
72 struct crypt_config *cc;
73 struct bio *base_bio;
74 u8 *integrity_metadata;
75 bool integrity_metadata_from_pool:1;
76 bool in_tasklet:1;
77
78 struct work_struct work;
79 struct tasklet_struct tasklet;
80
81 struct convert_context ctx;
82
83 atomic_t io_pending;
84 blk_status_t error;
85 sector_t sector;
86
87 struct rb_node rb_node;
88} CRYPTO_MINALIGN_ATTR;
89
90struct dm_crypt_request {
91 struct convert_context *ctx;
92 struct scatterlist sg_in[4];
93 struct scatterlist sg_out[4];
94 u64 iv_sector;
95};
96
97struct crypt_config;
98
99struct crypt_iv_operations {
100 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
101 const char *opts);
102 void (*dtr)(struct crypt_config *cc);
103 int (*init)(struct crypt_config *cc);
104 int (*wipe)(struct crypt_config *cc);
105 int (*generator)(struct crypt_config *cc, u8 *iv,
106 struct dm_crypt_request *dmreq);
107 int (*post)(struct crypt_config *cc, u8 *iv,
108 struct dm_crypt_request *dmreq);
109};
110
111struct iv_benbi_private {
112 int shift;
113};
114
115#define LMK_SEED_SIZE 64 /* hash + 0 */
116struct iv_lmk_private {
117 struct crypto_shash *hash_tfm;
118 u8 *seed;
119};
120
121#define TCW_WHITENING_SIZE 16
122struct iv_tcw_private {
123 struct crypto_shash *crc32_tfm;
124 u8 *iv_seed;
125 u8 *whitening;
126};
127
128#define ELEPHANT_MAX_KEY_SIZE 32
129struct iv_elephant_private {
130 struct crypto_skcipher *tfm;
131};
132
133/*
134 * Crypt: maps a linear range of a block device
135 * and encrypts / decrypts at the same time.
136 */
137enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
138 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
139 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
140 DM_CRYPT_WRITE_INLINE };
141
142enum cipher_flags {
143 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
144 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
145 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
146};
147
148/*
149 * The fields in here must be read only after initialization.
150 */
151struct crypt_config {
152 struct dm_dev *dev;
153 sector_t start;
154
155 struct percpu_counter n_allocated_pages;
156
157 struct workqueue_struct *io_queue;
158 struct workqueue_struct *crypt_queue;
159
160 spinlock_t write_thread_lock;
161 struct task_struct *write_thread;
162 struct rb_root write_tree;
163
164 char *cipher_string;
165 char *cipher_auth;
166 char *key_string;
167
168 const struct crypt_iv_operations *iv_gen_ops;
169 union {
170 struct iv_benbi_private benbi;
171 struct iv_lmk_private lmk;
172 struct iv_tcw_private tcw;
173 struct iv_elephant_private elephant;
174 } iv_gen_private;
175 u64 iv_offset;
176 unsigned int iv_size;
177 unsigned short sector_size;
178 unsigned char sector_shift;
179
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned int tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 /*
215 * pool for per bio private data, crypto requests,
216 * encryption requeusts/buffer pages and integrity tags
217 */
218 unsigned int tag_pool_max_sectors;
219 mempool_t tag_pool;
220 mempool_t req_pool;
221 mempool_t page_pool;
222
223 struct bio_set bs;
224 struct mutex bio_alloc_lock;
225
226 u8 *authenc_key; /* space for keys in authenc() format (if used) */
227 u8 key[] __counted_by(key_size);
228};
229
230#define MIN_IOS 64
231#define MAX_TAG_SIZE 480
232#define POOL_ENTRY_SIZE 512
233
234static DEFINE_SPINLOCK(dm_crypt_clients_lock);
235static unsigned int dm_crypt_clients_n;
236static volatile unsigned long dm_crypt_pages_per_client;
237#define DM_CRYPT_MEMORY_PERCENT 2
238#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
239
240static void crypt_endio(struct bio *clone);
241static void kcryptd_queue_crypt(struct dm_crypt_io *io);
242static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
243 struct scatterlist *sg);
244
245static bool crypt_integrity_aead(struct crypt_config *cc);
246
247/*
248 * Use this to access cipher attributes that are independent of the key.
249 */
250static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
251{
252 return cc->cipher_tfm.tfms[0];
253}
254
255static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
256{
257 return cc->cipher_tfm.tfms_aead[0];
258}
259
260/*
261 * Different IV generation algorithms:
262 *
263 * plain: the initial vector is the 32-bit little-endian version of the sector
264 * number, padded with zeros if necessary.
265 *
266 * plain64: the initial vector is the 64-bit little-endian version of the sector
267 * number, padded with zeros if necessary.
268 *
269 * plain64be: the initial vector is the 64-bit big-endian version of the sector
270 * number, padded with zeros if necessary.
271 *
272 * essiv: "encrypted sector|salt initial vector", the sector number is
273 * encrypted with the bulk cipher using a salt as key. The salt
274 * should be derived from the bulk cipher's key via hashing.
275 *
276 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
277 * (needed for LRW-32-AES and possible other narrow block modes)
278 *
279 * null: the initial vector is always zero. Provides compatibility with
280 * obsolete loop_fish2 devices. Do not use for new devices.
281 *
282 * lmk: Compatible implementation of the block chaining mode used
283 * by the Loop-AES block device encryption system
284 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
285 * It operates on full 512 byte sectors and uses CBC
286 * with an IV derived from the sector number, the data and
287 * optionally extra IV seed.
288 * This means that after decryption the first block
289 * of sector must be tweaked according to decrypted data.
290 * Loop-AES can use three encryption schemes:
291 * version 1: is plain aes-cbc mode
292 * version 2: uses 64 multikey scheme with lmk IV generator
293 * version 3: the same as version 2 with additional IV seed
294 * (it uses 65 keys, last key is used as IV seed)
295 *
296 * tcw: Compatible implementation of the block chaining mode used
297 * by the TrueCrypt device encryption system (prior to version 4.1).
298 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
299 * It operates on full 512 byte sectors and uses CBC
300 * with an IV derived from initial key and the sector number.
301 * In addition, whitening value is applied on every sector, whitening
302 * is calculated from initial key, sector number and mixed using CRC32.
303 * Note that this encryption scheme is vulnerable to watermarking attacks
304 * and should be used for old compatible containers access only.
305 *
306 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
307 * The IV is encrypted little-endian byte-offset (with the same key
308 * and cipher as the volume).
309 *
310 * elephant: The extended version of eboiv with additional Elephant diffuser
311 * used with Bitlocker CBC mode.
312 * This mode was used in older Windows systems
313 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
314 */
315
316static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
317 struct dm_crypt_request *dmreq)
318{
319 memset(iv, 0, cc->iv_size);
320 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
321
322 return 0;
323}
324
325static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
326 struct dm_crypt_request *dmreq)
327{
328 memset(iv, 0, cc->iv_size);
329 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
330
331 return 0;
332}
333
334static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
335 struct dm_crypt_request *dmreq)
336{
337 memset(iv, 0, cc->iv_size);
338 /* iv_size is at least of size u64; usually it is 16 bytes */
339 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
340
341 return 0;
342}
343
344static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
345 struct dm_crypt_request *dmreq)
346{
347 /*
348 * ESSIV encryption of the IV is now handled by the crypto API,
349 * so just pass the plain sector number here.
350 */
351 memset(iv, 0, cc->iv_size);
352 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
353
354 return 0;
355}
356
357static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
358 const char *opts)
359{
360 unsigned int bs;
361 int log;
362
363 if (crypt_integrity_aead(cc))
364 bs = crypto_aead_blocksize(tfm: any_tfm_aead(cc));
365 else
366 bs = crypto_skcipher_blocksize(tfm: any_tfm(cc));
367 log = ilog2(bs);
368
369 /*
370 * We need to calculate how far we must shift the sector count
371 * to get the cipher block count, we use this shift in _gen.
372 */
373 if (1 << log != bs) {
374 ti->error = "cypher blocksize is not a power of 2";
375 return -EINVAL;
376 }
377
378 if (log > 9) {
379 ti->error = "cypher blocksize is > 512";
380 return -EINVAL;
381 }
382
383 cc->iv_gen_private.benbi.shift = 9 - log;
384
385 return 0;
386}
387
388static void crypt_iv_benbi_dtr(struct crypt_config *cc)
389{
390}
391
392static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
393 struct dm_crypt_request *dmreq)
394{
395 __be64 val;
396
397 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
398
399 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
400 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
401
402 return 0;
403}
404
405static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
406 struct dm_crypt_request *dmreq)
407{
408 memset(iv, 0, cc->iv_size);
409
410 return 0;
411}
412
413static void crypt_iv_lmk_dtr(struct crypt_config *cc)
414{
415 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
416
417 if (lmk->hash_tfm && !IS_ERR(ptr: lmk->hash_tfm))
418 crypto_free_shash(tfm: lmk->hash_tfm);
419 lmk->hash_tfm = NULL;
420
421 kfree_sensitive(objp: lmk->seed);
422 lmk->seed = NULL;
423}
424
425static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427{
428 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
429
430 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
431 ti->error = "Unsupported sector size for LMK";
432 return -EINVAL;
433 }
434
435 lmk->hash_tfm = crypto_alloc_shash(alg_name: "md5", type: 0,
436 CRYPTO_ALG_ALLOCATES_MEMORY);
437 if (IS_ERR(ptr: lmk->hash_tfm)) {
438 ti->error = "Error initializing LMK hash";
439 return PTR_ERR(ptr: lmk->hash_tfm);
440 }
441
442 /* No seed in LMK version 2 */
443 if (cc->key_parts == cc->tfms_count) {
444 lmk->seed = NULL;
445 return 0;
446 }
447
448 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
449 if (!lmk->seed) {
450 crypt_iv_lmk_dtr(cc);
451 ti->error = "Error kmallocing seed storage in LMK";
452 return -ENOMEM;
453 }
454
455 return 0;
456}
457
458static int crypt_iv_lmk_init(struct crypt_config *cc)
459{
460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 int subkey_size = cc->key_size / cc->key_parts;
462
463 /* LMK seed is on the position of LMK_KEYS + 1 key */
464 if (lmk->seed)
465 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
466 crypto_shash_digestsize(lmk->hash_tfm));
467
468 return 0;
469}
470
471static int crypt_iv_lmk_wipe(struct crypt_config *cc)
472{
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474
475 if (lmk->seed)
476 memset(lmk->seed, 0, LMK_SEED_SIZE);
477
478 return 0;
479}
480
481static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
482 struct dm_crypt_request *dmreq,
483 u8 *data)
484{
485 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
487 struct md5_state md5state;
488 __le32 buf[4];
489 int i, r;
490
491 desc->tfm = lmk->hash_tfm;
492
493 r = crypto_shash_init(desc);
494 if (r)
495 return r;
496
497 if (lmk->seed) {
498 r = crypto_shash_update(desc, data: lmk->seed, LMK_SEED_SIZE);
499 if (r)
500 return r;
501 }
502
503 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
504 r = crypto_shash_update(desc, data: data + 16, len: 16 * 31);
505 if (r)
506 return r;
507
508 /* Sector is cropped to 56 bits here */
509 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
510 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
511 buf[2] = cpu_to_le32(4024);
512 buf[3] = 0;
513 r = crypto_shash_update(desc, data: (u8 *)buf, len: sizeof(buf));
514 if (r)
515 return r;
516
517 /* No MD5 padding here */
518 r = crypto_shash_export(desc, out: &md5state);
519 if (r)
520 return r;
521
522 for (i = 0; i < MD5_HASH_WORDS; i++)
523 __cpu_to_le32s(&md5state.hash[i]);
524 memcpy(iv, &md5state.hash, cc->iv_size);
525
526 return 0;
527}
528
529static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
530 struct dm_crypt_request *dmreq)
531{
532 struct scatterlist *sg;
533 u8 *src;
534 int r = 0;
535
536 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
537 sg = crypt_get_sg_data(cc, sg: dmreq->sg_in);
538 src = kmap_local_page(page: sg_page(sg));
539 r = crypt_iv_lmk_one(cc, iv, dmreq, data: src + sg->offset);
540 kunmap_local(src);
541 } else
542 memset(iv, 0, cc->iv_size);
543
544 return r;
545}
546
547static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
548 struct dm_crypt_request *dmreq)
549{
550 struct scatterlist *sg;
551 u8 *dst;
552 int r;
553
554 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
555 return 0;
556
557 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
558 dst = kmap_local_page(page: sg_page(sg));
559 r = crypt_iv_lmk_one(cc, iv, dmreq, data: dst + sg->offset);
560
561 /* Tweak the first block of plaintext sector */
562 if (!r)
563 crypto_xor(dst: dst + sg->offset, src: iv, size: cc->iv_size);
564
565 kunmap_local(dst);
566 return r;
567}
568
569static void crypt_iv_tcw_dtr(struct crypt_config *cc)
570{
571 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572
573 kfree_sensitive(objp: tcw->iv_seed);
574 tcw->iv_seed = NULL;
575 kfree_sensitive(objp: tcw->whitening);
576 tcw->whitening = NULL;
577
578 if (tcw->crc32_tfm && !IS_ERR(ptr: tcw->crc32_tfm))
579 crypto_free_shash(tfm: tcw->crc32_tfm);
580 tcw->crc32_tfm = NULL;
581}
582
