1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24#define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25#define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
26
27static const u8 tuning_blk_pattern_4bit[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36};
37
38static const u8 tuning_blk_pattern_8bit[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55};
56
57struct mmc_busy_data {
58 struct mmc_card *card;
59 bool retry_crc_err;
60 enum mmc_busy_cmd busy_cmd;
61};
62
63struct mmc_op_cond_busy_data {
64 struct mmc_host *host;
65 u32 ocr;
66 struct mmc_command *cmd;
67};
68
69int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70{
71 int err;
72 struct mmc_command cmd = {};
73
74 cmd.opcode = MMC_SEND_STATUS;
75 if (!mmc_host_is_spi(card->host))
76 cmd.arg = card->rca << 16;
77 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78
79 err = mmc_wait_for_cmd(host: card->host, cmd: &cmd, retries);
80 if (err)
81 return err;
82
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
85 */
86 if (status)
87 *status = cmd.resp[0];
88
89 return 0;
90}
91EXPORT_SYMBOL_GPL(__mmc_send_status);
92
93int mmc_send_status(struct mmc_card *card, u32 *status)
94{
95 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96}
97EXPORT_SYMBOL_GPL(mmc_send_status);
98
99static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100{
101 struct mmc_command cmd = {};
102
103 cmd.opcode = MMC_SELECT_CARD;
104
105 if (card) {
106 cmd.arg = card->rca << 16;
107 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 } else {
109 cmd.arg = 0;
110 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 }
112
113 return mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES);
114}
115
116int mmc_select_card(struct mmc_card *card)
117{
118
119 return _mmc_select_card(host: card->host, card);
120}
121
122int mmc_deselect_cards(struct mmc_host *host)
123{
124 return _mmc_select_card(host, NULL);
125}
126
127/*
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
133 * bit 76.
134 */
135int mmc_set_dsr(struct mmc_host *host)
136{
137 struct mmc_command cmd = {};
138
139 cmd.opcode = MMC_SET_DSR;
140
141 cmd.arg = (host->dsr << 16) | 0xffff;
142 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143
144 return mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES);
145}
146
147int mmc_go_idle(struct mmc_host *host)
148{
149 int err;
150 struct mmc_command cmd = {};
151
152 /*
153 * Non-SPI hosts need to prevent chipselect going active during
154 * GO_IDLE; that would put chips into SPI mode. Remind them of
155 * that in case of hardware that won't pull up DAT3/nCS otherwise.
156 *
157 * SPI hosts ignore ios.chip_select; it's managed according to
158 * rules that must accommodate non-MMC slaves which this layer
159 * won't even know about.
160 */
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_HIGH);
163 mmc_delay(ms: 1);
164 }
165
166 cmd.opcode = MMC_GO_IDLE_STATE;
167 cmd.arg = 0;
168 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
169
170 err = mmc_wait_for_cmd(host, cmd: &cmd, retries: 0);
171
172 mmc_delay(ms: 1);
173
174 if (!mmc_host_is_spi(host)) {
175 mmc_set_chip_select(host, MMC_CS_DONTCARE);
176 mmc_delay(ms: 1);
177 }
178
179 host->use_spi_crc = 0;
180
181 return err;
182}
183
184static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
185{
186 struct mmc_op_cond_busy_data *data = cb_data;
187 struct mmc_host *host = data->host;
188 struct mmc_command *cmd = data->cmd;
189 u32 ocr = data->ocr;
190 int err = 0;
191
192 err = mmc_wait_for_cmd(host, cmd, retries: 0);
193 if (err)
194 return err;
195
196 if (mmc_host_is_spi(host)) {
197 if (!(cmd->resp[0] & R1_SPI_IDLE)) {
198 *busy = false;
199 return 0;
200 }
201 } else {
202 if (cmd->resp[0] & MMC_CARD_BUSY) {
203 *busy = false;
204 return 0;
205 }
206 }
207
208 *busy = true;
209
210 /*
211 * According to eMMC specification v5.1 section 6.4.3, we
212 * should issue CMD1 repeatedly in the idle state until
213 * the eMMC is ready. Otherwise some eMMC devices seem to enter
214 * the inactive mode after mmc_init_card() issued CMD0 when
215 * the eMMC device is busy.
