1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10#include "dm-bio-record.h"
11
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/device-mapper.h>
15#include <linux/dm-io.h>
16#include <linux/vmalloc.h>
17#include <linux/sort.h>
18#include <linux/rbtree.h>
19#include <linux/delay.h>
20#include <linux/random.h>
21#include <linux/reboot.h>
22#include <crypto/hash.h>
23#include <crypto/skcipher.h>
24#include <linux/async_tx.h>
25#include <linux/dm-bufio.h>
26
27#include "dm-audit.h"
28
29#define DM_MSG_PREFIX "integrity"
30
31#define DEFAULT_INTERLEAVE_SECTORS 32768
32#define DEFAULT_JOURNAL_SIZE_FACTOR 7
33#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34#define DEFAULT_BUFFER_SECTORS 128
35#define DEFAULT_JOURNAL_WATERMARK 50
36#define DEFAULT_SYNC_MSEC 10000
37#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38#define MIN_LOG2_INTERLEAVE_SECTORS 3
39#define MAX_LOG2_INTERLEAVE_SECTORS 31
40#define METADATA_WORKQUEUE_MAX_ACTIVE 16
41#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42#define RECALC_WRITE_SUPER 16
43#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44#define BITMAP_FLUSH_INTERVAL (10 * HZ)
45#define DISCARD_FILLER 0xf6
46#define SALT_SIZE 16
47
48/*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52//#define DEBUG_PRINT
53//#define INTERNAL_VERIFY
54
55/*
56 * On disk structures
57 */
58
59#define SB_MAGIC "integrt"
60#define SB_VERSION_1 1
61#define SB_VERSION_2 2
62#define SB_VERSION_3 3
63#define SB_VERSION_4 4
64#define SB_VERSION_5 5
65#define SB_SECTORS 8
66#define MAX_SECTORS_PER_BLOCK 8
67
68struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82};
83
84#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85#define SB_FLAG_RECALCULATING 0x2
86#define SB_FLAG_DIRTY_BITMAP 0x4
87#define SB_FLAG_FIXED_PADDING 0x8
88#define SB_FLAG_FIXED_HMAC 0x10
89
90#define JOURNAL_ENTRY_ROUNDUP 8
91
92typedef __le64 commit_id_t;
93#define JOURNAL_MAC_PER_SECTOR 8
94
95struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105};
106
107#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109#if BITS_PER_LONG == 64
110#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111#else
112#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113#endif
114#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120#define JOURNAL_BLOCK_SECTORS 8
121#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130};
131
132#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134#define METADATA_PADDING_SECTORS 8
135
136#define N_COMMIT_IDS 4
137
138static unsigned char prev_commit_seq(unsigned char seq)
139{
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141}
142
143static unsigned char next_commit_seq(unsigned char seq)
144{
145 return (seq + 1) % N_COMMIT_IDS;
146}
147
148/*
149 * In-memory structures
150 */
151
152struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155};
156
157struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162};
163
164struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 struct notifier_block reboot_notifier;
282};
283
284struct dm_integrity_range {
285 sector_t logical_sector;
286 sector_t n_sectors;
287 bool waiting;
288 union {
289 struct rb_node node;
290 struct {
291 struct task_struct *task;
292 struct list_head wait_entry;
293 };
294 };
295};
296
297struct dm_integrity_io {
298 struct work_struct work;
299
300 struct dm_integrity_c *ic;
301 enum req_op op;
302 bool fua;
303
304 struct dm_integrity_range range;
305
306 sector_t metadata_block;
307 unsigned int metadata_offset;
308
309 atomic_t in_flight;
310 blk_status_t bi_status;
311
312 struct completion *completion;
313
314 struct dm_bio_details bio_details;
315};
316
317struct journal_completion {
318 struct dm_integrity_c *ic;
319 atomic_t in_flight;
320 struct completion comp;
321};
322
323struct journal_io {
324 struct dm_integrity_range range;
325 struct journal_completion *comp;
326};
327
328struct bitmap_block_status {
329 struct work_struct work;
330 struct dm_integrity_c *ic;
331 unsigned int idx;
332 unsigned long *bitmap;
333 struct bio_list bio_queue;
334 spinlock_t bio_queue_lock;
335
336};
337
338static struct kmem_cache *journal_io_cache;
339
340#define JOURNAL_IO_MEMPOOL 32
341
342#ifdef DEBUG_PRINT
343#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
344#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345 len ? ": " : "", len, bytes)
346#else
347#define DEBUG_print(x, ...) do { } while (0)
348#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
349#endif
350
351static void dm_integrity_prepare(struct request *rq)
352{
353}
354
355static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356{
357}
358
359/*
360 * DM Integrity profile, protection is performed layer above (dm-crypt)
361 */
362static const struct blk_integrity_profile dm_integrity_profile = {
363 .name = "DM-DIF-EXT-TAG",
364 .generate_fn = NULL,
365 .verify_fn = NULL,
366 .prepare_fn = dm_integrity_prepare,
367 .complete_fn = dm_integrity_complete,
368};
369
370static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371static void integrity_bio_wait(struct work_struct *w);
372static void dm_integrity_dtr(struct dm_target *ti);
373
374static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375{
376 if (err == -EILSEQ)
377 atomic64_inc(v: &ic->number_of_mismatches);
378 if (!cmpxchg(&ic->failed, 0, err))
379 DMERR("Error on %s: %d", msg, err);
380}
381
382static int dm_integrity_failed(struct dm_integrity_c *ic)
383{
384 return READ_ONCE(ic->failed);
385}
386
387static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388{
389 if (ic->legacy_recalculate)
390 return false;
391 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394 return true;
395 return false;
396}
397
398static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399 unsigned int j, unsigned char seq)
400{
401 /*
402 * Xor the number with section and sector, so that if a piece of
403 * journal is written at wrong place, it is detected.
404 */
405 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406}
407
408static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409 sector_t *area, sector_t *offset)
410{
411 if (!ic->meta_dev) {
412 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413 *area = data_sector >> log2_interleave_sectors;
414 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415 } else {
416 *area = 0;
417 *offset = data_sector;
418 }
419}
420
421#define sector_to_block(ic, n) \
422do { \
423 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
424 (n) >>= (ic)->sb->log2_sectors_per_block; \
425} while (0)
426
427static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428 sector_t offset, unsigned int *metadata_offset)
429{
430 __u64 ms;
431 unsigned int mo;
432
433 ms = area << ic->sb->log2_interleave_sectors;
434 if (likely(ic->log2_metadata_run >= 0))
435 ms += area << ic->log2_metadata_run;
436 else
437 ms += area * ic->metadata_run;
438 ms >>= ic->log2_buffer_sectors;
439
440 sector_to_block(ic, offset);
441
442 if (likely(ic->log2_tag_size >= 0)) {
443 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445 } else {
446 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448 }
449 *metadata_offset = mo;
450 return ms;
451}
452
453static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454{
455 sector_t result;
456
457 if (ic->meta_dev)
458 return offset;
459
460 result = area << ic->sb->log2_interleave_sectors;
461 if (likely(ic->log2_metadata_run >= 0))
462 result += (area + 1) << ic->log2_metadata_run;
463 else
464 result += (area + 1) * ic->metadata_run;
465
466 result += (sector_t)ic->initial_sectors + offset;
467 result += ic->start;
468
469 return result;
470}
471
472static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473{
474 if (unlikely(*sec_ptr >= ic->journal_sections))
475 *sec_ptr -= ic->journal_sections;
476}
477
478static void sb_set_version(struct dm_integrity_c *ic)
479{
480 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481 ic->sb->version = SB_VERSION_5;
482 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483 ic->sb->version = SB_VERSION_4;
484 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485 ic->sb->version = SB_VERSION_3;
486 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487 ic->sb->version = SB_VERSION_2;
488 else
489 ic->sb->version = SB_VERSION_1;
490}
491
492static int sb_mac(struct dm_integrity_c *ic, bool wr)
493{
494 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495 int r;
496 unsigned int mac_size = crypto_shash_digestsize(tfm: ic->journal_mac);
497 __u8 *sb = (__u8 *)ic->sb;
498 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
499
500 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
501 dm_integrity_io_error(ic, msg: "digest is too long", err: -EINVAL);
502 return -EINVAL;
503 }
504
505 desc->tfm = ic->journal_mac;
506
507 if (likely(wr)) {
508 r = crypto_shash_digest(desc, data: sb, len: mac - sb, out: mac);
509 if (unlikely(r < 0)) {
510 dm_integrity_io_error(ic, msg: "crypto_shash_digest", err: r);
511 return r;
512 }
513 } else {
514 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
515
516 r = crypto_shash_digest(desc, data: sb, len: mac - sb, out: actual_mac);
517 if (unlikely(r < 0)) {
518 dm_integrity_io_error(ic, msg: "crypto_shash_digest", err: r);
519 return r;
520 }
521 if (memcmp(p: mac, q: actual_mac, size: mac_size)) {
522 dm_integrity_io_error(ic, msg: "superblock mac", err: -EILSEQ);
523 dm_audit_log_target(DM_MSG_PREFIX, op: "mac-superblock", ti: ic->ti, result: 0);
524 return -EILSEQ;
525 }
526 }
527
528 return 0;
529}
530
531static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
532{
533 struct dm_io_request io_req;
534 struct dm_io_region io_loc;
535 const enum req_op op = opf & REQ_OP_MASK;
536 int r;
537
538 io_req.bi_opf = opf;
539 io_req.mem.type = DM_IO_KMEM;
540 io_req.mem.ptr.addr = ic->sb;
541 io_req.notify.fn = NULL;
542 io_req.client = ic->io;
543 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
544 io_loc.sector = ic->start;
545 io_loc.count = SB_SECTORS;
546
547 if (op == REQ_OP_WRITE) {
548 sb_set_version(ic);
549 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
550 r = sb_mac(ic, wr: true);
551 if (unlikely(r))
552 return r;
553 }
554 }
555
556 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL);
557 if (unlikely(r))
558 return r;
559
560 if (op == REQ_OP_READ) {
561 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 r = sb_mac(ic, wr: false);
563 if (unlikely(r))
564 return r;
565 }
566 }
567
568 return 0;
569}
570
571#define BITMAP_OP_TEST_ALL_SET 0
572#define BITMAP_OP_TEST_ALL_CLEAR 1
573#define BITMAP_OP_SET 2
574#define BITMAP_OP_CLEAR 3
575
576static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
577 sector_t sector, sector_t n_sectors, int mode)
578{
579 unsigned long bit, end_bit, this_end_bit, page, end_page;
580 unsigned long *data;
581
582 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
583 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
584 sector,
585 n_sectors,
586 ic->sb->log2_sectors_per_block,
587 ic->log2_blocks_per_bitmap_bit,
588 mode);
589 BUG();
590 }
591
592 if (unlikely(!n_sectors))
593 return true;
594
595 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596 end_bit = (sector + n_sectors - 1) >>
597 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598
599 page = bit / (PAGE_SIZE * 8);
600 bit %= PAGE_SIZE * 8;
601
602 end_page = end_bit / (PAGE_SIZE * 8);
603 end_bit %= PAGE_SIZE * 8;
604
605repeat:
606 if (page < end_page)
607 this_end_bit = PAGE_SIZE * 8 - 1;
608 else
609 this_end_bit = end_bit;
610
611 data = lowmem_page_address(page: bitmap[page].page);
612
613 if (mode == BITMAP_OP_TEST_ALL_SET) {
614 while (bit <= this_end_bit) {
615 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
616 do {
617 if (data[bit / BITS_PER_LONG] != -1)
618 return false;
619 bit += BITS_PER_LONG;
620 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
621 continue;
622 }
623 if (!test_bit(bit, data))
624 return false;
625 bit++;
626 }
627 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
628 while (bit <= this_end_bit) {
629 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
630 do {
631 if (data[bit / BITS_PER_LONG] != 0)
632 return false;
633 bit += BITS_PER_LONG;
634 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
635 continue;
636 }
637 if (test_bit(bit, data))
638 return false;
639 bit++;
640 }
641 } else if (mode == BITMAP_OP_SET) {
642 while (bit <= this_end_bit) {
643 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
644 do {
645 data[bit / BITS_PER_LONG] = -1;
646 bit += BITS_PER_LONG;
647 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
648 continue;
649 }
650 __set_bit(bit, data);
651 bit++;
652 }
653 } else if (mode == BITMAP_OP_CLEAR) {
654 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
655 clear_page(page: data);
656 else {
657 while (bit <= this_end_bit) {
658 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
659 do {
660 data[bit / BITS_PER_LONG] = 0;
661 bit += BITS_PER_LONG;
662 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
663 continue;
664 }
665 __clear_bit(bit, data);
666 bit++;
667 }
668 }
669 } else {
670 BUG();
671 }
672
673 if (unlikely(page < end_page)) {
674 bit = 0;
675 page++;
676 goto repeat;
677 }
678
679 return true;
680}
681
682static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
683{
684 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
685 unsigned int i;
686
687 for (i = 0; i < n_bitmap_pages; i++) {
688 unsigned long *dst_data = lowmem_page_address(page: dst[i].page);
689 unsigned long *src_data = lowmem_page_address(page: src[i].page);
690
691 copy_page(to: dst_data, from: src_data);
692 }
693}
694
695static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
696{
697 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
698 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
699
700 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
701 return &ic->bbs[bitmap_block];
702}
703
704static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
705 bool e, const char *function)
706{
707#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
708 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
709
710 if (unlikely(section >= ic->journal_sections) ||
711 unlikely(offset >= limit)) {
712 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
713 function, section, offset, ic->journal_sections, limit);
714 BUG();
715 }
716#endif
717}
718
719static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
720 unsigned int *pl_index, unsigned int *pl_offset)
721{
722 unsigned int sector;
723
724 access_journal_check(ic, section, offset, e: false, function: "page_list_location");
725
726 sector = section * ic->journal_section_sectors + offset;
727
728 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
729 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
730}
731
732static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
733 unsigned int section, unsigned int offset, unsigned int *n_sectors)
734{
735 unsigned int pl_index, pl_offset;
736 char *va;
737
738 page_list_location(ic, section, offset, pl_index: &pl_index, pl_offset: &pl_offset);
739
740 if (n_sectors)
741 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
742
743 va = lowmem_page_address(page: pl[pl_index].page);
744
745 return (struct journal_sector *)(va + pl_offset);
746}
747
748static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
749{
750 return access_page_list(ic, pl: ic->journal, section, offset, NULL);
751}
752
753static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
754{
755 unsigned int rel_sector, offset;
756 struct journal_sector *js;
757
758 access_journal_check(ic, section, offset: n, e: true, function: "access_journal_entry");
759
760 rel_sector = n % JOURNAL_BLOCK_SECTORS;
761 offset = n / JOURNAL_BLOCK_SECTORS;
762
763 js = access_journal(ic, section, offset: rel_sector);
764 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
765}
766
767static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
768{
769 n <<= ic->sb->log2_sectors_per_block;
770
771 n += JOURNAL_BLOCK_SECTORS;
772
773 access_journal_check(ic, section, offset: n, e: false, function: "access_journal_data");
774
775 return access_journal(ic, section, offset: n);
776}
777
778static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
779{
780 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
781 int r;
782 unsigned int j, size;
783
784 desc->tfm = ic->journal_mac;
785
786 r = crypto_shash_init(desc);
787 if (unlikely(r < 0)) {
