1/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/compiler.h>
10#include <linux/module.h>
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/vmalloc.h>
14#include <linux/sort.h>
15#include <linux/rbtree.h>
16#include <linux/delay.h>
17#include <linux/random.h>
18#include <crypto/hash.h>
19#include <crypto/skcipher.h>
20#include <linux/async_tx.h>
21#include <linux/dm-bufio.h>
22
23#define DM_MSG_PREFIX "integrity"
24
25#define DEFAULT_INTERLEAVE_SECTORS 32768
26#define DEFAULT_JOURNAL_SIZE_FACTOR 7
27#define DEFAULT_BUFFER_SECTORS 128
28#define DEFAULT_JOURNAL_WATERMARK 50
29#define DEFAULT_SYNC_MSEC 10000
30#define DEFAULT_MAX_JOURNAL_SECTORS 131072
31#define MIN_LOG2_INTERLEAVE_SECTORS 3
32#define MAX_LOG2_INTERLEAVE_SECTORS 31
33#define METADATA_WORKQUEUE_MAX_ACTIVE 16
34#define RECALC_SECTORS 8192
35#define RECALC_WRITE_SUPER 16
36
37/*
38 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39 * so it should not be enabled in the official kernel
40 */
41//#define DEBUG_PRINT
42//#define INTERNAL_VERIFY
43
44/*
45 * On disk structures
46 */
47
48#define SB_MAGIC "integrt"
49#define SB_VERSION_1 1
50#define SB_VERSION_2 2
51#define SB_SECTORS 8
52#define MAX_SECTORS_PER_BLOCK 8
53
54struct superblock {
55 __u8 magic[8];
56 __u8 version;
57 __u8 log2_interleave_sectors;
58 __u16 integrity_tag_size;
59 __u32 journal_sections;
60 __u64 provided_data_sectors; /* userspace uses this value */
61 __u32 flags;
62 __u8 log2_sectors_per_block;
63 __u8 pad[3];
64 __u64 recalc_sector;
65};
66
67#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
68#define SB_FLAG_RECALCULATING 0x2
69
70#define JOURNAL_ENTRY_ROUNDUP 8
71
72typedef __u64 commit_id_t;
73#define JOURNAL_MAC_PER_SECTOR 8
74
75struct journal_entry {
76 union {
77 struct {
78 __u32 sector_lo;
79 __u32 sector_hi;
80 } s;
81 __u64 sector;
82 } u;
83 commit_id_t last_bytes[0];
84 /* __u8 tag[0]; */
85};
86
87#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88
89#if BITS_PER_LONG == 64
90#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
92#elif defined(CONFIG_LBDAF)
93#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
95#else
96#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97#define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
98#endif
99#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
100#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
102#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103
104#define JOURNAL_BLOCK_SECTORS 8
105#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107
108struct journal_sector {
109 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110 __u8 mac[JOURNAL_MAC_PER_SECTOR];
111 commit_id_t commit_id;
112};
113
114#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115
116#define METADATA_PADDING_SECTORS 8
117
118#define N_COMMIT_IDS 4
119
120static unsigned char prev_commit_seq(unsigned char seq)
121{
122 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123}
124
125static unsigned char next_commit_seq(unsigned char seq)
126{
127 return (seq + 1) % N_COMMIT_IDS;
128}
129
130/*
131 * In-memory structures
132 */
133
134struct journal_node {
135 struct rb_node node;
136 sector_t sector;
137};
138
139struct alg_spec {
140 char *alg_string;
141 char *key_string;
142 __u8 *key;
143 unsigned key_size;
144};
145
146struct dm_integrity_c {
147 struct dm_dev *dev;
148 struct dm_dev *meta_dev;
149 unsigned tag_size;
150 __s8 log2_tag_size;
151 sector_t start;
152 mempool_t journal_io_mempool;
153 struct dm_io_client *io;
154 struct dm_bufio_client *bufio;
155 struct workqueue_struct *metadata_wq;
156 struct superblock *sb;
157 unsigned journal_pages;
158 struct page_list *journal;
159 struct page_list *journal_io;
160 struct page_list *journal_xor;
161
162 struct crypto_skcipher *journal_crypt;
163 struct scatterlist **journal_scatterlist;
164 struct scatterlist **journal_io_scatterlist;
165 struct skcipher_request **sk_requests;
166
167 struct crypto_shash *journal_mac;
168
169 struct journal_node *journal_tree;
170 struct rb_root journal_tree_root;
171
172 sector_t provided_data_sectors;
173
174 unsigned short journal_entry_size;
175 unsigned char journal_entries_per_sector;
176 unsigned char journal_section_entries;
177 unsigned short journal_section_sectors;
178 unsigned journal_sections;
179 unsigned journal_entries;
180 sector_t data_device_sectors;
181 sector_t meta_device_sectors;
182 unsigned initial_sectors;
183 unsigned metadata_run;
184 __s8 log2_metadata_run;
185 __u8 log2_buffer_sectors;
186 __u8 sectors_per_block;
187
188 unsigned char mode;
189 int suspending;
190
191 int failed;
192
193 struct crypto_shash *internal_hash;
194
195 /* these variables are locked with endio_wait.lock */
196 struct rb_root in_progress;
197 struct list_head wait_list;
198 wait_queue_head_t endio_wait;
199 struct workqueue_struct *wait_wq;
200
201 unsigned char commit_seq;
202 commit_id_t commit_ids[N_COMMIT_IDS];
203
204 unsigned committed_section;
205 unsigned n_committed_sections;
206
207 unsigned uncommitted_section;
208 unsigned n_uncommitted_sections;
209
210 unsigned free_section;
211 unsigned char free_section_entry;
212 unsigned free_sectors;
213
214 unsigned free_sectors_threshold;
215
216 struct workqueue_struct *commit_wq;
217 struct work_struct commit_work;
218
219 struct workqueue_struct *writer_wq;
220 struct work_struct writer_work;
221
222 struct workqueue_struct *recalc_wq;
223 struct work_struct recalc_work;
224 u8 *recalc_buffer;
225 u8 *recalc_tags;
226
227 struct bio_list flush_bio_list;
228
229 unsigned long autocommit_jiffies;
230 struct timer_list autocommit_timer;
231 unsigned autocommit_msec;
232
233 wait_queue_head_t copy_to_journal_wait;
234
235 struct completion crypto_backoff;
236
237 bool journal_uptodate;
238 bool just_formatted;
239
240 struct alg_spec internal_hash_alg;
241 struct alg_spec journal_crypt_alg;
242 struct alg_spec journal_mac_alg;
243
244 atomic64_t number_of_mismatches;
245};
246
247struct dm_integrity_range {
248 sector_t logical_sector;
249 unsigned n_sectors;
250 bool waiting;
251 union {
252 struct rb_node node;
253 struct {
254 struct task_struct *task;
255 struct list_head wait_entry;
256 };
257 };
258};
259
260struct dm_integrity_io {
261 struct work_struct work;
262
263 struct dm_integrity_c *ic;
264 bool write;
265 bool fua;
266
267 struct dm_integrity_range range;
268
269 sector_t metadata_block;
270 unsigned metadata_offset;
271
272 atomic_t in_flight;
273 blk_status_t bi_status;
274
275 struct completion *completion;
276
277 struct gendisk *orig_bi_disk;
278 u8 orig_bi_partno;
279 bio_end_io_t *orig_bi_end_io;
280 struct bio_integrity_payload *orig_bi_integrity;
281 struct bvec_iter orig_bi_iter;
282};
283
284struct journal_completion {
285 struct dm_integrity_c *ic;
286 atomic_t in_flight;
287 struct completion comp;
288};
289
290struct journal_io {
291 struct dm_integrity_range range;
292 struct journal_completion *comp;
293};
294
295static struct kmem_cache *journal_io_cache;
296
297#define JOURNAL_IO_MEMPOOL 32
298
299#ifdef DEBUG_PRINT
300#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
301static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302{
303 va_list args;
304 va_start(args, msg);
305 vprintk(msg, args);
306 va_end(args);
307 if (len)
308 pr_cont(":");
309 while (len) {
310 pr_cont(" %02x", *bytes);
311 bytes++;
312 len--;
313 }
314 pr_cont("\n");
315}
316#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317#else
318#define DEBUG_print(x, ...) do { } while (0)
319#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
320#endif
321
322/*
323 * DM Integrity profile, protection is performed layer above (dm-crypt)
324 */
325static const struct blk_integrity_profile dm_integrity_profile = {
326 .name = "DM-DIF-EXT-TAG",
327 .generate_fn = NULL,
328 .verify_fn = NULL,
329};
330
331static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332static void integrity_bio_wait(struct work_struct *w);
333static void dm_integrity_dtr(struct dm_target *ti);
334
335static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336{
337 if (err == -EILSEQ)
338 atomic64_inc(&ic->number_of_mismatches);
339 if (!cmpxchg(&ic->failed, 0, err))
340 DMERR("Error on %s: %d", msg, err);
341}
342
343static int dm_integrity_failed(struct dm_integrity_c *ic)
344{
345 return READ_ONCE(ic->failed);
346}
347
348static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349 unsigned j, unsigned char seq)
350{
351 /*
352 * Xor the number with section and sector, so that if a piece of
353 * journal is written at wrong place, it is detected.