216 */
217 if (!ocr && !mmc_host_is_spi(host))
218 cmd->arg = cmd->resp[0] | BIT(30);
219
220 return 0;
221}
222
223int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
224{
225 struct mmc_command cmd = {};
226 int err = 0;
227 struct mmc_op_cond_busy_data cb_data = {
228 .host = host,
229 .ocr = ocr,
230 .cmd = &cmd
231 };
232
233 cmd.opcode = MMC_SEND_OP_COND;
234 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
235 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
236
237 err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
238 MMC_OP_COND_TIMEOUT_MS,
239 busy_cb: &__mmc_send_op_cond_cb, cb_data: &cb_data);
240 if (err)
241 return err;
242
243 if (rocr && !mmc_host_is_spi(host))
244 *rocr = cmd.resp[0];
245
246 return err;
247}
248
249int mmc_set_relative_addr(struct mmc_card *card)
250{
251 struct mmc_command cmd = {};
252
253 cmd.opcode = MMC_SET_RELATIVE_ADDR;
254 cmd.arg = card->rca << 16;
255 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
256
257 return mmc_wait_for_cmd(host: card->host, cmd: &cmd, MMC_CMD_RETRIES);
258}
259
260static int
261mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
262{
263 int err;
264 struct mmc_command cmd = {};
265
266 cmd.opcode = opcode;
267 cmd.arg = arg;
268 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
269
270 err = mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES);
271 if (err)
272 return err;
273
274 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
275
276 return 0;
277}
278
279/*
280 * NOTE: void *buf, caller for the buf is required to use DMA-capable
281 * buffer or on-stack buffer (with some overhead in callee).
282 */
283int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
284 u32 args, void *buf, unsigned len)
285{
286 struct mmc_request mrq = {};
287 struct mmc_command cmd = {};
288 struct mmc_data data = {};
289 struct scatterlist sg;
290
291 mrq.cmd = &cmd;
292 mrq.data = &data;
293
294 cmd.opcode = opcode;
295 cmd.arg = args;
296
297 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
298 * rely on callers to never use this with "native" calls for reading
299 * CSD or CID. Native versions of those commands use the R2 type,
300 * not R1 plus a data block.
301 */
302 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
303
304 data.blksz = len;
305 data.blocks = 1;
306 data.flags = MMC_DATA_READ;
307 data.sg = &sg;
308 data.sg_len = 1;
309
310 sg_init_one(&sg, buf, len);
311
312 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
313 /*
314 * The spec states that CSR and CID accesses have a timeout
315 * of 64 clock cycles.
316 */
317 data.timeout_ns = 0;
318 data.timeout_clks = 64;
319 } else
320 mmc_set_data_timeout(data: &data, card);
321
322 mmc_wait_for_req(host, mrq: &mrq);
323
324 if (cmd.error)
325 return cmd.error;
326 if (data.error)
327 return data.error;
328
329 return 0;
330}
331
332static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
333{
334 int ret, i;
335 __be32 *cxd_tmp;
336
337 cxd_tmp = kzalloc(size: 16, GFP_KERNEL);
338 if (!cxd_tmp)
339 return -ENOMEM;
340
341 ret = mmc_send_adtc_data(NULL, host, opcode, args: 0, buf: cxd_tmp, len: 16);
342 if (ret)
343 goto err;
344
345 for (i = 0; i < 4; i++)
346 cxd[i] = be32_to_cpu(cxd_tmp[i]);
347
348err:
349 kfree(objp: cxd_tmp);
350 return ret;
351}
352
353int mmc_send_csd(struct mmc_card *card, u32 *csd)
354{
355 if (mmc_host_is_spi(card->host))
356 return mmc_spi_send_cxd(host: card->host, cxd: csd, MMC_SEND_CSD);
357
358 return mmc_send_cxd_native(host: card->host, arg: card->rca << 16, cxd: csd,
359 MMC_SEND_CSD);
360}
361
362int mmc_send_cid(struct mmc_host *host, u32 *cid)
363{
364 if (mmc_host_is_spi(host))
365 return mmc_spi_send_cxd(host, cxd: cid, MMC_SEND_CID);
366
367 return mmc_send_cxd_native(host, arg: 0, cxd: cid, MMC_ALL_SEND_CID);
368}
369
370int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
371{
372 int err;
373 u8 *ext_csd;
374
375 if (!card || !new_ext_csd)
376 return -EINVAL;
377
378 if (!mmc_can_ext_csd(card))
379 return -EOPNOTSUPP;
380
381 /*
382 * As the ext_csd is so large and mostly unused, we don't store the
383 * raw block in mmc_card.