788 dm_integrity_io_error(ic, msg: "crypto_shash_init", err: r);
789 goto err;
790 }
791
792 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
793 __le64 section_le;
794
795 r = crypto_shash_update(desc, data: (__u8 *)&ic->sb->salt, SALT_SIZE);
796 if (unlikely(r < 0)) {
797 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
798 goto err;
799 }
800
801 section_le = cpu_to_le64(section);
802 r = crypto_shash_update(desc, data: (__u8 *)&section_le, len: sizeof(section_le));
803 if (unlikely(r < 0)) {
804 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
805 goto err;
806 }
807 }
808
809 for (j = 0; j < ic->journal_section_entries; j++) {
810 struct journal_entry *je = access_journal_entry(ic, section, n: j);
811
812 r = crypto_shash_update(desc, data: (__u8 *)&je->u.sector, len: sizeof(je->u.sector));
813 if (unlikely(r < 0)) {
814 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
815 goto err;
816 }
817 }
818
819 size = crypto_shash_digestsize(tfm: ic->journal_mac);
820
821 if (likely(size <= JOURNAL_MAC_SIZE)) {
822 r = crypto_shash_final(desc, out: result);
823 if (unlikely(r < 0)) {
824 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
825 goto err;
826 }
827 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
828 } else {
829 __u8 digest[HASH_MAX_DIGESTSIZE];
830
831 if (WARN_ON(size > sizeof(digest))) {
832 dm_integrity_io_error(ic, msg: "digest_size", err: -EINVAL);
833 goto err;
834 }
835 r = crypto_shash_final(desc, out: digest);
836 if (unlikely(r < 0)) {
837 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
838 goto err;
839 }
840 memcpy(result, digest, JOURNAL_MAC_SIZE);
841 }
842
843 return;
844err:
845 memset(result, 0, JOURNAL_MAC_SIZE);
846}
847
848static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
849{
850 __u8 result[JOURNAL_MAC_SIZE];
851 unsigned int j;
852
853 if (!ic->journal_mac)
854 return;
855
856 section_mac(ic, section, result);
857
858 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
859 struct journal_sector *js = access_journal(ic, section, offset: j);
860
861 if (likely(wr))
862 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
863 else {
864 if (memcmp(p: &js->mac, q: result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
865 dm_integrity_io_error(ic, msg: "journal mac", err: -EILSEQ);
866 dm_audit_log_target(DM_MSG_PREFIX, op: "mac-journal", ti: ic->ti, result: 0);
867 }
868 }
869 }
870}
871
872static void complete_journal_op(void *context)
873{
874 struct journal_completion *comp = context;
875
876 BUG_ON(!atomic_read(&comp->in_flight));
877 if (likely(atomic_dec_and_test(&comp->in_flight)))
878 complete(&comp->comp);
879}
880
881static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
882 unsigned int n_sections, struct journal_completion *comp)
883{
884 struct async_submit_ctl submit;
885 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
886 unsigned int pl_index, pl_offset, section_index;
887 struct page_list *source_pl, *target_pl;
888
889 if (likely(encrypt)) {
890 source_pl = ic->journal;
891 target_pl = ic->journal_io;
892 } else {
893 source_pl = ic->journal_io;
894 target_pl = ic->journal;
895 }
896
897 page_list_location(ic, section, offset: 0, pl_index: &pl_index, pl_offset: &pl_offset);
898
899 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, v: &comp->in_flight);
900
901 init_async_submit(args: &submit, flags: ASYNC_TX_XOR_ZERO_DST, NULL, cb_fn: complete_journal_op, cb_param: comp, NULL);
902
903 section_index = pl_index;
904
905 do {
906 size_t this_step;
907 struct page *src_pages[2];
908 struct page *dst_page;
909
910 while (unlikely(pl_index == section_index)) {
911 unsigned int dummy;
912
913 if (likely(encrypt))
914 rw_section_mac(ic, section, wr: true);
915 section++;
916 n_sections--;
917 if (!n_sections)
918 break;
919 page_list_location(ic, section, offset: 0, pl_index: &section_index, pl_offset: &dummy);
920 }
921
922 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
923 dst_page = target_pl[pl_index].page;
924 src_pages[0] = source_pl[pl_index].page;
925 src_pages[1] = ic->journal_xor[pl_index].page;
926
927 async_xor(dest: dst_page, src_list: src_pages, offset: pl_offset, src_cnt: 2, len: this_step, submit: &submit);
928
929 pl_index++;
930 pl_offset = 0;
931 n_bytes -= this_step;
932 } while (n_bytes);
933
934 BUG_ON(n_sections);
935
936 async_tx_issue_pending_all();
937}
938
939static void complete_journal_encrypt(void *data, int err)
940{
941 struct journal_completion *comp = data;
942
943 if (unlikely(err)) {
944 if (likely(err == -EINPROGRESS)) {
945 complete(&comp->ic->crypto_backoff);
946 return;
947 }
948 dm_integrity_io_error(ic: comp->ic, msg: "asynchronous encrypt", err);
949 }
950 complete_journal_op(context: comp);
951}
952
953static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
954{
955 int r;
956
957 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
958 compl: complete_journal_encrypt, data: comp);
959 if (likely(encrypt))
960 r = crypto_skcipher_encrypt(req);
961 else
962 r = crypto_skcipher_decrypt(req);
963 if (likely(!r))
964 return false;
965 if (likely(r == -EINPROGRESS))
966 return true;
967 if (likely(r == -EBUSY)) {
968 wait_for_completion(&comp->ic->crypto_backoff);
969 reinit_completion(x: &comp->ic->crypto_backoff);
970 return true;
971 }
972 dm_integrity_io_error(ic: comp->ic, msg: "encrypt", err: r);
973 return false;
974}
975
976static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
977 unsigned int n_sections, struct journal_completion *comp)
978{
979 struct scatterlist **source_sg;
980 struct scatterlist **target_sg;
981
982 atomic_add(i: 2, v: &comp->in_flight);
983
984 if (likely(encrypt)) {
985 source_sg = ic->journal_scatterlist;
986 target_sg = ic->journal_io_scatterlist;
987 } else {
988 source_sg = ic->journal_io_scatterlist;
989 target_sg = ic->journal_scatterlist;
990 }
991
992 do {
993 struct skcipher_request *req;
994 unsigned int ivsize;
995 char *iv;
996
997 if (likely(encrypt))
998 rw_section_mac(ic, section, wr: true);
999
1000 req = ic->sk_requests[section];
1001 ivsize = crypto_skcipher_ivsize(tfm: ic->journal_crypt);
1002 iv = req->iv;
1003
1004 memcpy(iv, iv + ivsize, ivsize);
1005
1006 req->src = source_sg[section];
1007 req->dst = target_sg[section];
1008
1009 if (unlikely(do_crypt(encrypt, req, comp)))
1010 atomic_inc(v: &comp->in_flight);
1011
1012 section++;
1013 n_sections--;
1014 } while (n_sections);
1015
1016 atomic_dec(v: &comp->in_flight);
1017 complete_journal_op(context: comp);
1018}
1019
1020static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1021 unsigned int n_sections, struct journal_completion *comp)
1022{
1023 if (ic->journal_xor)
1024 return xor_journal(ic, encrypt, section, n_sections, comp);
1025 else
1026 return crypt_journal(ic, encrypt, section, n_sections, comp);
1027}
1028
1029static void complete_journal_io(unsigned long error, void *context)
1030{
1031 struct journal_completion *comp = context;
1032
1033 if (unlikely(error != 0))
1034 dm_integrity_io_error(ic: comp->ic, msg: "writing journal", err: -EIO);
1035 complete_journal_op(context: comp);
1036}
1037
1038static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1039 unsigned int sector, unsigned int n_sectors,
1040 struct journal_completion *comp)
1041{
1042 struct dm_io_request io_req;
1043 struct dm_io_region io_loc;
1044 unsigned int pl_index, pl_offset;
1045 int r;
1046
1047 if (unlikely(dm_integrity_failed(ic))) {
1048 if (comp)
1049 complete_journal_io(error: -1UL, context: comp);
1050 return;
1051 }
1052
1053 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1054 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1055
1056 io_req.bi_opf = opf;
1057 io_req.mem.type = DM_IO_PAGE_LIST;
1058 if (ic->journal_io)
1059 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1060 else
1061 io_req.mem.ptr.pl = &ic->journal[pl_index];
1062 io_req.mem.offset = pl_offset;
1063 if (likely(comp != NULL)) {
1064 io_req.notify.fn = complete_journal_io;
1065 io_req.notify.context = comp;
1066 } else {
1067 io_req.notify.fn = NULL;
1068 }
1069 io_req.client = ic->io;
1070 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1071 io_loc.sector = ic->start + SB_SECTORS + sector;
1072 io_loc.count = n_sectors;
1073
1074 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL);
1075 if (unlikely(r)) {
1076 dm_integrity_io_error(ic, msg: (opf & REQ_OP_MASK) == REQ_OP_READ ?
1077 "reading journal" : "writing journal", err: r);
1078 if (comp) {
1079 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1080 complete_journal_io(error: -1UL, context: comp);
1081 }
1082 }
1083}
1084
1085static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1086 unsigned int section, unsigned int n_sections,
1087 struct journal_completion *comp)
1088{
1089 unsigned int sector, n_sectors;
1090
1091 sector = section * ic->journal_section_sectors;
1092 n_sectors = n_sections * ic->journal_section_sectors;
1093
1094 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1095}
1096
1097static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1098{
1099 struct journal_completion io_comp;
1100 struct journal_completion crypt_comp_1;
1101 struct journal_completion crypt_comp_2;
1102 unsigned int i;
1103
1104 io_comp.ic = ic;
1105 init_completion(x: &io_comp.comp);
1106
1107 if (commit_start + commit_sections <= ic->journal_sections) {
1108 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1109 if (ic->journal_io) {
1110 crypt_comp_1.ic = ic;
1111 init_completion(x: &crypt_comp_1.comp);
1112 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113 encrypt_journal(ic, encrypt: true, section: commit_start, n_sections: commit_sections, comp: &crypt_comp_1);
1114 wait_for_completion_io(&crypt_comp_1.comp);
1115 } else {
1116 for (i = 0; i < commit_sections; i++)
1117 rw_section_mac(ic, section: commit_start + i, wr: true);
1118 }
1119 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, section: commit_start,
1120 n_sections: commit_sections, comp: &io_comp);
1121 } else {
1122 unsigned int to_end;
1123
1124 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1125 to_end = ic->journal_sections - commit_start;
1126 if (ic->journal_io) {
1127 crypt_comp_1.ic = ic;
1128 init_completion(x: &crypt_comp_1.comp);
1129 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130 encrypt_journal(ic, encrypt: true, section: commit_start, n_sections: to_end, comp: &crypt_comp_1);
1131 if (try_wait_for_completion(x: &crypt_comp_1.comp)) {
1132 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA,
1133 section: commit_start, n_sections: to_end, comp: &io_comp);
1134 reinit_completion(x: &crypt_comp_1.comp);
1135 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136 encrypt_journal(ic, encrypt: true, section: 0, n_sections: commit_sections - to_end, comp: &crypt_comp_1);
1137 wait_for_completion_io(&crypt_comp_1.comp);
1138 } else {
1139 crypt_comp_2.ic = ic;
1140 init_completion(x: &crypt_comp_2.comp);
1141 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 encrypt_journal(ic, encrypt: true, section: 0, n_sections: commit_sections - to_end, comp: &crypt_comp_2);
1143 wait_for_completion_io(&crypt_comp_1.comp);
1144 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: commit_start, n_sections: to_end, comp: &io_comp);
1145 wait_for_completion_io(&crypt_comp_2.comp);
1146 }
1147 } else {
1148 for (i = 0; i < to_end; i++)
1149 rw_section_mac(ic, section: commit_start + i, wr: true);
1150 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: commit_start, n_sections: to_end, comp: &io_comp);
1151 for (i = 0; i < commit_sections - to_end; i++)
1152 rw_section_mac(ic, section: i, wr: true);
1153 }
1154 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: 0, n_sections: commit_sections - to_end, comp: &io_comp);
1155 }
1156
1157 wait_for_completion_io(&io_comp.comp);
1158}
1159
1160static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1161 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1162{
1163 struct dm_io_request io_req;
1164 struct dm_io_region io_loc;
1165 int r;
1166 unsigned int sector, pl_index, pl_offset;
1167
1168 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1169
1170 if (unlikely(dm_integrity_failed(ic))) {
1171 fn(-1UL, data);
1172 return;
1173 }
1174
1175 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1176
1177 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1178 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1179
1180 io_req.bi_opf = REQ_OP_WRITE;
1181 io_req.mem.type = DM_IO_PAGE_LIST;
1182 io_req.mem.ptr.pl = &ic->journal[pl_index];
1183 io_req.mem.offset = pl_offset;
1184 io_req.notify.fn = fn;
1185 io_req.notify.context = data;
1186 io_req.client = ic->io;
1187 io_loc.bdev = ic->dev->bdev;
1188 io_loc.sector = target;
1189 io_loc.count = n_sectors;
1190
1191 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL);
1192 if (unlikely(r)) {
1193 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1194 fn(-1UL, data);
1195 }
1196}
1197
1198static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1199{
1200 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1201 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1202}
1203
1204static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1205{
1206 struct rb_node **n = &ic->in_progress.rb_node;
1207 struct rb_node *parent;
1208
1209 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1210
1211 if (likely(check_waiting)) {
1212 struct dm_integrity_range *range;
1213
1214 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1215 if (unlikely(ranges_overlap(range, new_range)))
1216 return false;
1217 }
1218 }
1219
1220 parent = NULL;
1221
1222 while (*n) {
1223 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1224
1225 parent = *n;
1226 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1227 n = &range->node.rb_left;
1228 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1229 n = &range->node.rb_right;
1230 else
1231 return false;
1232 }
1233
1234 rb_link_node(node: &new_range->node, parent, rb_link: n);
1235 rb_insert_color(&new_range->node, &ic->in_progress);
1236
1237 return true;
1238}
1239
1240static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1241{
1242 rb_erase(&range->node, &ic->in_progress);
1243 while (unlikely(!list_empty(&ic->wait_list))) {
1244 struct dm_integrity_range *last_range =
1245 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1246 struct task_struct *last_range_task;
1247
1248 last_range_task = last_range->task;
1249 list_del(entry: &last_range->wait_entry);
1250 if (!add_new_range(ic, new_range: last_range, check_waiting: false)) {
1251 last_range->task = last_range_task;
1252 list_add(new: &last_range->wait_entry, head: &ic->wait_list);
1253 break;
1254 }
1255 last_range->waiting = false;
1256 wake_up_process(tsk: last_range_task);
1257 }
1258}
1259
1260static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1261{
1262 unsigned long flags;
1263
1264 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1265 remove_range_unlocked(ic, range);
1266 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1267}
1268
1269static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1270{
1271 new_range->waiting = true;
1272 list_add_tail(new: &new_range->wait_entry, head: &ic->wait_list);
1273 new_range->task = current;
1274 do {
1275 __set_current_state(TASK_UNINTERRUPTIBLE);
1276 spin_unlock_irq(lock: &ic->endio_wait.lock);
1277 io_schedule();
1278 spin_lock_irq(lock: &ic->endio_wait.lock);
1279 } while (unlikely(new_range->waiting));
1280}
1281
1282static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1283{
1284 if (unlikely(!add_new_range(ic, new_range, true)))
1285 wait_and_add_new_range(ic, new_range);
1286}
1287
1288static void init_journal_node(struct journal_node *node)
1289{
1290 RB_CLEAR_NODE(&node->node);
1291 node->sector = (sector_t)-1;
1292}
1293
1294static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1295{
1296 struct rb_node **link;
1297 struct rb_node *parent;
1298
1299 node->sector = sector;
1300 BUG_ON(!RB_EMPTY_NODE(&node->node));
1301
1302 link = &ic->journal_tree_root.rb_node;
1303 parent = NULL;
1304
1305 while (*link) {
1306 struct journal_node *j;
1307
1308 parent = *link;
1309 j = container_of(parent, struct journal_node, node);
1310 if (sector < j->sector)
1311 link = &j->node.rb_left;
1312 else
1313 link = &j->node.rb_right;
1314 }
1315
1316 rb_link_node(node: &node->node, parent, rb_link: link);
1317 rb_insert_color(&node->node, &ic->journal_tree_root);
1318}
1319