583static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
584 const char *opts)
585{
586 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
587
588 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
589 ti->error = "Unsupported sector size for TCW";
590 return -EINVAL;
591 }
592
593 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
594 ti->error = "Wrong key size for TCW";
595 return -EINVAL;
596 }
597
598 tcw->crc32_tfm = crypto_alloc_shash(alg_name: "crc32", type: 0,
599 CRYPTO_ALG_ALLOCATES_MEMORY);
600 if (IS_ERR(ptr: tcw->crc32_tfm)) {
601 ti->error = "Error initializing CRC32 in TCW";
602 return PTR_ERR(ptr: tcw->crc32_tfm);
603 }
604
605 tcw->iv_seed = kzalloc(size: cc->iv_size, GFP_KERNEL);
606 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
607 if (!tcw->iv_seed || !tcw->whitening) {
608 crypt_iv_tcw_dtr(cc);
609 ti->error = "Error allocating seed storage in TCW";
610 return -ENOMEM;
611 }
612
613 return 0;
614}
615
616static int crypt_iv_tcw_init(struct crypt_config *cc)
617{
618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
620
621 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
622 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
623 TCW_WHITENING_SIZE);
624
625 return 0;
626}
627
628static int crypt_iv_tcw_wipe(struct crypt_config *cc)
629{
630 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
631
632 memset(tcw->iv_seed, 0, cc->iv_size);
633 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
634
635 return 0;
636}
637
638static int crypt_iv_tcw_whitening(struct crypt_config *cc,
639 struct dm_crypt_request *dmreq,
640 u8 *data)
641{
642 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
643 __le64 sector = cpu_to_le64(dmreq->iv_sector);
644 u8 buf[TCW_WHITENING_SIZE];
645 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
646 int i, r;
647
648 /* xor whitening with sector number */
649 crypto_xor_cpy(dst: buf, src1: tcw->whitening, src2: (u8 *)&sector, size: 8);
650 crypto_xor_cpy(dst: &buf[8], src1: tcw->whitening + 8, src2: (u8 *)&sector, size: 8);
651
652 /* calculate crc32 for every 32bit part and xor it */
653 desc->tfm = tcw->crc32_tfm;
654 for (i = 0; i < 4; i++) {
655 r = crypto_shash_digest(desc, data: &buf[i * 4], len: 4, out: &buf[i * 4]);
656 if (r)
657 goto out;
658 }
659 crypto_xor(dst: &buf[0], src: &buf[12], size: 4);
660 crypto_xor(dst: &buf[4], src: &buf[8], size: 4);
661
662 /* apply whitening (8 bytes) to whole sector */
663 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
664 crypto_xor(dst: data + i * 8, src: buf, size: 8);
665out:
666 memzero_explicit(s: buf, count: sizeof(buf));
667 return r;
668}
669
670static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
671 struct dm_crypt_request *dmreq)
672{
673 struct scatterlist *sg;
674 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 __le64 sector = cpu_to_le64(dmreq->iv_sector);
676 u8 *src;
677 int r = 0;
678
679 /* Remove whitening from ciphertext */
680 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
681 sg = crypt_get_sg_data(cc, sg: dmreq->sg_in);
682 src = kmap_local_page(page: sg_page(sg));
683 r = crypt_iv_tcw_whitening(cc, dmreq, data: src + sg->offset);
684 kunmap_local(src);
685 }
686
687 /* Calculate IV */
688 crypto_xor_cpy(dst: iv, src1: tcw->iv_seed, src2: (u8 *)&sector, size: 8);
689 if (cc->iv_size > 8)
690 crypto_xor_cpy(dst: &iv[8], src1: tcw->iv_seed + 8, src2: (u8 *)&sector,
691 size: cc->iv_size - 8);
692
693 return r;
694}
695
696static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
697 struct dm_crypt_request *dmreq)
698{
699 struct scatterlist *sg;
700 u8 *dst;
701 int r;
702
703 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
704 return 0;
705
706 /* Apply whitening on ciphertext */
707 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
708 dst = kmap_local_page(page: sg_page(sg));
709 r = crypt_iv_tcw_whitening(cc, dmreq, data: dst + sg->offset);
710 kunmap_local(dst);
711
712 return r;
713}
714
715static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
716 struct dm_crypt_request *dmreq)
717{
718 /* Used only for writes, there must be an additional space to store IV */
719 get_random_bytes(buf: iv, len: cc->iv_size);
720 return 0;
721}
722
723static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
724 const char *opts)
725{
726 if (crypt_integrity_aead(cc)) {
727 ti->error = "AEAD transforms not supported for EBOIV";
728 return -EINVAL;
729 }
730
731 if (crypto_skcipher_blocksize(tfm: any_tfm(cc)) != cc->iv_size) {
732 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
733 return -EINVAL;
734 }
735
736 return 0;
737}
738
739static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
740 struct dm_crypt_request *dmreq)
741{
742 struct crypto_skcipher *tfm = any_tfm(cc);
743 struct skcipher_request *req;
744 struct scatterlist src, dst;
745 DECLARE_CRYPTO_WAIT(wait);
746 unsigned int reqsize;
747 int err;
748 u8 *buf;
749
750 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
751 reqsize = ALIGN(reqsize, __alignof__(__le64));
752
753 req = kmalloc(size: reqsize + cc->iv_size, GFP_NOIO);
754 if (!req)
755 return -ENOMEM;
756
757 skcipher_request_set_tfm(req, tfm);
758
759 buf = (u8 *)req + reqsize;
760 memset(buf, 0, cc->iv_size);
761 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
762
763 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
764 sg_init_one(&dst, iv, cc->iv_size);
765 skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: cc->iv_size, iv: buf);
766 skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait);
767 err = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
768 kfree_sensitive(objp: req);
769
770 return err;
771}
772
773static void crypt_iv_elephant_dtr(struct crypt_config *cc)
774{
775 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
776
777 crypto_free_skcipher(tfm: elephant->tfm);
778 elephant->tfm = NULL;
779}
780
781static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
782 const char *opts)
783{
784 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
785 int r;
786
787 elephant->tfm = crypto_alloc_skcipher(alg_name: "ecb(aes)", type: 0,
788 CRYPTO_ALG_ALLOCATES_MEMORY);
789 if (IS_ERR(ptr: elephant->tfm)) {
790 r = PTR_ERR(ptr: elephant->tfm);
791 elephant->tfm = NULL;
792 return r;
793 }
794
795 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
796 if (r)
797 crypt_iv_elephant_dtr(cc);
798 return r;
799}
800
801static void diffuser_disk_to_cpu(u32 *d, size_t n)
802{
803#ifndef __LITTLE_ENDIAN
804 int i;
805
806 for (i = 0; i < n; i++)
807 d[i] = le32_to_cpu((__le32)d[i]);
808#endif
809}
810
811static void diffuser_cpu_to_disk(__le32 *d, size_t n)
812{
813#ifndef __LITTLE_ENDIAN
814 int i;
815
816 for (i = 0; i < n; i++)
817 d[i] = cpu_to_le32((u32)d[i]);
818#endif
819}
820
821static void diffuser_a_decrypt(u32 *d, size_t n)
822{
823 int i, i1, i2, i3;
824
825 for (i = 0; i < 5; i++) {
826 i1 = 0;
827 i2 = n - 2;
828 i3 = n - 5;
829
830 while (i1 < (n - 1)) {
831 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
832 i1++; i2++; i3++;
833
834 if (i3 >= n)
835 i3 -= n;
836
837 d[i1] += d[i2] ^ d[i3];
838 i1++; i2++; i3++;
839
840 if (i2 >= n)
841 i2 -= n;
842
843 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
844 i1++; i2++; i3++;
845
846 d[i1] += d[i2] ^ d[i3];
847 i1++; i2++; i3++;
848 }
849 }
850}
851
852static void diffuser_a_encrypt(u32 *d, size_t n)
853{
854 int i, i1, i2, i3;
855
856 for (i = 0; i < 5; i++) {
857 i1 = n - 1;
858 i2 = n - 2 - 1;
859 i3 = n - 5 - 1;
860
861 while (i1 > 0) {
862 d[i1] -= d[i2] ^ d[i3];
863 i1--; i2--; i3--;
864
865 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
866 i1--; i2--; i3--;
867
868 if (i2 < 0)
869 i2 += n;
870
871 d[i1] -= d[i2] ^ d[i3];
872 i1--; i2--; i3--;
873
874 if (i3 < 0)
875 i3 += n;
876
877 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
878 i1--; i2--; i3--;
879 }
880 }
881}
882
883static void diffuser_b_decrypt(u32 *d, size_t n)
884{
885 int i, i1, i2, i3;
886
887 for (i = 0; i < 3; i++) {
888 i1 = 0;
889 i2 = 2;
890 i3 = 5;
891
892 while (i1 < (n - 1)) {
893 d[i1] += d[i2] ^ d[i3];
894 i1++; i2++; i3++;
895
896 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
897 i1++; i2++; i3++;
898
899 if (i2 >= n)
900 i2 -= n;
901
902 d[i1] += d[i2] ^ d[i3];
903 i1++; i2++; i3++;
904
905 if (i3 >= n)
906 i3 -= n;
907
908 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
909 i1++; i2++; i3++;
910 }
911 }
912}
913
914static void diffuser_b_encrypt(u32 *d, size_t n)
915{
916 int i, i1, i2, i3;
917
918 for (i = 0; i < 3; i++) {
919 i1 = n - 1;
920 i2 = 2 - 1;
921 i3 = 5 - 1;
922
923 while (i1 > 0) {
924 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
925 i1--; i2--; i3--;
926
927 if (i3 < 0)
928 i3 += n;
929
930 d[i1] -= d[i2] ^ d[i3];
931 i1--; i2--; i3--;
932
933 if (i2 < 0)
934 i2 += n;
935
936 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
937 i1--; i2--; i3--;
938
939 d[i1] -= d[i2] ^ d[i3];
940 i1--; i2--; i3--;
941 }
942 }
943}
944
945static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
946{
947 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
948 u8 *es, *ks, *data, *data2, *data_offset;
949 struct skcipher_request *req;
950 struct scatterlist *sg, *sg2, src, dst;
951 DECLARE_CRYPTO_WAIT(wait);
952 int i, r;
953
954 req = skcipher_request_alloc(tfm: elephant->tfm, GFP_NOIO);
955 es = kzalloc(size: 16, GFP_NOIO); /* Key for AES */
956 ks = kzalloc(size: 32, GFP_NOIO); /* Elephant sector key */
957
958 if (!req || !es || !ks) {
959 r = -ENOMEM;
960 goto out;
961 }
962
963 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
964
965 /* E(Ks, e(s)) */
966 sg_init_one(&src, es, 16);
967 sg_init_one(&dst, ks, 16);
968 skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: 16, NULL);
969 skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait);
970 r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
971 if (r)
972 goto out;
973
974 /* E(Ks, e'(s)) */
975 es[15] = 0x80;
976 sg_init_one(&dst, &ks[16], 16);
977 r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
978 if (r)
979 goto out;
980
981 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
982 data = kmap_local_page(page: sg_page(sg));
983 data_offset = data + sg->offset;
984
985 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
986 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
987 sg2 = crypt_get_sg_data(cc, sg: dmreq->sg_in);
988 data2 = kmap_local_page(page: sg_page(sg: sg2));
989 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
990 kunmap_local(data2);
991 }
992
993 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
994 diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
995 diffuser_b_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
996 diffuser_a_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
997 diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32));
998 }
999
1000 for (i = 0; i < (cc->sector_size / 32); i++)
1001 crypto_xor(dst: data_offset + i * 32, src: ks, size: 32);
1002
1003 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1004 diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1005 diffuser_a_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1006 diffuser_b_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1007 diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32));
1008 }
1009
1010 kunmap_local(data);
1011out:
1012 kfree_sensitive(objp: ks);
1013 kfree_sensitive(objp: es);
1014 skcipher_request_free(req);
1015 return r;
1016}
1017
1018static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1019 struct dm_crypt_request *dmreq)
1020{
1021 int r;
1022
1023 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1024 r = crypt_iv_elephant(cc, dmreq);
1025 if (r)
1026 return r;
1027 }
1028
1029 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1030}
1031
1032static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1033 struct dm_crypt_request *dmreq)
1034{
1035 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1036 return crypt_iv_elephant(cc, dmreq);
1037
1038 return 0;
1039}
1040
1041static int crypt_iv_elephant_init(struct crypt_config *cc)
1042{
1043 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1044 int key_offset = cc->key_size - cc->key_extra_size;
1045
1046 return crypto_skcipher_setkey(tfm: elephant->tfm, key: &cc->key[key_offset], keylen: cc->key_extra_size);
1047}
1048
1049static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1050{
1051 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1052 u8 key[ELEPHANT_MAX_KEY_SIZE];
1053
1054 memset(key, 0, cc->key_extra_size);
1055 return crypto_skcipher_setkey(tfm: elephant->tfm, key, keylen: cc->key_extra_size);
1056}
1057
1058static const struct crypt_iv_operations crypt_iv_plain_ops = {
1059 .generator = crypt_iv_plain_gen
1060};
1061
1062static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1063 .generator = crypt_iv_plain64_gen
1064};
1065
1066static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1067 .generator = crypt_iv_plain64be_gen
1068};
1069
1070static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1071 .generator = crypt_iv_essiv_gen
1072};
1073
1074static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1075 .ctr = crypt_iv_benbi_ctr,
1076 .dtr = crypt_iv_benbi_dtr,
1077 .generator = crypt_iv_benbi_gen
1078};
1079
1080static const struct crypt_iv_operations crypt_iv_null_ops = {
1081 .generator = crypt_iv_null_gen
1082};
1083
1084static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1085 .ctr = crypt_iv_lmk_ctr,
1086 .dtr = crypt_iv_lmk_dtr,
1087 .init = crypt_iv_lmk_init,
1088 .wipe = crypt_iv_lmk_wipe,
1089 .generator = crypt_iv_lmk_gen,
1090 .post = crypt_iv_lmk_post
1091};
1092