384 */
385 ext_csd = kzalloc(size: 512, GFP_KERNEL);
386 if (!ext_csd)
387 return -ENOMEM;
388
389 err = mmc_send_adtc_data(card, host: card->host, MMC_SEND_EXT_CSD, args: 0, buf: ext_csd,
390 len: 512);
391 if (err)
392 kfree(objp: ext_csd);
393 else
394 *new_ext_csd = ext_csd;
395
396 return err;
397}
398EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
399
400int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
401{
402 struct mmc_command cmd = {};
403 int err;
404
405 cmd.opcode = MMC_SPI_READ_OCR;
406 cmd.arg = highcap ? (1 << 30) : 0;
407 cmd.flags = MMC_RSP_SPI_R3;
408
409 err = mmc_wait_for_cmd(host, cmd: &cmd, retries: 0);
410
411 *ocrp = cmd.resp[1];
412 return err;
413}
414
415int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
416{
417 struct mmc_command cmd = {};
418 int err;
419
420 cmd.opcode = MMC_SPI_CRC_ON_OFF;
421 cmd.flags = MMC_RSP_SPI_R1;
422 cmd.arg = use_crc;
423
424 err = mmc_wait_for_cmd(host, cmd: &cmd, retries: 0);
425 if (!err)
426 host->use_spi_crc = use_crc;
427 return err;
428}
429
430static int mmc_switch_status_error(struct mmc_host *host, u32 status)
431{
432 if (mmc_host_is_spi(host)) {
433 if (status & R1_SPI_ILLEGAL_COMMAND)
434 return -EBADMSG;
435 } else {
436 if (R1_STATUS(status))
437 pr_warn("%s: unexpected status %#x after switch\n",
438 mmc_hostname(host), status);
439 if (status & R1_SWITCH_ERROR)
440 return -EBADMSG;
441 }
442 return 0;
443}
444
445/* Caller must hold re-tuning */
446int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
447{
448 u32 status;
449 int err;
450
451 err = mmc_send_status(card, &status);
452 if (!crc_err_fatal && err == -EILSEQ)
453 return 0;
454 if (err)
455 return err;
456
457 return mmc_switch_status_error(host: card->host, status);
458}
459
460static int mmc_busy_cb(void *cb_data, bool *busy)
461{
462 struct mmc_busy_data *data = cb_data;
463 struct mmc_host *host = data->card->host;
464 u32 status = 0;
465 int err;
466
467 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
468 *busy = host->ops->card_busy(host);
469 return 0;
470 }
471
472 err = mmc_send_status(data->card, &status);
473 if (data->retry_crc_err && err == -EILSEQ) {
474 *busy = true;
475 return 0;
476 }
477 if (err)
478 return err;
479
480 switch (data->busy_cmd) {
481 case MMC_BUSY_CMD6:
482 err = mmc_switch_status_error(host, status);
483 break;
484 case MMC_BUSY_ERASE:
485 err = R1_STATUS(status) ? -EIO : 0;
486 break;
487 case MMC_BUSY_HPI:
488 case MMC_BUSY_EXTR_SINGLE:
489 case MMC_BUSY_IO:
490 break;
491 default:
492 err = -EINVAL;
493 }
494
495 if (err)
496 return err;
497
498 *busy = !mmc_ready_for_data(status);
499 return 0;
500}
501
502int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
503 unsigned int timeout_ms,
504 int (*busy_cb)(void *cb_data, bool *busy),
505 void *cb_data)
506{
507 int err;
508 unsigned long timeout;
509 unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
510 bool expired = false;
511 bool busy = false;
512
513 timeout = jiffies + msecs_to_jiffies(m: timeout_ms) + 1;
514 do {
515 /*
516 * Due to the possibility of being preempted while polling,
517 * check the expiration time first.