1320static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1321{
1322 BUG_ON(RB_EMPTY_NODE(&node->node));
1323 rb_erase(&node->node, &ic->journal_tree_root);
1324 init_journal_node(node);
1325}
1326
1327#define NOT_FOUND (-1U)
1328
1329static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1330{
1331 struct rb_node *n = ic->journal_tree_root.rb_node;
1332 unsigned int found = NOT_FOUND;
1333
1334 *next_sector = (sector_t)-1;
1335 while (n) {
1336 struct journal_node *j = container_of(n, struct journal_node, node);
1337
1338 if (sector == j->sector)
1339 found = j - ic->journal_tree;
1340
1341 if (sector < j->sector) {
1342 *next_sector = j->sector;
1343 n = j->node.rb_left;
1344 } else
1345 n = j->node.rb_right;
1346 }
1347
1348 return found;
1349}
1350
1351static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1352{
1353 struct journal_node *node, *next_node;
1354 struct rb_node *next;
1355
1356 if (unlikely(pos >= ic->journal_entries))
1357 return false;
1358 node = &ic->journal_tree[pos];
1359 if (unlikely(RB_EMPTY_NODE(&node->node)))
1360 return false;
1361 if (unlikely(node->sector != sector))
1362 return false;
1363
1364 next = rb_next(&node->node);
1365 if (unlikely(!next))
1366 return true;
1367
1368 next_node = container_of(next, struct journal_node, node);
1369 return next_node->sector != sector;
1370}
1371
1372static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1373{
1374 struct rb_node *next;
1375 struct journal_node *next_node;
1376 unsigned int next_section;
1377
1378 BUG_ON(RB_EMPTY_NODE(&node->node));
1379
1380 next = rb_next(&node->node);
1381 if (unlikely(!next))
1382 return false;
1383
1384 next_node = container_of(next, struct journal_node, node);
1385
1386 if (next_node->sector != node->sector)
1387 return false;
1388
1389 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1390 if (next_section >= ic->committed_section &&
1391 next_section < ic->committed_section + ic->n_committed_sections)
1392 return true;
1393 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1394 return true;
1395
1396 return false;
1397}
1398
1399#define TAG_READ 0
1400#define TAG_WRITE 1
1401#define TAG_CMP 2
1402
1403static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1404 unsigned int *metadata_offset, unsigned int total_size, int op)
1405{
1406#define MAY_BE_FILLER 1
1407#define MAY_BE_HASH 2
1408 unsigned int hash_offset = 0;
1409 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1410
1411 do {
1412 unsigned char *data, *dp;
1413 struct dm_buffer *b;
1414 unsigned int to_copy;
1415 int r;
1416
1417 r = dm_integrity_failed(ic);
1418 if (unlikely(r))
1419 return r;
1420
1421 data = dm_bufio_read(c: ic->bufio, block: *metadata_block, bp: &b);
1422 if (IS_ERR(ptr: data))
1423 return PTR_ERR(ptr: data);
1424
1425 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1426 dp = data + *metadata_offset;
1427 if (op == TAG_READ) {
1428 memcpy(tag, dp, to_copy);
1429 } else if (op == TAG_WRITE) {
1430 if (memcmp(p: dp, q: tag, size: to_copy)) {
1431 memcpy(dp, tag, to_copy);
1432 dm_bufio_mark_partial_buffer_dirty(b, start: *metadata_offset, end: *metadata_offset + to_copy);
1433 }
1434 } else {
1435 /* e.g.: op == TAG_CMP */
1436
1437 if (likely(is_power_of_2(ic->tag_size))) {
1438 if (unlikely(memcmp(dp, tag, to_copy)))
1439 if (unlikely(!ic->discard) ||
1440 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1441 goto thorough_test;
1442 }
1443 } else {
1444 unsigned int i, ts;
1445thorough_test:
1446 ts = total_size;
1447
1448 for (i = 0; i < to_copy; i++, ts--) {
1449 if (unlikely(dp[i] != tag[i]))
1450 may_be &= ~MAY_BE_HASH;
1451 if (likely(dp[i] != DISCARD_FILLER))
1452 may_be &= ~MAY_BE_FILLER;
1453 hash_offset++;
1454 if (unlikely(hash_offset == ic->tag_size)) {
1455 if (unlikely(!may_be)) {
1456 dm_bufio_release(b);
1457 return ts;
1458 }
1459 hash_offset = 0;
1460 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1461 }
1462 }
1463 }
1464 }
1465 dm_bufio_release(b);
1466
1467 tag += to_copy;
1468 *metadata_offset += to_copy;
1469 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470 (*metadata_block)++;
1471 *metadata_offset = 0;
1472 }
1473
1474 if (unlikely(!is_power_of_2(ic->tag_size)))
1475 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1476
1477 total_size -= to_copy;
1478 } while (unlikely(total_size));
1479
1480 return 0;
1481#undef MAY_BE_FILLER
1482#undef MAY_BE_HASH
1483}
1484
1485struct flush_request {
1486 struct dm_io_request io_req;
1487 struct dm_io_region io_reg;
1488 struct dm_integrity_c *ic;
1489 struct completion comp;
1490};
1491
1492static void flush_notify(unsigned long error, void *fr_)
1493{
1494 struct flush_request *fr = fr_;
1495
1496 if (unlikely(error != 0))
1497 dm_integrity_io_error(ic: fr->ic, msg: "flushing disk cache", err: -EIO);
1498 complete(&fr->comp);
1499}
1500
1501static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1502{
1503 int r;
1504 struct flush_request fr;
1505
1506 if (!ic->meta_dev)
1507 flush_data = false;
1508 if (flush_data) {
1509 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1510 fr.io_req.mem.type = DM_IO_KMEM,
1511 fr.io_req.mem.ptr.addr = NULL,
1512 fr.io_req.notify.fn = flush_notify,
1513 fr.io_req.notify.context = &fr;
1514 fr.io_req.client = dm_bufio_get_dm_io_client(c: ic->bufio),
1515 fr.io_reg.bdev = ic->dev->bdev,
1516 fr.io_reg.sector = 0,
1517 fr.io_reg.count = 0,
1518 fr.ic = ic;
1519 init_completion(x: &fr.comp);
1520 r = dm_io(io_req: &fr.io_req, num_regions: 1, region: &fr.io_reg, NULL);
1521 BUG_ON(r);
1522 }
1523
1524 r = dm_bufio_write_dirty_buffers(c: ic->bufio);
1525 if (unlikely(r))
1526 dm_integrity_io_error(ic, msg: "writing tags", err: r);
1527
1528 if (flush_data)
1529 wait_for_completion(&fr.comp);
1530}
1531
1532static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1533{
1534 DECLARE_WAITQUEUE(wait, current);
1535
1536 __add_wait_queue(wq_head: &ic->endio_wait, wq_entry: &wait);
1537 __set_current_state(TASK_UNINTERRUPTIBLE);
1538 spin_unlock_irq(lock: &ic->endio_wait.lock);
1539 io_schedule();
1540 spin_lock_irq(lock: &ic->endio_wait.lock);
1541 __remove_wait_queue(wq_head: &ic->endio_wait, wq_entry: &wait);
1542}
1543
1544static void autocommit_fn(struct timer_list *t)
1545{
1546 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547
1548 if (likely(!dm_integrity_failed(ic)))
1549 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
1550}
1551
1552static void schedule_autocommit(struct dm_integrity_c *ic)
1553{
1554 if (!timer_pending(timer: &ic->autocommit_timer))
1555 mod_timer(timer: &ic->autocommit_timer, expires: jiffies + ic->autocommit_jiffies);
1556}
1557
1558static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559{
1560 struct bio *bio;
1561 unsigned long flags;
1562
1563 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564 bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1565 bio_list_add(bl: &ic->flush_bio_list, bio);
1566 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1567
1568 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
1569}
1570
1571static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572{
1573 int r;
1574
1575 r = dm_integrity_failed(ic);
1576 if (unlikely(r) && !bio->bi_status)
1577 bio->bi_status = errno_to_blk_status(errno: r);
1578 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1579 unsigned long flags;
1580
1581 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582 bio_list_add(bl: &ic->synchronous_bios, bio);
1583 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
1584 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1585 return;
1586 }
1587 bio_endio(bio);
1588}
1589
1590static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591{
1592 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1593
1594 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595 submit_flush_bio(ic, dio);
1596 else
1597 do_endio(ic, bio);
1598}
1599
1600static void dec_in_flight(struct dm_integrity_io *dio)
1601{
1602 if (atomic_dec_and_test(v: &dio->in_flight)) {
1603 struct dm_integrity_c *ic = dio->ic;
1604 struct bio *bio;
1605
1606 remove_range(ic, range: &dio->range);
1607
1608 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609 schedule_autocommit(ic);
1610
1611 bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1612 if (unlikely(dio->bi_status) && !bio->bi_status)
1613 bio->bi_status = dio->bi_status;
1614 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1615 dio->range.logical_sector += dio->range.n_sectors;
1616 bio_advance(bio, nbytes: dio->range.n_sectors << SECTOR_SHIFT);
1617 INIT_WORK(&dio->work, integrity_bio_wait);
1618 queue_work(wq: ic->offload_wq, work: &dio->work);
1619 return;
1620 }
1621 do_endio_flush(ic, dio);
1622 }
1623}
1624
1625static void integrity_end_io(struct bio *bio)
1626{
1627 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
1628
1629 dm_bio_restore(bd: &dio->bio_details, bio);
1630 if (bio->bi_integrity)
1631 bio->bi_opf |= REQ_INTEGRITY;
1632
1633 if (dio->completion)
1634 complete(dio->completion);
1635
1636 dec_in_flight(dio);
1637}
1638
1639static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1640 const char *data, char *result)
1641{
1642 __le64 sector_le = cpu_to_le64(sector);
1643 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1644 int r;
1645 unsigned int digest_size;
1646
1647 req->tfm = ic->internal_hash;
1648
1649 r = crypto_shash_init(desc: req);
1650 if (unlikely(r < 0)) {
1651 dm_integrity_io_error(ic, msg: "crypto_shash_init", err: r);
1652 goto failed;
1653 }
1654
1655 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1656 r = crypto_shash_update(desc: req, data: (__u8 *)&ic->sb->salt, SALT_SIZE);
1657 if (unlikely(r < 0)) {
1658 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1659 goto failed;
1660 }
1661 }
1662
1663 r = crypto_shash_update(desc: req, data: (const __u8 *)&sector_le, len: sizeof(sector_le));
1664 if (unlikely(r < 0)) {
1665 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1666 goto failed;
1667 }
1668
1669 r = crypto_shash_update(desc: req, data, len: ic->sectors_per_block << SECTOR_SHIFT);
1670 if (unlikely(r < 0)) {
1671 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1672 goto failed;
1673 }
1674
1675 r = crypto_shash_final(desc: req, out: result);
1676 if (unlikely(r < 0)) {
1677 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
1678 goto failed;
1679 }
1680
1681 digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
1682 if (unlikely(digest_size < ic->tag_size))
1683 memset(result + digest_size, 0, ic->tag_size - digest_size);
1684
1685 return;
1686
1687failed:
1688 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1689 get_random_bytes(buf: result, len: ic->tag_size);
1690}
1691
1692static void integrity_metadata(struct work_struct *w)
1693{
1694 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1695 struct dm_integrity_c *ic = dio->ic;
1696
1697 int r;
1698
1699 if (ic->internal_hash) {
1700 struct bvec_iter iter;
1701 struct bio_vec bv;
1702 unsigned int digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
1703 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1704 char *checksums;
1705 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1706 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1707 sector_t sector;
1708 unsigned int sectors_to_process;
1709
1710 if (unlikely(ic->mode == 'R'))
1711 goto skip_io;
1712
1713 if (likely(dio->op != REQ_OP_DISCARD))
1714 checksums = kmalloc(size: (PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1715 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716 else
1717 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1718 if (!checksums) {
1719 checksums = checksums_onstack;
1720 if (WARN_ON(extra_space &&
1721 digest_size > sizeof(checksums_onstack))) {
1722 r = -EINVAL;
1723 goto error;
1724 }
1725 }
1726
1727 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1728 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1729 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730 unsigned int max_blocks = max_size / ic->tag_size;
1731
1732 memset(checksums, DISCARD_FILLER, max_size);
1733
1734 while (bi_size) {
1735 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1736
1737 this_step_blocks = min(this_step_blocks, max_blocks);
1738 r = dm_integrity_rw_tag(ic, tag: checksums, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1739 total_size: this_step_blocks * ic->tag_size, TAG_WRITE);
1740 if (unlikely(r)) {
1741 if (likely(checksums != checksums_onstack))
1742 kfree(objp: checksums);
1743 goto error;
1744 }
1745
1746 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1747 }
1748
1749 if (likely(checksums != checksums_onstack))
1750 kfree(objp: checksums);
1751 goto skip_io;
1752 }
1753
1754 sector = dio->range.logical_sector;
1755 sectors_to_process = dio->range.n_sectors;
1756
1757 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1758 unsigned int pos;
1759 char *mem, *checksums_ptr;
1760
1761again:
1762 mem = bvec_kmap_local(bvec: &bv);
1763 pos = 0;
1764 checksums_ptr = checksums;
1765 do {
1766 integrity_sector_checksum(ic, sector, data: mem + pos, result: checksums_ptr);
1767 checksums_ptr += ic->tag_size;
1768 sectors_to_process -= ic->sectors_per_block;
1769 pos += ic->sectors_per_block << SECTOR_SHIFT;
1770 sector += ic->sectors_per_block;
1771 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1772 kunmap_local(mem);
1773
1774 r = dm_integrity_rw_tag(ic, tag: checksums, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1775 total_size: checksums_ptr - checksums, op: dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1776 if (unlikely(r)) {
1777 if (r > 0) {
1778 sector_t s;
1779
1780 s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1781 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1782 bio->bi_bdev, s);
1783 r = -EILSEQ;
1784 atomic64_inc(v: &ic->number_of_mismatches);
1785 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-checksum",
1786 bio, sector: s, result: 0);
1787 }
1788 if (likely(checksums != checksums_onstack))
1789 kfree(objp: checksums);
1790 goto error;
1791 }
1792
1793 if (!sectors_to_process)
1794 break;
1795
1796 if (unlikely(pos < bv.bv_len)) {
1797 bv.bv_offset += pos;
1798 bv.bv_len -= pos;
1799 goto again;
1800 }
1801 }
1802
1803 if (likely(checksums != checksums_onstack))
1804 kfree(objp: checksums);
1805 } else {
1806 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1807
1808 if (bip) {
1809 struct bio_vec biv;
1810 struct bvec_iter iter;
1811 unsigned int data_to_process = dio->range.n_sectors;
1812
1813 sector_to_block(ic, data_to_process);
1814 data_to_process *= ic->tag_size;
1815
1816 bip_for_each_vec(biv, bip, iter) {
1817 unsigned char *tag;
1818 unsigned int this_len;
1819
1820 BUG_ON(PageHighMem(biv.bv_page));
1821 tag = bvec_virt(bvec: &biv);
1822 this_len = min(biv.bv_len, data_to_process);
1823 r = dm_integrity_rw_tag(ic, tag, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1824 total_size: this_len, op: dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1825 if (unlikely(r))
1826 goto error;
1827 data_to_process -= this_len;
1828 if (!data_to_process)
1829 break;
1830 }
1831 }
1832 }
1833skip_io:
1834 dec_in_flight(dio);
1835 return;
1836error:
1837 dio->bi_status = errno_to_blk_status(errno: r);
1838 dec_in_flight(dio);
1839}
1840
1841static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1842{
1843 struct dm_integrity_c *ic = ti->private;
1844 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
1845 struct bio_integrity_payload *bip;
1846
1847 sector_t area, offset;
1848
1849 dio->ic = ic;
1850 dio->bi_status = 0;
1851 dio->op = bio_op(bio);
1852
1853 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1854 if (ti->max_io_len) {
1855 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1856 unsigned int log2_max_io_len = __fls(word: ti->max_io_len);
1857 sector_t start_boundary = sec >> log2_max_io_len;
1858 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1859
1860 if (start_boundary < end_boundary) {
1861 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1862
1863 dm_accept_partial_bio(bio, n_sectors: len);
1864 }
1865 }
1866 }
1867
1868 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1869 submit_flush_bio(ic, dio);
1870 return DM_MAPIO_SUBMITTED;
1871 }
1872
1873 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1874 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1875 if (unlikely(dio->fua)) {
1876 /*
1877 * Don't pass down the FUA flag because we have to flush
1878 * disk cache anyway.