1093static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1094 .ctr = crypt_iv_tcw_ctr,
1095 .dtr = crypt_iv_tcw_dtr,
1096 .init = crypt_iv_tcw_init,
1097 .wipe = crypt_iv_tcw_wipe,
1098 .generator = crypt_iv_tcw_gen,
1099 .post = crypt_iv_tcw_post
1100};
1101
1102static const struct crypt_iv_operations crypt_iv_random_ops = {
1103 .generator = crypt_iv_random_gen
1104};
1105
1106static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1107 .ctr = crypt_iv_eboiv_ctr,
1108 .generator = crypt_iv_eboiv_gen
1109};
1110
1111static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1112 .ctr = crypt_iv_elephant_ctr,
1113 .dtr = crypt_iv_elephant_dtr,
1114 .init = crypt_iv_elephant_init,
1115 .wipe = crypt_iv_elephant_wipe,
1116 .generator = crypt_iv_elephant_gen,
1117 .post = crypt_iv_elephant_post
1118};
1119
1120/*
1121 * Integrity extensions
1122 */
1123static bool crypt_integrity_aead(struct crypt_config *cc)
1124{
1125 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1126}
1127
1128static bool crypt_integrity_hmac(struct crypt_config *cc)
1129{
1130 return crypt_integrity_aead(cc) && cc->key_mac_size;
1131}
1132
1133/* Get sg containing data */
1134static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1135 struct scatterlist *sg)
1136{
1137 if (unlikely(crypt_integrity_aead(cc)))
1138 return &sg[2];
1139
1140 return sg;
1141}
1142
1143static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1144{
1145 struct bio_integrity_payload *bip;
1146 unsigned int tag_len;
1147 int ret;
1148
1149 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1150 return 0;
1151
1152 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1153 if (IS_ERR(ptr: bip))
1154 return PTR_ERR(ptr: bip);
1155
1156 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1157
1158 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1159
1160 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1161 tag_len, offset_in_page(io->integrity_metadata));
1162 if (unlikely(ret != tag_len))
1163 return -ENOMEM;
1164
1165 return 0;
1166}
1167
1168static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1169{
1170#ifdef CONFIG_BLK_DEV_INTEGRITY
1171 struct blk_integrity *bi = blk_get_integrity(disk: cc->dev->bdev->bd_disk);
1172 struct mapped_device *md = dm_table_get_md(t: ti->table);
1173
1174 /* From now we require underlying device with our integrity profile */
1175 if (!bi || strcasecmp(s1: bi->profile->name, s2: "DM-DIF-EXT-TAG")) {
1176 ti->error = "Integrity profile not supported.";
1177 return -EINVAL;
1178 }
1179
1180 if (bi->tag_size != cc->on_disk_tag_size ||
1181 bi->tuple_size != cc->on_disk_tag_size) {
1182 ti->error = "Integrity profile tag size mismatch.";
1183 return -EINVAL;
1184 }
1185 if (1 << bi->interval_exp != cc->sector_size) {
1186 ti->error = "Integrity profile sector size mismatch.";
1187 return -EINVAL;
1188 }
1189
1190 if (crypt_integrity_aead(cc)) {
1191 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1192 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1193 cc->integrity_tag_size, cc->integrity_iv_size);
1194
1195 if (crypto_aead_setauthsize(tfm: any_tfm_aead(cc), authsize: cc->integrity_tag_size)) {
1196 ti->error = "Integrity AEAD auth tag size is not supported.";
1197 return -EINVAL;
1198 }
1199 } else if (cc->integrity_iv_size)
1200 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1201 cc->integrity_iv_size);
1202
1203 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1204 ti->error = "Not enough space for integrity tag in the profile.";
1205 return -EINVAL;
1206 }
1207
1208 return 0;
1209#else
1210 ti->error = "Integrity profile not supported.";
1211 return -EINVAL;
1212#endif
1213}
1214
1215static void crypt_convert_init(struct crypt_config *cc,
1216 struct convert_context *ctx,
1217 struct bio *bio_out, struct bio *bio_in,
1218 sector_t sector)
1219{
1220 ctx->bio_in = bio_in;
1221 ctx->bio_out = bio_out;
1222 if (bio_in)
1223 ctx->iter_in = bio_in->bi_iter;
1224 if (bio_out)
1225 ctx->iter_out = bio_out->bi_iter;
1226 ctx->cc_sector = sector + cc->iv_offset;
1227 init_completion(x: &ctx->restart);
1228}
1229
1230static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1231 void *req)
1232{
1233 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1234}
1235
1236static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1237{
1238 return (void *)((char *)dmreq - cc->dmreq_start);
1239}
1240
1241static u8 *iv_of_dmreq(struct crypt_config *cc,
1242 struct dm_crypt_request *dmreq)
1243{
1244 if (crypt_integrity_aead(cc))
1245 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1246 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1247 else
1248 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1249 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1250}
1251
1252static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1253 struct dm_crypt_request *dmreq)
1254{
1255 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1256}
1257
1258static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1259 struct dm_crypt_request *dmreq)
1260{
1261 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1262
1263 return (__le64 *) ptr;
1264}
1265
1266static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1267 struct dm_crypt_request *dmreq)
1268{
1269 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1270 cc->iv_size + sizeof(uint64_t);
1271
1272 return (unsigned int *)ptr;
1273}
1274
1275static void *tag_from_dmreq(struct crypt_config *cc,
1276 struct dm_crypt_request *dmreq)
1277{
1278 struct convert_context *ctx = dmreq->ctx;
1279 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1280
1281 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1282 cc->on_disk_tag_size];
1283}
1284
1285static void *iv_tag_from_dmreq(struct crypt_config *cc,
1286 struct dm_crypt_request *dmreq)
1287{
1288 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1289}
1290
1291static int crypt_convert_block_aead(struct crypt_config *cc,
1292 struct convert_context *ctx,
1293 struct aead_request *req,
1294 unsigned int tag_offset)
1295{
1296 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1297 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1298 struct dm_crypt_request *dmreq;
1299 u8 *iv, *org_iv, *tag_iv, *tag;
1300 __le64 *sector;
1301 int r = 0;
1302
1303 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1304
1305 /* Reject unexpected unaligned bio. */
1306 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1307 return -EIO;
1308
1309 dmreq = dmreq_of_req(cc, req);
1310 dmreq->iv_sector = ctx->cc_sector;
1311 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1312 dmreq->iv_sector >>= cc->sector_shift;
1313 dmreq->ctx = ctx;
1314
1315 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1316
1317 sector = org_sector_of_dmreq(cc, dmreq);
1318 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1319
1320 iv = iv_of_dmreq(cc, dmreq);
1321 org_iv = org_iv_of_dmreq(cc, dmreq);
1322 tag = tag_from_dmreq(cc, dmreq);
1323 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1324
1325 /* AEAD request:
1326 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1327 * | (authenticated) | (auth+encryption) | |
1328 * | sector_LE | IV | sector in/out | tag in/out |
1329 */
1330 sg_init_table(dmreq->sg_in, 4);
1331 sg_set_buf(sg: &dmreq->sg_in[0], buf: sector, buflen: sizeof(uint64_t));
1332 sg_set_buf(sg: &dmreq->sg_in[1], buf: org_iv, buflen: cc->iv_size);
1333 sg_set_page(sg: &dmreq->sg_in[2], page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset);
1334 sg_set_buf(sg: &dmreq->sg_in[3], buf: tag, buflen: cc->integrity_tag_size);
1335
1336 sg_init_table(dmreq->sg_out, 4);
1337 sg_set_buf(sg: &dmreq->sg_out[0], buf: sector, buflen: sizeof(uint64_t));
1338 sg_set_buf(sg: &dmreq->sg_out[1], buf: org_iv, buflen: cc->iv_size);
1339 sg_set_page(sg: &dmreq->sg_out[2], page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset);
1340 sg_set_buf(sg: &dmreq->sg_out[3], buf: tag, buflen: cc->integrity_tag_size);
1341
1342 if (cc->iv_gen_ops) {
1343 /* For READs use IV stored in integrity metadata */
1344 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1345 memcpy(org_iv, tag_iv, cc->iv_size);
1346 } else {
1347 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1348 if (r < 0)
1349 return r;
1350 /* Store generated IV in integrity metadata */
1351 if (cc->integrity_iv_size)
1352 memcpy(tag_iv, org_iv, cc->iv_size);
1353 }
1354 /* Working copy of IV, to be modified in crypto API */
1355 memcpy(iv, org_iv, cc->iv_size);
1356 }
1357
1358 aead_request_set_ad(req, assoclen: sizeof(uint64_t) + cc->iv_size);
1359 if (bio_data_dir(ctx->bio_in) == WRITE) {
1360 aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out,
1361 cryptlen: cc->sector_size, iv);
1362 r = crypto_aead_encrypt(req);
1363 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1364 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1365 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1366 } else {
1367 aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out,
1368 cryptlen: cc->sector_size + cc->integrity_tag_size, iv);
1369 r = crypto_aead_decrypt(req);
1370 }
1371
1372 if (r == -EBADMSG) {
1373 sector_t s = le64_to_cpu(*sector);
1374
1375 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1376 ctx->bio_in->bi_bdev, s);
1377 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead",
1378 bio: ctx->bio_in, sector: s, result: 0);
1379 }
1380
1381 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1382 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1383
1384 bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size);
1385 bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size);
1386
1387 return r;
1388}
1389
1390static int crypt_convert_block_skcipher(struct crypt_config *cc,
1391 struct convert_context *ctx,
1392 struct skcipher_request *req,
1393 unsigned int tag_offset)
1394{
1395 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1396 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1397 struct scatterlist *sg_in, *sg_out;
1398 struct dm_crypt_request *dmreq;
1399 u8 *iv, *org_iv, *tag_iv;
1400 __le64 *sector;
1401 int r = 0;
1402
1403 /* Reject unexpected unaligned bio. */
1404 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1405 return -EIO;
1406
1407 dmreq = dmreq_of_req(cc, req);
1408 dmreq->iv_sector = ctx->cc_sector;
1409 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1410 dmreq->iv_sector >>= cc->sector_shift;
1411 dmreq->ctx = ctx;
1412
1413 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1414
1415 iv = iv_of_dmreq(cc, dmreq);
1416 org_iv = org_iv_of_dmreq(cc, dmreq);
1417 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1418
1419 sector = org_sector_of_dmreq(cc, dmreq);
1420 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1421
1422 /* For skcipher we use only the first sg item */
1423 sg_in = &dmreq->sg_in[0];
1424 sg_out = &dmreq->sg_out[0];
1425
1426 sg_init_table(sg_in, 1);
1427 sg_set_page(sg: sg_in, page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset);
1428
1429 sg_init_table(sg_out, 1);
1430 sg_set_page(sg: sg_out, page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset);
1431
1432 if (cc->iv_gen_ops) {
1433 /* For READs use IV stored in integrity metadata */
1434 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1435 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1436 } else {
1437 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1438 if (r < 0)
1439 return r;
1440 /* Data can be already preprocessed in generator */
1441 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1442 sg_in = sg_out;
1443 /* Store generated IV in integrity metadata */
1444 if (cc->integrity_iv_size)
1445 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1446 }
1447 /* Working copy of IV, to be modified in crypto API */
1448 memcpy(iv, org_iv, cc->iv_size);
1449 }
1450
1451 skcipher_request_set_crypt(req, src: sg_in, dst: sg_out, cryptlen: cc->sector_size, iv);
1452
1453 if (bio_data_dir(ctx->bio_in) == WRITE)
1454 r = crypto_skcipher_encrypt(req);
1455 else
1456 r = crypto_skcipher_decrypt(req);
1457
1458 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1459 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1460
1461 bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size);
1462 bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size);
1463
1464 return r;
1465}
1466
1467static void kcryptd_async_done(void *async_req, int error);
1468
1469static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1470 struct convert_context *ctx)
1471{
1472 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1473
1474 if (!ctx->r.req) {
1475 ctx->r.req = mempool_alloc(pool: &cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1476 if (!ctx->r.req)
1477 return -ENOMEM;
1478 }
1479
1480 skcipher_request_set_tfm(req: ctx->r.req, tfm: cc->cipher_tfm.tfms[key_index]);
1481
1482 /*
1483 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1484 * requests if driver request queue is full.
1485 */
1486 skcipher_request_set_callback(req: ctx->r.req,
1487 CRYPTO_TFM_REQ_MAY_BACKLOG,
1488 compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req));
1489
1490 return 0;
1491}
1492
1493static int crypt_alloc_req_aead(struct crypt_config *cc,
1494 struct convert_context *ctx)
1495{
1496 if (!ctx->r.req_aead) {
1497 ctx->r.req_aead = mempool_alloc(pool: &cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1498 if (!ctx->r.req_aead)
1499 return -ENOMEM;
1500 }
1501
1502 aead_request_set_tfm(req: ctx->r.req_aead, tfm: cc->cipher_tfm.tfms_aead[0]);
1503
1504 /*
1505 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1506 * requests if driver request queue is full.