518 */
519 expired = time_after(jiffies, timeout);
520
521 err = (*busy_cb)(cb_data, &busy);
522 if (err)
523 return err;
524
525 /* Timeout if the device still remains busy. */
526 if (expired && busy) {
527 pr_err("%s: Card stuck being busy! %s\n",
528 mmc_hostname(host), __func__);
529 return -ETIMEDOUT;
530 }
531
532 /* Throttle the polling rate to avoid hogging the CPU. */
533 if (busy) {
534 usleep_range(min: udelay, max: udelay * 2);
535 if (udelay < udelay_max)
536 udelay *= 2;
537 }
538 } while (busy);
539
540 return 0;
541}
542EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
543
544int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
545 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
546{
547 struct mmc_host *host = card->host;
548 struct mmc_busy_data cb_data;
549
550 cb_data.card = card;
551 cb_data.retry_crc_err = retry_crc_err;
552 cb_data.busy_cmd = busy_cmd;
553
554 return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
555}
556EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
557
558bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
559 unsigned int timeout_ms)
560{
561 /*
562 * If the max_busy_timeout of the host is specified, make sure it's
563 * enough to fit the used timeout_ms. In case it's not, let's instruct
564 * the host to avoid HW busy detection, by converting to a R1 response
565 * instead of a R1B. Note, some hosts requires R1B, which also means
566 * they are on their own when it comes to deal with the busy timeout.
567 */
568 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
569 (timeout_ms > host->max_busy_timeout)) {
570 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
571 return false;
572 }
573
574 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
575 cmd->busy_timeout = timeout_ms;
576 return true;
577}
578EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd);
579
580/**
581 * __mmc_switch - modify EXT_CSD register
582 * @card: the MMC card associated with the data transfer
583 * @set: cmd set values
584 * @index: EXT_CSD register index
585 * @value: value to program into EXT_CSD register
586 * @timeout_ms: timeout (ms) for operation performed by register write,
587 * timeout of zero implies maximum possible timeout
588 * @timing: new timing to change to
589 * @send_status: send status cmd to poll for busy
590 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
591 * @retries: number of retries
592 *
593 * Modifies the EXT_CSD register for selected card.
594 */
595int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
596 unsigned int timeout_ms, unsigned char timing,
597 bool send_status, bool retry_crc_err, unsigned int retries)
598{
599 struct mmc_host *host = card->host;
600 int err;
601 struct mmc_command cmd = {};
602 bool use_r1b_resp;
603 unsigned char old_timing = host->ios.timing;
604
605 mmc_retune_hold(host);
606
607 if (!timeout_ms) {
608 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
609 mmc_hostname(host));
610 timeout_ms = card->ext_csd.generic_cmd6_time;
611 }
612
613 cmd.opcode = MMC_SWITCH;
614 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
615 (index << 16) |
616 (value << 8) |
617 set;
618 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
619
620 err = mmc_wait_for_cmd(host, cmd: &cmd, retries);
621 if (err)
622 goto out;
623
624 /*If SPI or used HW busy detection above, then we don't need to poll. */
625 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
626 mmc_host_is_spi(host))
627 goto out_tim;
628
629 /*
630 * If the host doesn't support HW polling via the ->card_busy() ops and
631 * when it's not allowed to poll by using CMD13, then we need to rely on
632 * waiting the stated timeout to be sufficient.