354 */
355 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356}
357
358static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359 sector_t *area, sector_t *offset)
360{
361 if (!ic->meta_dev) {
362 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363 *area = data_sector >> log2_interleave_sectors;
364 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365 } else {
366 *area = 0;
367 *offset = data_sector;
368 }
369}
370
371#define sector_to_block(ic, n) \
372do { \
373 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
374 (n) >>= (ic)->sb->log2_sectors_per_block; \
375} while (0)
376
377static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378 sector_t offset, unsigned *metadata_offset)
379{
380 __u64 ms;
381 unsigned mo;
382
383 ms = area << ic->sb->log2_interleave_sectors;
384 if (likely(ic->log2_metadata_run >= 0))
385 ms += area << ic->log2_metadata_run;
386 else
387 ms += area * ic->metadata_run;
388 ms >>= ic->log2_buffer_sectors;
389
390 sector_to_block(ic, offset);
391
392 if (likely(ic->log2_tag_size >= 0)) {
393 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395 } else {
396 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398 }
399 *metadata_offset = mo;
400 return ms;
401}
402
403static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404{
405 sector_t result;
406
407 if (ic->meta_dev)
408 return offset;
409
410 result = area << ic->sb->log2_interleave_sectors;
411 if (likely(ic->log2_metadata_run >= 0))
412 result += (area + 1) << ic->log2_metadata_run;
413 else
414 result += (area + 1) * ic->metadata_run;
415
416 result += (sector_t)ic->initial_sectors + offset;
417 result += ic->start;
418
419 return result;
420}
421
422static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423{
424 if (unlikely(*sec_ptr >= ic->journal_sections))
425 *sec_ptr -= ic->journal_sections;
426}
427
428static void sb_set_version(struct dm_integrity_c *ic)
429{
430 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431 ic->sb->version = SB_VERSION_2;
432 else
433 ic->sb->version = SB_VERSION_1;
434}
435
436static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437{
438 struct dm_io_request io_req;
439 struct dm_io_region io_loc;
440
441 io_req.bi_op = op;
442 io_req.bi_op_flags = op_flags;
443 io_req.mem.type = DM_IO_KMEM;
444 io_req.mem.ptr.addr = ic->sb;
445 io_req.notify.fn = NULL;
446 io_req.client = ic->io;
447 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448 io_loc.sector = ic->start;
449 io_loc.count = SB_SECTORS;
450
451 return dm_io(&io_req, 1, &io_loc, NULL);
452}
453
454static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455 bool e, const char *function)
456{
457#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459
460 if (unlikely(section >= ic->journal_sections) ||
461 unlikely(offset >= limit)) {
462 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463 function, section, offset, ic->journal_sections, limit);
464 BUG();
465 }
466#endif
467}
468
469static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470 unsigned *pl_index, unsigned *pl_offset)
471{
472 unsigned sector;
473
474 access_journal_check(ic, section, offset, false, "page_list_location");
475
476 sector = section * ic->journal_section_sectors + offset;
477
478 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480}
481
482static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483 unsigned section, unsigned offset, unsigned *n_sectors)
484{
485 unsigned pl_index, pl_offset;
486 char *va;
487
488 page_list_location(ic, section, offset, &pl_index, &pl_offset);
489
490 if (n_sectors)
491 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492
493 va = lowmem_page_address(pl[pl_index].page);
494
495 return (struct journal_sector *)(va + pl_offset);
496}
497
498static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499{
500 return access_page_list(ic, ic->journal, section, offset, NULL);
501}
502
503static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504{
505 unsigned rel_sector, offset;
506 struct journal_sector *js;
507
508 access_journal_check(ic, section, n, true, "access_journal_entry");
509
510 rel_sector = n % JOURNAL_BLOCK_SECTORS;
511 offset = n / JOURNAL_BLOCK_SECTORS;
512
513 js = access_journal(ic, section, rel_sector);
514 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515}
516
517static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518{
519 n <<= ic->sb->log2_sectors_per_block;
520
521 n += JOURNAL_BLOCK_SECTORS;
522
523 access_journal_check(ic, section, n, false, "access_journal_data");
524
525 return access_journal(ic, section, n);
526}
527
528static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529{
530 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531 int r;
532 unsigned j, size;
533
534 desc->tfm = ic->journal_mac;
535 desc->flags = 0;
536
537 r = crypto_shash_init(desc);
538 if (unlikely(r)) {
539 dm_integrity_io_error(ic, "crypto_shash_init", r);
540 goto err;
541 }
542
543 for (j = 0; j < ic->journal_section_entries; j++) {
544 struct journal_entry *je = access_journal_entry(ic, section, j);
545 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546 if (unlikely(r)) {
547 dm_integrity_io_error(ic, "crypto_shash_update", r);
548 goto err;
549 }
550 }
551
552 size = crypto_shash_digestsize(ic->journal_mac);
553
554 if (likely(size <= JOURNAL_MAC_SIZE)) {
555 r = crypto_shash_final(desc, result);
556 if (unlikely(r)) {
557 dm_integrity_io_error(ic, "crypto_shash_final", r);
558 goto err;
559 }
560 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561 } else {
562 __u8 digest[HASH_MAX_DIGESTSIZE];
563
564 if (WARN_ON(size > sizeof(digest))) {
565 dm_integrity_io_error(ic, "digest_size", -EINVAL);
566 goto err;
567 }
568 r = crypto_shash_final(desc, digest);
569 if (unlikely(r)) {
570 dm_integrity_io_error(ic, "crypto_shash_final", r);
571 goto err;
572 }
573 memcpy(result, digest, JOURNAL_MAC_SIZE);
574 }
575
576 return;
577err:
578 memset(result, 0, JOURNAL_MAC_SIZE);
579}
580
581static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
582{
583 __u8 result[JOURNAL_MAC_SIZE];
584 unsigned j;
585
586 if (!ic->journal_mac)
587 return;
588
589 section_mac(ic, section, result);
590
591 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
592 struct journal_sector *js = access_journal(ic, section, j);
593
594 if (likely(wr))
595 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
596 else {
597 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
598 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
599 }
600 }
601}
602
603static void complete_journal_op(void *context)
604{
605 struct journal_completion *comp = context;
606 BUG_ON(!atomic_read(&comp->in_flight));
607 if (likely(atomic_dec_and_test(&comp->in_flight)))
608 complete(&comp->comp);
609}
610
611static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
612 unsigned n_sections, struct journal_completion *comp)
613{
614 struct async_submit_ctl submit;
615 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
616 unsigned pl_index, pl_offset, section_index;
617 struct page_list *source_pl, *target_pl;
618
619 if (likely(encrypt)) {
620 source_pl = ic->journal;
621 target_pl = ic->journal_io;
622 } else {
623 source_pl = ic->journal_io;
624 target_pl = ic->journal;
625 }
626
627 page_list_location(ic, section, 0, &pl_index, &pl_offset);
628
629 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
630
631 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
632
633 section_index = pl_index;
634
635 do {
636 size_t this_step;
637 struct page *src_pages[2];
638 struct page *dst_page;
639
640 while (unlikely(pl_index == section_index)) {
641 unsigned dummy;
642 if (likely(encrypt))
643 rw_section_mac(ic, section, true);
644 section++;
645 n_sections--;
646 if (!n_sections)
647 break;
648 page_list_location(ic, section, 0, &section_index, &dummy);
649 }
650
651 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
652 dst_page = target_pl[pl_index].page;
653 src_pages[0] = source_pl[pl_index].page;
654 src_pages[1] = ic->journal_xor[pl_index].page;
655
656 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
657
658 pl_index++;
659 pl_offset = 0;
660 n_bytes -= this_step;
661 } while (n_bytes);
662
663 BUG_ON(n_sections);
664
665 async_tx_issue_pending_all();
666}
667
668static void complete_journal_encrypt(struct crypto_async_request *req, int err)
669{
670 struct journal_completion *comp = req->data;
671 if (unlikely(err)) {
672 if (likely(err == -EINPROGRESS)) {
673 complete(&comp->ic->crypto_backoff);
674 return;
675 }
676 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
677 }
678 complete_journal_op(comp);
679}
680
681static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
682{
683 int r;
684 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
685 complete_journal_encrypt, comp);
686 if (likely(encrypt))
687 r = crypto_skcipher_encrypt(req);
688 else
689 r = crypto_skcipher_decrypt(req);
690 if (likely(!r))
691 return false;
692 if (likely(r == -EINPROGRESS))
693 return true;
694 if (likely(r == -EBUSY)) {
695 wait_for_completion(&comp->ic->crypto_backoff);
696 reinit_completion(&comp->ic->crypto_backoff);
697 return true;
698 }
699 dm_integrity_io_error(comp->ic, "encrypt", r);
700 return false;
701}
702
703static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
704 unsigned n_sections, struct journal_completion *comp)
705{
706 struct scatterlist **source_sg;
707 struct scatterlist **target_sg;
708
709 atomic_add(2, &comp->in_flight);
710
711 if (likely(encrypt)) {
712 source_sg = ic->journal_scatterlist;
713 target_sg = ic->journal_io_scatterlist;
714 } else {
715 source_sg = ic->journal_io_scatterlist;
716 target_sg = ic->journal_scatterlist;
717 }
718
719 do {
720 struct skcipher_request *req;
721 unsigned ivsize;
722 char *iv;
723
724 if (likely(encrypt))
725 rw_section_mac(ic, section, true);
726
727 req = ic->sk_requests[section];
728 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
729 iv = req->iv;
730
731 memcpy(iv, iv + ivsize, ivsize);
732
733 req->src = source_sg[section];
734 req->dst = target_sg[section];
735
736 if (unlikely(do_crypt(encrypt, req, comp)))
737 atomic_inc(&comp->in_flight);
738
739 section++;
740 n_sections--;