1507 */
1508 aead_request_set_callback(req: ctx->r.req_aead,
1509 CRYPTO_TFM_REQ_MAY_BACKLOG,
1510 compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req_aead));
1511
1512 return 0;
1513}
1514
1515static int crypt_alloc_req(struct crypt_config *cc,
1516 struct convert_context *ctx)
1517{
1518 if (crypt_integrity_aead(cc))
1519 return crypt_alloc_req_aead(cc, ctx);
1520 else
1521 return crypt_alloc_req_skcipher(cc, ctx);
1522}
1523
1524static void crypt_free_req_skcipher(struct crypt_config *cc,
1525 struct skcipher_request *req, struct bio *base_bio)
1526{
1527 struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size);
1528
1529 if ((struct skcipher_request *)(io + 1) != req)
1530 mempool_free(element: req, pool: &cc->req_pool);
1531}
1532
1533static void crypt_free_req_aead(struct crypt_config *cc,
1534 struct aead_request *req, struct bio *base_bio)
1535{
1536 struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size);
1537
1538 if ((struct aead_request *)(io + 1) != req)
1539 mempool_free(element: req, pool: &cc->req_pool);
1540}
1541
1542static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1543{
1544 if (crypt_integrity_aead(cc))
1545 crypt_free_req_aead(cc, req, base_bio);
1546 else
1547 crypt_free_req_skcipher(cc, req, base_bio);
1548}
1549
1550/*
1551 * Encrypt / decrypt data from one bio to another one (can be the same one)
1552 */
1553static blk_status_t crypt_convert(struct crypt_config *cc,
1554 struct convert_context *ctx, bool atomic, bool reset_pending)
1555{
1556 unsigned int tag_offset = 0;
1557 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1558 int r;
1559
1560 /*
1561 * if reset_pending is set we are dealing with the bio for the first time,
1562 * else we're continuing to work on the previous bio, so don't mess with
1563 * the cc_pending counter
1564 */
1565 if (reset_pending)
1566 atomic_set(v: &ctx->cc_pending, i: 1);
1567
1568 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1569
1570 r = crypt_alloc_req(cc, ctx);
1571 if (r) {
1572 complete(&ctx->restart);
1573 return BLK_STS_DEV_RESOURCE;
1574 }
1575
1576 atomic_inc(v: &ctx->cc_pending);
1577
1578 if (crypt_integrity_aead(cc))
1579 r = crypt_convert_block_aead(cc, ctx, req: ctx->r.req_aead, tag_offset);
1580 else
1581 r = crypt_convert_block_skcipher(cc, ctx, req: ctx->r.req, tag_offset);
1582
1583 switch (r) {
1584 /*
1585 * The request was queued by a crypto driver
1586 * but the driver request queue is full, let's wait.
1587 */
1588 case -EBUSY:
1589 if (in_interrupt()) {
1590 if (try_wait_for_completion(x: &ctx->restart)) {
1591 /*
1592 * we don't have to block to wait for completion,
1593 * so proceed
1594 */
1595 } else {
1596 /*
1597 * we can't wait for completion without blocking
1598 * exit and continue processing in a workqueue
1599 */
1600 ctx->r.req = NULL;
1601 ctx->cc_sector += sector_step;
1602 tag_offset++;
1603 return BLK_STS_DEV_RESOURCE;
1604 }
1605 } else {
1606 wait_for_completion(&ctx->restart);
1607 }
1608 reinit_completion(x: &ctx->restart);
1609 fallthrough;
1610 /*
1611 * The request is queued and processed asynchronously,
1612 * completion function kcryptd_async_done() will be called.
1613 */
1614 case -EINPROGRESS:
1615 ctx->r.req = NULL;
1616 ctx->cc_sector += sector_step;
1617 tag_offset++;
1618 continue;
1619 /*
1620 * The request was already processed (synchronously).
1621 */
1622 case 0:
1623 atomic_dec(v: &ctx->cc_pending);
1624 ctx->cc_sector += sector_step;
1625 tag_offset++;
1626 if (!atomic)
1627 cond_resched();
1628 continue;
1629 /*
1630 * There was a data integrity error.
1631 */
1632 case -EBADMSG:
1633 atomic_dec(v: &ctx->cc_pending);
1634 return BLK_STS_PROTECTION;
1635 /*
1636 * There was an error while processing the request.
1637 */
1638 default:
1639 atomic_dec(v: &ctx->cc_pending);
1640 return BLK_STS_IOERR;
1641 }
1642 }
1643
1644 return 0;
1645}
1646
1647static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1648
1649/*
1650 * Generate a new unfragmented bio with the given size
1651 * This should never violate the device limitations (but only because
1652 * max_segment_size is being constrained to PAGE_SIZE).
1653 *
1654 * This function may be called concurrently. If we allocate from the mempool
1655 * concurrently, there is a possibility of deadlock. For example, if we have
1656 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1657 * the mempool concurrently, it may deadlock in a situation where both processes
1658 * have allocated 128 pages and the mempool is exhausted.
1659 *
1660 * In order to avoid this scenario we allocate the pages under a mutex.
1661 *
1662 * In order to not degrade performance with excessive locking, we try
1663 * non-blocking allocations without a mutex first but on failure we fallback
1664 * to blocking allocations with a mutex.
1665 *
1666 * In order to reduce allocation overhead, we try to allocate compound pages in
1667 * the first pass. If they are not available, we fall back to the mempool.
1668 */
1669static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1670{
1671 struct crypt_config *cc = io->cc;
1672 struct bio *clone;
1673 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1674 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1675 unsigned int remaining_size;
1676 unsigned int order = MAX_ORDER - 1;
1677
1678retry:
1679 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1680 mutex_lock(&cc->bio_alloc_lock);
1681
1682 clone = bio_alloc_bioset(bdev: cc->dev->bdev, nr_vecs: nr_iovecs, opf: io->base_bio->bi_opf,
1683 GFP_NOIO, bs: &cc->bs);
1684 clone->bi_private = io;
1685 clone->bi_end_io = crypt_endio;
1686
1687 remaining_size = size;
1688
1689 while (remaining_size) {
1690 struct page *pages;
1691 unsigned size_to_add;
1692 unsigned remaining_order = __fls(word: (remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1693 order = min(order, remaining_order);
1694
1695 while (order > 0) {
1696 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1697 (1 << order) > dm_crypt_pages_per_client))
1698 goto decrease_order;
1699 pages = alloc_pages(gfp: gfp_mask
1700 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1701 order);
1702 if (likely(pages != NULL)) {
1703 percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1 << order);
1704 goto have_pages;
1705 }
1706decrease_order:
1707 order--;
1708 }
1709
1710 pages = mempool_alloc(pool: &cc->page_pool, gfp_mask);
1711 if (!pages) {
1712 crypt_free_buffer_pages(cc, clone);
1713 bio_put(clone);
1714 gfp_mask |= __GFP_DIRECT_RECLAIM;
1715 order = 0;
1716 goto retry;
1717 }
1718
1719have_pages:
1720 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1721 __bio_add_page(bio: clone, page: pages, len: size_to_add, off: 0);
1722 remaining_size -= size_to_add;
1723 }
1724
1725 /* Allocate space for integrity tags */
1726 if (dm_crypt_integrity_io_alloc(io, bio: clone)) {
1727 crypt_free_buffer_pages(cc, clone);
1728 bio_put(clone);
1729 clone = NULL;
1730 }
1731
1732 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1733 mutex_unlock(lock: &cc->bio_alloc_lock);
1734
1735 return clone;
1736}
1737
1738static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1739{
1740 struct folio_iter fi;
1741
1742 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1743 bio_for_each_folio_all(fi, clone) {
1744 if (folio_test_large(folio: fi.folio)) {
1745 percpu_counter_sub(fbc: &cc->n_allocated_pages,
1746 amount: 1 << folio_order(folio: fi.folio));
1747 folio_put(folio: fi.folio);
1748 } else {
1749 mempool_free(element: &fi.folio->page, pool: &cc->page_pool);
1750 }
1751 }
1752 }
1753}
1754
1755static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1756 struct bio *bio, sector_t sector)
1757{
1758 io->cc = cc;
1759 io->base_bio = bio;
1760 io->sector = sector;
1761 io->error = 0;
1762 io->ctx.r.req = NULL;
1763 io->integrity_metadata = NULL;
1764 io->integrity_metadata_from_pool = false;
1765 io->in_tasklet = false;
1766 atomic_set(v: &io->io_pending, i: 0);
1767}
1768
1769static void crypt_inc_pending(struct dm_crypt_io *io)
1770{
1771 atomic_inc(v: &io->io_pending);
1772}
1773
1774static void kcryptd_io_bio_endio(struct work_struct *work)
1775{
1776 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1777
1778 bio_endio(io->base_bio);
1779}
1780
1781/*
1782 * One of the bios was finished. Check for completion of
1783 * the whole request and correctly clean up the buffer.
1784 */
1785static void crypt_dec_pending(struct dm_crypt_io *io)
1786{
1787 struct crypt_config *cc = io->cc;
1788 struct bio *base_bio = io->base_bio;
1789 blk_status_t error = io->error;
1790
1791 if (!atomic_dec_and_test(v: &io->io_pending))
1792 return;
1793
1794 if (io->ctx.r.req)
1795 crypt_free_req(cc, req: io->ctx.r.req, base_bio);
1796
1797 if (unlikely(io->integrity_metadata_from_pool))
1798 mempool_free(element: io->integrity_metadata, pool: &io->cc->tag_pool);
1799 else
1800 kfree(objp: io->integrity_metadata);
1801
1802 base_bio->bi_status = error;
1803
1804 /*
1805 * If we are running this function from our tasklet,
1806 * we can't call bio_endio() here, because it will call
1807 * clone_endio() from dm.c, which in turn will
1808 * free the current struct dm_crypt_io structure with
1809 * our tasklet. In this case we need to delay bio_endio()
1810 * execution to after the tasklet is done and dequeued.
1811 */
1812 if (io->in_tasklet) {
1813 INIT_WORK(&io->work, kcryptd_io_bio_endio);
1814 queue_work(wq: cc->io_queue, work: &io->work);
1815 return;
1816 }
1817
1818 bio_endio(base_bio);
1819}
1820
1821/*
1822 * kcryptd/kcryptd_io:
1823 *
1824 * Needed because it would be very unwise to do decryption in an
1825 * interrupt context.
1826 *
1827 * kcryptd performs the actual encryption or decryption.
1828 *
1829 * kcryptd_io performs the IO submission.
1830 *
1831 * They must be separated as otherwise the final stages could be
1832 * starved by new requests which can block in the first stages due
1833 * to memory allocation.
1834 *
1835 * The work is done per CPU global for all dm-crypt instances.
1836 * They should not depend on each other and do not block.
1837 */
1838static void crypt_endio(struct bio *clone)
1839{
1840 struct dm_crypt_io *io = clone->bi_private;
1841 struct crypt_config *cc = io->cc;
1842 unsigned int rw = bio_data_dir(clone);
1843 blk_status_t error;
1844
1845 /*
1846 * free the processed pages
1847 */
1848 if (rw == WRITE)
1849 crypt_free_buffer_pages(cc, clone);
1850
1851 error = clone->bi_status;
1852 bio_put(clone);
1853
1854 if (rw == READ && !error) {
1855 kcryptd_queue_crypt(io);
1856 return;
1857 }
1858
1859 if (unlikely(error))
1860 io->error = error;
1861
1862 crypt_dec_pending(io);
1863}
1864
1865#define CRYPT_MAP_READ_GFP GFP_NOWAIT
1866
1867static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1868{
1869 struct crypt_config *cc = io->cc;
1870 struct bio *clone;
1871
1872 /*
1873 * We need the original biovec array in order to decrypt the whole bio
1874 * data *afterwards* -- thanks to immutable biovecs we don't need to
1875 * worry about the block layer modifying the biovec array; so leverage
1876 * bio_alloc_clone().
1877 */
1878 clone = bio_alloc_clone(bdev: cc->dev->bdev, bio_src: io->base_bio, gfp, bs: &cc->bs);
1879 if (!clone)
1880 return 1;
1881 clone->bi_private = io;
1882 clone->bi_end_io = crypt_endio;
1883
1884 crypt_inc_pending(io);
1885
1886 clone->bi_iter.bi_sector = cc->start + io->sector;
1887
1888 if (dm_crypt_integrity_io_alloc(io, bio: clone)) {
1889 crypt_dec_pending(io);
1890 bio_put(clone);
1891 return 1;
1892 }
1893
1894 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
1895 return 0;
1896}
1897
1898static void kcryptd_io_read_work(struct work_struct *work)
1899{
1900 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1901
1902 crypt_inc_pending(io);
1903 if (kcryptd_io_read(io, GFP_NOIO))
1904 io->error = BLK_STS_RESOURCE;
1905 crypt_dec_pending(io);
1906}
1907
1908static void kcryptd_queue_read(struct dm_crypt_io *io)
1909{
1910 struct crypt_config *cc = io->cc;
1911
1912 INIT_WORK(&io->work, kcryptd_io_read_work);
1913 queue_work(wq: cc->io_queue, work: &io->work);
1914}
1915
1916static void kcryptd_io_write(struct dm_crypt_io *io)
1917{
1918 struct bio *clone = io->ctx.bio_out;
1919
1920 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
1921}
1922
1923#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1924
1925static int dmcrypt_write(void *data)
1926{
1927 struct crypt_config *cc = data;
1928 struct dm_crypt_io *io;
1929
1930 while (1) {
1931 struct rb_root write_tree;
1932 struct blk_plug plug;
1933
1934 spin_lock_irq(lock: &cc->write_thread_lock);
1935continue_locked:
1936
1937 if (!RB_EMPTY_ROOT(&cc->write_tree))
1938 goto pop_from_list;
1939
1940 set_current_state(TASK_INTERRUPTIBLE);
1941
1942 spin_unlock_irq(lock: &cc->write_thread_lock);
1943
1944 if (unlikely(kthread_should_stop())) {
1945 set_current_state(TASK_RUNNING);
1946 break;
1947 }
1948
1949 schedule();
1950
1951 set_current_state(TASK_RUNNING);
1952 spin_lock_irq(lock: &cc->write_thread_lock);
1953 goto continue_locked;
1954
1955pop_from_list:
1956 write_tree = cc->write_tree;
1957 cc->write_tree = RB_ROOT;
1958 spin_unlock_irq(lock: &cc->write_thread_lock);
1959
1960 BUG_ON(rb_parent(write_tree.rb_node));
1961
1962 /*
1963 * Note: we cannot walk the tree here with rb_next because
1964 * the structures may be freed when kcryptd_io_write is called.