633 */
634 if (!send_status && !host->ops->card_busy) {
635 mmc_delay(ms: timeout_ms);
636 goto out_tim;
637 }
638
639 /* Let's try to poll to find out when the command is completed. */
640 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
641 if (err)
642 goto out;
643
644out_tim:
645 /* Switch to new timing before check switch status. */
646 if (timing)
647 mmc_set_timing(host, timing);
648
649 if (send_status) {
650 err = mmc_switch_status(card, crc_err_fatal: true);
651 if (err && timing)
652 mmc_set_timing(host, timing: old_timing);
653 }
654out:
655 mmc_retune_release(host);
656
657 return err;
658}
659
660int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
661 unsigned int timeout_ms)
662{
663 return __mmc_switch(card, set, index, value, timeout_ms, timing: 0,
664 send_status: true, retry_crc_err: false, MMC_CMD_RETRIES);
665}
666EXPORT_SYMBOL_GPL(mmc_switch);
667
668int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
669{
670 struct mmc_request mrq = {};
671 struct mmc_command cmd = {};
672 struct mmc_data data = {};
673 struct scatterlist sg;
674 struct mmc_ios *ios = &host->ios;
675 const u8 *tuning_block_pattern;
676 int size, err = 0;
677 u8 *data_buf;
678
679 if (ios->bus_width == MMC_BUS_WIDTH_8) {
680 tuning_block_pattern = tuning_blk_pattern_8bit;
681 size = sizeof(tuning_blk_pattern_8bit);
682 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
683 tuning_block_pattern = tuning_blk_pattern_4bit;
684 size = sizeof(tuning_blk_pattern_4bit);
685 } else
686 return -EINVAL;
687
688 data_buf = kzalloc(size, GFP_KERNEL);
689 if (!data_buf)
690 return -ENOMEM;
691
692 mrq.cmd = &cmd;
693 mrq.data = &data;
694
695 cmd.opcode = opcode;
696 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
697
698 data.blksz = size;
699 data.blocks = 1;
700 data.flags = MMC_DATA_READ;
701
702 /*
703 * According to the tuning specs, Tuning process
704 * is normally shorter 40 executions of CMD19,
705 * and timeout value should be shorter than 150 ms
706 */
707 data.timeout_ns = 150 * NSEC_PER_MSEC;
708
709 data.sg = &sg;
710 data.sg_len = 1;
711 sg_init_one(&sg, data_buf, size);
712
713 mmc_wait_for_req(host, mrq: &mrq);
714
715 if (cmd_error)
716 *cmd_error = cmd.error;
717
718 if (cmd.error) {
719 err = cmd.error;
720 goto out;
721 }
722
723 if (data.error) {
724 err = data.error;
725 goto out;
726 }
727
728 if (memcmp(p: data_buf, q: tuning_block_pattern, size))
729 err = -EIO;
730
731out:
732 kfree(objp: data_buf);
733 return err;
734}
735EXPORT_SYMBOL_GPL(mmc_send_tuning);
736
737int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
738{
739 struct mmc_command cmd = {};
740
741 /*
742 * eMMC specification specifies that CMD12 can be used to stop a tuning
743 * command, but SD specification does not, so do nothing unless it is
744 * eMMC.
745 */
746 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
747 return 0;
748
749 cmd.opcode = MMC_STOP_TRANSMISSION;
750 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
751
752 /*
753 * For drivers that override R1 to R1b, set an arbitrary timeout based
754 * on the tuning timeout i.e. 150ms.
755 */
756 cmd.busy_timeout = 150;
757
758 return mmc_wait_for_cmd(host, cmd: &cmd, retries: 0);
759}
760EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
761
762static int
763mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
764 u8 len)
765{
766 struct mmc_request mrq = {};
767 struct mmc_command cmd = {};
768 struct mmc_data data = {};
769 struct scatterlist sg;
770 u8 *data_buf;
771 u8 *test_buf;
772 int i, err;
773 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
774 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
775
776 /* dma onto stack is unsafe/nonportable, but callers to this
777 * routine normally provide temporary on-stack buffers ...