1879 */
1880 bio->bi_opf &= ~REQ_FUA;
1881 }
1882 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1883 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1884 dio->range.logical_sector, bio_sectors(bio),
1885 ic->provided_data_sectors);
1886 return DM_MAPIO_KILL;
1887 }
1888 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1889 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1890 ic->sectors_per_block,
1891 dio->range.logical_sector, bio_sectors(bio));
1892 return DM_MAPIO_KILL;
1893 }
1894
1895 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1896 struct bvec_iter iter;
1897 struct bio_vec bv;
1898
1899 bio_for_each_segment(bv, bio, iter) {
1900 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1901 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1902 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1903 return DM_MAPIO_KILL;
1904 }
1905 }
1906 }
1907
1908 bip = bio_integrity(bio);
1909 if (!ic->internal_hash) {
1910 if (bip) {
1911 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1912
1913 if (ic->log2_tag_size >= 0)
1914 wanted_tag_size <<= ic->log2_tag_size;
1915 else
1916 wanted_tag_size *= ic->tag_size;
1917 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1918 DMERR("Invalid integrity data size %u, expected %u",
1919 bip->bip_iter.bi_size, wanted_tag_size);
1920 return DM_MAPIO_KILL;
1921 }
1922 }
1923 } else {
1924 if (unlikely(bip != NULL)) {
1925 DMERR("Unexpected integrity data when using internal hash");
1926 return DM_MAPIO_KILL;
1927 }
1928 }
1929
1930 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1931 return DM_MAPIO_KILL;
1932
1933 get_area_and_offset(ic, data_sector: dio->range.logical_sector, area: &area, offset: &offset);
1934 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &dio->metadata_offset);
1935 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1936
1937 dm_integrity_map_continue(dio, from_map: true);
1938 return DM_MAPIO_SUBMITTED;
1939}
1940
1941static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1942 unsigned int journal_section, unsigned int journal_entry)
1943{
1944 struct dm_integrity_c *ic = dio->ic;
1945 sector_t logical_sector;
1946 unsigned int n_sectors;
1947
1948 logical_sector = dio->range.logical_sector;
1949 n_sectors = dio->range.n_sectors;
1950 do {
1951 struct bio_vec bv = bio_iovec(bio);
1952 char *mem;
1953
1954 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1955 bv.bv_len = n_sectors << SECTOR_SHIFT;
1956 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1957 bio_advance_iter(bio, iter: &bio->bi_iter, bytes: bv.bv_len);
1958retry_kmap:
1959 mem = kmap_local_page(page: bv.bv_page);
1960 if (likely(dio->op == REQ_OP_WRITE))
1961 flush_dcache_page(page: bv.bv_page);
1962
1963 do {
1964 struct journal_entry *je = access_journal_entry(ic, section: journal_section, n: journal_entry);
1965
1966 if (unlikely(dio->op == REQ_OP_READ)) {
1967 struct journal_sector *js;
1968 char *mem_ptr;
1969 unsigned int s;
1970
1971 if (unlikely(journal_entry_is_inprogress(je))) {
1972 flush_dcache_page(page: bv.bv_page);
1973 kunmap_local(mem);
1974
1975 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1976 goto retry_kmap;
1977 }
1978 smp_rmb();
1979 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1980 js = access_journal_data(ic, section: journal_section, n: journal_entry);
1981 mem_ptr = mem + bv.bv_offset;
1982 s = 0;
1983 do {
1984 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1985 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1986 js++;
1987 mem_ptr += 1 << SECTOR_SHIFT;
1988 } while (++s < ic->sectors_per_block);
1989#ifdef INTERNAL_VERIFY
1990 if (ic->internal_hash) {
1991 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1992
1993 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1994 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1995 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1996 logical_sector);
1997 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
1998 bio, logical_sector, 0);
1999 }
2000 }
2001#endif
2002 }
2003
2004 if (!ic->internal_hash) {
2005 struct bio_integrity_payload *bip = bio_integrity(bio);
2006 unsigned int tag_todo = ic->tag_size;
2007 char *tag_ptr = journal_entry_tag(ic, je);
2008
2009 if (bip) {
2010 do {
2011 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2012 unsigned int tag_now = min(biv.bv_len, tag_todo);
2013 char *tag_addr;
2014
2015 BUG_ON(PageHighMem(biv.bv_page));
2016 tag_addr = bvec_virt(bvec: &biv);
2017 if (likely(dio->op == REQ_OP_WRITE))
2018 memcpy(tag_ptr, tag_addr, tag_now);
2019 else
2020 memcpy(tag_addr, tag_ptr, tag_now);
2021 bvec_iter_advance(bv: bip->bip_vec, iter: &bip->bip_iter, bytes: tag_now);
2022 tag_ptr += tag_now;
2023 tag_todo -= tag_now;
2024 } while (unlikely(tag_todo));
2025 } else if (likely(dio->op == REQ_OP_WRITE))
2026 memset(tag_ptr, 0, tag_todo);
2027 }
2028
2029 if (likely(dio->op == REQ_OP_WRITE)) {
2030 struct journal_sector *js;
2031 unsigned int s;
2032
2033 js = access_journal_data(ic, section: journal_section, n: journal_entry);
2034 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2035
2036 s = 0;
2037 do {
2038 je->last_bytes[s] = js[s].commit_id;
2039 } while (++s < ic->sectors_per_block);
2040
2041 if (ic->internal_hash) {
2042 unsigned int digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
2043
2044 if (unlikely(digest_size > ic->tag_size)) {
2045 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2046
2047 integrity_sector_checksum(ic, sector: logical_sector, data: (char *)js, result: checksums_onstack);
2048 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2049 } else
2050 integrity_sector_checksum(ic, sector: logical_sector, data: (char *)js, journal_entry_tag(ic, je));
2051 }
2052
2053 journal_entry_set_sector(je, logical_sector);
2054 }
2055 logical_sector += ic->sectors_per_block;
2056
2057 journal_entry++;
2058 if (unlikely(journal_entry == ic->journal_section_entries)) {
2059 journal_entry = 0;
2060 journal_section++;
2061 wraparound_section(ic, sec_ptr: &journal_section);
2062 }
2063
2064 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2065 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2066
2067 if (unlikely(dio->op == REQ_OP_READ))
2068 flush_dcache_page(page: bv.bv_page);
2069 kunmap_local(mem);
2070 } while (n_sectors);
2071
2072 if (likely(dio->op == REQ_OP_WRITE)) {
2073 smp_mb();
2074 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2075 wake_up(&ic->copy_to_journal_wait);
2076 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2077 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
2078 else
2079 schedule_autocommit(ic);
2080 } else
2081 remove_range(ic, range: &dio->range);
2082
2083 if (unlikely(bio->bi_iter.bi_size)) {
2084 sector_t area, offset;
2085
2086 dio->range.logical_sector = logical_sector;
2087 get_area_and_offset(ic, data_sector: dio->range.logical_sector, area: &area, offset: &offset);
2088 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &dio->metadata_offset);
2089 return true;
2090 }
2091
2092 return false;
2093}
2094
2095static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2096{
2097 struct dm_integrity_c *ic = dio->ic;
2098 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
2099 unsigned int journal_section, journal_entry;
2100 unsigned int journal_read_pos;
2101 struct completion read_comp;
2102 bool discard_retried = false;
2103 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2104
2105 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2106 need_sync_io = true;
2107
2108 if (need_sync_io && from_map) {
2109 INIT_WORK(&dio->work, integrity_bio_wait);
2110 queue_work(wq: ic->offload_wq, work: &dio->work);
2111 return;
2112 }
2113
2114lock_retry:
2115 spin_lock_irq(lock: &ic->endio_wait.lock);
2116retry:
2117 if (unlikely(dm_integrity_failed(ic))) {
2118 spin_unlock_irq(lock: &ic->endio_wait.lock);
2119 do_endio(ic, bio);
2120 return;
2121 }
2122 dio->range.n_sectors = bio_sectors(bio);
2123 journal_read_pos = NOT_FOUND;
2124 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2125 if (dio->op == REQ_OP_WRITE) {
2126 unsigned int next_entry, i, pos;
2127 unsigned int ws, we, range_sectors;
2128
2129 dio->range.n_sectors = min(dio->range.n_sectors,
2130 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2131 if (unlikely(!dio->range.n_sectors)) {
2132 if (from_map)
2133 goto offload_to_thread;
2134 sleep_on_endio_wait(ic);
2135 goto retry;
2136 }
2137 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2138 ic->free_sectors -= range_sectors;
2139 journal_section = ic->free_section;
2140 journal_entry = ic->free_section_entry;
2141
2142 next_entry = ic->free_section_entry + range_sectors;
2143 ic->free_section_entry = next_entry % ic->journal_section_entries;
2144 ic->free_section += next_entry / ic->journal_section_entries;
2145 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2146 wraparound_section(ic, sec_ptr: &ic->free_section);
2147
2148 pos = journal_section * ic->journal_section_entries + journal_entry;
2149 ws = journal_section;
2150 we = journal_entry;
2151 i = 0;
2152 do {
2153 struct journal_entry *je;
2154
2155 add_journal_node(ic, node: &ic->journal_tree[pos], sector: dio->range.logical_sector + i);
2156 pos++;
2157 if (unlikely(pos >= ic->journal_entries))
2158 pos = 0;
2159
2160 je = access_journal_entry(ic, section: ws, n: we);
2161 BUG_ON(!journal_entry_is_unused(je));
2162 journal_entry_set_inprogress(je);
2163 we++;
2164 if (unlikely(we == ic->journal_section_entries)) {
2165 we = 0;
2166 ws++;
2167 wraparound_section(ic, sec_ptr: &ws);
2168 }
2169 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2170
2171 spin_unlock_irq(lock: &ic->endio_wait.lock);
2172 goto journal_read_write;
2173 } else {
2174 sector_t next_sector;
2175
2176 journal_read_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2177 if (likely(journal_read_pos == NOT_FOUND)) {
2178 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2179 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2180 } else {
2181 unsigned int i;
2182 unsigned int jp = journal_read_pos + 1;
2183
2184 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2185 if (!test_journal_node(ic, pos: jp, sector: dio->range.logical_sector + i))
2186 break;
2187 }
2188 dio->range.n_sectors = i;
2189 }
2190 }
2191 }
2192 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2193 /*
2194 * We must not sleep in the request routine because it could
2195 * stall bios on current->bio_list.
2196 * So, we offload the bio to a workqueue if we have to sleep.
2197 */
2198 if (from_map) {
2199offload_to_thread:
2200 spin_unlock_irq(lock: &ic->endio_wait.lock);
2201 INIT_WORK(&dio->work, integrity_bio_wait);
2202 queue_work(wq: ic->wait_wq, work: &dio->work);
2203 return;
2204 }
2205 if (journal_read_pos != NOT_FOUND)
2206 dio->range.n_sectors = ic->sectors_per_block;
2207 wait_and_add_new_range(ic, new_range: &dio->range);
2208 /*
2209 * wait_and_add_new_range drops the spinlock, so the journal
2210 * may have been changed arbitrarily. We need to recheck.
2211 * To simplify the code, we restrict I/O size to just one block.
2212 */
2213 if (journal_read_pos != NOT_FOUND) {
2214 sector_t next_sector;
2215 unsigned int new_pos;
2216
2217 new_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2218 if (unlikely(new_pos != journal_read_pos)) {
2219 remove_range_unlocked(ic, range: &dio->range);
2220 goto retry;
2221 }
2222 }
2223 }
2224 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2225 sector_t next_sector;
2226 unsigned int new_pos;
2227
2228 new_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2229 if (unlikely(new_pos != NOT_FOUND) ||
2230 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231 remove_range_unlocked(ic, range: &dio->range);
2232 spin_unlock_irq(lock: &ic->endio_wait.lock);
2233 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
2234 flush_workqueue(ic->commit_wq);
2235 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
2236 flush_workqueue(ic->writer_wq);
2237 discard_retried = true;
2238 goto lock_retry;
2239 }
2240 }
2241 spin_unlock_irq(lock: &ic->endio_wait.lock);
2242
2243 if (unlikely(journal_read_pos != NOT_FOUND)) {
2244 journal_section = journal_read_pos / ic->journal_section_entries;
2245 journal_entry = journal_read_pos % ic->journal_section_entries;
2246 goto journal_read_write;
2247 }
2248
2249 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250 if (!block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2251 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252 struct bitmap_block_status *bbs;
2253
2254 bbs = sector_to_bitmap_block(ic, sector: dio->range.logical_sector);
2255 spin_lock(lock: &bbs->bio_queue_lock);
2256 bio_list_add(bl: &bbs->bio_queue, bio);
2257 spin_unlock(lock: &bbs->bio_queue_lock);
2258 queue_work(wq: ic->writer_wq, work: &bbs->work);
2259 return;
2260 }
2261 }
2262
2263 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2264
2265 if (need_sync_io) {
2266 init_completion(x: &read_comp);
2267 dio->completion = &read_comp;
2268 } else
2269 dio->completion = NULL;
2270
2271 dm_bio_record(bd: &dio->bio_details, bio);
2272 bio_set_dev(bio, bdev: ic->dev->bdev);
2273 bio->bi_integrity = NULL;
2274 bio->bi_opf &= ~REQ_INTEGRITY;
2275 bio->bi_end_io = integrity_end_io;
2276 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2277
2278 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279 integrity_metadata(w: &dio->work);
2280 dm_integrity_flush_buffers(ic, flush_data: false);
2281
2282 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283 dio->completion = NULL;
2284
2285 submit_bio_noacct(bio);
2286
2287 return;
2288 }
2289
2290 submit_bio_noacct(bio);
2291
2292 if (need_sync_io) {
2293 wait_for_completion_io(&read_comp);
2294 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2296 goto skip_check;
2297 if (ic->mode == 'B') {
2298 if (!block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: dio->range.logical_sector,
2299 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2300 goto skip_check;
2301 }
2302
2303 if (likely(!bio->bi_status))
2304 integrity_metadata(w: &dio->work);
2305 else
2306skip_check:
2307 dec_in_flight(dio);
2308 } else {
2309 INIT_WORK(&dio->work, integrity_metadata);
2310 queue_work(wq: ic->metadata_wq, work: &dio->work);
2311 }
2312
2313 return;
2314
2315journal_read_write:
2316 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2317 goto lock_retry;
2318
2319 do_endio_flush(ic, dio);
2320}
2321
2322
2323static void integrity_bio_wait(struct work_struct *w)
2324{
2325 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2326
2327 dm_integrity_map_continue(dio, from_map: false);
2328}
2329
2330static void pad_uncommitted(struct dm_integrity_c *ic)
2331{
2332 if (ic->free_section_entry) {
2333 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2334 ic->free_section_entry = 0;
2335 ic->free_section++;
2336 wraparound_section(ic, sec_ptr: &ic->free_section);
2337 ic->n_uncommitted_sections++;
2338 }
2339 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2340 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2341 ic->journal_section_entries + ic->free_sectors)) {
2342 DMCRIT("journal_sections %u, journal_section_entries %u, "
2343 "n_uncommitted_sections %u, n_committed_sections %u, "
2344 "journal_section_entries %u, free_sectors %u",
2345 ic->journal_sections, ic->journal_section_entries,
2346 ic->n_uncommitted_sections, ic->n_committed_sections,
2347 ic->journal_section_entries, ic->free_sectors);
2348 }
2349}
2350
2351static void integrity_commit(struct work_struct *w)
2352{
2353 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2354 unsigned int commit_start, commit_sections;
2355 unsigned int i, j, n;
2356 struct bio *flushes;
2357
2358 del_timer(timer: &ic->autocommit_timer);
2359
2360 spin_lock_irq(lock: &ic->endio_wait.lock);
2361 flushes = bio_list_get(bl: &ic->flush_bio_list);
2362 if (unlikely(ic->mode != 'J')) {
2363 spin_unlock_irq(lock: &ic->endio_wait.lock);
2364 dm_integrity_flush_buffers(ic, flush_data: true);
2365 goto release_flush_bios;
2366 }
2367
2368 pad_uncommitted(ic);
2369 commit_start = ic->uncommitted_section;
2370 commit_sections = ic->n_uncommitted_sections;
2371 spin_unlock_irq(lock: &ic->endio_wait.lock);
2372
2373 if (!commit_sections)
2374 goto release_flush_bios;
2375
2376 ic->wrote_to_journal = true;
2377
2378 i = commit_start;
2379 for (n = 0; n < commit_sections; n++) {
2380 for (j = 0; j < ic->journal_section_entries; j++) {
2381 struct journal_entry *je;
2382
2383 je = access_journal_entry(ic, section: i, n: j);
2384 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2385 }
2386 for (j = 0; j < ic->journal_section_sectors; j++) {
2387 struct journal_sector *js;
2388
2389 js = access_journal(ic, section: i, offset: j);
2390 js->commit_id = dm_integrity_commit_id(ic, i, j, seq: ic->commit_seq);
2391 }
2392 i++;
2393 if (unlikely(i >= ic->journal_sections))
2394 ic->commit_seq = next_commit_seq(seq: ic->commit_seq);
2395 wraparound_section(ic, sec_ptr: &i);
2396 }
2397 smp_rmb();
2398
2399 write_journal(ic, commit_start, commit_sections);
2400
2401 spin_lock_irq(lock: &ic->endio_wait.lock);
2402 ic->uncommitted_section += commit_sections;
2403 wraparound_section(ic, sec_ptr: &ic->uncommitted_section);
2404 ic->n_uncommitted_sections -= commit_sections;
2405 ic->n_committed_sections += commit_sections;
2406 spin_unlock_irq(lock: &ic->endio_wait.lock);
2407
2408 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2409 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
2410
2411release_flush_bios:
2412 while (flushes) {
2413 struct bio *next = flushes->bi_next;
2414
2415 flushes->bi_next = NULL;
2416 do_endio(ic, bio: flushes);
2417 flushes = next;
2418 }
2419}
2420
2421static void complete_copy_from_journal(unsigned long error, void *context)
2422{
2423 struct journal_io *io = context;
2424 struct journal_completion *comp = io->comp;
2425 struct dm_integrity_c *ic = comp->ic;
2426
2427 remove_range(ic, range: &io->range);
2428 mempool_free(element: io, pool: &ic->journal_io_mempool);
2429 if (unlikely(error != 0))
2430 dm_integrity_io_error(ic, msg: "copying from journal", err: -EIO);
2431 complete_journal_op(context: comp);
2432}
2433
2434static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2435 struct journal_entry *je)
2436{
2437 unsigned int s = 0;
2438
2439 do {
2440 js->commit_id = je->last_bytes[s];
2441 js++;
2442 } while (++s < ic->sectors_per_block);
2443}
2444
2445static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2446 unsigned int write_sections, bool from_replay)
2447{
2448 unsigned int i, j, n;
2449 struct journal_completion comp;
2450 struct blk_plug plug;
2451
2452 blk_start_plug(&plug);
2453
2454 comp.ic = ic;
2455 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2456 init_completion(x: &comp.comp);
2457
2458 i = write_start;
2459 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, sec_ptr: &i)) {
2460#ifndef INTERNAL_VERIFY
2461 if (unlikely(from_replay))
2462#endif
2463 rw_section_mac(ic, section: i, wr: false);
2464 for (j = 0; j < ic->journal_section_entries; j++) {
2465 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
2466 sector_t sec, area, offset;
2467 unsigned int k, l, next_loop;