741 } while (n_sections);
742
743 atomic_dec(&comp->in_flight);
744 complete_journal_op(comp);
745}
746
747static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
748 unsigned n_sections, struct journal_completion *comp)
749{
750 if (ic->journal_xor)
751 return xor_journal(ic, encrypt, section, n_sections, comp);
752 else
753 return crypt_journal(ic, encrypt, section, n_sections, comp);
754}
755
756static void complete_journal_io(unsigned long error, void *context)
757{
758 struct journal_completion *comp = context;
759 if (unlikely(error != 0))
760 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
761 complete_journal_op(comp);
762}
763
764static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
765 unsigned n_sections, struct journal_completion *comp)
766{
767 struct dm_io_request io_req;
768 struct dm_io_region io_loc;
769 unsigned sector, n_sectors, pl_index, pl_offset;
770 int r;
771
772 if (unlikely(dm_integrity_failed(ic))) {
773 if (comp)
774 complete_journal_io(-1UL, comp);
775 return;
776 }
777
778 sector = section * ic->journal_section_sectors;
779 n_sectors = n_sections * ic->journal_section_sectors;
780
781 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
782 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
783
784 io_req.bi_op = op;
785 io_req.bi_op_flags = op_flags;
786 io_req.mem.type = DM_IO_PAGE_LIST;
787 if (ic->journal_io)
788 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
789 else
790 io_req.mem.ptr.pl = &ic->journal[pl_index];
791 io_req.mem.offset = pl_offset;
792 if (likely(comp != NULL)) {
793 io_req.notify.fn = complete_journal_io;
794 io_req.notify.context = comp;
795 } else {
796 io_req.notify.fn = NULL;
797 }
798 io_req.client = ic->io;
799 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
800 io_loc.sector = ic->start + SB_SECTORS + sector;
801 io_loc.count = n_sectors;
802
803 r = dm_io(&io_req, 1, &io_loc, NULL);
804 if (unlikely(r)) {
805 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
806 if (comp) {
807 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
808 complete_journal_io(-1UL, comp);
809 }
810 }
811}
812
813static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
814{
815 struct journal_completion io_comp;
816 struct journal_completion crypt_comp_1;
817 struct journal_completion crypt_comp_2;
818 unsigned i;
819
820 io_comp.ic = ic;
821 init_completion(&io_comp.comp);
822
823 if (commit_start + commit_sections <= ic->journal_sections) {
824 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
825 if (ic->journal_io) {
826 crypt_comp_1.ic = ic;
827 init_completion(&crypt_comp_1.comp);
828 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
829 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
830 wait_for_completion_io(&crypt_comp_1.comp);
831 } else {
832 for (i = 0; i < commit_sections; i++)
833 rw_section_mac(ic, commit_start + i, true);
834 }
835 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
836 commit_sections, &io_comp);
837 } else {
838 unsigned to_end;
839 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
840 to_end = ic->journal_sections - commit_start;
841 if (ic->journal_io) {
842 crypt_comp_1.ic = ic;
843 init_completion(&crypt_comp_1.comp);
844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
846 if (try_wait_for_completion(&crypt_comp_1.comp)) {
847 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
848 reinit_completion(&crypt_comp_1.comp);
849 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
850 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
851 wait_for_completion_io(&crypt_comp_1.comp);
852 } else {
853 crypt_comp_2.ic = ic;
854 init_completion(&crypt_comp_2.comp);
855 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
856 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
857 wait_for_completion_io(&crypt_comp_1.comp);
858 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
859 wait_for_completion_io(&crypt_comp_2.comp);
860 }
861 } else {
862 for (i = 0; i < to_end; i++)
863 rw_section_mac(ic, commit_start + i, true);
864 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
865 for (i = 0; i < commit_sections - to_end; i++)
866 rw_section_mac(ic, i, true);
867 }
868 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
869 }
870
871 wait_for_completion_io(&io_comp.comp);
872}
873
874static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
875 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
876{
877 struct dm_io_request io_req;
878 struct dm_io_region io_loc;
879 int r;
880 unsigned sector, pl_index, pl_offset;
881
882 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
883
884 if (unlikely(dm_integrity_failed(ic))) {
885 fn(-1UL, data);
886 return;
887 }
888
889 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
890
891 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
892 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
893
894 io_req.bi_op = REQ_OP_WRITE;
895 io_req.bi_op_flags = 0;
896 io_req.mem.type = DM_IO_PAGE_LIST;
897 io_req.mem.ptr.pl = &ic->journal[pl_index];
898 io_req.mem.offset = pl_offset;
899 io_req.notify.fn = fn;
900 io_req.notify.context = data;
901 io_req.client = ic->io;
902 io_loc.bdev = ic->dev->bdev;
903 io_loc.sector = target;
904 io_loc.count = n_sectors;
905
906 r = dm_io(&io_req, 1, &io_loc, NULL);
907 if (unlikely(r)) {
908 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
909 fn(-1UL, data);
910 }
911}
912
913static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
914{
915 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
916 range2->logical_sector + range2->n_sectors > range2->logical_sector;
917}
918
919static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
920{
921 struct rb_node **n = &ic->in_progress.rb_node;
922 struct rb_node *parent;
923
924 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
925
926 if (likely(check_waiting)) {
927 struct dm_integrity_range *range;
928 list_for_each_entry(range, &ic->wait_list, wait_entry) {
929 if (unlikely(ranges_overlap(range, new_range)))
930 return false;
931 }
932 }
933
934 parent = NULL;
935
936 while (*n) {
937 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
938
939 parent = *n;
940 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
941 n = &range->node.rb_left;
942 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
943 n = &range->node.rb_right;
944 } else {
945 return false;
946 }
947 }
948
949 rb_link_node(&new_range->node, parent, n);
950 rb_insert_color(&new_range->node, &ic->in_progress);
951
952 return true;
953}
954
955static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
956{
957 rb_erase(&range->node, &ic->in_progress);
958 while (unlikely(!list_empty(&ic->wait_list))) {
959 struct dm_integrity_range *last_range =
960 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
961 struct task_struct *last_range_task;
962 if (!ranges_overlap(range, last_range))
963 break;
964 last_range_task = last_range->task;
965 list_del(&last_range->wait_entry);
966 if (!add_new_range(ic, last_range, false)) {
967 last_range->task = last_range_task;
968 list_add(&last_range->wait_entry, &ic->wait_list);
969 break;
970 }
971 last_range->waiting = false;
972 wake_up_process(last_range_task);
973 }
974}
975
976static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
977{
978 unsigned long flags;
979
980 spin_lock_irqsave(&ic->endio_wait.lock, flags);
981 remove_range_unlocked(ic, range);
982 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
983}
984
985static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
986{
987 new_range->waiting = true;
988 list_add_tail(&new_range->wait_entry, &ic->wait_list);
989 new_range->task = current;
990 do {
991 __set_current_state(TASK_UNINTERRUPTIBLE);
992 spin_unlock_irq(&ic->endio_wait.lock);
993 io_schedule();
994 spin_lock_irq(&ic->endio_wait.lock);
995 } while (unlikely(new_range->waiting));
996}
997
998static void init_journal_node(struct journal_node *node)
999{
1000 RB_CLEAR_NODE(&node->node);
1001 node->sector = (sector_t)-1;
1002}
1003
1004static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1005{
1006 struct rb_node **link;
1007 struct rb_node *parent;
1008
1009 node->sector = sector;
1010 BUG_ON(!RB_EMPTY_NODE(&node->node));
1011
1012 link = &ic->journal_tree_root.rb_node;
1013 parent = NULL;
1014
1015 while (*link) {
1016 struct journal_node *j;
1017 parent = *link;
1018 j = container_of(parent, struct journal_node, node);
1019 if (sector < j->sector)
1020 link = &j->node.rb_left;
1021 else
1022 link = &j->node.rb_right;
1023 }
1024
1025 rb_link_node(&node->node, parent, link);
1026 rb_insert_color(&node->node, &ic->journal_tree_root);
1027}
1028
1029static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1030{
1031 BUG_ON(RB_EMPTY_NODE(&node->node));
1032 rb_erase(&node->node, &ic->journal_tree_root);
1033 init_journal_node(node);
1034}
1035
1036#define NOT_FOUND (-1U)
1037
1038static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1039{
1040 struct rb_node *n = ic->journal_tree_root.rb_node;
1041 unsigned found = NOT_FOUND;
1042 *next_sector = (sector_t)-1;
1043 while (n) {
1044 struct journal_node *j = container_of(n, struct journal_node, node);
1045 if (sector == j->sector) {
1046 found = j - ic->journal_tree;
1047 }
1048 if (sector < j->sector) {
1049 *next_sector = j->sector;
1050 n = j->node.rb_left;
1051 } else {
1052 n = j->node.rb_right;
1053 }
1054 }
1055
1056 return found;
1057}
1058
1059static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1060{
1061 struct journal_node *node, *next_node;
1062 struct rb_node *next;
1063
1064 if (unlikely(pos >= ic->journal_entries))
1065 return false;
1066 node = &ic->journal_tree[pos];
1067 if (unlikely(RB_EMPTY_NODE(&node->node)))
1068 return false;
1069 if (unlikely(node->sector != sector))
1070 return false;
1071
1072 next = rb_next(&node->node);
1073 if (unlikely(!next))
1074 return true;
1075
1076 next_node = container_of(next, struct journal_node, node);
1077 return next_node->sector != sector;
1078}
1079
1080static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1081{
1082 struct rb_node *next;
1083 struct journal_node *next_node;
1084 unsigned next_section;
1085
1086 BUG_ON(RB_EMPTY_NODE(&node->node));
1087