778 */
779 data_buf = kmalloc(size: len, GFP_KERNEL);
780 if (!data_buf)
781 return -ENOMEM;
782
783 if (len == 8)
784 test_buf = testdata_8bit;
785 else if (len == 4)
786 test_buf = testdata_4bit;
787 else {
788 pr_err("%s: Invalid bus_width %d\n",
789 mmc_hostname(host), len);
790 kfree(objp: data_buf);
791 return -EINVAL;
792 }
793
794 if (opcode == MMC_BUS_TEST_W)
795 memcpy(data_buf, test_buf, len);
796
797 mrq.cmd = &cmd;
798 mrq.data = &data;
799 cmd.opcode = opcode;
800 cmd.arg = 0;
801
802 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
803 * rely on callers to never use this with "native" calls for reading
804 * CSD or CID. Native versions of those commands use the R2 type,
805 * not R1 plus a data block.
806 */
807 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
808
809 data.blksz = len;
810 data.blocks = 1;
811 if (opcode == MMC_BUS_TEST_R)
812 data.flags = MMC_DATA_READ;
813 else
814 data.flags = MMC_DATA_WRITE;
815
816 data.sg = &sg;
817 data.sg_len = 1;
818 mmc_set_data_timeout(data: &data, card);
819 sg_init_one(&sg, data_buf, len);
820 mmc_wait_for_req(host, mrq: &mrq);
821 err = 0;
822 if (opcode == MMC_BUS_TEST_R) {
823 for (i = 0; i < len / 4; i++)
824 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
825 err = -EIO;
826 break;
827 }
828 }
829 kfree(objp: data_buf);
830
831 if (cmd.error)
832 return cmd.error;
833 if (data.error)
834 return data.error;
835
836 return err;
837}
838
839int mmc_bus_test(struct mmc_card *card, u8 bus_width)
840{
841 int width;
842
843 if (bus_width == MMC_BUS_WIDTH_8)
844 width = 8;
845 else if (bus_width == MMC_BUS_WIDTH_4)
846 width = 4;
847 else if (bus_width == MMC_BUS_WIDTH_1)
848 return 0; /* no need for test */
849 else
850 return -EINVAL;
851
852 /*
853 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
854 * is a problem. This improves chances that the test will work.
855 */
856 mmc_send_bus_test(card, host: card->host, MMC_BUS_TEST_W, len: width);
857 return mmc_send_bus_test(card, host: card->host, MMC_BUS_TEST_R, len: width);
858}
859
860static int mmc_send_hpi_cmd(struct mmc_card *card)
861{
862 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
863 struct mmc_host *host = card->host;
864 bool use_r1b_resp = false;
865 struct mmc_command cmd = {};
866 int err;
867
868 cmd.opcode = card->ext_csd.hpi_cmd;
869 cmd.arg = card->rca << 16 | 1;
870 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
871
872 if (cmd.opcode == MMC_STOP_TRANSMISSION)
873 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
874 busy_timeout_ms);
875
876 err = mmc_wait_for_cmd(host, cmd: &cmd, retries: 0);
877 if (err) {
878 pr_warn("%s: HPI error %d. Command response %#x\n",
879 mmc_hostname(host), err, cmd.resp[0]);
880 return err;
881 }
882
883 /* No need to poll when using HW busy detection. */
884 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
885 return 0;
886
887 /* Let's poll to find out when the HPI request completes. */
888 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
889}
890
891/**
892 * mmc_interrupt_hpi - Issue for High priority Interrupt
893 * @card: the MMC card associated with the HPI transfer
894 *
895 * Issued High Priority Interrupt, and check for card status
896 * until out-of prg-state.