2468 sector_t metadata_block;
2469 unsigned int metadata_offset;
2470 struct journal_io *io;
2471
2472 if (journal_entry_is_unused(je))
2473 continue;
2474 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2475 sec = journal_entry_get_sector(je);
2476 if (unlikely(from_replay)) {
2477 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2478 dm_integrity_io_error(ic, msg: "invalid sector in journal", err: -EIO);
2479 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2480 }
2481 if (unlikely(sec >= ic->provided_data_sectors)) {
2482 journal_entry_set_unused(je);
2483 continue;
2484 }
2485 }
2486 get_area_and_offset(ic, data_sector: sec, area: &area, offset: &offset);
2487 restore_last_bytes(ic, js: access_journal_data(ic, section: i, n: j), je);
2488 for (k = j + 1; k < ic->journal_section_entries; k++) {
2489 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: k);
2490 sector_t sec2, area2, offset2;
2491
2492 if (journal_entry_is_unused(je2))
2493 break;
2494 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2495 sec2 = journal_entry_get_sector(je2);
2496 if (unlikely(sec2 >= ic->provided_data_sectors))
2497 break;
2498 get_area_and_offset(ic, data_sector: sec2, area: &area2, offset: &offset2);
2499 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2500 break;
2501 restore_last_bytes(ic, js: access_journal_data(ic, section: i, n: k), je: je2);
2502 }
2503 next_loop = k - 1;
2504
2505 io = mempool_alloc(pool: &ic->journal_io_mempool, GFP_NOIO);
2506 io->comp = &comp;
2507 io->range.logical_sector = sec;
2508 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2509
2510 spin_lock_irq(lock: &ic->endio_wait.lock);
2511 add_new_range_and_wait(ic, new_range: &io->range);
2512
2513 if (likely(!from_replay)) {
2514 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2515
2516 /* don't write if there is newer committed sector */
2517 while (j < k && find_newer_committed_node(ic, node: &section_node[j])) {
2518 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: j);
2519
2520 journal_entry_set_unused(je2);
2521 remove_journal_node(ic, node: &section_node[j]);
2522 j++;
2523 sec += ic->sectors_per_block;
2524 offset += ic->sectors_per_block;
2525 }
2526 while (j < k && find_newer_committed_node(ic, node: &section_node[k - 1])) {
2527 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: k - 1);
2528
2529 journal_entry_set_unused(je2);
2530 remove_journal_node(ic, node: &section_node[k - 1]);
2531 k--;
2532 }
2533 if (j == k) {
2534 remove_range_unlocked(ic, range: &io->range);
2535 spin_unlock_irq(lock: &ic->endio_wait.lock);
2536 mempool_free(element: io, pool: &ic->journal_io_mempool);
2537 goto skip_io;
2538 }
2539 for (l = j; l < k; l++)
2540 remove_journal_node(ic, node: &section_node[l]);
2541 }
2542 spin_unlock_irq(lock: &ic->endio_wait.lock);
2543
2544 metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &metadata_offset);
2545 for (l = j; l < k; l++) {
2546 int r;
2547 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: l);
2548
2549 if (
2550#ifndef INTERNAL_VERIFY
2551 unlikely(from_replay) &&
2552#endif
2553 ic->internal_hash) {
2554 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2555
2556 integrity_sector_checksum(ic, sector: sec + ((l - j) << ic->sb->log2_sectors_per_block),
2557 data: (char *)access_journal_data(ic, section: i, n: l), result: test_tag);
2558 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2559 dm_integrity_io_error(ic, msg: "tag mismatch when replaying journal", err: -EILSEQ);
2560 dm_audit_log_target(DM_MSG_PREFIX, op: "integrity-replay-journal", ti: ic->ti, result: 0);
2561 }
2562 }
2563
2564 journal_entry_set_unused(je2);
2565 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), metadata_block: &metadata_block, metadata_offset: &metadata_offset,
2566 total_size: ic->tag_size, TAG_WRITE);
2567 if (unlikely(r))
2568 dm_integrity_io_error(ic, msg: "reading tags", err: r);
2569 }
2570
2571 atomic_inc(v: &comp.in_flight);
2572 copy_from_journal(ic, section: i, offset: j << ic->sb->log2_sectors_per_block,
2573 n_sectors: (k - j) << ic->sb->log2_sectors_per_block,
2574 target: get_data_sector(ic, area, offset),
2575 fn: complete_copy_from_journal, data: io);
2576skip_io:
2577 j = next_loop;
2578 }
2579 }
2580
2581 dm_bufio_write_dirty_buffers_async(c: ic->bufio);
2582
2583 blk_finish_plug(&plug);
2584
2585 complete_journal_op(context: &comp);
2586 wait_for_completion_io(&comp.comp);
2587
2588 dm_integrity_flush_buffers(ic, flush_data: true);
2589}
2590
2591static void integrity_writer(struct work_struct *w)
2592{
2593 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2594 unsigned int write_start, write_sections;
2595 unsigned int prev_free_sectors;
2596
2597 spin_lock_irq(lock: &ic->endio_wait.lock);
2598 write_start = ic->committed_section;
2599 write_sections = ic->n_committed_sections;
2600 spin_unlock_irq(lock: &ic->endio_wait.lock);
2601
2602 if (!write_sections)
2603 return;
2604
2605 do_journal_write(ic, write_start, write_sections, from_replay: false);
2606
2607 spin_lock_irq(lock: &ic->endio_wait.lock);
2608
2609 ic->committed_section += write_sections;
2610 wraparound_section(ic, sec_ptr: &ic->committed_section);
2611 ic->n_committed_sections -= write_sections;
2612
2613 prev_free_sectors = ic->free_sectors;
2614 ic->free_sectors += write_sections * ic->journal_section_entries;
2615 if (unlikely(!prev_free_sectors))
2616 wake_up_locked(&ic->endio_wait);
2617
2618 spin_unlock_irq(lock: &ic->endio_wait.lock);
2619}
2620
2621static void recalc_write_super(struct dm_integrity_c *ic)
2622{
2623 int r;
2624
2625 dm_integrity_flush_buffers(ic, flush_data: false);
2626 if (dm_integrity_failed(ic))
2627 return;
2628
2629 r = sync_rw_sb(ic, opf: REQ_OP_WRITE);
2630 if (unlikely(r))
2631 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
2632}
2633
2634static void integrity_recalc(struct work_struct *w)
2635{
2636 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2637 size_t recalc_tags_size;
2638 u8 *recalc_buffer = NULL;
2639 u8 *recalc_tags = NULL;
2640 struct dm_integrity_range range;
2641 struct dm_io_request io_req;
2642 struct dm_io_region io_loc;
2643 sector_t area, offset;
2644 sector_t metadata_block;
2645 unsigned int metadata_offset;
2646 sector_t logical_sector, n_sectors;
2647 __u8 *t;
2648 unsigned int i;
2649 int r;
2650 unsigned int super_counter = 0;
2651 unsigned recalc_sectors = RECALC_SECTORS;
2652
2653retry:
2654 recalc_buffer = __vmalloc(size: recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2655 if (!recalc_buffer) {
2656oom:
2657 recalc_sectors >>= 1;
2658 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2659 goto retry;
2660 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2661 goto free_ret;
2662 }
2663 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2664 if (crypto_shash_digestsize(tfm: ic->internal_hash) > ic->tag_size)
2665 recalc_tags_size += crypto_shash_digestsize(tfm: ic->internal_hash) - ic->tag_size;
2666 recalc_tags = kvmalloc(size: recalc_tags_size, GFP_NOIO);
2667 if (!recalc_tags) {
2668 vfree(addr: recalc_buffer);
2669 recalc_buffer = NULL;
2670 goto oom;
2671 }
2672
2673 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2674
2675 spin_lock_irq(lock: &ic->endio_wait.lock);
2676
2677next_chunk:
2678
2679 if (unlikely(dm_post_suspending(ic->ti)))
2680 goto unlock_ret;
2681
2682 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2683 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2684 if (ic->mode == 'B') {
2685 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
2686 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2687 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
2688 }
2689 goto unlock_ret;
2690 }
2691
2692 get_area_and_offset(ic, data_sector: range.logical_sector, area: &area, offset: &offset);
2693 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2694 if (!ic->meta_dev)
2695 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2696
2697 add_new_range_and_wait(ic, new_range: &range);
2698 spin_unlock_irq(lock: &ic->endio_wait.lock);
2699 logical_sector = range.logical_sector;
2700 n_sectors = range.n_sectors;
2701
2702 if (ic->mode == 'B') {
2703 if (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2704 goto advance_and_next;
2705
2706 while (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector,
2707 n_sectors: ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2708 logical_sector += ic->sectors_per_block;
2709 n_sectors -= ic->sectors_per_block;
2710 cond_resched();
2711 }
2712 while (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector + n_sectors - ic->sectors_per_block,
2713 n_sectors: ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2714 n_sectors -= ic->sectors_per_block;
2715 cond_resched();
2716 }
2717 get_area_and_offset(ic, data_sector: logical_sector, area: &area, offset: &offset);
2718 }
2719
2720 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2721
2722 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2723 recalc_write_super(ic);
2724 if (ic->mode == 'B')
2725 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: ic->bitmap_flush_interval);
2726
2727 super_counter = 0;
2728 }
2729
2730 if (unlikely(dm_integrity_failed(ic)))
2731 goto err;
2732
2733 io_req.bi_opf = REQ_OP_READ;
2734 io_req.mem.type = DM_IO_VMA;
2735 io_req.mem.ptr.addr = recalc_buffer;
2736 io_req.notify.fn = NULL;
2737 io_req.client = ic->io;
2738 io_loc.bdev = ic->dev->bdev;
2739 io_loc.sector = get_data_sector(ic, area, offset);
2740 io_loc.count = n_sectors;
2741
2742 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL);
2743 if (unlikely(r)) {
2744 dm_integrity_io_error(ic, msg: "reading data", err: r);
2745 goto err;
2746 }
2747
2748 t = recalc_tags;
2749 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2750 integrity_sector_checksum(ic, sector: logical_sector + i, data: recalc_buffer + (i << SECTOR_SHIFT), result: t);
2751 t += ic->tag_size;
2752 }
2753
2754 metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &metadata_offset);
2755
2756 r = dm_integrity_rw_tag(ic, tag: recalc_tags, metadata_block: &metadata_block, metadata_offset: &metadata_offset, total_size: t - recalc_tags, TAG_WRITE);
2757 if (unlikely(r)) {
2758 dm_integrity_io_error(ic, msg: "writing tags", err: r);
2759 goto err;
2760 }
2761
2762 if (ic->mode == 'B') {
2763 sector_t start, end;
2764
2765 start = (range.logical_sector >>
2766 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2767 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2768 end = ((range.logical_sector + range.n_sectors) >>
2769 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: start, n_sectors: end - start, BITMAP_OP_CLEAR);
2772 }
2773
2774advance_and_next:
2775 cond_resched();
2776
2777 spin_lock_irq(lock: &ic->endio_wait.lock);
2778 remove_range_unlocked(ic, range: &range);
2779 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2780 goto next_chunk;
2781
2782err:
2783 remove_range(ic, range: &range);
2784 goto free_ret;
2785
2786unlock_ret:
2787 spin_unlock_irq(lock: &ic->endio_wait.lock);
2788
2789 recalc_write_super(ic);
2790
2791free_ret:
2792 vfree(addr: recalc_buffer);
2793 kvfree(addr: recalc_tags);
2794}
2795
2796static void bitmap_block_work(struct work_struct *w)
2797{
2798 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2799 struct dm_integrity_c *ic = bbs->ic;
2800 struct bio *bio;
2801 struct bio_list bio_queue;
2802 struct bio_list waiting;
2803
2804 bio_list_init(bl: &waiting);
2805
2806 spin_lock(lock: &bbs->bio_queue_lock);
2807 bio_queue = bbs->bio_queue;
2808 bio_list_init(bl: &bbs->bio_queue);
2809 spin_unlock(lock: &bbs->bio_queue_lock);
2810
2811 while ((bio = bio_list_pop(bl: &bio_queue))) {
2812 struct dm_integrity_io *dio;
2813
2814 dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
2815
2816 if (block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2817 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2818 remove_range(ic, range: &dio->range);
2819 INIT_WORK(&dio->work, integrity_bio_wait);
2820 queue_work(wq: ic->offload_wq, work: &dio->work);
2821 } else {
2822 block_bitmap_op(ic, bitmap: ic->journal, sector: dio->range.logical_sector,
2823 n_sectors: dio->range.n_sectors, BITMAP_OP_SET);
2824 bio_list_add(bl: &waiting, bio);
2825 }
2826 }
2827
2828 if (bio_list_empty(bl: &waiting))
2829 return;
2830
2831 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2832 sector: bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2833 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2834
2835 while ((bio = bio_list_pop(bl: &waiting))) {
2836 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
2837
2838 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2839 n_sectors: dio->range.n_sectors, BITMAP_OP_SET);
2840
2841 remove_range(ic, range: &dio->range);
2842 INIT_WORK(&dio->work, integrity_bio_wait);
2843 queue_work(wq: ic->offload_wq, work: &dio->work);
2844 }
2845
2846 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: ic->bitmap_flush_interval);
2847}
2848
2849static void bitmap_flush_work(struct work_struct *work)
2850{
2851 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2852 struct dm_integrity_range range;
2853 unsigned long limit;
2854 struct bio *bio;
2855
2856 dm_integrity_flush_buffers(ic, flush_data: false);
2857
2858 range.logical_sector = 0;
2859 range.n_sectors = ic->provided_data_sectors;
2860
2861 spin_lock_irq(lock: &ic->endio_wait.lock);
2862 add_new_range_and_wait(ic, new_range: &range);
2863 spin_unlock_irq(lock: &ic->endio_wait.lock);
2864
2865 dm_integrity_flush_buffers(ic, flush_data: true);
2866
2867 limit = ic->provided_data_sectors;
2868 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2869 limit = le64_to_cpu(ic->sb->recalc_sector)
2870 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2871 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2872 }
2873 /*DEBUG_print("zeroing journal\n");*/
2874 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: limit, BITMAP_OP_CLEAR);
2875 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: limit, BITMAP_OP_CLEAR);
2876
2877 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
2878 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2879
2880 spin_lock_irq(lock: &ic->endio_wait.lock);
2881 remove_range_unlocked(ic, range: &range);
2882 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2883 bio_endio(bio);
2884 spin_unlock_irq(lock: &ic->endio_wait.lock);
2885 spin_lock_irq(lock: &ic->endio_wait.lock);
2886 }
2887 spin_unlock_irq(lock: &ic->endio_wait.lock);
2888}
2889
2890
2891static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2892 unsigned int n_sections, unsigned char commit_seq)
2893{
2894 unsigned int i, j, n;
2895
2896 if (!n_sections)
2897 return;
2898
2899 for (n = 0; n < n_sections; n++) {
2900 i = start_section + n;
2901 wraparound_section(ic, sec_ptr: &i);
2902 for (j = 0; j < ic->journal_section_sectors; j++) {
2903 struct journal_sector *js = access_journal(ic, section: i, offset: j);
2904
2905 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2906 memset(&js->sectors, 0, sizeof(js->sectors));
2907 js->commit_id = dm_integrity_commit_id(ic, i, j, seq: commit_seq);
2908 }
2909 for (j = 0; j < ic->journal_section_entries; j++) {
2910 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
2911
2912 journal_entry_set_unused(je);
2913 }
2914 }
2915
2916 write_journal(ic, commit_start: start_section, commit_sections: n_sections);
2917}
2918
2919static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2920{
2921 unsigned char k;
2922
2923 for (k = 0; k < N_COMMIT_IDS; k++) {
2924 if (dm_integrity_commit_id(ic, i, j, seq: k) == id)
2925 return k;
2926 }
2927 dm_integrity_io_error(ic, msg: "journal commit id", err: -EIO);
2928 return -EIO;
2929}
2930
2931static void replay_journal(struct dm_integrity_c *ic)
2932{
2933 unsigned int i, j;
2934 bool used_commit_ids[N_COMMIT_IDS];
2935 unsigned int max_commit_id_sections[N_COMMIT_IDS];
2936 unsigned int write_start, write_sections;
2937 unsigned int continue_section;
2938 bool journal_empty;
2939 unsigned char unused, last_used, want_commit_seq;
2940
2941 if (ic->mode == 'R')
2942 return;
2943
2944 if (ic->journal_uptodate)
2945 return;
2946
2947 last_used = 0;
2948 write_start = 0;
2949
2950 if (!ic->just_formatted) {
2951 DEBUG_print("reading journal\n");
2952 rw_journal(ic, opf: REQ_OP_READ, section: 0, n_sections: ic->journal_sections, NULL);
2953 if (ic->journal_io)
2954 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2955 if (ic->journal_io) {
2956 struct journal_completion crypt_comp;
2957
2958 crypt_comp.ic = ic;
2959 init_completion(x: &crypt_comp.comp);
2960 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2961 encrypt_journal(ic, encrypt: false, section: 0, n_sections: ic->journal_sections, comp: &crypt_comp);
2962 wait_for_completion(&crypt_comp.comp);
2963 }
2964 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2965 }
2966
2967 if (dm_integrity_failed(ic))
2968 goto clear_journal;
2969
2970 journal_empty = true;
2971 memset(used_commit_ids, 0, sizeof(used_commit_ids));
2972 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2973 for (i = 0; i < ic->journal_sections; i++) {
2974 for (j = 0; j < ic->journal_section_sectors; j++) {
2975 int k;
2976 struct journal_sector *js = access_journal(ic, section: i, offset: j);
2977
2978 k = find_commit_seq(ic, i, j, id: js->commit_id);
2979 if (k < 0)
2980 goto clear_journal;
2981 used_commit_ids[k] = true;
2982 max_commit_id_sections[k] = i;
2983 }
2984 if (journal_empty) {
2985 for (j = 0; j < ic->journal_section_entries; j++) {
2986 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
2987
2988 if (!journal_entry_is_unused(je)) {
2989 journal_empty = false;
2990 break;
2991 }
2992 }
2993 }
2994 }
2995
2996 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2997 unused = N_COMMIT_IDS - 1;
2998 while (unused && !used_commit_ids[unused - 1])
2999 unused--;
3000 } else {
3001 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3002 if (!used_commit_ids[unused])
3003 break;
3004 if (unused == N_COMMIT_IDS) {
3005 dm_integrity_io_error(ic, msg: "journal commit ids", err: -EIO);
3006 goto clear_journal;
3007 }
3008 }
3009 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3010 unused, used_commit_ids[0], used_commit_ids[1],
3011 used_commit_ids[2], used_commit_ids[3]);
3012
3013 last_used = prev_commit_seq(seq: unused);
3014 want_commit_seq = prev_commit_seq(seq: last_used);
3015
3016 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(seq: want_commit_seq)])
3017 journal_empty = true;
3018
3019 write_start = max_commit_id_sections[last_used] + 1;
3020 if (unlikely(write_start >= ic->journal_sections))
3021 want_commit_seq = next_commit_seq(seq: want_commit_seq);
3022 wraparound_section(ic, sec_ptr: &write_start);
3023
3024 i = write_start;
3025 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3026 for (j = 0; j < ic->journal_section_sectors; j++) {
3027 struct journal_sector *js = access_journal(ic, section: i, offset: j);
3028
3029 if (js->commit_id != dm_integrity_commit_id(ic, i, j, seq: want_commit_seq)) {
3030 /*
3031 * This could be caused by crash during writing.
3032 * We won't replay the inconsistent part of the
3033 * journal.