1965 */
1966 blk_start_plug(&plug);
1967 do {
1968 io = crypt_io_from_node(rb_first(&write_tree));
1969 rb_erase(&io->rb_node, &write_tree);
1970 kcryptd_io_write(io);
1971 cond_resched();
1972 } while (!RB_EMPTY_ROOT(&write_tree));
1973 blk_finish_plug(&plug);
1974 }
1975 return 0;
1976}
1977
1978static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1979{
1980 struct bio *clone = io->ctx.bio_out;
1981 struct crypt_config *cc = io->cc;
1982 unsigned long flags;
1983 sector_t sector;
1984 struct rb_node **rbp, *parent;
1985
1986 if (unlikely(io->error)) {
1987 crypt_free_buffer_pages(cc, clone);
1988 bio_put(clone);
1989 crypt_dec_pending(io);
1990 return;
1991 }
1992
1993 /* crypt_convert should have filled the clone bio */
1994 BUG_ON(io->ctx.iter_out.bi_size);
1995
1996 clone->bi_iter.bi_sector = cc->start + io->sector;
1997
1998 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1999 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2000 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
2001 return;
2002 }
2003
2004 spin_lock_irqsave(&cc->write_thread_lock, flags);
2005 if (RB_EMPTY_ROOT(&cc->write_tree))
2006 wake_up_process(tsk: cc->write_thread);
2007 rbp = &cc->write_tree.rb_node;
2008 parent = NULL;
2009 sector = io->sector;
2010 while (*rbp) {
2011 parent = *rbp;
2012 if (sector < crypt_io_from_node(parent)->sector)
2013 rbp = &(*rbp)->rb_left;
2014 else
2015 rbp = &(*rbp)->rb_right;
2016 }
2017 rb_link_node(node: &io->rb_node, parent, rb_link: rbp);
2018 rb_insert_color(&io->rb_node, &cc->write_tree);
2019 spin_unlock_irqrestore(lock: &cc->write_thread_lock, flags);
2020}
2021
2022static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2023 struct convert_context *ctx)
2024
2025{
2026 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2027 return false;
2028
2029 /*
2030 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2031 * constraints so they do not need to be issued inline by
2032 * kcryptd_crypt_write_convert().
2033 */
2034 switch (bio_op(bio: ctx->bio_in)) {
2035 case REQ_OP_WRITE:
2036 case REQ_OP_WRITE_ZEROES:
2037 return true;
2038 default:
2039 return false;
2040 }
2041}
2042
2043static void kcryptd_crypt_write_continue(struct work_struct *work)
2044{
2045 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2046 struct crypt_config *cc = io->cc;
2047 struct convert_context *ctx = &io->ctx;
2048 int crypt_finished;
2049 sector_t sector = io->sector;
2050 blk_status_t r;
2051
2052 wait_for_completion(&ctx->restart);
2053 reinit_completion(x: &ctx->restart);
2054
2055 r = crypt_convert(cc, ctx: &io->ctx, atomic: true, reset_pending: false);
2056 if (r)
2057 io->error = r;
2058 crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending);
2059 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2060 /* Wait for completion signaled by kcryptd_async_done() */
2061 wait_for_completion(&ctx->restart);
2062 crypt_finished = 1;
2063 }
2064
2065 /* Encryption was already finished, submit io now */
2066 if (crypt_finished) {
2067 kcryptd_crypt_write_io_submit(io, async: 0);
2068 io->sector = sector;
2069 }
2070
2071 crypt_dec_pending(io);
2072}
2073
2074static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2075{
2076 struct crypt_config *cc = io->cc;
2077 struct convert_context *ctx = &io->ctx;
2078 struct bio *clone;
2079 int crypt_finished;
2080 sector_t sector = io->sector;
2081 blk_status_t r;
2082
2083 /*
2084 * Prevent io from disappearing until this function completes.
2085 */
2086 crypt_inc_pending(io);
2087 crypt_convert_init(cc, ctx, NULL, bio_in: io->base_bio, sector);
2088
2089 clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size);
2090 if (unlikely(!clone)) {
2091 io->error = BLK_STS_IOERR;
2092 goto dec;
2093 }
2094
2095 io->ctx.bio_out = clone;
2096 io->ctx.iter_out = clone->bi_iter;
2097
2098 sector += bio_sectors(clone);
2099
2100 crypt_inc_pending(io);
2101 r = crypt_convert(cc, ctx,
2102 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), reset_pending: true);
2103 /*
2104 * Crypto API backlogged the request, because its queue was full
2105 * and we're in softirq context, so continue from a workqueue
2106 * (TODO: is it actually possible to be in softirq in the write path?)
2107 */
2108 if (r == BLK_STS_DEV_RESOURCE) {
2109 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2110 queue_work(wq: cc->crypt_queue, work: &io->work);
2111 return;
2112 }
2113 if (r)
2114 io->error = r;
2115 crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending);
2116 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2117 /* Wait for completion signaled by kcryptd_async_done() */
2118 wait_for_completion(&ctx->restart);
2119 crypt_finished = 1;
2120 }
2121
2122 /* Encryption was already finished, submit io now */
2123 if (crypt_finished) {
2124 kcryptd_crypt_write_io_submit(io, async: 0);
2125 io->sector = sector;
2126 }
2127
2128dec:
2129 crypt_dec_pending(io);
2130}
2131
2132static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2133{
2134 crypt_dec_pending(io);
2135}
2136
2137static void kcryptd_crypt_read_continue(struct work_struct *work)
2138{
2139 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2140 struct crypt_config *cc = io->cc;
2141 blk_status_t r;
2142
2143 wait_for_completion(&io->ctx.restart);
2144 reinit_completion(x: &io->ctx.restart);
2145
2146 r = crypt_convert(cc, ctx: &io->ctx, atomic: true, reset_pending: false);
2147 if (r)
2148 io->error = r;
2149
2150 if (atomic_dec_and_test(v: &io->ctx.cc_pending))
2151 kcryptd_crypt_read_done(io);
2152
2153 crypt_dec_pending(io);
2154}
2155
2156static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2157{
2158 struct crypt_config *cc = io->cc;
2159 blk_status_t r;
2160
2161 crypt_inc_pending(io);
2162
2163 crypt_convert_init(cc, ctx: &io->ctx, bio_out: io->base_bio, bio_in: io->base_bio,
2164 sector: io->sector);
2165
2166 r = crypt_convert(cc, ctx: &io->ctx,
2167 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true);
2168 /*
2169 * Crypto API backlogged the request, because its queue was full
2170 * and we're in softirq context, so continue from a workqueue
2171 */
2172 if (r == BLK_STS_DEV_RESOURCE) {
2173 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2174 queue_work(wq: cc->crypt_queue, work: &io->work);
2175 return;
2176 }
2177 if (r)
2178 io->error = r;
2179
2180 if (atomic_dec_and_test(v: &io->ctx.cc_pending))
2181 kcryptd_crypt_read_done(io);
2182
2183 crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_async_done(void *data, int error)
2187{
2188 struct dm_crypt_request *dmreq = data;
2189 struct convert_context *ctx = dmreq->ctx;
2190 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2191 struct crypt_config *cc = io->cc;
2192
2193 /*
2194 * A request from crypto driver backlog is going to be processed now,
2195 * finish the completion and continue in crypt_convert().
2196 * (Callback will be called for the second time for this request.)
2197 */
2198 if (error == -EINPROGRESS) {
2199 complete(&ctx->restart);
2200 return;
2201 }
2202
2203 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2204 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2205
2206 if (error == -EBADMSG) {
2207 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2208
2209 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2210 ctx->bio_in->bi_bdev, s);
2211 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead",
2212 bio: ctx->bio_in, sector: s, result: 0);
2213 io->error = BLK_STS_PROTECTION;
2214 } else if (error < 0)
2215 io->error = BLK_STS_IOERR;
2216
2217 crypt_free_req(cc, req: req_of_dmreq(cc, dmreq), base_bio: io->base_bio);
2218
2219 if (!atomic_dec_and_test(v: &ctx->cc_pending))
2220 return;
2221
2222 /*
2223 * The request is fully completed: for inline writes, let
2224 * kcryptd_crypt_write_convert() do the IO submission.
2225 */
2226 if (bio_data_dir(io->base_bio) == READ) {
2227 kcryptd_crypt_read_done(io);
2228 return;
2229 }
2230
2231 if (kcryptd_crypt_write_inline(cc, ctx)) {
2232 complete(&ctx->restart);
2233 return;
2234 }
2235
2236 kcryptd_crypt_write_io_submit(io, async: 1);
2237}
2238
2239static void kcryptd_crypt(struct work_struct *work)
2240{
2241 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2242
2243 if (bio_data_dir(io->base_bio) == READ)
2244 kcryptd_crypt_read_convert(io);
2245 else
2246 kcryptd_crypt_write_convert(io);
2247}
2248
2249static void kcryptd_crypt_tasklet(unsigned long work)
2250{
2251 kcryptd_crypt(work: (struct work_struct *)work);
2252}
2253
2254static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2255{
2256 struct crypt_config *cc = io->cc;
2257
2258 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2259 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2260 /*
2261 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2262 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2263 * it is being executed with irqs disabled.
2264 */
2265 if (in_hardirq() || irqs_disabled()) {
2266 io->in_tasklet = true;
2267 tasklet_init(t: &io->tasklet, func: kcryptd_crypt_tasklet, data: (unsigned long)&io->work);
2268 tasklet_schedule(t: &io->tasklet);
2269 return;
2270 }
2271
2272 kcryptd_crypt(work: &io->work);
2273 return;
2274 }
2275
2276 INIT_WORK(&io->work, kcryptd_crypt);
2277 queue_work(wq: cc->crypt_queue, work: &io->work);
2278}
2279
2280static void crypt_free_tfms_aead(struct crypt_config *cc)
2281{
2282 if (!cc->cipher_tfm.tfms_aead)
2283 return;
2284
2285 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) {
2286 crypto_free_aead(tfm: cc->cipher_tfm.tfms_aead[0]);
2287 cc->cipher_tfm.tfms_aead[0] = NULL;
2288 }
2289
2290 kfree(objp: cc->cipher_tfm.tfms_aead);
2291 cc->cipher_tfm.tfms_aead = NULL;
2292}
2293
2294static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2295{
2296 unsigned int i;
2297
2298 if (!cc->cipher_tfm.tfms)
2299 return;
2300
2301 for (i = 0; i < cc->tfms_count; i++)
2302 if (cc->cipher_tfm.tfms[i] && !IS_ERR(ptr: cc->cipher_tfm.tfms[i])) {
2303 crypto_free_skcipher(tfm: cc->cipher_tfm.tfms[i]);
2304 cc->cipher_tfm.tfms[i] = NULL;
2305 }
2306
2307 kfree(objp: cc->cipher_tfm.tfms);
2308 cc->cipher_tfm.tfms = NULL;
2309}
2310
2311static void crypt_free_tfms(struct crypt_config *cc)
2312{
2313 if (crypt_integrity_aead(cc))
2314 crypt_free_tfms_aead(cc);
2315 else
2316 crypt_free_tfms_skcipher(cc);
2317}
2318
2319static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2320{
2321 unsigned int i;
2322 int err;
2323
2324 cc->cipher_tfm.tfms = kcalloc(n: cc->tfms_count,
2325 size: sizeof(struct crypto_skcipher *),
2326 GFP_KERNEL);
2327 if (!cc->cipher_tfm.tfms)
2328 return -ENOMEM;
2329
2330 for (i = 0; i < cc->tfms_count; i++) {
2331 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(alg_name: ciphermode, type: 0,
2332 CRYPTO_ALG_ALLOCATES_MEMORY);
2333 if (IS_ERR(ptr: cc->cipher_tfm.tfms[i])) {
2334 err = PTR_ERR(ptr: cc->cipher_tfm.tfms[i]);
2335 crypt_free_tfms(cc);
2336 return err;
2337 }
2338 }
2339
2340 /*
2341 * dm-crypt performance can vary greatly depending on which crypto
2342 * algorithm implementation is used. Help people debug performance
2343 * problems by logging the ->cra_driver_name.
2344 */
2345 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2346 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2347 return 0;
2348}
2349
2350static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2351{
2352 int err;
2353
2354 cc->cipher_tfm.tfms = kmalloc(size: sizeof(struct crypto_aead *), GFP_KERNEL);
2355 if (!cc->cipher_tfm.tfms)
2356 return -ENOMEM;
2357
2358 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(alg_name: ciphermode, type: 0,
2359 CRYPTO_ALG_ALLOCATES_MEMORY);
2360 if (IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) {
2361 err = PTR_ERR(ptr: cc->cipher_tfm.tfms_aead[0]);
2362 crypt_free_tfms(cc);
2363 return err;
2364 }
2365
2366 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2367 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2368 return 0;
2369}
2370
2371static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2372{
2373 if (crypt_integrity_aead(cc))
2374 return crypt_alloc_tfms_aead(cc, ciphermode);
2375 else
2376 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2377}
2378
2379static unsigned int crypt_subkey_size(struct crypt_config *cc)
2380{
2381 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2382}
2383
2384static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2385{
2386 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2387}
2388
2389/*
2390 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2391 * the key must be for some reason in special format.
2392 * This funcion converts cc->key to this special format.