1088 next = rb_next(&node->node);
1089 if (unlikely(!next))
1090 return false;
1091
1092 next_node = container_of(next, struct journal_node, node);
1093
1094 if (next_node->sector != node->sector)
1095 return false;
1096
1097 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1098 if (next_section >= ic->committed_section &&
1099 next_section < ic->committed_section + ic->n_committed_sections)
1100 return true;
1101 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1102 return true;
1103
1104 return false;
1105}
1106
1107#define TAG_READ 0
1108#define TAG_WRITE 1
1109#define TAG_CMP 2
1110
1111static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1112 unsigned *metadata_offset, unsigned total_size, int op)
1113{
1114 do {
1115 unsigned char *data, *dp;
1116 struct dm_buffer *b;
1117 unsigned to_copy;
1118 int r;
1119
1120 r = dm_integrity_failed(ic);
1121 if (unlikely(r))
1122 return r;
1123
1124 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1125 if (IS_ERR(data))
1126 return PTR_ERR(data);
1127
1128 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1129 dp = data + *metadata_offset;
1130 if (op == TAG_READ) {
1131 memcpy(tag, dp, to_copy);
1132 } else if (op == TAG_WRITE) {
1133 memcpy(dp, tag, to_copy);
1134 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1135 } else {
1136 /* e.g.: op == TAG_CMP */
1137 if (unlikely(memcmp(dp, tag, to_copy))) {
1138 unsigned i;
1139
1140 for (i = 0; i < to_copy; i++) {
1141 if (dp[i] != tag[i])
1142 break;
1143 total_size--;
1144 }
1145 dm_bufio_release(b);
1146 return total_size;
1147 }
1148 }
1149 dm_bufio_release(b);
1150
1151 tag += to_copy;
1152 *metadata_offset += to_copy;
1153 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1154 (*metadata_block)++;
1155 *metadata_offset = 0;
1156 }
1157 total_size -= to_copy;
1158 } while (unlikely(total_size));
1159
1160 return 0;
1161}
1162
1163static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1164{
1165 int r;
1166 r = dm_bufio_write_dirty_buffers(ic->bufio);
1167 if (unlikely(r))
1168 dm_integrity_io_error(ic, "writing tags", r);
1169}
1170
1171static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1172{
1173 DECLARE_WAITQUEUE(wait, current);
1174 __add_wait_queue(&ic->endio_wait, &wait);
1175 __set_current_state(TASK_UNINTERRUPTIBLE);
1176 spin_unlock_irq(&ic->endio_wait.lock);
1177 io_schedule();
1178 spin_lock_irq(&ic->endio_wait.lock);
1179 __remove_wait_queue(&ic->endio_wait, &wait);
1180}
1181
1182static void autocommit_fn(struct timer_list *t)
1183{
1184 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1185
1186 if (likely(!dm_integrity_failed(ic)))
1187 queue_work(ic->commit_wq, &ic->commit_work);
1188}
1189
1190static void schedule_autocommit(struct dm_integrity_c *ic)
1191{
1192 if (!timer_pending(&ic->autocommit_timer))
1193 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1194}
1195
1196static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1197{
1198 struct bio *bio;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1202 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1203 bio_list_add(&ic->flush_bio_list, bio);
1204 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1205
1206 queue_work(ic->commit_wq, &ic->commit_work);
1207}
1208
1209static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1210{
1211 int r = dm_integrity_failed(ic);
1212 if (unlikely(r) && !bio->bi_status)
1213 bio->bi_status = errno_to_blk_status(r);
1214 bio_endio(bio);
1215}
1216
1217static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1218{
1219 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1220
1221 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1222 submit_flush_bio(ic, dio);
1223 else
1224 do_endio(ic, bio);
1225}
1226
1227static void dec_in_flight(struct dm_integrity_io *dio)
1228{
1229 if (atomic_dec_and_test(&dio->in_flight)) {
1230 struct dm_integrity_c *ic = dio->ic;
1231 struct bio *bio;
1232
1233 remove_range(ic, &dio->range);
1234
1235 if (unlikely(dio->write))
1236 schedule_autocommit(ic);
1237
1238 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1239
1240 if (unlikely(dio->bi_status) && !bio->bi_status)
1241 bio->bi_status = dio->bi_status;
1242 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1243 dio->range.logical_sector += dio->range.n_sectors;
1244 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1245 INIT_WORK(&dio->work, integrity_bio_wait);
1246 queue_work(ic->wait_wq, &dio->work);
1247 return;
1248 }
1249 do_endio_flush(ic, dio);
1250 }
1251}
1252
1253static void integrity_end_io(struct bio *bio)
1254{
1255 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1256
1257 bio->bi_iter = dio->orig_bi_iter;
1258 bio->bi_disk = dio->orig_bi_disk;
1259 bio->bi_partno = dio->orig_bi_partno;
1260 if (dio->orig_bi_integrity) {
1261 bio->bi_integrity = dio->orig_bi_integrity;
1262 bio->bi_opf |= REQ_INTEGRITY;
1263 }
1264 bio->bi_end_io = dio->orig_bi_end_io;
1265
1266 if (dio->completion)
1267 complete(dio->completion);
1268
1269 dec_in_flight(dio);
1270}
1271
1272static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1273 const char *data, char *result)
1274{
1275 __u64 sector_le = cpu_to_le64(sector);
1276 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1277 int r;
1278 unsigned digest_size;
1279
1280 req->tfm = ic->internal_hash;
1281 req->flags = 0;
1282
1283 r = crypto_shash_init(req);
1284 if (unlikely(r < 0)) {
1285 dm_integrity_io_error(ic, "crypto_shash_init", r);
1286 goto failed;
1287 }
1288
1289 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1290 if (unlikely(r < 0)) {
1291 dm_integrity_io_error(ic, "crypto_shash_update", r);
1292 goto failed;
1293 }
1294
1295 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1296 if (unlikely(r < 0)) {
1297 dm_integrity_io_error(ic, "crypto_shash_update", r);
1298 goto failed;
1299 }
1300
1301 r = crypto_shash_final(req, result);
1302 if (unlikely(r < 0)) {
1303 dm_integrity_io_error(ic, "crypto_shash_final", r);
1304 goto failed;
1305 }
1306
1307 digest_size = crypto_shash_digestsize(ic->internal_hash);
1308 if (unlikely(digest_size < ic->tag_size))
1309 memset(result + digest_size, 0, ic->tag_size - digest_size);
1310
1311 return;
1312
1313failed:
1314 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1315 get_random_bytes(result, ic->tag_size);
1316}
1317
1318static void integrity_metadata(struct work_struct *w)
1319{
1320 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1321 struct dm_integrity_c *ic = dio->ic;
1322
1323 int r;
1324
1325 if (ic->internal_hash) {
1326 struct bvec_iter iter;
1327 struct bio_vec bv;
1328 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1329 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1330 char *checksums;
1331 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1332 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1333 unsigned sectors_to_process = dio->range.n_sectors;
1334 sector_t sector = dio->range.logical_sector;
1335
1336 if (unlikely(ic->mode == 'R'))
1337 goto skip_io;
1338
1339 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1340 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1341 if (!checksums) {
1342 checksums = checksums_onstack;
1343 if (WARN_ON(extra_space &&
1344 digest_size > sizeof(checksums_onstack))) {
1345 r = -EINVAL;
1346 goto error;
1347 }
1348 }
1349
1350 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1351 unsigned pos;
1352 char *mem, *checksums_ptr;
1353
1354again:
1355 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1356 pos = 0;
1357 checksums_ptr = checksums;
1358 do {
1359 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1360 checksums_ptr += ic->tag_size;
1361 sectors_to_process -= ic->sectors_per_block;
1362 pos += ic->sectors_per_block << SECTOR_SHIFT;
1363 sector += ic->sectors_per_block;
1364 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1365 kunmap_atomic(mem);
1366
1367 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1368 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1369 if (unlikely(r)) {
1370 if (r > 0) {
1371 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1372 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1373 r = -EILSEQ;
1374 atomic64_inc(&ic->number_of_mismatches);
1375 }
1376 if (likely(checksums != checksums_onstack))
1377 kfree(checksums);
1378 goto error;
1379 }
1380
1381 if (!sectors_to_process)
1382 break;
1383
1384 if (unlikely(pos < bv.bv_len)) {
1385 bv.bv_offset += pos;
1386 bv.bv_len -= pos;
1387 goto again;
1388 }
1389 }
1390
1391 if (likely(checksums != checksums_onstack))
1392 kfree(checksums);
1393 } else {
1394 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1395
1396 if (bip) {
1397 struct bio_vec biv;
1398 struct bvec_iter iter;
1399 unsigned data_to_process = dio->range.n_sectors;
1400 sector_to_block(ic, data_to_process);
1401 data_to_process *= ic->tag_size;
1402
1403 bip_for_each_vec(biv, bip, iter) {
1404 unsigned char *tag;
1405 unsigned this_len;
1406
1407 BUG_ON(PageHighMem(biv.bv_page));
1408 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1409 this_len = min(biv.bv_len, data_to_process);
1410 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1411 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1412 if (unlikely(r))
1413 goto error;
1414 data_to_process -= this_len;
1415 if (!data_to_process)
1416 break;
1417 }
1418 }
1419 }
1420skip_io:
1421 dec_in_flight(dio);
1422 return;
1423error:
1424 dio->bi_status = errno_to_blk_status(r);
1425 dec_in_flight(dio);
1426}
1427
1428static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1429{
1430 struct dm_integrity_c *ic = ti->private;
1431 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1432 struct bio_integrity_payload *bip;
1433
1434 sector_t area, offset;
1435
1436 dio->ic = ic;
1437 dio->bi_status = 0;
1438
1439 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1440 submit_flush_bio(ic, dio);
1441 return DM_MAPIO_SUBMITTED;
1442 }
1443
1444 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1445 dio->write = bio_op(bio) == REQ_OP_WRITE;
1446 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1447 if (unlikely(dio->fua)) {
1448 /*
1449 * Don't pass down the FUA flag because we have to flush
1450 * disk cache anyway.