3034 */
3035 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3036 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3037 goto brk;
3038 }
3039 }
3040 i++;
3041 if (unlikely(i >= ic->journal_sections))
3042 want_commit_seq = next_commit_seq(seq: want_commit_seq);
3043 wraparound_section(ic, sec_ptr: &i);
3044 }
3045brk:
3046
3047 if (!journal_empty) {
3048 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3049 write_sections, write_start, want_commit_seq);
3050 do_journal_write(ic, write_start, write_sections, from_replay: true);
3051 }
3052
3053 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3054 continue_section = write_start;
3055 ic->commit_seq = want_commit_seq;
3056 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3057 } else {
3058 unsigned int s;
3059 unsigned char erase_seq;
3060
3061clear_journal:
3062 DEBUG_print("clearing journal\n");
3063
3064 erase_seq = prev_commit_seq(seq: prev_commit_seq(seq: last_used));
3065 s = write_start;
3066 init_journal(ic, start_section: s, n_sections: 1, commit_seq: erase_seq);
3067 s++;
3068 wraparound_section(ic, sec_ptr: &s);
3069 if (ic->journal_sections >= 2) {
3070 init_journal(ic, start_section: s, n_sections: ic->journal_sections - 2, commit_seq: erase_seq);
3071 s += ic->journal_sections - 2;
3072 wraparound_section(ic, sec_ptr: &s);
3073 init_journal(ic, start_section: s, n_sections: 1, commit_seq: erase_seq);
3074 }
3075
3076 continue_section = 0;
3077 ic->commit_seq = next_commit_seq(seq: erase_seq);
3078 }
3079
3080 ic->committed_section = continue_section;
3081 ic->n_committed_sections = 0;
3082
3083 ic->uncommitted_section = continue_section;
3084 ic->n_uncommitted_sections = 0;
3085
3086 ic->free_section = continue_section;
3087 ic->free_section_entry = 0;
3088 ic->free_sectors = ic->journal_entries;
3089
3090 ic->journal_tree_root = RB_ROOT;
3091 for (i = 0; i < ic->journal_entries; i++)
3092 init_journal_node(node: &ic->journal_tree[i]);
3093}
3094
3095static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3096{
3097 DEBUG_print("%s\n", __func__);
3098
3099 if (ic->mode == 'B') {
3100 ic->bitmap_flush_interval = msecs_to_jiffies(m: 10) + 1;
3101 ic->synchronous_mode = 1;
3102
3103 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
3104 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
3105 flush_workqueue(ic->commit_wq);
3106 }
3107}
3108
3109static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3110{
3111 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3112
3113 DEBUG_print("%s\n", __func__);
3114
3115 dm_integrity_enter_synchronous_mode(ic);
3116
3117 return NOTIFY_DONE;
3118}
3119
3120static void dm_integrity_postsuspend(struct dm_target *ti)
3121{
3122 struct dm_integrity_c *ic = ti->private;
3123 int r;
3124
3125 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3126
3127 del_timer_sync(timer: &ic->autocommit_timer);
3128
3129 if (ic->recalc_wq)
3130 drain_workqueue(wq: ic->recalc_wq);
3131
3132 if (ic->mode == 'B')
3133 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
3134
3135 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
3136 drain_workqueue(wq: ic->commit_wq);
3137
3138 if (ic->mode == 'J') {
3139 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
3140 drain_workqueue(wq: ic->writer_wq);
3141 dm_integrity_flush_buffers(ic, flush_data: true);
3142 if (ic->wrote_to_journal) {
3143 init_journal(ic, start_section: ic->free_section,
3144 n_sections: ic->journal_sections - ic->free_section, commit_seq: ic->commit_seq);
3145 if (ic->free_section) {
3146 init_journal(ic, start_section: 0, n_sections: ic->free_section,
3147 commit_seq: next_commit_seq(seq: ic->commit_seq));
3148 }
3149 }
3150 }
3151
3152 if (ic->mode == 'B') {
3153 dm_integrity_flush_buffers(ic, flush_data: true);
3154#if 1
3155 /* set to 0 to test bitmap replay code */
3156 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
3157 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3158 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3159 if (unlikely(r))
3160 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3161#endif
3162 }
3163
3164 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3165
3166 ic->journal_uptodate = true;
3167}
3168
3169static void dm_integrity_resume(struct dm_target *ti)
3170{
3171 struct dm_integrity_c *ic = ti->private;
3172 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3173 int r;
3174
3175 DEBUG_print("resume\n");
3176
3177 ic->wrote_to_journal = false;
3178
3179 if (ic->provided_data_sectors != old_provided_data_sectors) {
3180 if (ic->provided_data_sectors > old_provided_data_sectors &&
3181 ic->mode == 'B' &&
3182 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3183 rw_journal_sectors(ic, opf: REQ_OP_READ, sector: 0,
3184 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3185 block_bitmap_op(ic, bitmap: ic->journal, sector: old_provided_data_sectors,
3186 n_sectors: ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3187 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3188 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3189 }
3190
3191 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3192 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3193 if (unlikely(r))
3194 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3195 }
3196
3197 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3198 DEBUG_print("resume dirty_bitmap\n");
3199 rw_journal_sectors(ic, opf: REQ_OP_READ, sector: 0,
3200 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3201 if (ic->mode == 'B') {
3202 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3203 !ic->reset_recalculate_flag) {
3204 block_bitmap_copy(ic, dst: ic->recalc_bitmap, src: ic->journal);
3205 block_bitmap_copy(ic, dst: ic->may_write_bitmap, src: ic->journal);
3206 if (!block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors,
3207 BITMAP_OP_TEST_ALL_CLEAR)) {
3208 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3209 ic->sb->recalc_sector = cpu_to_le64(0);
3210 }
3211 } else {
3212 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3213 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3214 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3215 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3216 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3217 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3218 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3219 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3220 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3221 ic->sb->recalc_sector = cpu_to_le64(0);
3222 }
3223 } else {
3224 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3225 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3226 ic->reset_recalculate_flag) {
3227 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3228 ic->sb->recalc_sector = cpu_to_le64(0);
3229 }
3230 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
3231 replay_journal(ic);
3232 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233 }
3234 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3235 if (unlikely(r))
3236 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3237 } else {
3238 replay_journal(ic);
3239 if (ic->reset_recalculate_flag) {
3240 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3241 ic->sb->recalc_sector = cpu_to_le64(0);
3242 }
3243 if (ic->mode == 'B') {
3244 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3246 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3247 if (unlikely(r))
3248 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3249
3250 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3253 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3254 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3255 block_bitmap_op(ic, bitmap: ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3256 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3257 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3258 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3259 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3260 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3261 }
3262 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3263 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264 }
3265 }
3266
3267 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3268 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3269 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3270
3271 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3272 if (recalc_pos < ic->provided_data_sectors) {
3273 queue_work(wq: ic->recalc_wq, work: &ic->recalc_work);
3274 } else if (recalc_pos > ic->provided_data_sectors) {
3275 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3276 recalc_write_super(ic);
3277 }
3278 }
3279
3280 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3281 ic->reboot_notifier.next = NULL;
3282 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3283 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3284
3285#if 0
3286 /* set to 1 to stress test synchronous mode */
3287 dm_integrity_enter_synchronous_mode(ic);
3288#endif
3289}
3290
3291static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3292 unsigned int status_flags, char *result, unsigned int maxlen)
3293{
3294 struct dm_integrity_c *ic = ti->private;
3295 unsigned int arg_count;
3296 size_t sz = 0;
3297
3298 switch (type) {
3299 case STATUSTYPE_INFO:
3300 DMEMIT("%llu %llu",
3301 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3302 ic->provided_data_sectors);
3303 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3304 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3305 else
3306 DMEMIT(" -");
3307 break;
3308
3309 case STATUSTYPE_TABLE: {
3310 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3311
3312 watermark_percentage += ic->journal_entries / 2;
3313 do_div(watermark_percentage, ic->journal_entries);
3314 arg_count = 3;
3315 arg_count += !!ic->meta_dev;
3316 arg_count += ic->sectors_per_block != 1;
3317 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3318 arg_count += ic->reset_recalculate_flag;
3319 arg_count += ic->discard;
3320 arg_count += ic->mode == 'J';
3321 arg_count += ic->mode == 'J';
3322 arg_count += ic->mode == 'B';
3323 arg_count += ic->mode == 'B';
3324 arg_count += !!ic->internal_hash_alg.alg_string;
3325 arg_count += !!ic->journal_crypt_alg.alg_string;
3326 arg_count += !!ic->journal_mac_alg.alg_string;
3327 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3328 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3329 arg_count += ic->legacy_recalculate;
3330 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3331 ic->tag_size, ic->mode, arg_count);
3332 if (ic->meta_dev)
3333 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3334 if (ic->sectors_per_block != 1)
3335 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3336 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3337 DMEMIT(" recalculate");
3338 if (ic->reset_recalculate_flag)
3339 DMEMIT(" reset_recalculate");
3340 if (ic->discard)
3341 DMEMIT(" allow_discards");
3342 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3343 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3344 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3345 if (ic->mode == 'J') {
3346 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3347 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3348 }
3349 if (ic->mode == 'B') {
3350 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3351 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3352 }
3353 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3354 DMEMIT(" fix_padding");
3355 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3356 DMEMIT(" fix_hmac");
3357 if (ic->legacy_recalculate)
3358 DMEMIT(" legacy_recalculate");
3359
3360#define EMIT_ALG(a, n) \
3361 do { \
3362 if (ic->a.alg_string) { \
3363 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3364 if (ic->a.key_string) \
3365 DMEMIT(":%s", ic->a.key_string);\
3366 } \
3367 } while (0)
3368 EMIT_ALG(internal_hash_alg, "internal_hash");
3369 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3370 EMIT_ALG(journal_mac_alg, "journal_mac");
3371 break;
3372 }
3373 case STATUSTYPE_IMA:
3374 DMEMIT_TARGET_NAME_VERSION(ti->type);
3375 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3376 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3377
3378 if (ic->meta_dev)
3379 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3380 if (ic->sectors_per_block != 1)
3381 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3382
3383 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3384 'y' : 'n');
3385 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3386 DMEMIT(",fix_padding=%c",
3387 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3388 DMEMIT(",fix_hmac=%c",
3389 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3390 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3391
3392 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3393 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3394 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3395 DMEMIT(";");
3396 break;
3397 }
3398}
3399
3400static int dm_integrity_iterate_devices(struct dm_target *ti,
3401 iterate_devices_callout_fn fn, void *data)
3402{
3403 struct dm_integrity_c *ic = ti->private;
3404
3405 if (!ic->meta_dev)
3406 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3407 else
3408 return fn(ti, ic->dev, 0, ti->len, data);
3409}
3410
3411static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3412{
3413 struct dm_integrity_c *ic = ti->private;
3414
3415 if (ic->sectors_per_block > 1) {
3416 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3418 blk_limits_io_min(limits, min: ic->sectors_per_block << SECTOR_SHIFT);
3419 limits->dma_alignment = limits->logical_block_size - 1;
3420 }
3421}
3422
3423static void calculate_journal_section_size(struct dm_integrity_c *ic)
3424{
3425 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3426
3427 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3428 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3429 JOURNAL_ENTRY_ROUNDUP);
3430
3431 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3432 sector_space -= JOURNAL_MAC_PER_SECTOR;
3433 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3434 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3435 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3436 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3437}
3438
3439static int calculate_device_limits(struct dm_integrity_c *ic)
3440{
3441 __u64 initial_sectors;
3442
3443 calculate_journal_section_size(ic);
3444 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3445 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3446 return -EINVAL;
3447 ic->initial_sectors = initial_sectors;
3448
3449 if (!ic->meta_dev) {
3450 sector_t last_sector, last_area, last_offset;
3451
3452 /* we have to maintain excessive padding for compatibility with existing volumes */
3453 __u64 metadata_run_padding =
3454 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3455 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3456 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3457
3458 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3459 metadata_run_padding) >> SECTOR_SHIFT;
3460 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3461 ic->log2_metadata_run = __ffs(ic->metadata_run);
3462 else
3463 ic->log2_metadata_run = -1;
3464
3465 get_area_and_offset(ic, data_sector: ic->provided_data_sectors - 1, area: &last_area, offset: &last_offset);
3466 last_sector = get_data_sector(ic, area: last_area, offset: last_offset);
3467 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3468 return -EINVAL;
3469 } else {
3470 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3471
3472 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3473 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3474 meta_size <<= ic->log2_buffer_sectors;
3475 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3476 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3477 return -EINVAL;
3478 ic->metadata_run = 1;
3479 ic->log2_metadata_run = 0;
3480 }
3481
3482 return 0;
3483}
3484
3485static void get_provided_data_sectors(struct dm_integrity_c *ic)
3486{
3487 if (!ic->meta_dev) {
3488 int test_bit;
3489
3490 ic->provided_data_sectors = 0;
3491 for (test_bit = fls64(x: ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3492 __u64 prev_data_sectors = ic->provided_data_sectors;
3493
3494 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3495 if (calculate_device_limits(ic))
3496 ic->provided_data_sectors = prev_data_sectors;
3497 }
3498 } else {
3499 ic->provided_data_sectors = ic->data_device_sectors;
3500 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3501 }
3502}
3503
3504static int initialize_superblock(struct dm_integrity_c *ic,
3505 unsigned int journal_sectors, unsigned int interleave_sectors)
3506{
3507 unsigned int journal_sections;
3508 int test_bit;
3509
3510 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3511 memcpy(ic->sb->magic, SB_MAGIC, 8);
3512 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3513 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3514 if (ic->journal_mac_alg.alg_string)
3515 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3516
3517 calculate_journal_section_size(ic);
3518 journal_sections = journal_sectors / ic->journal_section_sectors;
3519 if (!journal_sections)
3520 journal_sections = 1;
3521
3522 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3523 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3524 get_random_bytes(buf: ic->sb->salt, SALT_SIZE);
3525 }
3526
3527 if (!ic->meta_dev) {
3528 if (ic->fix_padding)
3529 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3530 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3531 if (!interleave_sectors)
3532 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3533 ic->sb->log2_interleave_sectors = __fls(word: interleave_sectors);
3534 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3536
3537 get_provided_data_sectors(ic);
3538 if (!ic->provided_data_sectors)
3539 return -EINVAL;
3540 } else {
3541 ic->sb->log2_interleave_sectors = 0;
3542
3543 get_provided_data_sectors(ic);
3544 if (!ic->provided_data_sectors)
3545 return -EINVAL;
3546
3547try_smaller_buffer:
3548 ic->sb->journal_sections = cpu_to_le32(0);
3549 for (test_bit = fls(x: journal_sections) - 1; test_bit >= 0; test_bit--) {
3550 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3551 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3552
3553 if (test_journal_sections > journal_sections)
3554 continue;
3555 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3556 if (calculate_device_limits(ic))
3557 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3558
3559 }
3560 if (!le32_to_cpu(ic->sb->journal_sections)) {
3561 if (ic->log2_buffer_sectors > 3) {
3562 ic->log2_buffer_sectors--;
3563 goto try_smaller_buffer;
3564 }
3565 return -EINVAL;
3566 }
3567 }
3568
3569 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3570
3571 sb_set_version(ic);
3572
3573 return 0;
3574}
3575
3576static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3577{
3578 struct gendisk *disk = dm_disk(md: dm_table_get_md(t: ti->table));
3579 struct blk_integrity bi;
3580
3581 memset(&bi, 0, sizeof(bi));
3582 bi.profile = &dm_integrity_profile;
3583 bi.tuple_size = ic->tag_size;
3584 bi.tag_size = bi.tuple_size;
3585 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3586
3587 blk_integrity_register(disk, &bi);
3588 blk_queue_max_integrity_segments(q: disk->queue, UINT_MAX);
3589}
3590
3591static void dm_integrity_free_page_list(struct page_list *pl)
3592{
3593 unsigned int i;
3594
3595 if (!pl)
3596 return;
3597 for (i = 0; pl[i].page; i++)
3598 __free_page(pl[i].page);
3599 kvfree(addr: pl);
3600}
3601
3602static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3603{
3604 struct page_list *pl;
3605 unsigned int i;
3606
3607 pl = kvmalloc_array(n: n_pages + 1, size: sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3608 if (!pl)
3609 return NULL;