2393 */
2394static void crypt_copy_authenckey(char *p, const void *key,
2395 unsigned int enckeylen, unsigned int authkeylen)
2396{
2397 struct crypto_authenc_key_param *param;
2398 struct rtattr *rta;
2399
2400 rta = (struct rtattr *)p;
2401 param = RTA_DATA(rta);
2402 param->enckeylen = cpu_to_be32(enckeylen);
2403 rta->rta_len = RTA_LENGTH(sizeof(*param));
2404 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2405 p += RTA_SPACE(sizeof(*param));
2406 memcpy(p, key + enckeylen, authkeylen);
2407 p += authkeylen;
2408 memcpy(p, key, enckeylen);
2409}
2410
2411static int crypt_setkey(struct crypt_config *cc)
2412{
2413 unsigned int subkey_size;
2414 int err = 0, i, r;
2415
2416 /* Ignore extra keys (which are used for IV etc) */
2417 subkey_size = crypt_subkey_size(cc);
2418
2419 if (crypt_integrity_hmac(cc)) {
2420 if (subkey_size < cc->key_mac_size)
2421 return -EINVAL;
2422
2423 crypt_copy_authenckey(p: cc->authenc_key, key: cc->key,
2424 enckeylen: subkey_size - cc->key_mac_size,
2425 authkeylen: cc->key_mac_size);
2426 }
2427
2428 for (i = 0; i < cc->tfms_count; i++) {
2429 if (crypt_integrity_hmac(cc))
2430 r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i],
2431 key: cc->authenc_key, keylen: crypt_authenckey_size(cc));
2432 else if (crypt_integrity_aead(cc))
2433 r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i],
2434 key: cc->key + (i * subkey_size),
2435 keylen: subkey_size);
2436 else
2437 r = crypto_skcipher_setkey(tfm: cc->cipher_tfm.tfms[i],
2438 key: cc->key + (i * subkey_size),
2439 keylen: subkey_size);
2440 if (r)
2441 err = r;
2442 }
2443
2444 if (crypt_integrity_hmac(cc))
2445 memzero_explicit(s: cc->authenc_key, count: crypt_authenckey_size(cc));
2446
2447 return err;
2448}
2449
2450#ifdef CONFIG_KEYS
2451
2452static bool contains_whitespace(const char *str)
2453{
2454 while (*str)
2455 if (isspace(*str++))
2456 return true;
2457 return false;
2458}
2459
2460static int set_key_user(struct crypt_config *cc, struct key *key)
2461{
2462 const struct user_key_payload *ukp;
2463
2464 ukp = user_key_payload_locked(key);
2465 if (!ukp)
2466 return -EKEYREVOKED;
2467
2468 if (cc->key_size != ukp->datalen)
2469 return -EINVAL;
2470
2471 memcpy(cc->key, ukp->data, cc->key_size);
2472
2473 return 0;
2474}
2475
2476static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2477{
2478 const struct encrypted_key_payload *ekp;
2479
2480 ekp = key->payload.data[0];
2481 if (!ekp)
2482 return -EKEYREVOKED;
2483
2484 if (cc->key_size != ekp->decrypted_datalen)
2485 return -EINVAL;
2486
2487 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2488
2489 return 0;
2490}
2491
2492static int set_key_trusted(struct crypt_config *cc, struct key *key)
2493{
2494 const struct trusted_key_payload *tkp;
2495
2496 tkp = key->payload.data[0];
2497 if (!tkp)
2498 return -EKEYREVOKED;
2499
2500 if (cc->key_size != tkp->key_len)
2501 return -EINVAL;
2502
2503 memcpy(cc->key, tkp->key, cc->key_size);
2504
2505 return 0;
2506}
2507
2508static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2509{
2510 char *new_key_string, *key_desc;
2511 int ret;
2512 struct key_type *type;
2513 struct key *key;
2514 int (*set_key)(struct crypt_config *cc, struct key *key);
2515
2516 /*
2517 * Reject key_string with whitespace. dm core currently lacks code for
2518 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2519 */
2520 if (contains_whitespace(str: key_string)) {
2521 DMERR("whitespace chars not allowed in key string");
2522 return -EINVAL;
2523 }
2524
2525 /* look for next ':' separating key_type from key_description */
2526 key_desc = strchr(key_string, ':');
2527 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2528 return -EINVAL;
2529
2530 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2531 type = &key_type_logon;
2532 set_key = set_key_user;
2533 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2534 type = &key_type_user;
2535 set_key = set_key_user;
2536 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2537 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2538 type = &key_type_encrypted;
2539 set_key = set_key_encrypted;
2540 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2541 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2542 type = &key_type_trusted;
2543 set_key = set_key_trusted;
2544 } else {
2545 return -EINVAL;
2546 }
2547
2548 new_key_string = kstrdup(s: key_string, GFP_KERNEL);
2549 if (!new_key_string)
2550 return -ENOMEM;
2551
2552 key = request_key(type, description: key_desc + 1, NULL);
2553 if (IS_ERR(ptr: key)) {
2554 kfree_sensitive(objp: new_key_string);
2555 return PTR_ERR(ptr: key);
2556 }
2557
2558 down_read(sem: &key->sem);
2559
2560 ret = set_key(cc, key);
2561 if (ret < 0) {
2562 up_read(sem: &key->sem);
2563 key_put(key);
2564 kfree_sensitive(objp: new_key_string);
2565 return ret;
2566 }
2567
2568 up_read(sem: &key->sem);
2569 key_put(key);
2570
2571 /* clear the flag since following operations may invalidate previously valid key */
2572 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2573
2574 ret = crypt_setkey(cc);
2575
2576 if (!ret) {
2577 set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2578 kfree_sensitive(objp: cc->key_string);
2579 cc->key_string = new_key_string;
2580 } else
2581 kfree_sensitive(objp: new_key_string);
2582
2583 return ret;
2584}
2585
2586static int get_key_size(char **key_string)
2587{
2588 char *colon, dummy;
2589 int ret;
2590
2591 if (*key_string[0] != ':')
2592 return strlen(*key_string) >> 1;
2593
2594 /* look for next ':' in key string */
2595 colon = strpbrk(*key_string + 1, ":");
2596 if (!colon)
2597 return -EINVAL;
2598
2599 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2600 return -EINVAL;
2601
2602 *key_string = colon;
2603
2604 /* remaining key string should be :<logon|user>:<key_desc> */
2605
2606 return ret;
2607}
2608
2609#else
2610
2611static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2612{
2613 return -EINVAL;
2614}
2615
2616static int get_key_size(char **key_string)
2617{
2618 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2619}
2620
2621#endif /* CONFIG_KEYS */
2622
2623static int crypt_set_key(struct crypt_config *cc, char *key)
2624{
2625 int r = -EINVAL;
2626 int key_string_len = strlen(key);
2627
2628 /* Hyphen (which gives a key_size of zero) means there is no key. */
2629 if (!cc->key_size && strcmp(key, "-"))
2630 goto out;
2631
2632 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2633 if (key[0] == ':') {
2634 r = crypt_set_keyring_key(cc, key_string: key + 1);
2635 goto out;
2636 }
2637
2638 /* clear the flag since following operations may invalidate previously valid key */
2639 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2640
2641 /* wipe references to any kernel keyring key */
2642 kfree_sensitive(objp: cc->key_string);
2643 cc->key_string = NULL;
2644
2645 /* Decode key from its hex representation. */
2646 if (cc->key_size && hex2bin(dst: cc->key, src: key, count: cc->key_size) < 0)
2647 goto out;
2648
2649 r = crypt_setkey(cc);
2650 if (!r)
2651 set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2652
2653out:
2654 /* Hex key string not needed after here, so wipe it. */
2655 memset(key, '0', key_string_len);
2656
2657 return r;
2658}
2659
2660static int crypt_wipe_key(struct crypt_config *cc)
2661{
2662 int r;
2663
2664 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2665 get_random_bytes(buf: &cc->key, len: cc->key_size);
2666
2667 /* Wipe IV private keys */
2668 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2669 r = cc->iv_gen_ops->wipe(cc);
2670 if (r)
2671 return r;
2672 }
2673
2674 kfree_sensitive(objp: cc->key_string);
2675 cc->key_string = NULL;
2676 r = crypt_setkey(cc);
2677 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2678
2679 return r;
2680}
2681
2682static void crypt_calculate_pages_per_client(void)
2683{
2684 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2685
2686 if (!dm_crypt_clients_n)
2687 return;
2688
2689 pages /= dm_crypt_clients_n;
2690 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2691 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2692 dm_crypt_pages_per_client = pages;
2693}
2694
2695static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2696{
2697 struct crypt_config *cc = pool_data;
2698 struct page *page;
2699
2700 /*
2701 * Note, percpu_counter_read_positive() may over (and under) estimate
2702 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2703 * but avoids potential spinlock contention of an exact result.
2704 */
2705 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2706 likely(gfp_mask & __GFP_NORETRY))
2707 return NULL;
2708
2709 page = alloc_page(gfp_mask);
2710 if (likely(page != NULL))
2711 percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1);
2712
2713 return page;
2714}
2715
2716static void crypt_page_free(void *page, void *pool_data)
2717{
2718 struct crypt_config *cc = pool_data;
2719
2720 __free_page(page);
2721 percpu_counter_sub(fbc: &cc->n_allocated_pages, amount: 1);
2722}
2723
2724static void crypt_dtr(struct dm_target *ti)
2725{
2726 struct crypt_config *cc = ti->private;
2727
2728 ti->private = NULL;
2729
2730 if (!cc)
2731 return;
2732
2733 if (cc->write_thread)
2734 kthread_stop(k: cc->write_thread);
2735
2736 if (cc->io_queue)
2737 destroy_workqueue(wq: cc->io_queue);
2738 if (cc->crypt_queue)
2739 destroy_workqueue(wq: cc->crypt_queue);
2740
2741 crypt_free_tfms(cc);
2742
2743 bioset_exit(&cc->bs);
2744
2745 mempool_exit(pool: &cc->page_pool);
2746 mempool_exit(pool: &cc->req_pool);
2747 mempool_exit(pool: &cc->tag_pool);
2748
2749 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2750 percpu_counter_destroy(fbc: &cc->n_allocated_pages);
2751
2752 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2753 cc->iv_gen_ops->dtr(cc);
2754
2755 if (cc->dev)
2756 dm_put_device(ti, d: cc->dev);
2757
2758 kfree_sensitive(objp: cc->cipher_string);
2759 kfree_sensitive(objp: cc->key_string);
2760 kfree_sensitive(objp: cc->cipher_auth);
2761 kfree_sensitive(objp: cc->authenc_key);
2762
2763 mutex_destroy(lock: &cc->bio_alloc_lock);
2764
2765 /* Must zero key material before freeing */
2766 kfree_sensitive(objp: cc);
2767
2768 spin_lock(lock: &dm_crypt_clients_lock);
2769 WARN_ON(!dm_crypt_clients_n);
2770 dm_crypt_clients_n--;
2771 crypt_calculate_pages_per_client();
2772 spin_unlock(lock: &dm_crypt_clients_lock);
2773
2774 dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1);
2775}
2776
2777static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2778{
2779 struct crypt_config *cc = ti->private;
2780
2781 if (crypt_integrity_aead(cc))
2782 cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc));
2783 else
2784 cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc));
2785
2786 if (cc->iv_size)
2787 /* at least a 64 bit sector number should fit in our buffer */
2788 cc->iv_size = max(cc->iv_size,
2789 (unsigned int)(sizeof(u64) / sizeof(u8)));
2790 else if (ivmode) {
2791 DMWARN("Selected cipher does not support IVs");
2792 ivmode = NULL;
2793 }
2794
2795 /* Choose ivmode, see comments at iv code. */
2796 if (ivmode == NULL)
2797 cc->iv_gen_ops = NULL;
2798 else if (strcmp(ivmode, "plain") == 0)
2799 cc->iv_gen_ops = &crypt_iv_plain_ops;
2800 else if (strcmp(ivmode, "plain64") == 0)
2801 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2802 else if (strcmp(ivmode, "plain64be") == 0)
2803 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2804 else if (strcmp(ivmode, "essiv") == 0)
2805 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2806 else if (strcmp(ivmode, "benbi") == 0)
2807 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2808 else if (strcmp(ivmode, "null") == 0)
2809 cc->iv_gen_ops = &crypt_iv_null_ops;
2810 else if (strcmp(ivmode, "eboiv") == 0)
2811 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2812 else if (strcmp(ivmode, "elephant") == 0) {
2813 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2814 cc->key_parts = 2;
2815 cc->key_extra_size = cc->key_size / 2;
2816 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2817 return -EINVAL;
2818 set_bit(nr: CRYPT_ENCRYPT_PREPROCESS, addr: &cc->cipher_flags);
2819 } else if (strcmp(ivmode, "lmk") == 0) {
2820 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2821 /*
2822 * Version 2 and 3 is recognised according
2823 * to length of provided multi-key string.
2824 * If present (version 3), last key is used as IV seed.
2825 * All keys (including IV seed) are always the same size.
2826 */
2827 if (cc->key_size % cc->key_parts) {
2828 cc->key_parts++;
2829 cc->key_extra_size = cc->key_size / cc->key_parts;
2830 }
2831 } else if (strcmp(ivmode, "tcw") == 0) {
2832 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2833 cc->key_parts += 2; /* IV + whitening */
2834 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2835 } else if (strcmp(ivmode, "random") == 0) {
2836 cc->iv_gen_ops = &crypt_iv_random_ops;
2837 /* Need storage space in integrity fields. */
2838 cc->integrity_iv_size = cc->iv_size;
2839 } else {
2840 ti->error = "Invalid IV mode";
2841 return -EINVAL;
2842 }
2843
2844 return 0;
2845}
2846
2847/*
2848 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2849 * The HMAC is needed to calculate tag size (HMAC digest size).
2850 * This should be probably done by crypto-api calls (once available...)