897 */
898static int mmc_interrupt_hpi(struct mmc_card *card)
899{
900 int err;
901 u32 status;
902
903 if (!card->ext_csd.hpi_en) {
904 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
905 return 1;
906 }
907
908 err = mmc_send_status(card, &status);
909 if (err) {
910 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
911 goto out;
912 }
913
914 switch (R1_CURRENT_STATE(status)) {
915 case R1_STATE_IDLE:
916 case R1_STATE_READY:
917 case R1_STATE_STBY:
918 case R1_STATE_TRAN:
919 /*
920 * In idle and transfer states, HPI is not needed and the caller
921 * can issue the next intended command immediately
922 */
923 goto out;
924 case R1_STATE_PRG:
925 break;
926 default:
927 /* In all other states, it's illegal to issue HPI */
928 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
929 mmc_hostname(card->host), R1_CURRENT_STATE(status));
930 err = -EINVAL;
931 goto out;
932 }
933
934 err = mmc_send_hpi_cmd(card);
935out:
936 return err;
937}
938
939int mmc_can_ext_csd(struct mmc_card *card)
940{
941 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
942}
943
944static int mmc_read_bkops_status(struct mmc_card *card)
945{
946 int err;
947 u8 *ext_csd;
948
949 err = mmc_get_ext_csd(card, &ext_csd);
950 if (err)
951 return err;
952
953 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
954 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
955 kfree(objp: ext_csd);
956 return 0;
957}
958
959/**
960 * mmc_run_bkops - Run BKOPS for supported cards
961 * @card: MMC card to run BKOPS for
962 *
963 * Run background operations synchronously for cards having manual BKOPS
964 * enabled and in case it reports urgent BKOPS level.
965*/
966void mmc_run_bkops(struct mmc_card *card)
967{
968 int err;
969
970 if (!card->ext_csd.man_bkops_en)
971 return;
972
973 err = mmc_read_bkops_status(card);
974 if (err) {
975 pr_err("%s: Failed to read bkops status: %d\n",
976 mmc_hostname(card->host), err);
977 return;
978 }
979
980 if (!card->ext_csd.raw_bkops_status ||
981 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
982 return;
983
984 mmc_retune_hold(host: card->host);
985
986 /*
987 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
988 * synchronously. Future wise, we may consider to start BKOPS, for less
989 * urgent levels by using an asynchronous background task, when idle.
990 */
991 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
993 /*
994 * If the BKOPS timed out, the card is probably still busy in the
995 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
996 * it with a HPI command to get back into R1_STATE_TRAN.
997 */
998 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
999 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
1000 else if (err)
1001 pr_warn("%s: Error %d running bkops\n",
1002 mmc_hostname(card->host), err);
1003
1004 mmc_retune_release(host: card->host);
1005}
1006EXPORT_SYMBOL(mmc_run_bkops);
1007
1008static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1009{
1010 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1011 int err;
1012
1013 if (!card->ext_csd.cmdq_support)
1014 return -EOPNOTSUPP;
1015
1016 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1017 val, card->ext_csd.generic_cmd6_time);
1018 if (!err)
1019 card->ext_csd.cmdq_en = enable;
1020
1021 return err;
1022}
1023
1024int mmc_cmdq_enable(struct mmc_card *card)
1025{
1026 return mmc_cmdq_switch(card, enable: true);
1027}
1028EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1029
1030int mmc_cmdq_disable(struct mmc_card *card)
1031{
1032 return mmc_cmdq_switch(card, enable: false);
1033}
1034EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1035
1036int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1037{
1038 struct mmc_host *host = card->host;
1039 int err;
1040
1041 if (!mmc_can_sanitize(card)) {
1042 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1043 return -EOPNOTSUPP;
1044 }
1045
1046 if (!timeout_ms)
1047 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1048
1049 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1050
1051 mmc_retune_hold(host);
1052
1053 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1054 value: 1, timeout_ms, timing: 0, send_status: true, retry_crc_err: false, retries: 0);
1055 if (err)
1056 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1057
1058 /*
1059 * If the sanitize operation timed out, the card is probably still busy
1060 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1061 * it with a HPI command to get back into R1_STATE_TRAN.
1062 */
1063 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1064 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1065
1066 mmc_retune_release(host);
1067
1068 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1069 return err;
1070}
1071EXPORT_SYMBOL_GPL(mmc_sanitize);
1072

source code of linux/drivers/mmc/core/mmc_ops.c