3610
3611 for (i = 0; i < n_pages; i++) {
3612 pl[i].page = alloc_page(GFP_KERNEL);
3613 if (!pl[i].page) {
3614 dm_integrity_free_page_list(pl);
3615 return NULL;
3616 }
3617 if (i)
3618 pl[i - 1].next = &pl[i];
3619 }
3620 pl[i].page = NULL;
3621 pl[i].next = NULL;
3622
3623 return pl;
3624}
3625
3626static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3627{
3628 unsigned int i;
3629
3630 for (i = 0; i < ic->journal_sections; i++)
3631 kvfree(addr: sl[i]);
3632 kvfree(addr: sl);
3633}
3634
3635static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3636 struct page_list *pl)
3637{
3638 struct scatterlist **sl;
3639 unsigned int i;
3640
3641 sl = kvmalloc_array(n: ic->journal_sections,
3642 size: sizeof(struct scatterlist *),
3643 GFP_KERNEL | __GFP_ZERO);
3644 if (!sl)
3645 return NULL;
3646
3647 for (i = 0; i < ic->journal_sections; i++) {
3648 struct scatterlist *s;
3649 unsigned int start_index, start_offset;
3650 unsigned int end_index, end_offset;
3651 unsigned int n_pages;
3652 unsigned int idx;
3653
3654 page_list_location(ic, section: i, offset: 0, pl_index: &start_index, pl_offset: &start_offset);
3655 page_list_location(ic, section: i, offset: ic->journal_section_sectors - 1,
3656 pl_index: &end_index, pl_offset: &end_offset);
3657
3658 n_pages = (end_index - start_index + 1);
3659
3660 s = kvmalloc_array(n: n_pages, size: sizeof(struct scatterlist),
3661 GFP_KERNEL);
3662 if (!s) {
3663 dm_integrity_free_journal_scatterlist(ic, sl);
3664 return NULL;
3665 }
3666
3667 sg_init_table(s, n_pages);
3668 for (idx = start_index; idx <= end_index; idx++) {
3669 char *va = lowmem_page_address(page: pl[idx].page);
3670 unsigned int start = 0, end = PAGE_SIZE;
3671
3672 if (idx == start_index)
3673 start = start_offset;
3674 if (idx == end_index)
3675 end = end_offset + (1 << SECTOR_SHIFT);
3676 sg_set_buf(sg: &s[idx - start_index], buf: va + start, buflen: end - start);
3677 }
3678
3679 sl[i] = s;
3680 }
3681
3682 return sl;
3683}
3684
3685static void free_alg(struct alg_spec *a)
3686{
3687 kfree_sensitive(objp: a->alg_string);
3688 kfree_sensitive(objp: a->key);
3689 memset(a, 0, sizeof(*a));
3690}
3691
3692static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3693{
3694 char *k;
3695
3696 free_alg(a);
3697
3698 a->alg_string = kstrdup(s: strchr(arg, ':') + 1, GFP_KERNEL);
3699 if (!a->alg_string)
3700 goto nomem;
3701
3702 k = strchr(a->alg_string, ':');
3703 if (k) {
3704 *k = 0;
3705 a->key_string = k + 1;
3706 if (strlen(a->key_string) & 1)
3707 goto inval;
3708
3709 a->key_size = strlen(a->key_string) / 2;
3710 a->key = kmalloc(size: a->key_size, GFP_KERNEL);
3711 if (!a->key)
3712 goto nomem;
3713 if (hex2bin(dst: a->key, src: a->key_string, count: a->key_size))
3714 goto inval;
3715 }
3716
3717 return 0;
3718inval:
3719 *error = error_inval;
3720 return -EINVAL;
3721nomem:
3722 *error = "Out of memory for an argument";
3723 return -ENOMEM;
3724}
3725
3726static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3727 char *error_alg, char *error_key)
3728{
3729 int r;
3730
3731 if (a->alg_string) {
3732 *hash = crypto_alloc_shash(alg_name: a->alg_string, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3733 if (IS_ERR(ptr: *hash)) {
3734 *error = error_alg;
3735 r = PTR_ERR(ptr: *hash);
3736 *hash = NULL;
3737 return r;
3738 }
3739
3740 if (a->key) {
3741 r = crypto_shash_setkey(tfm: *hash, key: a->key, keylen: a->key_size);
3742 if (r) {
3743 *error = error_key;
3744 return r;
3745 }
3746 } else if (crypto_shash_get_flags(tfm: *hash) & CRYPTO_TFM_NEED_KEY) {
3747 *error = error_key;
3748 return -ENOKEY;
3749 }
3750 }
3751
3752 return 0;
3753}
3754
3755static int create_journal(struct dm_integrity_c *ic, char **error)
3756{
3757 int r = 0;
3758 unsigned int i;
3759 __u64 journal_pages, journal_desc_size, journal_tree_size;
3760 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3761 struct skcipher_request *req = NULL;
3762
3763 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3764 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3765 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3766 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3767
3768 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3769 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3770 journal_desc_size = journal_pages * sizeof(struct page_list);
3771 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3772 *error = "Journal doesn't fit into memory";
3773 r = -ENOMEM;
3774 goto bad;
3775 }
3776 ic->journal_pages = journal_pages;
3777
3778 ic->journal = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3779 if (!ic->journal) {
3780 *error = "Could not allocate memory for journal";
3781 r = -ENOMEM;
3782 goto bad;
3783 }
3784 if (ic->journal_crypt_alg.alg_string) {
3785 unsigned int ivsize, blocksize;
3786 struct journal_completion comp;
3787
3788 comp.ic = ic;
3789 ic->journal_crypt = crypto_alloc_skcipher(alg_name: ic->journal_crypt_alg.alg_string, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3790 if (IS_ERR(ptr: ic->journal_crypt)) {
3791 *error = "Invalid journal cipher";
3792 r = PTR_ERR(ptr: ic->journal_crypt);
3793 ic->journal_crypt = NULL;
3794 goto bad;
3795 }
3796 ivsize = crypto_skcipher_ivsize(tfm: ic->journal_crypt);
3797 blocksize = crypto_skcipher_blocksize(tfm: ic->journal_crypt);
3798
3799 if (ic->journal_crypt_alg.key) {
3800 r = crypto_skcipher_setkey(tfm: ic->journal_crypt, key: ic->journal_crypt_alg.key,
3801 keylen: ic->journal_crypt_alg.key_size);
3802 if (r) {
3803 *error = "Error setting encryption key";
3804 goto bad;
3805 }
3806 }
3807 DEBUG_print("cipher %s, block size %u iv size %u\n",
3808 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3809
3810 ic->journal_io = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3811 if (!ic->journal_io) {
3812 *error = "Could not allocate memory for journal io";
3813 r = -ENOMEM;
3814 goto bad;
3815 }
3816
3817 if (blocksize == 1) {
3818 struct scatterlist *sg;
3819
3820 req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
3821 if (!req) {
3822 *error = "Could not allocate crypt request";
3823 r = -ENOMEM;
3824 goto bad;
3825 }
3826
3827 crypt_iv = kzalloc(size: ivsize, GFP_KERNEL);
3828 if (!crypt_iv) {
3829 *error = "Could not allocate iv";
3830 r = -ENOMEM;
3831 goto bad;
3832 }
3833
3834 ic->journal_xor = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3835 if (!ic->journal_xor) {
3836 *error = "Could not allocate memory for journal xor";
3837 r = -ENOMEM;
3838 goto bad;
3839 }
3840
3841 sg = kvmalloc_array(n: ic->journal_pages + 1,
3842 size: sizeof(struct scatterlist),
3843 GFP_KERNEL);
3844 if (!sg) {
3845 *error = "Unable to allocate sg list";
3846 r = -ENOMEM;
3847 goto bad;
3848 }
3849 sg_init_table(sg, ic->journal_pages + 1);
3850 for (i = 0; i < ic->journal_pages; i++) {
3851 char *va = lowmem_page_address(page: ic->journal_xor[i].page);
3852
3853 clear_page(page: va);
3854 sg_set_buf(sg: &sg[i], buf: va, PAGE_SIZE);
3855 }
3856 sg_set_buf(sg: &sg[i], buf: &ic->commit_ids, buflen: sizeof(ic->commit_ids));
3857
3858 skcipher_request_set_crypt(req, src: sg, dst: sg,
3859 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), iv: crypt_iv);
3860 init_completion(x: &comp.comp);
3861 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3862 if (do_crypt(encrypt: true, req, comp: &comp))
3863 wait_for_completion(&comp.comp);
3864 kvfree(addr: sg);
3865 r = dm_integrity_failed(ic);
3866 if (r) {
3867 *error = "Unable to encrypt journal";
3868 goto bad;
3869 }
3870 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3871
3872 crypto_free_skcipher(tfm: ic->journal_crypt);
3873 ic->journal_crypt = NULL;
3874 } else {
3875 unsigned int crypt_len = roundup(ivsize, blocksize);
3876
3877 req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
3878 if (!req) {
3879 *error = "Could not allocate crypt request";
3880 r = -ENOMEM;
3881 goto bad;
3882 }
3883
3884 crypt_iv = kmalloc(size: ivsize, GFP_KERNEL);
3885 if (!crypt_iv) {
3886 *error = "Could not allocate iv";
3887 r = -ENOMEM;
3888 goto bad;
3889 }
3890
3891 crypt_data = kmalloc(size: crypt_len, GFP_KERNEL);
3892 if (!crypt_data) {
3893 *error = "Unable to allocate crypt data";
3894 r = -ENOMEM;
3895 goto bad;
3896 }
3897
3898 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, pl: ic->journal);
3899 if (!ic->journal_scatterlist) {
3900 *error = "Unable to allocate sg list";
3901 r = -ENOMEM;
3902 goto bad;
3903 }
3904 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, pl: ic->journal_io);
3905 if (!ic->journal_io_scatterlist) {
3906 *error = "Unable to allocate sg list";
3907 r = -ENOMEM;
3908 goto bad;
3909 }
3910 ic->sk_requests = kvmalloc_array(n: ic->journal_sections,
3911 size: sizeof(struct skcipher_request *),
3912 GFP_KERNEL | __GFP_ZERO);
3913 if (!ic->sk_requests) {
3914 *error = "Unable to allocate sk requests";
3915 r = -ENOMEM;
3916 goto bad;
3917 }
3918 for (i = 0; i < ic->journal_sections; i++) {
3919 struct scatterlist sg;
3920 struct skcipher_request *section_req;
3921 __le32 section_le = cpu_to_le32(i);
3922
3923 memset(crypt_iv, 0x00, ivsize);
3924 memset(crypt_data, 0x00, crypt_len);
3925 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3926
3927 sg_init_one(&sg, crypt_data, crypt_len);
3928 skcipher_request_set_crypt(req, src: &sg, dst: &sg, cryptlen: crypt_len, iv: crypt_iv);
3929 init_completion(x: &comp.comp);
3930 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3931 if (do_crypt(encrypt: true, req, comp: &comp))
3932 wait_for_completion(&comp.comp);
3933
3934 r = dm_integrity_failed(ic);
3935 if (r) {
3936 *error = "Unable to generate iv";
3937 goto bad;
3938 }
3939
3940 section_req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
3941 if (!section_req) {
3942 *error = "Unable to allocate crypt request";
3943 r = -ENOMEM;
3944 goto bad;
3945 }
3946 section_req->iv = kmalloc_array(n: ivsize, size: 2,
3947 GFP_KERNEL);
3948 if (!section_req->iv) {
3949 skcipher_request_free(req: section_req);
3950 *error = "Unable to allocate iv";
3951 r = -ENOMEM;
3952 goto bad;
3953 }
3954 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3955 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3956 ic->sk_requests[i] = section_req;
3957 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3958 }
3959 }
3960 }
3961
3962 for (i = 0; i < N_COMMIT_IDS; i++) {
3963 unsigned int j;
3964
3965retest_commit_id:
3966 for (j = 0; j < i; j++) {
3967 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3968 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3969 goto retest_commit_id;
3970 }
3971 }
3972 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3973 }
3974
3975 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3976 if (journal_tree_size > ULONG_MAX) {
3977 *error = "Journal doesn't fit into memory";
3978 r = -ENOMEM;
3979 goto bad;
3980 }
3981 ic->journal_tree = kvmalloc(size: journal_tree_size, GFP_KERNEL);
3982 if (!ic->journal_tree) {
3983 *error = "Could not allocate memory for journal tree";
3984 r = -ENOMEM;
3985 }
3986bad:
3987 kfree(objp: crypt_data);
3988 kfree(objp: crypt_iv);
3989 skcipher_request_free(req);
3990
3991 return r;
3992}
3993
3994/*
3995 * Construct a integrity mapping
3996 *
3997 * Arguments:
3998 * device
3999 * offset from the start of the device
4000 * tag size
4001 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4002 * number of optional arguments
4003 * optional arguments:
4004 * journal_sectors
4005 * interleave_sectors
4006 * buffer_sectors
4007 * journal_watermark
4008 * commit_time
4009 * meta_device
4010 * block_size
4011 * sectors_per_bit
4012 * bitmap_flush_interval
4013 * internal_hash
4014 * journal_crypt
4015 * journal_mac
4016 * recalculate
4017 */
4018static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4019{
4020 struct dm_integrity_c *ic;
4021 char dummy;
4022 int r;
4023 unsigned int extra_args;
4024 struct dm_arg_set as;
4025 static const struct dm_arg _args[] = {
4026 {0, 18, "Invalid number of feature args"},
4027 };
4028 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4029 bool should_write_sb;
4030 __u64 threshold;
4031 unsigned long long start;
4032 __s8 log2_sectors_per_bitmap_bit = -1;
4033 __s8 log2_blocks_per_bitmap_bit;
4034 __u64 bits_in_journal;
4035 __u64 n_bitmap_bits;
4036
4037#define DIRECT_ARGUMENTS 4
4038
4039 if (argc <= DIRECT_ARGUMENTS) {
4040 ti->error = "Invalid argument count";
4041 return -EINVAL;
4042 }
4043
4044 ic = kzalloc(size: sizeof(struct dm_integrity_c), GFP_KERNEL);
4045 if (!ic) {
4046 ti->error = "Cannot allocate integrity context";
4047 return -ENOMEM;
4048 }
4049 ti->private = ic;
4050 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4051 ic->ti = ti;
4052
4053 ic->in_progress = RB_ROOT;
4054 INIT_LIST_HEAD(list: &ic->wait_list);
4055 init_waitqueue_head(&ic->endio_wait);
4056 bio_list_init(bl: &ic->flush_bio_list);
4057 init_waitqueue_head(&ic->copy_to_journal_wait);
4058 init_completion(x: &ic->crypto_backoff);
4059 atomic64_set(v: &ic->number_of_mismatches, i: 0);
4060 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4061
4062 r = dm_get_device(ti, path: argv[0], mode: dm_table_get_mode(t: ti->table), result: &ic->dev);
4063 if (r) {
4064 ti->error = "Device lookup failed";
4065 goto bad;
4066 }
4067
4068 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4069 ti->error = "Invalid starting offset";
4070 r = -EINVAL;
4071 goto bad;
4072 }
4073 ic->start = start;
4074
4075 if (strcmp(argv[2], "-")) {
4076 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4077 ti->error = "Invalid tag size";
4078 r = -EINVAL;
4079 goto bad;
4080 }
4081 }
4082
4083 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4084 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4085 ic->mode = argv[3][0];
4086 } else {
4087 ti->error = "Invalid mode (expecting J, B, D, R)";
4088 r = -EINVAL;
4089 goto bad;
4090 }
4091
4092 journal_sectors = 0;
4093 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4094 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4095 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4096 sync_msec = DEFAULT_SYNC_MSEC;
4097 ic->sectors_per_block = 1;
4098
4099 as.argc = argc - DIRECT_ARGUMENTS;
4100 as.argv = argv + DIRECT_ARGUMENTS;
4101 r = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &extra_args, error: &ti->error);
4102 if (r)
4103 goto bad;
4104
4105 while (extra_args--) {
4106 const char *opt_string;
4107 unsigned int val;
4108 unsigned long long llval;
4109
4110 opt_string = dm_shift_arg(as: &as);
4111 if (!opt_string) {
4112 r = -EINVAL;
4113 ti->error = "Not enough feature arguments";
4114 goto bad;
4115 }
4116 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4117 journal_sectors = val ? val : 1;
4118 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4119 interleave_sectors = val;
4120 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4121 buffer_sectors = val;
4122 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4123 journal_watermark = val;
4124 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4125 sync_msec = val;
4126 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4127 if (ic->meta_dev) {
4128 dm_put_device(ti, d: ic->meta_dev);
4129 ic->meta_dev = NULL;
4130 }
4131 r = dm_get_device(ti, path: strchr(opt_string, ':') + 1,
4132 mode: dm_table_get_mode(t: ti->table), result: &ic->meta_dev);
4133 if (r) {
4134 ti->error = "Device lookup failed";
4135 goto bad;
4136 }
4137 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4138 if (val < 1 << SECTOR_SHIFT ||
4139 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4140 (val & (val - 1))) {
4141 r = -EINVAL;
4142 ti->error = "Invalid block_size argument";
4143 goto bad;
4144 }
4145 ic->sectors_per_block = val >> SECTOR_SHIFT;
4146 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4147 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(n: llval);
4148 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4149 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4150 r = -EINVAL;
4151 ti->error = "Invalid bitmap_flush_interval argument";
4152 goto bad;
4153 }
4154 ic->bitmap_flush_interval = msecs_to_jiffies(m: val);
4155 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4156 r = get_alg_and_key(arg: opt_string, a: &ic->internal_hash_alg, error: &ti->error,
4157 error_inval: "Invalid internal_hash argument");
4158 if (r)
4159 goto bad;
4160 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4161 r = get_alg_and_key(arg: opt_string, a: &ic->journal_crypt_alg, error: &ti->error,
4162 error_inval: "Invalid journal_crypt argument");
4163 if (r)
4164 goto bad;
4165 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4166 r = get_alg_and_key(arg: opt_string, a: &ic->journal_mac_alg, error: &ti->error,
4167 error_inval: "Invalid journal_mac argument");
4168 if (r)
4169 goto bad;
4170 } else if (!strcmp(opt_string, "recalculate")) {
4171 ic->recalculate_flag = true;
4172 } else if (!strcmp(opt_string, "reset_recalculate")) {
4173 ic->recalculate_flag = true;
4174 ic->reset_recalculate_flag = true;
4175 } else if (!strcmp(opt_string, "allow_discards")) {
4176 ic->discard = true;
4177 } else if (!strcmp(opt_string, "fix_padding")) {
4178 ic->fix_padding = true;
4179 } else if (!strcmp(opt_string, "fix_hmac")) {
4180 ic->fix_hmac = true;
4181 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4182 ic->legacy_recalculate = true;
4183 } else {
4184 r = -EINVAL;
4185 ti->error = "Invalid argument";
4186 goto bad;
4187 }
4188 }
4189
4190 ic->data_device_sectors = bdev_nr_sectors(bdev: ic->dev->bdev);
4191 if (!ic->meta_dev)
4192 ic->meta_device_sectors = ic->data_device_sectors;
4193 else
4194 ic->meta_device_sectors = bdev_nr_sectors(bdev: ic->meta_dev->bdev);
4195
4196 if (!journal_sectors) {
4197 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4198 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4199 }
4200
4201 if (!buffer_sectors)
4202 buffer_sectors = 1;
4203 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4204
4205 r = get_mac(hash: &ic->internal_hash, a: &ic->internal_hash_alg, error: &ti->error,
4206 error_alg: "Invalid internal hash", error_key: "Error setting internal hash key");
4207 if (r)
4208 goto bad;
4209
4210 r = get_mac(hash: &ic->journal_mac, a: &ic->journal_mac_alg, error: &ti->error,
4211 error_alg: "Invalid journal mac", error_key: "Error setting journal mac key");
4212 if (r)
4213 goto bad;
4214
4215 if (!ic->tag_size) {
4216 if (!ic->internal_hash) {
4217 ti->error = "Unknown tag size";
4218 r = -EINVAL;
4219 goto bad;
4220 }
4221 ic->tag_size = crypto_shash_digestsize(tfm: ic->internal_hash);
4222 }
4223 if (ic->tag_size > MAX_TAG_SIZE) {
4224 ti->error = "Too big tag size";
4225 r = -EINVAL;
4226 goto bad;
4227 }
4228 if (!(ic->tag_size & (ic->tag_size - 1)))
4229 ic->log2_tag_size = __ffs(ic->tag_size);
4230 else
4231 ic->log2_tag_size = -1;
4232
4233 if (ic->mode == 'B' && !ic->internal_hash) {
4234 r = -EINVAL;
4235 ti->error = "Bitmap mode can be only used with internal hash";
4236 goto bad;
4237 }
4238
4239 if (ic->discard && !ic->internal_hash) {
4240 r = -EINVAL;
4241 ti->error = "Discard can be only used with internal hash";
4242 goto bad;
4243 }
4244
4245 ic->autocommit_jiffies = msecs_to_jiffies(m: sync_msec);
4246 ic->autocommit_msec = sync_msec;
4247 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4248
4249 ic->io = dm_io_client_create();
4250 if (IS_ERR(ptr: ic->io)) {
4251 r = PTR_ERR(ptr: ic->io);
4252 ic->io = NULL;
4253 ti->error = "Cannot allocate dm io";
4254 goto bad;
4255 }
4256
4257 r = mempool_init_slab_pool(pool: &ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, kc: journal_io_cache);
4258 if (r) {
4259 ti->error = "Cannot allocate mempool";
4260 goto bad;
4261 }
4262
4263 ic->metadata_wq = alloc_workqueue(fmt: "dm-integrity-metadata",
4264 flags: WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4265 if (!ic->metadata_wq) {
4266 ti->error = "Cannot allocate workqueue";
4267 r = -ENOMEM;
4268 goto bad;
4269 }
4270
4271 /*
4272 * If this workqueue weren't ordered, it would cause bio reordering
4273 * and reduced performance.