2851 */
2852static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2853{
2854 char *start, *end, *mac_alg = NULL;
2855 struct crypto_ahash *mac;
2856
2857 if (!strstarts(str: cipher_api, prefix: "authenc("))
2858 return 0;
2859
2860 start = strchr(cipher_api, '(');
2861 end = strchr(cipher_api, ',');
2862 if (!start || !end || ++start > end)
2863 return -EINVAL;
2864
2865 mac_alg = kmemdup_nul(s: start, len: end - start, GFP_KERNEL);
2866 if (!mac_alg)
2867 return -ENOMEM;
2868
2869 mac = crypto_alloc_ahash(alg_name: mac_alg, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2870 kfree(objp: mac_alg);
2871
2872 if (IS_ERR(ptr: mac))
2873 return PTR_ERR(ptr: mac);
2874
2875 cc->key_mac_size = crypto_ahash_digestsize(tfm: mac);
2876 crypto_free_ahash(tfm: mac);
2877
2878 cc->authenc_key = kmalloc(size: crypt_authenckey_size(cc), GFP_KERNEL);
2879 if (!cc->authenc_key)
2880 return -ENOMEM;
2881
2882 return 0;
2883}
2884
2885static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2886 char **ivmode, char **ivopts)
2887{
2888 struct crypt_config *cc = ti->private;
2889 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2890 int ret = -EINVAL;
2891
2892 cc->tfms_count = 1;
2893
2894 /*
2895 * New format (capi: prefix)
2896 * capi:cipher_api_spec-iv:ivopts
2897 */
2898 tmp = &cipher_in[strlen("capi:")];
2899
2900 /* Separate IV options if present, it can contain another '-' in hash name */
2901 *ivopts = strrchr(tmp, ':');
2902 if (*ivopts) {
2903 **ivopts = '\0';
2904 (*ivopts)++;
2905 }
2906 /* Parse IV mode */
2907 *ivmode = strrchr(tmp, '-');
2908 if (*ivmode) {
2909 **ivmode = '\0';
2910 (*ivmode)++;
2911 }
2912 /* The rest is crypto API spec */
2913 cipher_api = tmp;
2914
2915 /* Alloc AEAD, can be used only in new format. */
2916 if (crypt_integrity_aead(cc)) {
2917 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2918 if (ret < 0) {
2919 ti->error = "Invalid AEAD cipher spec";
2920 return ret;
2921 }
2922 }
2923
2924 if (*ivmode && !strcmp(*ivmode, "lmk"))
2925 cc->tfms_count = 64;
2926
2927 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2928 if (!*ivopts) {
2929 ti->error = "Digest algorithm missing for ESSIV mode";
2930 return -EINVAL;
2931 }
2932 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, fmt: "essiv(%s,%s)",
2933 cipher_api, *ivopts);
2934 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2935 ti->error = "Cannot allocate cipher string";
2936 return -ENOMEM;
2937 }
2938 cipher_api = buf;
2939 }
2940
2941 cc->key_parts = cc->tfms_count;
2942
2943 /* Allocate cipher */
2944 ret = crypt_alloc_tfms(cc, ciphermode: cipher_api);
2945 if (ret < 0) {
2946 ti->error = "Error allocating crypto tfm";
2947 return ret;
2948 }
2949
2950 if (crypt_integrity_aead(cc))
2951 cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc));
2952 else
2953 cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc));
2954
2955 return 0;
2956}
2957
2958static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2959 char **ivmode, char **ivopts)
2960{
2961 struct crypt_config *cc = ti->private;
2962 char *tmp, *cipher, *chainmode, *keycount;
2963 char *cipher_api = NULL;
2964 int ret = -EINVAL;
2965 char dummy;
2966
2967 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2968 ti->error = "Bad cipher specification";
2969 return -EINVAL;
2970 }
2971
2972 /*
2973 * Legacy dm-crypt cipher specification
2974 * cipher[:keycount]-mode-iv:ivopts
2975 */
2976 tmp = cipher_in;
2977 keycount = strsep(&tmp, "-");
2978 cipher = strsep(&keycount, ":");
2979
2980 if (!keycount)
2981 cc->tfms_count = 1;
2982 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2983 !is_power_of_2(n: cc->tfms_count)) {
2984 ti->error = "Bad cipher key count specification";
2985 return -EINVAL;
2986 }
2987 cc->key_parts = cc->tfms_count;
2988
2989 chainmode = strsep(&tmp, "-");
2990 *ivmode = strsep(&tmp, ":");
2991 *ivopts = tmp;
2992
2993 /*
2994 * For compatibility with the original dm-crypt mapping format, if
2995 * only the cipher name is supplied, use cbc-plain.
2996 */
2997 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2998 chainmode = "cbc";
2999 *ivmode = "plain";
3000 }
3001
3002 if (strcmp(chainmode, "ecb") && !*ivmode) {
3003 ti->error = "IV mechanism required";
3004 return -EINVAL;
3005 }
3006
3007 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3008 if (!cipher_api)
3009 goto bad_mem;
3010
3011 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3012 if (!*ivopts) {
3013 ti->error = "Digest algorithm missing for ESSIV mode";
3014 kfree(objp: cipher_api);
3015 return -EINVAL;
3016 }
3017 ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME,
3018 fmt: "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3019 } else {
3020 ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME,
3021 fmt: "%s(%s)", chainmode, cipher);
3022 }
3023 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3024 kfree(objp: cipher_api);
3025 goto bad_mem;
3026 }
3027
3028 /* Allocate cipher */
3029 ret = crypt_alloc_tfms(cc, ciphermode: cipher_api);
3030 if (ret < 0) {
3031 ti->error = "Error allocating crypto tfm";
3032 kfree(objp: cipher_api);
3033 return ret;
3034 }
3035 kfree(objp: cipher_api);
3036
3037 return 0;
3038bad_mem:
3039 ti->error = "Cannot allocate cipher strings";
3040 return -ENOMEM;
3041}
3042
3043static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3044{
3045 struct crypt_config *cc = ti->private;
3046 char *ivmode = NULL, *ivopts = NULL;
3047 int ret;
3048
3049 cc->cipher_string = kstrdup(s: cipher_in, GFP_KERNEL);
3050 if (!cc->cipher_string) {
3051 ti->error = "Cannot allocate cipher strings";
3052 return -ENOMEM;
3053 }
3054
3055 if (strstarts(str: cipher_in, prefix: "capi:"))
3056 ret = crypt_ctr_cipher_new(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts);
3057 else
3058 ret = crypt_ctr_cipher_old(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts);
3059 if (ret)
3060 return ret;
3061
3062 /* Initialize IV */
3063 ret = crypt_ctr_ivmode(ti, ivmode);
3064 if (ret < 0)
3065 return ret;
3066
3067 /* Initialize and set key */
3068 ret = crypt_set_key(cc, key);
3069 if (ret < 0) {
3070 ti->error = "Error decoding and setting key";
3071 return ret;
3072 }
3073
3074 /* Allocate IV */
3075 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3076 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3077 if (ret < 0) {
3078 ti->error = "Error creating IV";
3079 return ret;
3080 }
3081 }
3082
3083 /* Initialize IV (set keys for ESSIV etc) */
3084 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3085 ret = cc->iv_gen_ops->init(cc);
3086 if (ret < 0) {
3087 ti->error = "Error initialising IV";
3088 return ret;
3089 }
3090 }
3091
3092 /* wipe the kernel key payload copy */
3093 if (cc->key_string)
3094 memset(cc->key, 0, cc->key_size * sizeof(u8));
3095
3096 return ret;
3097}
3098
3099static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3100{
3101 struct crypt_config *cc = ti->private;
3102 struct dm_arg_set as;
3103 static const struct dm_arg _args[] = {
3104 {0, 8, "Invalid number of feature args"},
3105 };
3106 unsigned int opt_params, val;
3107 const char *opt_string, *sval;
3108 char dummy;
3109 int ret;
3110
3111 /* Optional parameters */
3112 as.argc = argc;
3113 as.argv = argv;
3114
3115 ret = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &opt_params, error: &ti->error);
3116 if (ret)
3117 return ret;
3118
3119 while (opt_params--) {
3120 opt_string = dm_shift_arg(as: &as);
3121 if (!opt_string) {
3122 ti->error = "Not enough feature arguments";
3123 return -EINVAL;
3124 }
3125
3126 if (!strcasecmp(s1: opt_string, s2: "allow_discards"))
3127 ti->num_discard_bios = 1;
3128
3129 else if (!strcasecmp(s1: opt_string, s2: "same_cpu_crypt"))
3130 set_bit(nr: DM_CRYPT_SAME_CPU, addr: &cc->flags);
3131
3132 else if (!strcasecmp(s1: opt_string, s2: "submit_from_crypt_cpus"))
3133 set_bit(nr: DM_CRYPT_NO_OFFLOAD, addr: &cc->flags);
3134 else if (!strcasecmp(s1: opt_string, s2: "no_read_workqueue"))
3135 set_bit(nr: DM_CRYPT_NO_READ_WORKQUEUE, addr: &cc->flags);
3136 else if (!strcasecmp(s1: opt_string, s2: "no_write_workqueue"))
3137 set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags);
3138 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3139 if (val == 0 || val > MAX_TAG_SIZE) {
3140 ti->error = "Invalid integrity arguments";
3141 return -EINVAL;
3142 }
3143 cc->on_disk_tag_size = val;
3144 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3145 if (!strcasecmp(s1: sval, s2: "aead")) {
3146 set_bit(nr: CRYPT_MODE_INTEGRITY_AEAD, addr: &cc->cipher_flags);
3147 } else if (strcasecmp(s1: sval, s2: "none")) {
3148 ti->error = "Unknown integrity profile";
3149 return -EINVAL;
3150 }
3151
3152 cc->cipher_auth = kstrdup(s: sval, GFP_KERNEL);
3153 if (!cc->cipher_auth)
3154 return -ENOMEM;
3155 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3156 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3157 cc->sector_size > 4096 ||
3158 (cc->sector_size & (cc->sector_size - 1))) {
3159 ti->error = "Invalid feature value for sector_size";
3160 return -EINVAL;
3161 }
3162 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3163 ti->error = "Device size is not multiple of sector_size feature";
3164 return -EINVAL;
3165 }
3166 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3167 } else if (!strcasecmp(s1: opt_string, s2: "iv_large_sectors"))
3168 set_bit(nr: CRYPT_IV_LARGE_SECTORS, addr: &cc->cipher_flags);
3169 else {
3170 ti->error = "Invalid feature arguments";
3171 return -EINVAL;
3172 }
3173 }
3174
3175 return 0;
3176}
3177
3178#ifdef CONFIG_BLK_DEV_ZONED
3179static int crypt_report_zones(struct dm_target *ti,
3180 struct dm_report_zones_args *args, unsigned int nr_zones)
3181{
3182 struct crypt_config *cc = ti->private;
3183
3184 return dm_report_zones(bdev: cc->dev->bdev, start: cc->start,
3185 sector: cc->start + dm_target_offset(ti, args->next_sector),
3186 args, nr_zones);
3187}
3188#else
3189#define crypt_report_zones NULL
3190#endif
3191
3192/*
3193 * Construct an encryption mapping:
3194 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3195 */
3196static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3197{
3198 struct crypt_config *cc;
3199 const char *devname = dm_table_device_name(t: ti->table);
3200 int key_size;
3201 unsigned int align_mask;
3202 unsigned long long tmpll;
3203 int ret;
3204 size_t iv_size_padding, additional_req_size;
3205 char dummy;
3206
3207 if (argc < 5) {
3208 ti->error = "Not enough arguments";
3209 return -EINVAL;
3210 }
3211
3212 key_size = get_key_size(key_string: &argv[1]);
3213 if (key_size < 0) {
3214 ti->error = "Cannot parse key size";
3215 return -EINVAL;
3216 }
3217
3218 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3219 if (!cc) {
3220 ti->error = "Cannot allocate encryption context";
3221 return -ENOMEM;
3222 }
3223 cc->key_size = key_size;
3224 cc->sector_size = (1 << SECTOR_SHIFT);
3225 cc->sector_shift = 0;
3226
3227 ti->private = cc;
3228
3229 spin_lock(lock: &dm_crypt_clients_lock);
3230 dm_crypt_clients_n++;
3231 crypt_calculate_pages_per_client();
3232 spin_unlock(lock: &dm_crypt_clients_lock);
3233
3234 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3235 if (ret < 0)
3236 goto bad;
3237
3238 /* Optional parameters need to be read before cipher constructor */
3239 if (argc > 5) {
3240 ret = crypt_ctr_optional(ti, argc: argc - 5, argv: &argv[5]);
3241 if (ret)
3242 goto bad;
3243 }
3244
3245 ret = crypt_ctr_cipher(ti, cipher_in: argv[0], key: argv[1]);
3246 if (ret < 0)
3247 goto bad;
3248
3249 if (crypt_integrity_aead(cc)) {
3250 cc->dmreq_start = sizeof(struct aead_request);
3251 cc->dmreq_start += crypto_aead_reqsize(tfm: any_tfm_aead(cc));
3252 align_mask = crypto_aead_alignmask(tfm: any_tfm_aead(cc));
3253 } else {
3254 cc->dmreq_start = sizeof(struct skcipher_request);
3255 cc->dmreq_start += crypto_skcipher_reqsize(tfm: any_tfm(cc));
3256 align_mask = crypto_skcipher_alignmask(tfm: any_tfm(cc));
3257 }
3258 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3259
3260 if (align_mask < CRYPTO_MINALIGN) {
3261 /* Allocate the padding exactly */
3262 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3263 & align_mask;
3264 } else {
3265 /*
3266 * If the cipher requires greater alignment than kmalloc
3267 * alignment, we don't know the exact position of the
3268 * initialization vector. We must assume worst case.