1451 */
1452 bio->bi_opf &= ~REQ_FUA;
1453 }
1454 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1455 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1456 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1457 (unsigned long long)ic->provided_data_sectors);
1458 return DM_MAPIO_KILL;
1459 }
1460 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1461 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1462 ic->sectors_per_block,
1463 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1464 return DM_MAPIO_KILL;
1465 }
1466
1467 if (ic->sectors_per_block > 1) {
1468 struct bvec_iter iter;
1469 struct bio_vec bv;
1470 bio_for_each_segment(bv, bio, iter) {
1471 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1472 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1473 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1474 return DM_MAPIO_KILL;
1475 }
1476 }
1477 }
1478
1479 bip = bio_integrity(bio);
1480 if (!ic->internal_hash) {
1481 if (bip) {
1482 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1483 if (ic->log2_tag_size >= 0)
1484 wanted_tag_size <<= ic->log2_tag_size;
1485 else
1486 wanted_tag_size *= ic->tag_size;
1487 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1488 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1489 return DM_MAPIO_KILL;
1490 }
1491 }
1492 } else {
1493 if (unlikely(bip != NULL)) {
1494 DMERR("Unexpected integrity data when using internal hash");
1495 return DM_MAPIO_KILL;
1496 }
1497 }
1498
1499 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1500 return DM_MAPIO_KILL;
1501
1502 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1503 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1504 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1505
1506 dm_integrity_map_continue(dio, true);
1507 return DM_MAPIO_SUBMITTED;
1508}
1509
1510static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1511 unsigned journal_section, unsigned journal_entry)
1512{
1513 struct dm_integrity_c *ic = dio->ic;
1514 sector_t logical_sector;
1515 unsigned n_sectors;
1516
1517 logical_sector = dio->range.logical_sector;
1518 n_sectors = dio->range.n_sectors;
1519 do {
1520 struct bio_vec bv = bio_iovec(bio);
1521 char *mem;
1522
1523 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1524 bv.bv_len = n_sectors << SECTOR_SHIFT;
1525 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1526 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1527retry_kmap:
1528 mem = kmap_atomic(bv.bv_page);
1529 if (likely(dio->write))
1530 flush_dcache_page(bv.bv_page);
1531
1532 do {
1533 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1534
1535 if (unlikely(!dio->write)) {
1536 struct journal_sector *js;
1537 char *mem_ptr;
1538 unsigned s;
1539
1540 if (unlikely(journal_entry_is_inprogress(je))) {
1541 flush_dcache_page(bv.bv_page);
1542 kunmap_atomic(mem);
1543
1544 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1545 goto retry_kmap;
1546 }
1547 smp_rmb();
1548 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1549 js = access_journal_data(ic, journal_section, journal_entry);
1550 mem_ptr = mem + bv.bv_offset;
1551 s = 0;
1552 do {
1553 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1554 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1555 js++;
1556 mem_ptr += 1 << SECTOR_SHIFT;
1557 } while (++s < ic->sectors_per_block);
1558#ifdef INTERNAL_VERIFY
1559 if (ic->internal_hash) {
1560 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1561
1562 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1563 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1564 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1565 (unsigned long long)logical_sector);
1566 }
1567 }
1568#endif
1569 }
1570
1571 if (!ic->internal_hash) {
1572 struct bio_integrity_payload *bip = bio_integrity(bio);
1573 unsigned tag_todo = ic->tag_size;
1574 char *tag_ptr = journal_entry_tag(ic, je);
1575
1576 if (bip) do {
1577 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1578 unsigned tag_now = min(biv.bv_len, tag_todo);
1579 char *tag_addr;
1580 BUG_ON(PageHighMem(biv.bv_page));
1581 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1582 if (likely(dio->write))
1583 memcpy(tag_ptr, tag_addr, tag_now);
1584 else
1585 memcpy(tag_addr, tag_ptr, tag_now);
1586 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1587 tag_ptr += tag_now;
1588 tag_todo -= tag_now;
1589 } while (unlikely(tag_todo)); else {
1590 if (likely(dio->write))
1591 memset(tag_ptr, 0, tag_todo);
1592 }
1593 }
1594
1595 if (likely(dio->write)) {
1596 struct journal_sector *js;
1597 unsigned s;
1598
1599 js = access_journal_data(ic, journal_section, journal_entry);
1600 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1601
1602 s = 0;
1603 do {
1604 je->last_bytes[s] = js[s].commit_id;
1605 } while (++s < ic->sectors_per_block);
1606
1607 if (ic->internal_hash) {
1608 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1609 if (unlikely(digest_size > ic->tag_size)) {
1610 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1611 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1612 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1613 } else
1614 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1615 }
1616
1617 journal_entry_set_sector(je, logical_sector);
1618 }
1619 logical_sector += ic->sectors_per_block;
1620
1621 journal_entry++;
1622 if (unlikely(journal_entry == ic->journal_section_entries)) {
1623 journal_entry = 0;
1624 journal_section++;
1625 wraparound_section(ic, &journal_section);
1626 }
1627
1628 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1629 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1630
1631 if (unlikely(!dio->write))
1632 flush_dcache_page(bv.bv_page);
1633 kunmap_atomic(mem);
1634 } while (n_sectors);
1635
1636 if (likely(dio->write)) {
1637 smp_mb();
1638 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1639 wake_up(&ic->copy_to_journal_wait);
1640 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1641 queue_work(ic->commit_wq, &ic->commit_work);
1642 } else {
1643 schedule_autocommit(ic);
1644 }
1645 } else {
1646 remove_range(ic, &dio->range);
1647 }
1648
1649 if (unlikely(bio->bi_iter.bi_size)) {
1650 sector_t area, offset;
1651
1652 dio->range.logical_sector = logical_sector;
1653 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1654 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1655 return true;
1656 }
1657
1658 return false;
1659}
1660
1661static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1662{
1663 struct dm_integrity_c *ic = dio->ic;
1664 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1665 unsigned journal_section, journal_entry;
1666 unsigned journal_read_pos;
1667 struct completion read_comp;
1668 bool need_sync_io = ic->internal_hash && !dio->write;
1669
1670 if (need_sync_io && from_map) {
1671 INIT_WORK(&dio->work, integrity_bio_wait);
1672 queue_work(ic->metadata_wq, &dio->work);
1673 return;
1674 }
1675
1676lock_retry:
1677 spin_lock_irq(&ic->endio_wait.lock);
1678retry:
1679 if (unlikely(dm_integrity_failed(ic))) {
1680 spin_unlock_irq(&ic->endio_wait.lock);
1681 do_endio(ic, bio);
1682 return;
1683 }
1684 dio->range.n_sectors = bio_sectors(bio);
1685 journal_read_pos = NOT_FOUND;
1686 if (likely(ic->mode == 'J')) {
1687 if (dio->write) {
1688 unsigned next_entry, i, pos;
1689 unsigned ws, we, range_sectors;
1690
1691 dio->range.n_sectors = min(dio->range.n_sectors,
1692 ic->free_sectors << ic->sb->log2_sectors_per_block);
1693 if (unlikely(!dio->range.n_sectors)) {
1694 if (from_map)
1695 goto offload_to_thread;
1696 sleep_on_endio_wait(ic);
1697 goto retry;
1698 }
1699 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1700 ic->free_sectors -= range_sectors;
1701 journal_section = ic->free_section;
1702 journal_entry = ic->free_section_entry;
1703
1704 next_entry = ic->free_section_entry + range_sectors;
1705 ic->free_section_entry = next_entry % ic->journal_section_entries;
1706 ic->free_section += next_entry / ic->journal_section_entries;
1707 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1708 wraparound_section(ic, &ic->free_section);
1709
1710 pos = journal_section * ic->journal_section_entries + journal_entry;
1711 ws = journal_section;
1712 we = journal_entry;
1713 i = 0;
1714 do {
1715 struct journal_entry *je;
1716
1717 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1718 pos++;
1719 if (unlikely(pos >= ic->journal_entries))
1720 pos = 0;
1721
1722 je = access_journal_entry(ic, ws, we);
1723 BUG_ON(!journal_entry_is_unused(je));
1724 journal_entry_set_inprogress(je);
1725 we++;
1726 if (unlikely(we == ic->journal_section_entries)) {
1727 we = 0;
1728 ws++;
1729 wraparound_section(ic, &ws);
1730 }
1731 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1732
1733 spin_unlock_irq(&ic->endio_wait.lock);
1734 goto journal_read_write;
1735 } else {
1736 sector_t next_sector;
1737 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1738 if (likely(journal_read_pos == NOT_FOUND)) {
1739 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1740 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1741 } else {
1742 unsigned i;
1743 unsigned jp = journal_read_pos + 1;
1744 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1745 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1746 break;
1747 }
1748 dio->range.n_sectors = i;
1749 }
1750 }
1751 }
1752 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1753 /*
1754 * We must not sleep in the request routine because it could
1755 * stall bios on current->bio_list.