4274 */
4275 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4276 if (!ic->wait_wq) {
4277 ti->error = "Cannot allocate workqueue";
4278 r = -ENOMEM;
4279 goto bad;
4280 }
4281
4282 ic->offload_wq = alloc_workqueue(fmt: "dm-integrity-offload", flags: WQ_MEM_RECLAIM,
4283 METADATA_WORKQUEUE_MAX_ACTIVE);
4284 if (!ic->offload_wq) {
4285 ti->error = "Cannot allocate workqueue";
4286 r = -ENOMEM;
4287 goto bad;
4288 }
4289
4290 ic->commit_wq = alloc_workqueue(fmt: "dm-integrity-commit", flags: WQ_MEM_RECLAIM, max_active: 1);
4291 if (!ic->commit_wq) {
4292 ti->error = "Cannot allocate workqueue";
4293 r = -ENOMEM;
4294 goto bad;
4295 }
4296 INIT_WORK(&ic->commit_work, integrity_commit);
4297
4298 if (ic->mode == 'J' || ic->mode == 'B') {
4299 ic->writer_wq = alloc_workqueue(fmt: "dm-integrity-writer", flags: WQ_MEM_RECLAIM, max_active: 1);
4300 if (!ic->writer_wq) {
4301 ti->error = "Cannot allocate workqueue";
4302 r = -ENOMEM;
4303 goto bad;
4304 }
4305 INIT_WORK(&ic->writer_work, integrity_writer);
4306 }
4307
4308 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4309 if (!ic->sb) {
4310 r = -ENOMEM;
4311 ti->error = "Cannot allocate superblock area";
4312 goto bad;
4313 }
4314
4315 r = sync_rw_sb(ic, opf: REQ_OP_READ);
4316 if (r) {
4317 ti->error = "Error reading superblock";
4318 goto bad;
4319 }
4320 should_write_sb = false;
4321 if (memcmp(p: ic->sb->magic, SB_MAGIC, size: 8)) {
4322 if (ic->mode != 'R') {
4323 if (memchr_inv(p: ic->sb, c: 0, SB_SECTORS << SECTOR_SHIFT)) {
4324 r = -EINVAL;
4325 ti->error = "The device is not initialized";
4326 goto bad;
4327 }
4328 }
4329
4330 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4331 if (r) {
4332 ti->error = "Could not initialize superblock";
4333 goto bad;
4334 }
4335 if (ic->mode != 'R')
4336 should_write_sb = true;
4337 }
4338
4339 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4340 r = -EINVAL;
4341 ti->error = "Unknown version";
4342 goto bad;
4343 }
4344 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4345 r = -EINVAL;
4346 ti->error = "Tag size doesn't match the information in superblock";
4347 goto bad;
4348 }
4349 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4350 r = -EINVAL;
4351 ti->error = "Block size doesn't match the information in superblock";
4352 goto bad;
4353 }
4354 if (!le32_to_cpu(ic->sb->journal_sections)) {
4355 r = -EINVAL;
4356 ti->error = "Corrupted superblock, journal_sections is 0";
4357 goto bad;
4358 }
4359 /* make sure that ti->max_io_len doesn't overflow */
4360 if (!ic->meta_dev) {
4361 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4362 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4363 r = -EINVAL;
4364 ti->error = "Invalid interleave_sectors in the superblock";
4365 goto bad;
4366 }
4367 } else {
4368 if (ic->sb->log2_interleave_sectors) {
4369 r = -EINVAL;
4370 ti->error = "Invalid interleave_sectors in the superblock";
4371 goto bad;
4372 }
4373 }
4374 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4375 r = -EINVAL;
4376 ti->error = "Journal mac mismatch";
4377 goto bad;
4378 }
4379
4380 get_provided_data_sectors(ic);
4381 if (!ic->provided_data_sectors) {
4382 r = -EINVAL;
4383 ti->error = "The device is too small";
4384 goto bad;
4385 }
4386
4387try_smaller_buffer:
4388 r = calculate_device_limits(ic);
4389 if (r) {
4390 if (ic->meta_dev) {
4391 if (ic->log2_buffer_sectors > 3) {
4392 ic->log2_buffer_sectors--;
4393 goto try_smaller_buffer;
4394 }
4395 }
4396 ti->error = "The device is too small";
4397 goto bad;
4398 }
4399
4400 if (log2_sectors_per_bitmap_bit < 0)
4401 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4402 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4403 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4404
4405 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4406 if (bits_in_journal > UINT_MAX)
4407 bits_in_journal = UINT_MAX;
4408 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4409 log2_sectors_per_bitmap_bit++;
4410
4411 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4412 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4413 if (should_write_sb)
4414 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4415
4416 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4417 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4418 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4419
4420 if (!ic->meta_dev)
4421 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4422
4423 if (ti->len > ic->provided_data_sectors) {
4424 r = -EINVAL;
4425 ti->error = "Not enough provided sectors for requested mapping size";
4426 goto bad;
4427 }
4428
4429
4430 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4431 threshold += 50;
4432 do_div(threshold, 100);
4433 ic->free_sectors_threshold = threshold;
4434
4435 DEBUG_print("initialized:\n");
4436 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4437 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4438 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4439 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4440 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4441 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4442 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4443 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4444 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4445 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4446 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4447 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4448 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4449 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4450 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4451
4452 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4453 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4454 ic->sb->recalc_sector = cpu_to_le64(0);
4455 }
4456
4457 if (ic->internal_hash) {
4458 ic->recalc_wq = alloc_workqueue(fmt: "dm-integrity-recalc", flags: WQ_MEM_RECLAIM, max_active: 1);
4459 if (!ic->recalc_wq) {
4460 ti->error = "Cannot allocate workqueue";
4461 r = -ENOMEM;
4462 goto bad;
4463 }
4464 INIT_WORK(&ic->recalc_work, integrity_recalc);
4465 } else {
4466 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4467 ti->error = "Recalculate can only be specified with internal_hash";
4468 r = -EINVAL;
4469 goto bad;
4470 }
4471 }
4472
4473 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4474 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4475 dm_integrity_disable_recalculate(ic)) {
4476 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4477 r = -EOPNOTSUPP;
4478 goto bad;
4479 }
4480
4481 ic->bufio = dm_bufio_client_create(bdev: ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4482 block_size: 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), reserved_buffers: 1, aux_size: 0, NULL, NULL, flags: 0);
4483 if (IS_ERR(ptr: ic->bufio)) {
4484 r = PTR_ERR(ptr: ic->bufio);
4485 ti->error = "Cannot initialize dm-bufio";
4486 ic->bufio = NULL;
4487 goto bad;
4488 }
4489 dm_bufio_set_sector_offset(c: ic->bufio, start: ic->start + ic->initial_sectors);
4490
4491 if (ic->mode != 'R') {
4492 r = create_journal(ic, error: &ti->error);
4493 if (r)
4494 goto bad;
4495
4496 }
4497
4498 if (ic->mode == 'B') {
4499 unsigned int i;
4500 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4501
4502 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_pages: n_bitmap_pages);
4503 if (!ic->recalc_bitmap) {
4504 r = -ENOMEM;
4505 goto bad;
4506 }
4507 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_pages: n_bitmap_pages);
4508 if (!ic->may_write_bitmap) {
4509 r = -ENOMEM;
4510 goto bad;
4511 }
4512 ic->bbs = kvmalloc_array(n: ic->n_bitmap_blocks, size: sizeof(struct bitmap_block_status), GFP_KERNEL);
4513 if (!ic->bbs) {
4514 r = -ENOMEM;
4515 goto bad;
4516 }
4517 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4518 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4519 struct bitmap_block_status *bbs = &ic->bbs[i];
4520 unsigned int sector, pl_index, pl_offset;
4521
4522 INIT_WORK(&bbs->work, bitmap_block_work);
4523 bbs->ic = ic;
4524 bbs->idx = i;
4525 bio_list_init(bl: &bbs->bio_queue);
4526 spin_lock_init(&bbs->bio_queue_lock);
4527
4528 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4529 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4530 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4531
4532 bbs->bitmap = lowmem_page_address(page: ic->journal[pl_index].page) + pl_offset;
4533 }
4534 }
4535
4536 if (should_write_sb) {
4537 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
4538 r = dm_integrity_failed(ic);
4539 if (unlikely(r)) {
4540 ti->error = "Error initializing journal";
4541 goto bad;
4542 }
4543 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
4544 if (r) {
4545 ti->error = "Error initializing superblock";
4546 goto bad;
4547 }
4548 ic->just_formatted = true;
4549 }
4550
4551 if (!ic->meta_dev) {
4552 r = dm_set_target_max_io_len(ti, len: 1U << ic->sb->log2_interleave_sectors);
4553 if (r)
4554 goto bad;
4555 }
4556 if (ic->mode == 'B') {
4557 unsigned int max_io_len;
4558
4559 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4560 if (!max_io_len)
4561 max_io_len = 1U << 31;
4562 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4563 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4564 r = dm_set_target_max_io_len(ti, len: max_io_len);
4565 if (r)
4566 goto bad;
4567 }
4568 }
4569
4570 if (!ic->internal_hash)
4571 dm_integrity_set(ti, ic);
4572
4573 ti->num_flush_bios = 1;
4574 ti->flush_supported = true;
4575 if (ic->discard)
4576 ti->num_discard_bios = 1;
4577
4578 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1);
4579 return 0;
4580
4581bad:
4582 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0);
4583 dm_integrity_dtr(ti);
4584 return r;
4585}
4586
4587static void dm_integrity_dtr(struct dm_target *ti)
4588{
4589 struct dm_integrity_c *ic = ti->private;
4590
4591 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4592 BUG_ON(!list_empty(&ic->wait_list));
4593
4594 if (ic->mode == 'B')
4595 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
4596 if (ic->metadata_wq)
4597 destroy_workqueue(wq: ic->metadata_wq);
4598 if (ic->wait_wq)
4599 destroy_workqueue(wq: ic->wait_wq);
4600 if (ic->offload_wq)
4601 destroy_workqueue(wq: ic->offload_wq);
4602 if (ic->commit_wq)
4603 destroy_workqueue(wq: ic->commit_wq);
4604 if (ic->writer_wq)
4605 destroy_workqueue(wq: ic->writer_wq);
4606 if (ic->recalc_wq)
4607 destroy_workqueue(wq: ic->recalc_wq);
4608 kvfree(addr: ic->bbs);
4609 if (ic->bufio)
4610 dm_bufio_client_destroy(c: ic->bufio);
4611 mempool_exit(pool: &ic->journal_io_mempool);
4612 if (ic->io)
4613 dm_io_client_destroy(client: ic->io);
4614 if (ic->dev)
4615 dm_put_device(ti, d: ic->dev);
4616 if (ic->meta_dev)
4617 dm_put_device(ti, d: ic->meta_dev);
4618 dm_integrity_free_page_list(pl: ic->journal);
4619 dm_integrity_free_page_list(pl: ic->journal_io);
4620 dm_integrity_free_page_list(pl: ic->journal_xor);
4621 dm_integrity_free_page_list(pl: ic->recalc_bitmap);
4622 dm_integrity_free_page_list(pl: ic->may_write_bitmap);
4623 if (ic->journal_scatterlist)
4624 dm_integrity_free_journal_scatterlist(ic, sl: ic->journal_scatterlist);
4625 if (ic->journal_io_scatterlist)
4626 dm_integrity_free_journal_scatterlist(ic, sl: ic->journal_io_scatterlist);
4627 if (ic->sk_requests) {
4628 unsigned int i;
4629
4630 for (i = 0; i < ic->journal_sections; i++) {
4631 struct skcipher_request *req;
4632
4633 req = ic->sk_requests[i];
4634 if (req) {
4635 kfree_sensitive(objp: req->iv);
4636 skcipher_request_free(req);
4637 }
4638 }
4639 kvfree(addr: ic->sk_requests);
4640 }
4641 kvfree(addr: ic->journal_tree);
4642 if (ic->sb)
4643 free_pages_exact(virt: ic->sb, SB_SECTORS << SECTOR_SHIFT);
4644
4645 if (ic->internal_hash)
4646 crypto_free_shash(tfm: ic->internal_hash);
4647 free_alg(a: &ic->internal_hash_alg);
4648
4649 if (ic->journal_crypt)
4650 crypto_free_skcipher(tfm: ic->journal_crypt);
4651 free_alg(a: &ic->journal_crypt_alg);
4652
4653 if (ic->journal_mac)
4654 crypto_free_shash(tfm: ic->journal_mac);
4655 free_alg(a: &ic->journal_mac_alg);
4656
4657 kfree(objp: ic);
4658 dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1);
4659}
4660
4661static struct target_type integrity_target = {
4662 .name = "integrity",
4663 .version = {1, 10, 0},
4664 .module = THIS_MODULE,
4665 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4666 .ctr = dm_integrity_ctr,
4667 .dtr = dm_integrity_dtr,
4668 .map = dm_integrity_map,
4669 .postsuspend = dm_integrity_postsuspend,
4670 .resume = dm_integrity_resume,
4671 .status = dm_integrity_status,
4672 .iterate_devices = dm_integrity_iterate_devices,
4673 .io_hints = dm_integrity_io_hints,
4674};
4675
4676static int __init dm_integrity_init(void)
4677{
4678 int r;
4679
4680 journal_io_cache = kmem_cache_create(name: "integrity_journal_io",
4681 size: sizeof(struct journal_io), align: 0, flags: 0, NULL);
4682 if (!journal_io_cache) {
4683 DMERR("can't allocate journal io cache");
4684 return -ENOMEM;
4685 }
4686
4687 r = dm_register_target(t: &integrity_target);
4688 if (r < 0) {
4689 kmem_cache_destroy(s: journal_io_cache);
4690 return r;
4691 }
4692
4693 return 0;
4694}
4695
4696static void __exit dm_integrity_exit(void)
4697{
4698 dm_unregister_target(t: &integrity_target);
4699 kmem_cache_destroy(s: journal_io_cache);
4700}
4701
4702module_init(dm_integrity_init);
4703module_exit(dm_integrity_exit);
4704
4705MODULE_AUTHOR("Milan Broz");
4706MODULE_AUTHOR("Mikulas Patocka");
4707MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4708MODULE_LICENSE("GPL");
4709

source code of linux/drivers/md/dm-integrity.c