3269 */
3270 iv_size_padding = align_mask;
3271 }
3272
3273 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3274 additional_req_size = sizeof(struct dm_crypt_request) +
3275 iv_size_padding + cc->iv_size +
3276 cc->iv_size +
3277 sizeof(uint64_t) +
3278 sizeof(unsigned int);
3279
3280 ret = mempool_init_kmalloc_pool(pool: &cc->req_pool, MIN_IOS, size: cc->dmreq_start + additional_req_size);
3281 if (ret) {
3282 ti->error = "Cannot allocate crypt request mempool";
3283 goto bad;
3284 }
3285
3286 cc->per_bio_data_size = ti->per_io_data_size =
3287 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3288 ARCH_DMA_MINALIGN);
3289
3290 ret = mempool_init(pool: &cc->page_pool, BIO_MAX_VECS, alloc_fn: crypt_page_alloc, free_fn: crypt_page_free, pool_data: cc);
3291 if (ret) {
3292 ti->error = "Cannot allocate page mempool";
3293 goto bad;
3294 }
3295
3296 ret = bioset_init(&cc->bs, MIN_IOS, 0, flags: BIOSET_NEED_BVECS);
3297 if (ret) {
3298 ti->error = "Cannot allocate crypt bioset";
3299 goto bad;
3300 }
3301
3302 mutex_init(&cc->bio_alloc_lock);
3303
3304 ret = -EINVAL;
3305 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3306 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3307 ti->error = "Invalid iv_offset sector";
3308 goto bad;
3309 }
3310 cc->iv_offset = tmpll;
3311
3312 ret = dm_get_device(ti, path: argv[3], mode: dm_table_get_mode(t: ti->table), result: &cc->dev);
3313 if (ret) {
3314 ti->error = "Device lookup failed";
3315 goto bad;
3316 }
3317
3318 ret = -EINVAL;
3319 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3320 ti->error = "Invalid device sector";
3321 goto bad;
3322 }
3323 cc->start = tmpll;
3324
3325 if (bdev_is_zoned(bdev: cc->dev->bdev)) {
3326 /*
3327 * For zoned block devices, we need to preserve the issuer write
3328 * ordering. To do so, disable write workqueues and force inline
3329 * encryption completion.
3330 */
3331 set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags);
3332 set_bit(nr: DM_CRYPT_WRITE_INLINE, addr: &cc->flags);
3333
3334 /*
3335 * All zone append writes to a zone of a zoned block device will
3336 * have the same BIO sector, the start of the zone. When the
3337 * cypher IV mode uses sector values, all data targeting a
3338 * zone will be encrypted using the first sector numbers of the
3339 * zone. This will not result in write errors but will
3340 * cause most reads to fail as reads will use the sector values
3341 * for the actual data locations, resulting in IV mismatch.
3342 * To avoid this problem, ask DM core to emulate zone append
3343 * operations with regular writes.
3344 */
3345 DMDEBUG("Zone append operations will be emulated");
3346 ti->emulate_zone_append = true;
3347 }
3348
3349 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3350 ret = crypt_integrity_ctr(cc, ti);
3351 if (ret)
3352 goto bad;
3353
3354 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3355 if (!cc->tag_pool_max_sectors)
3356 cc->tag_pool_max_sectors = 1;
3357
3358 ret = mempool_init_kmalloc_pool(pool: &cc->tag_pool, MIN_IOS,
3359 size: cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3360 if (ret) {
3361 ti->error = "Cannot allocate integrity tags mempool";
3362 goto bad;
3363 }
3364
3365 cc->tag_pool_max_sectors <<= cc->sector_shift;
3366 }
3367
3368 ret = -ENOMEM;
3369 cc->io_queue = alloc_workqueue(fmt: "kcryptd_io/%s", flags: WQ_MEM_RECLAIM, max_active: 1, devname);
3370 if (!cc->io_queue) {
3371 ti->error = "Couldn't create kcryptd io queue";
3372 goto bad;
3373 }
3374
3375 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3376 cc->crypt_queue = alloc_workqueue(fmt: "kcryptd/%s", flags: WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3377 max_active: 1, devname);
3378 else
3379 cc->crypt_queue = alloc_workqueue(fmt: "kcryptd/%s",
3380 flags: WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3381 max_active: num_online_cpus(), devname);
3382 if (!cc->crypt_queue) {
3383 ti->error = "Couldn't create kcryptd queue";
3384 goto bad;
3385 }
3386
3387 spin_lock_init(&cc->write_thread_lock);
3388 cc->write_tree = RB_ROOT;
3389
3390 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3391 if (IS_ERR(ptr: cc->write_thread)) {
3392 ret = PTR_ERR(ptr: cc->write_thread);
3393 cc->write_thread = NULL;
3394 ti->error = "Couldn't spawn write thread";
3395 goto bad;
3396 }
3397
3398 ti->num_flush_bios = 1;
3399 ti->limit_swap_bios = true;
3400 ti->accounts_remapped_io = true;
3401
3402 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1);
3403 return 0;
3404
3405bad:
3406 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0);
3407 crypt_dtr(ti);
3408 return ret;
3409}
3410
3411static int crypt_map(struct dm_target *ti, struct bio *bio)
3412{
3413 struct dm_crypt_io *io;
3414 struct crypt_config *cc = ti->private;
3415
3416 /*
3417 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3418 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3419 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3420 */
3421 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3422 bio_op(bio) == REQ_OP_DISCARD)) {
3423 bio_set_dev(bio, bdev: cc->dev->bdev);
3424 if (bio_sectors(bio))
3425 bio->bi_iter.bi_sector = cc->start +
3426 dm_target_offset(ti, bio->bi_iter.bi_sector);
3427 return DM_MAPIO_REMAPPED;
3428 }
3429
3430 /*
3431 * Check if bio is too large, split as needed.
3432 */
3433 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3434 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3435 dm_accept_partial_bio(bio, n_sectors: ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3436
3437 /*
3438 * Ensure that bio is a multiple of internal sector encryption size
3439 * and is aligned to this size as defined in IO hints.
3440 */
3441 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3442 return DM_MAPIO_KILL;
3443
3444 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3445 return DM_MAPIO_KILL;
3446
3447 io = dm_per_bio_data(bio, data_size: cc->per_bio_data_size);
3448 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3449
3450 if (cc->on_disk_tag_size) {
3451 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3452
3453 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3454 io->integrity_metadata = NULL;
3455 else
3456 io->integrity_metadata = kmalloc(size: tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3457
3458 if (unlikely(!io->integrity_metadata)) {
3459 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3460 dm_accept_partial_bio(bio, n_sectors: cc->tag_pool_max_sectors);
3461 io->integrity_metadata = mempool_alloc(pool: &cc->tag_pool, GFP_NOIO);
3462 io->integrity_metadata_from_pool = true;
3463 }
3464 }
3465
3466 if (crypt_integrity_aead(cc))
3467 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3468 else
3469 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3470
3471 if (bio_data_dir(io->base_bio) == READ) {
3472 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3473 kcryptd_queue_read(io);
3474 } else
3475 kcryptd_queue_crypt(io);
3476
3477 return DM_MAPIO_SUBMITTED;
3478}
3479
3480static char hex2asc(unsigned char c)
3481{
3482 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3483}
3484
3485static void crypt_status(struct dm_target *ti, status_type_t type,
3486 unsigned int status_flags, char *result, unsigned int maxlen)
3487{
3488 struct crypt_config *cc = ti->private;
3489 unsigned int i, sz = 0;
3490 int num_feature_args = 0;
3491
3492 switch (type) {
3493 case STATUSTYPE_INFO:
3494 result[0] = '\0';
3495 break;
3496
3497 case STATUSTYPE_TABLE:
3498 DMEMIT("%s ", cc->cipher_string);
3499
3500 if (cc->key_size > 0) {
3501 if (cc->key_string)
3502 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3503 else {
3504 for (i = 0; i < cc->key_size; i++) {
3505 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3506 hex2asc(cc->key[i] & 0xf));
3507 }
3508 }
3509 } else
3510 DMEMIT("-");
3511
3512 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3513 cc->dev->name, (unsigned long long)cc->start);
3514
3515 num_feature_args += !!ti->num_discard_bios;
3516 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3517 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3518 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3519 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3520 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3521 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3522 if (cc->on_disk_tag_size)
3523 num_feature_args++;
3524 if (num_feature_args) {
3525 DMEMIT(" %d", num_feature_args);
3526 if (ti->num_discard_bios)
3527 DMEMIT(" allow_discards");
3528 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3529 DMEMIT(" same_cpu_crypt");
3530 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3531 DMEMIT(" submit_from_crypt_cpus");
3532 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3533 DMEMIT(" no_read_workqueue");
3534 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3535 DMEMIT(" no_write_workqueue");
3536 if (cc->on_disk_tag_size)
3537 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3538 if (cc->sector_size != (1 << SECTOR_SHIFT))
3539 DMEMIT(" sector_size:%d", cc->sector_size);
3540 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3541 DMEMIT(" iv_large_sectors");
3542 }
3543 break;
3544
3545 case STATUSTYPE_IMA:
3546 DMEMIT_TARGET_NAME_VERSION(ti->type);
3547 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3548 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3549 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3550 'y' : 'n');
3551 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3552 'y' : 'n');
3553 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3554 'y' : 'n');
3555 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3556 'y' : 'n');
3557
3558 if (cc->on_disk_tag_size)
3559 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3560 cc->on_disk_tag_size, cc->cipher_auth);
3561 if (cc->sector_size != (1 << SECTOR_SHIFT))
3562 DMEMIT(",sector_size=%d", cc->sector_size);
3563 if (cc->cipher_string)
3564 DMEMIT(",cipher_string=%s", cc->cipher_string);
3565
3566 DMEMIT(",key_size=%u", cc->key_size);
3567 DMEMIT(",key_parts=%u", cc->key_parts);
3568 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3569 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3570 DMEMIT(";");
3571 break;
3572 }
3573}
3574
3575static void crypt_postsuspend(struct dm_target *ti)
3576{
3577 struct crypt_config *cc = ti->private;
3578
3579 set_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags);
3580}
3581
3582static int crypt_preresume(struct dm_target *ti)
3583{
3584 struct crypt_config *cc = ti->private;
3585
3586 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3587 DMERR("aborting resume - crypt key is not set.");
3588 return -EAGAIN;
3589 }
3590
3591 return 0;
3592}
3593
3594static void crypt_resume(struct dm_target *ti)
3595{
3596 struct crypt_config *cc = ti->private;
3597
3598 clear_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags);
3599}
3600
3601/* Message interface
3602 * key set <key>
3603 * key wipe
3604 */
3605static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3606 char *result, unsigned int maxlen)
3607{
3608 struct crypt_config *cc = ti->private;
3609 int key_size, ret = -EINVAL;
3610
3611 if (argc < 2)
3612 goto error;
3613
3614 if (!strcasecmp(s1: argv[0], s2: "key")) {
3615 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3616 DMWARN("not suspended during key manipulation.");
3617 return -EINVAL;
3618 }
3619 if (argc == 3 && !strcasecmp(s1: argv[1], s2: "set")) {
3620 /* The key size may not be changed. */
3621 key_size = get_key_size(key_string: &argv[2]);
3622 if (key_size < 0 || cc->key_size != key_size) {
3623 memset(argv[2], '0', strlen(argv[2]));
3624 return -EINVAL;
3625 }
3626
3627 ret = crypt_set_key(cc, key: argv[2]);
3628 if (ret)
3629 return ret;
3630 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3631 ret = cc->iv_gen_ops->init(cc);
3632 /* wipe the kernel key payload copy */
3633 if (cc->key_string)
3634 memset(cc->key, 0, cc->key_size * sizeof(u8));
3635 return ret;
3636 }
3637 if (argc == 2 && !strcasecmp(s1: argv[1], s2: "wipe"))
3638 return crypt_wipe_key(cc);
3639 }
3640
3641error:
3642 DMWARN("unrecognised message received.");
3643 return -EINVAL;
3644}
3645
3646static int crypt_iterate_devices(struct dm_target *ti,
3647 iterate_devices_callout_fn fn, void *data)
3648{
3649 struct crypt_config *cc = ti->private;
3650
3651 return fn(ti, cc->dev, cc->start, ti->len, data);
3652}
3653
3654static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3655{
3656 struct crypt_config *cc = ti->private;
3657
3658 /*
3659 * Unfortunate constraint that is required to avoid the potential
3660 * for exceeding underlying device's max_segments limits -- due to
3661 * crypt_alloc_buffer() possibly allocating pages for the encryption
3662 * bio that are not as physically contiguous as the original bio.
3663 */
3664 limits->max_segment_size = PAGE_SIZE;
3665
3666 limits->logical_block_size =
3667 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3668 limits->physical_block_size =
3669 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3670 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3671 limits->dma_alignment = limits->logical_block_size - 1;
3672}
3673
3674static struct target_type crypt_target = {
3675 .name = "crypt",
3676 .version = {1, 24, 0},
3677 .module = THIS_MODULE,
3678 .ctr = crypt_ctr,
3679 .dtr = crypt_dtr,
3680 .features = DM_TARGET_ZONED_HM,
3681 .report_zones = crypt_report_zones,
3682 .map = crypt_map,
3683 .status = crypt_status,
3684 .postsuspend = crypt_postsuspend,
3685 .preresume = crypt_preresume,
3686 .resume = crypt_resume,
3687 .message = crypt_message,
3688 .iterate_devices = crypt_iterate_devices,
3689 .io_hints = crypt_io_hints,
3690};
3691module_dm(crypt);
3692
3693MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3694MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3695MODULE_LICENSE("GPL");
3696

source code of linux/drivers/md/dm-crypt.c