1756 * So, we offload the bio to a workqueue if we have to sleep.
1757 */
1758 if (from_map) {
1759offload_to_thread:
1760 spin_unlock_irq(&ic->endio_wait.lock);
1761 INIT_WORK(&dio->work, integrity_bio_wait);
1762 queue_work(ic->wait_wq, &dio->work);
1763 return;
1764 }
1765 wait_and_add_new_range(ic, &dio->range);
1766 }
1767 spin_unlock_irq(&ic->endio_wait.lock);
1768
1769 if (unlikely(journal_read_pos != NOT_FOUND)) {
1770 journal_section = journal_read_pos / ic->journal_section_entries;
1771 journal_entry = journal_read_pos % ic->journal_section_entries;
1772 goto journal_read_write;
1773 }
1774
1775 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1776
1777 if (need_sync_io) {
1778 init_completion(&read_comp);
1779 dio->completion = &read_comp;
1780 } else
1781 dio->completion = NULL;
1782
1783 dio->orig_bi_iter = bio->bi_iter;
1784
1785 dio->orig_bi_disk = bio->bi_disk;
1786 dio->orig_bi_partno = bio->bi_partno;
1787 bio_set_dev(bio, ic->dev->bdev);
1788
1789 dio->orig_bi_integrity = bio_integrity(bio);
1790 bio->bi_integrity = NULL;
1791 bio->bi_opf &= ~REQ_INTEGRITY;
1792
1793 dio->orig_bi_end_io = bio->bi_end_io;
1794 bio->bi_end_io = integrity_end_io;
1795
1796 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1797 generic_make_request(bio);
1798
1799 if (need_sync_io) {
1800 wait_for_completion_io(&read_comp);
1801 if (unlikely(ic->recalc_wq != NULL) &&
1802 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1803 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1804 goto skip_check;
1805 if (likely(!bio->bi_status))
1806 integrity_metadata(&dio->work);
1807 else
1808skip_check:
1809 dec_in_flight(dio);
1810
1811 } else {
1812 INIT_WORK(&dio->work, integrity_metadata);
1813 queue_work(ic->metadata_wq, &dio->work);
1814 }
1815
1816 return;
1817
1818journal_read_write:
1819 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1820 goto lock_retry;
1821
1822 do_endio_flush(ic, dio);
1823}
1824
1825
1826static void integrity_bio_wait(struct work_struct *w)
1827{
1828 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1829
1830 dm_integrity_map_continue(dio, false);
1831}
1832
1833static void pad_uncommitted(struct dm_integrity_c *ic)
1834{
1835 if (ic->free_section_entry) {
1836 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1837 ic->free_section_entry = 0;
1838 ic->free_section++;
1839 wraparound_section(ic, &ic->free_section);
1840 ic->n_uncommitted_sections++;
1841 }
1842 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1843 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1844}
1845
1846static void integrity_commit(struct work_struct *w)
1847{
1848 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1849 unsigned commit_start, commit_sections;
1850 unsigned i, j, n;
1851 struct bio *flushes;
1852
1853 del_timer(&ic->autocommit_timer);
1854
1855 spin_lock_irq(&ic->endio_wait.lock);
1856 flushes = bio_list_get(&ic->flush_bio_list);
1857 if (unlikely(ic->mode != 'J')) {
1858 spin_unlock_irq(&ic->endio_wait.lock);
1859 dm_integrity_flush_buffers(ic);
1860 goto release_flush_bios;
1861 }
1862
1863 pad_uncommitted(ic);
1864 commit_start = ic->uncommitted_section;
1865 commit_sections = ic->n_uncommitted_sections;
1866 spin_unlock_irq(&ic->endio_wait.lock);
1867
1868 if (!commit_sections)
1869 goto release_flush_bios;
1870
1871 i = commit_start;
1872 for (n = 0; n < commit_sections; n++) {
1873 for (j = 0; j < ic->journal_section_entries; j++) {
1874 struct journal_entry *je;
1875 je = access_journal_entry(ic, i, j);
1876 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1877 }
1878 for (j = 0; j < ic->journal_section_sectors; j++) {
1879 struct journal_sector *js;
1880 js = access_journal(ic, i, j);
1881 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1882 }
1883 i++;
1884 if (unlikely(i >= ic->journal_sections))
1885 ic->commit_seq = next_commit_seq(ic->commit_seq);
1886 wraparound_section(ic, &i);
1887 }
1888 smp_rmb();
1889
1890 write_journal(ic, commit_start, commit_sections);
1891
1892 spin_lock_irq(&ic->endio_wait.lock);
1893 ic->uncommitted_section += commit_sections;
1894 wraparound_section(ic, &ic->uncommitted_section);
1895 ic->n_uncommitted_sections -= commit_sections;
1896 ic->n_committed_sections += commit_sections;
1897 spin_unlock_irq(&ic->endio_wait.lock);
1898
1899 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1900 queue_work(ic->writer_wq, &ic->writer_work);
1901
1902release_flush_bios:
1903 while (flushes) {
1904 struct bio *next = flushes->bi_next;
1905 flushes->bi_next = NULL;
1906 do_endio(ic, flushes);
1907 flushes = next;
1908 }
1909}
1910
1911static void complete_copy_from_journal(unsigned long error, void *context)
1912{
1913 struct journal_io *io = context;
1914 struct journal_completion *comp = io->comp;
1915 struct dm_integrity_c *ic = comp->ic;
1916 remove_range(ic, &io->range);
1917 mempool_free(io, &ic->journal_io_mempool);
1918 if (unlikely(error != 0))
1919 dm_integrity_io_error(ic, "copying from journal", -EIO);
1920 complete_journal_op(comp);
1921}
1922
1923static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1924 struct journal_entry *je)
1925{
1926 unsigned s = 0;
1927 do {
1928 js->commit_id = je->last_bytes[s];
1929 js++;
1930 } while (++s < ic->sectors_per_block);
1931}
1932
1933static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1934 unsigned write_sections, bool from_replay)
1935{
1936 unsigned i, j, n;
1937 struct journal_completion comp;
1938 struct blk_plug plug;
1939
1940 blk_start_plug(&plug);
1941
1942 comp.ic = ic;
1943 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1944 init_completion(&comp.comp);
1945
1946 i = write_start;
1947 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1948#ifndef INTERNAL_VERIFY
1949 if (unlikely(from_replay))
1950#endif
1951 rw_section_mac(ic, i, false);
1952 for (j = 0; j < ic->journal_section_entries; j++) {
1953 struct journal_entry *je = access_journal_entry(ic, i, j);
1954 sector_t sec, area, offset;
1955 unsigned k, l, next_loop;
1956 sector_t metadata_block;
1957 unsigned metadata_offset;
1958 struct journal_io *io;
1959
1960 if (journal_entry_is_unused(je))
1961 continue;
1962 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1963 sec = journal_entry_get_sector(je);
1964 if (unlikely(from_replay)) {
1965 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1966 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1967 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1968 }
1969 }
1970 get_area_and_offset(ic, sec, &area, &offset);
1971 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1972 for (k = j + 1; k < ic->journal_section_entries; k++) {
1973 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1974 sector_t sec2, area2, offset2;
1975 if (journal_entry_is_unused(je2))
1976 break;
1977 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1978 sec2 = journal_entry_get_sector(je2);
1979 get_area_and_offset(ic, sec2, &area2, &offset2);
1980 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1981 break;
1982 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1983 }
1984 next_loop = k - 1;
1985
1986 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1987 io->comp = &comp;
1988 io->range.logical_sector = sec;
1989 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1990
1991 spin_lock_irq(&ic->endio_wait.lock);
1992 if (unlikely(!add_new_range(ic, &io->range, true)))
1993 wait_and_add_new_range(ic, &io->range);
1994
1995 if (likely(!from_replay)) {
1996 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1997
1998 /* don't write if there is newer committed sector */
1999 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2000 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2001
2002 journal_entry_set_unused(je2);
2003 remove_journal_node(ic, &section_node[j]);
2004 j++;
2005 sec += ic->sectors_per_block;
2006 offset += ic->sectors_per_block;
2007 }
2008 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2009 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2010
2011 journal_entry_set_unused(je2);
2012 remove_journal_node(ic, &section_node[k - 1]);
2013 k--;
2014 }
2015 if (j == k) {
2016 remove_range_unlocked(ic, &io->range);
2017 spin_unlock_irq(&ic->endio_wait.lock);
2018 mempool_free(io, &ic->journal_io_mempool);
2019 goto skip_io;
2020 }
2021 for (l = j; l < k; l++) {
2022 remove_journal_node(ic, &section_node[l]);
2023 }
2024 }
2025 spin_unlock_irq(&ic->endio_wait.lock);
2026
2027 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2028 for (l = j; l < k; l++) {
2029 int r;
2030 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2031
2032 if (
2033#ifndef INTERNAL_VERIFY
2034 unlikely(from_replay) &&
2035#endif
2036 ic->internal_hash) {
2037 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2038
2039 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2040 (char *)access_journal_data(ic, i, l), test_tag);
2041 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2042 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2043 }
2044
2045 journal_entry_set_unused(je2);
2046 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2047 ic->tag_size, TAG_WRITE);
2048 if (unlikely(r)) {
2049 dm_integrity_io_error(ic, "reading tags", r);
2050 }
2051 }
2052
2053 atomic_inc(&comp.in_flight);
2054 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2055 (k - j) << ic->sb->log2_sectors_per_block,
2056 get_data_sector(ic, area, offset),
2057 complete_copy_from_journal, io);
2058skip_io:
2059 j = next_loop;
2060 }
2061 }
2062
2063 dm_bufio_write_dirty_buffers_async(ic->bufio);
2064
2065 blk_finish_plug(&plug);
2066
2067 complete_journal_op(&comp);
2068 wait_for_completion_io(&comp.comp);
2069
2070 dm_integrity_flush_buffers(ic);
2071}
2072
2073static void integrity_writer(struct work_struct *w)
2074{
2075 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2076 unsigned write_start, write_sections;
2077
2078 unsigned prev_free_sectors;
2079
2080 /* the following test is not needed, but it tests the replay code */
2081 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2082 return;
2083
2084 spin_lock_irq(&ic->endio_wait.lock);
2085 write_start = ic->committed_section;
2086 write_sections = ic->n_committed_sections;
2087 spin_unlock_irq(&ic->endio_wait.lock);
2088
2089 if (!write_sections)
2090 return;
2091
2092 do_journal_write(ic, write_start, write_sections, false);
2093
2094 spin_lock_irq(&ic->endio_wait.lock);
2095
2096 ic->committed_section += write_sections;
2097 wraparound_section(ic, &ic->committed_section);
2098 ic->n_committed_sections -= write_sections;
2099
2100 prev_free_sectors = ic->free_sectors;
2101 ic->free_sectors += write_sections * ic->journal_section_entries;
2102 if (unlikely(!prev_free_sectors))
2103 wake_up_locked(&ic->endio_wait);
2104
2105 spin_unlock_irq(&ic->endio_wait.lock);
2106}
2107
2108static void recalc_write_super(struct dm_integrity_c *ic)
2109{
2110 int r;
2111
2112 dm_integrity_flush_buffers(ic);
2113 if (dm_integrity_failed(ic))
2114 return;
2115
2116 sb_set_version(ic);
2117 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2118 if (unlikely(r))
2119 dm_integrity_io_error(ic, "writing superblock", r);
2120}
2121
2122static void integrity_recalc(struct work_struct *w)
2123{
2124 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2125 struct dm_integrity_range range;
2126 struct dm_io_request io_req;
2127 struct dm_io_region io_loc;
2128 sector_t area, offset;
2129 sector_t metadata_block;
2130 unsigned metadata_offset;
2131 __u8 *t;
2132 unsigned i;
2133 int r;
2134 unsigned super_counter = 0;
2135
2136 spin_lock_irq(&ic->endio_wait.lock);
2137
2138next_chunk:
2139
2140 if (unlikely(READ_ONCE(ic->suspending)))
2141 goto unlock_ret;
2142
2143 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2144 if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2145 goto unlock_ret;
2146
2147 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2148 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2149 if (!ic->meta_dev)
2150 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2151
2152 if (unlikely(!add_new_range(ic, &range, true)))
2153 wait_and_add_new_range(ic, &range);
2154
2155 spin_unlock_irq(&ic->endio_wait.lock);
2156
2157 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2158 recalc_write_super(ic);
2159 super_counter = 0;
2160 }
2161
2162 if (unlikely(dm_integrity_failed(ic)))
2163 goto err;
2164
2165 io_req.bi_op = REQ_OP_READ;
2166 io_req.bi_op_flags = 0;
2167 io_req.mem.type = DM_IO_VMA;
2168 io_req.mem.ptr.addr = ic->recalc_buffer;
2169 io_req.notify.fn = NULL;
2170 io_req.client = ic->io;
2171 io_loc.bdev = ic->dev->bdev;
2172 io_loc.sector = get_data_sector(ic, area, offset);
2173 io_loc.count = range.n_sectors;
2174
2175 r = dm_io(&io_req, 1, &io_loc, NULL);
2176 if (unlikely(r)) {
2177 dm_integrity_io_error(ic, "reading data", r);
2178 goto err;
2179 }
2180
2181 t = ic->recalc_tags;
2182 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2183 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2184 t += ic->tag_size;
2185 }
2186
2187 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2188
2189 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2190 if (unlikely(r)) {
2191 dm_integrity_io_error(ic, "writing tags", r);
2192 goto err;
2193 }
2194
2195 spin_lock_irq(&ic->endio_wait.lock);
2196 remove_range_unlocked(ic, &range);
2197 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2198 goto next_chunk;
2199
2200err:
2201 remove_range(ic, &range);
2202 return;
2203
2204unlock_ret:
2205 spin_unlock_irq(&ic->endio_wait.lock);
2206
2207 recalc_write_super(ic);
2208}
2209
2210static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2211 unsigned n_sections, unsigned char commit_seq)
2212{
2213 unsigned i, j, n;
2214
2215 if (!n_sections)
2216 return;
2217
2218 for (n = 0; n < n_sections; n++) {
2219 i = start_section + n;
2220 wraparound_section(ic, &i);
2221 for (j = 0; j < ic->journal_section_sectors; j++) {
2222 struct journal_sector *js = access_journal(ic, i, j);
2223 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2224 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2225 }
2226 for (j = 0; j < ic->journal_section_entries; j++) {
2227 struct journal_entry *je = access_journal_entry(ic, i, j);
2228 journal_entry_set_unused(je);
2229 }
2230 }
2231
2232 write_journal(ic, start_section, n_sections);
2233}
2234
2235static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2236{
2237 unsigned char k;
2238 for (k = 0; k < N_COMMIT_IDS; k++) {
2239 if (dm_integrity_commit_id(ic, i, j, k) == id)
2240 return k;
2241 }
2242 dm_integrity_io_error(ic, "journal commit id", -EIO);
2243 return -EIO;
2244}
2245
2246static void replay_journal(struct dm_integrity_c *ic)
2247{
2248 unsigned i, j;
2249 bool used_commit_ids[N_COMMIT_IDS];
2250 unsigned max_commit_id_sections[N_COMMIT_IDS];
2251 unsigned write_start, write_sections;
2252 unsigned continue_section;
2253 bool journal_empty;
2254 unsigned char unused, last_used, want_commit_seq;
2255
2256 if (ic->mode == 'R')
2257 return;
2258
2259 if (ic->journal_uptodate)
2260 return;
2261
2262 last_used = 0;
2263 write_start = 0;
2264
2265 if (!ic->just_formatted) {
2266 DEBUG_print("reading journal\n");
2267 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2268 if (ic->journal_io)
2269 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2270 if (ic->journal_io) {
2271 struct journal_completion crypt_comp;
2272 crypt_comp.ic = ic;
2273 init_completion(&crypt_comp.comp);
2274 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2275 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2276 wait_for_completion(&crypt_comp.comp);
2277 }
2278 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2279 }
2280
2281 if (dm_integrity_failed(ic))
2282 goto clear_journal;
2283
2284 journal_empty = true;
2285 memset(used_commit_ids, 0, sizeof used_commit_ids);
2286 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2287 for (i = 0; i < ic->journal_sections; i++) {
2288 for (j = 0; j < ic->journal_section_sectors; j++) {
2289 int k;
2290 struct journal_sector *js = access_journal(ic, i, j);
2291 k = find_commit_seq(ic, i, j, js->commit_id);
2292 if (k < 0)
2293 goto clear_journal;
2294 used_commit_ids[k] = true;
2295 max_commit_id_sections[k] = i;
2296 }
2297 if (journal_empty) {
2298 for (j = 0; j < ic->journal_section_entries; j++) {
2299 struct journal_entry *je = access_journal_entry(ic, i, j);
2300 if (!journal_entry_is_unused(je)) {
2301 journal_empty = false;
2302 break;
2303 }
2304 }
2305 }
2306 }
2307
2308 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2309 unused = N_COMMIT_IDS - 1;
2310 while (unused && !used_commit_ids[unused - 1])
2311 unused--;
2312 } else {
2313 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2314 if (!used_commit_ids[unused])
2315 break;
2316 if (unused == N_COMMIT_IDS) {
2317 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2318 goto clear_journal;
2319 }
2320 }
2321 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2322 unused, used_commit_ids[0], used_commit_ids[1],
2323 used_commit_ids[2], used_commit_ids[3]);
2324
2325 last_used = prev_commit_seq(unused);
2326 want_commit_seq = prev_commit_seq(last_used);
2327
2328 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2329 journal_empty = true;
2330
2331 write_start = max_commit_id_sections[last_used] + 1;
2332 if (unlikely(write_start >= ic->journal_sections))
2333 want_commit_seq = next_commit_seq(want_commit_seq);
2334 wraparound_section(ic, &write_start);
2335
2336 i = write_start;
2337 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2338 for (j = 0; j < ic->journal_section_sectors; j++) {
2339 struct journal_sector *js = access_journal(ic, i, j);
2340
2341 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2342 /*
2343 * This could be caused by crash during writing.
2344 * We won't replay the inconsistent part of the
2345 * journal.
2346 */
2347 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2348 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2349 goto brk;
2350 }
2351 }
2352 i++;
2353 if (unlikely(i >= ic->journal_sections))
2354 want_commit_seq = next_commit_seq(want_commit_seq);
2355 wraparound_section(ic, &i);
2356 }
2357brk:
2358
2359 if (!journal_empty) {
2360 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2361 write_sections, write_start, want_commit_seq);
2362 do_journal_write(ic, write_start, write_sections, true);
2363 }
2364
2365 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2366 continue_section = write_start;
2367 ic->commit_seq = want_commit_seq;
2368 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2369 } else {
2370 unsigned s;
2371 unsigned char erase_seq;
2372clear_journal:
2373 DEBUG_print("clearing journal\n");
2374
2375 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2376 s = write_start;
2377 init_journal(ic, s, 1, erase_seq);
2378 s++;
2379 wraparound_section(ic, &s);
2380 if (ic->journal_sections >= 2) {
2381 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2382 s += ic->journal_sections - 2;
2383 wraparound_section(ic, &s);
2384 init_journal(ic, s, 1, erase_seq);
2385 }
2386
2387 continue_section = 0;
2388 ic->commit_seq = next_commit_seq(erase_seq);
2389 }
2390
2391 ic->committed_section = continue_section;
2392 ic->n_committed_sections = 0;
2393
2394 ic->uncommitted_section = continue_section;
2395 ic->n_uncommitted_sections = 0;
2396
2397 ic->free_section = continue_section;
2398 ic->free_section_entry = 0;
2399 ic->free_sectors = ic->journal_entries;
2400
2401 ic->journal_tree_root = RB_ROOT;
2402 for (i = 0; i < ic->journal_entries; i++)
2403 init_journal_node(&ic->journal_tree[i]);
2404}
2405
2406static void dm_integrity_postsuspend(struct dm_target *ti)
2407{
2408 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2409
2410 del_timer_sync(&ic->autocommit_timer);
2411
2412 WRITE_ONCE(ic->suspending, 1);
2413
2414 if (ic->recalc_wq)
2415 drain_workqueue(ic->recalc_wq);
2416
2417 queue_work(ic->commit_wq, &ic->commit_work);
2418 drain_workqueue(ic->commit_wq);
2419
2420 if (ic->mode == 'J') {
2421 if (ic->meta_dev)
2422 queue_work(ic->writer_wq, &ic->writer_work);
2423 drain_workqueue(ic->writer_wq);
2424 dm_integrity_flush_buffers(ic);
2425 }
2426
2427 WRITE_ONCE(ic->suspending, 0);
2428
2429 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2430
2431 ic->journal_uptodate = true;
2432}
2433
2434static void dm_integrity_resume(struct dm_target *ti)
2435{
2436 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2437
2438 replay_journal(ic);
2439
2440 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2441 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2442 if (recalc_pos < ic->provided_data_sectors) {
2443 queue_work(ic->recalc_wq, &ic->recalc_work);
2444 } else if (recalc_pos > ic->provided_data_sectors) {
2445 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2446 recalc_write_super(ic);
2447 }
2448 }
2449}
2450
2451static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2452 unsigned status_flags, char *result, unsigned maxlen)
2453{
2454 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2455 unsigned arg_count;
2456 size_t sz = 0;
2457
2458 switch (type) {
2459 case STATUSTYPE_INFO:
2460 DMEMIT("%llu %llu",
2461 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2462 (unsigned long long)ic->provided_data_sectors);
2463 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2464 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2465 else
2466 DMEMIT(" -");
2467 break;
2468
2469 case STATUSTYPE_TABLE: {
2470 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2471 watermark_percentage += ic->journal_entries / 2;
2472 do_div(watermark_percentage, ic->journal_entries);
2473 arg_count = 5;
2474 arg_count += !!ic->meta_dev;
2475 arg_count += ic->sectors_per_block != 1;
2476 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2477 arg_count += !!ic->internal_hash_alg.alg_string;
2478 arg_count += !!ic->journal_crypt_alg.alg_string;
2479 arg_count += !!ic->journal_mac_alg.alg_string;
2480 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2481 ic->tag_size, ic->mode, arg_count);
2482 if (ic->meta_dev)
2483 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2484 if (ic->sectors_per_block != 1)
2485 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2486 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2487 DMEMIT(" recalculate");
2488 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2489 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2490 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2491 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2492 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2493
2494#define EMIT_ALG(a, n) \
2495 do { \
2496 if (ic->a.alg_string) { \
2497 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2498 if (ic->a.key_string) \
2499 DMEMIT(":%s", ic->a.key_string);\
2500 } \
2501 } while (0)
2502 EMIT_ALG(internal_hash_alg, "internal_hash");
2503 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2504 EMIT_ALG(journal_mac_alg, "journal_mac");
2505 break;
2506 }
2507 }
2508}
2509
2510static int dm_integrity_iterate_devices(struct dm_target *ti,
2511 iterate_devices_callout_fn fn, void *data)
2512{
2513 struct dm_integrity_c *ic = ti->private;
2514
2515 if (!ic->meta_dev)
2516 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2517 else
2518 return fn(ti, ic->dev, 0, ti->len, data);
2519}
2520
2521static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2522{
2523 struct dm_integrity_c *ic = ti->private;
2524
2525 if (ic->sectors_per_block > 1) {
2526 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2527 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2528 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2529 }
2530}
2531
2532static void calculate_journal_section_size(struct dm_integrity_c *ic)
2533{
2534 unsigned sector_space = JOURNAL_SECTOR_DATA;
2535
2536 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2537 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2538 JOURNAL_ENTRY_ROUNDUP);
2539
2540 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2541 sector_space -= JOURNAL_MAC_PER_SECTOR;
2542 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2543 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2544 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2545 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2546}
2547
2548static int calculate_device_limits(struct dm_integrity_c *ic)
2549{
2550 __u64 initial_sectors;
2551
2552 calculate_journal_section_size(ic);
2553 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2554 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2555 return -EINVAL;
2556 ic->initial_sectors = initial_sectors;
2557
2558 if (!ic->meta_dev) {
2559 sector_t last_sector, last_area, last_offset;
2560
2561 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2562 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2563 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2564 ic->log2_metadata_run = __ffs(ic->metadata_run);
2565 else
2566 ic->log2_metadata_run = -1;
2567
2568 get_area_and_offset(