1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale eSDHC controller driver.
4 *
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
7 * Copyright 2020 NXP
8 *
9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
10 * Anton Vorontsov <avorontsov@ru.mvista.com>
11 */
12
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19#include <linux/sys_soc.h>
20#include <linux/clk.h>
21#include <linux/ktime.h>
22#include <linux/dma-mapping.h>
23#include <linux/iopoll.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/mmc.h>
26#include "sdhci-pltfm.h"
27#include "sdhci-esdhc.h"
28
29#define VENDOR_V_22 0x12
30#define VENDOR_V_23 0x13
31
32#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
33
34struct esdhc_clk_fixup {
35 const unsigned int sd_dflt_max_clk;
36 const unsigned int max_clk[MMC_TIMING_NUM];
37};
38
39static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
40 .sd_dflt_max_clk = 25000000,
41 .max_clk[MMC_TIMING_MMC_HS] = 46500000,
42 .max_clk[MMC_TIMING_SD_HS] = 46500000,
43};
44
45static const struct esdhc_clk_fixup ls1043a_esdhc_clk = {
46 .sd_dflt_max_clk = 25000000,
47 .max_clk[MMC_TIMING_UHS_SDR104] = 116700000,
48 .max_clk[MMC_TIMING_MMC_HS200] = 116700000,
49};
50
51static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
52 .sd_dflt_max_clk = 25000000,
53 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
54 .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
55};
56
57static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
58 .sd_dflt_max_clk = 25000000,
59 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
60 .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
61};
62
63static const struct esdhc_clk_fixup p1010_esdhc_clk = {
64 .sd_dflt_max_clk = 20000000,
65 .max_clk[MMC_TIMING_LEGACY] = 20000000,
66 .max_clk[MMC_TIMING_MMC_HS] = 42000000,
67 .max_clk[MMC_TIMING_SD_HS] = 40000000,
68};
69
70static const struct of_device_id sdhci_esdhc_of_match[] = {
71 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
72 { .compatible = "fsl,ls1043a-esdhc", .data = &ls1043a_esdhc_clk},
73 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
74 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
75 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
76 { .compatible = "fsl,mpc8379-esdhc" },
77 { .compatible = "fsl,mpc8536-esdhc" },
78 { .compatible = "fsl,esdhc" },
79 { }
80};
81MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
82
83struct sdhci_esdhc {
84 u8 vendor_ver;
85 u8 spec_ver;
86 bool quirk_incorrect_hostver;
87 bool quirk_limited_clk_division;
88 bool quirk_unreliable_pulse_detection;
89 bool quirk_tuning_erratum_type1;
90 bool quirk_tuning_erratum_type2;
91 bool quirk_ignore_data_inhibit;
92 bool quirk_delay_before_data_reset;
93 bool quirk_trans_complete_erratum;
94 bool in_sw_tuning;
95 unsigned int peripheral_clock;
96 const struct esdhc_clk_fixup *clk_fixup;
97 u32 div_ratio;
98};
99
100/**
101 * esdhc_readl_fixup - Fixup the value read from incompatible eSDHC register
102 * to make it compatible with SD spec.
103 *
104 * @host: pointer to sdhci_host
105 * @spec_reg: SD spec register address
106 * @value: 32bit eSDHC register value on spec_reg address
107 *
108 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
109 * registers are 32 bits. There are differences in register size, register
110 * address, register function, bit position and function between eSDHC spec
111 * and SD spec.
112 *
113 * Return a fixed up register value
114 */
115static u32 esdhc_readl_fixup(struct sdhci_host *host,
116 int spec_reg, u32 value)
117{
118 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
119 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
120 u32 ret;
121
122 /*
123 * The bit of ADMA flag in eSDHC is not compatible with standard
124 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
125 * supported by eSDHC.
126 * And for many FSL eSDHC controller, the reset value of field
127 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
128 * only these vendor version is greater than 2.2/0x12 support ADMA.
129 */
130 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
131 if (esdhc->vendor_ver > VENDOR_V_22) {
132 ret = value | SDHCI_CAN_DO_ADMA2;
133 return ret;
134 }
135 }
136
137 /*
138 * The DAT[3:0] line signal levels and the CMD line signal level are
139 * not compatible with standard SDHC register. The line signal levels
140 * DAT[7:0] are at bits 31:24 and the command line signal level is at
141 * bit 23. All other bits are the same as in the standard SDHC
142 * register.
143 */
144 if (spec_reg == SDHCI_PRESENT_STATE) {
145 ret = value & 0x000fffff;
146 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
147 ret |= (value << 1) & SDHCI_CMD_LVL;
148
149 /*
150 * Some controllers have unreliable Data Line Active
151 * bit for commands with busy signal. This affects
152 * Command Inhibit (data) bit. Just ignore it since
153 * MMC core driver has already polled card status
154 * with CMD13 after any command with busy siganl.
155 */
156 if (esdhc->quirk_ignore_data_inhibit)
157 ret &= ~SDHCI_DATA_INHIBIT;
158 return ret;
159 }
160
161 /*
162 * DTS properties of mmc host are used to enable each speed mode
163 * according to soc and board capability. So clean up
164 * SDR50/SDR104/DDR50 support bits here.
165 */
166 if (spec_reg == SDHCI_CAPABILITIES_1) {
167 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
168 SDHCI_SUPPORT_DDR50);
169 return ret;
170 }
171
172 ret = value;
173 return ret;
174}
175
176static u16 esdhc_readw_fixup(struct sdhci_host *host,
177 int spec_reg, u32 value)
178{
179 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
180 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
181 u16 ret;
182 int shift = (spec_reg & 0x2) * 8;
183
184 if (spec_reg == SDHCI_TRANSFER_MODE)
185 return pltfm_host->xfer_mode_shadow;
186
187 if (spec_reg == SDHCI_HOST_VERSION)
188 ret = value & 0xffff;
189 else
190 ret = (value >> shift) & 0xffff;
191 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
192 * vendor version and spec version information.
193 */
194 if ((spec_reg == SDHCI_HOST_VERSION) &&
195 (esdhc->quirk_incorrect_hostver))
196 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
197 return ret;
198}
199
200static u8 esdhc_readb_fixup(struct sdhci_host *host,
201 int spec_reg, u32 value)
202{
203 u8 ret;
204 u8 dma_bits;
205 int shift = (spec_reg & 0x3) * 8;
206
207 ret = (value >> shift) & 0xff;
208
209 /*
210 * "DMA select" locates at offset 0x28 in SD specification, but on
211 * P5020 or P3041, it locates at 0x29.
212 */
213 if (spec_reg == SDHCI_HOST_CONTROL) {
214 /* DMA select is 22,23 bits in Protocol Control Register */
215 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
216 /* fixup the result */
217 ret &= ~SDHCI_CTRL_DMA_MASK;
218 ret |= dma_bits;
219 }
220 return ret;
221}
222
223/**
224 * esdhc_writel_fixup - Fixup the SD spec register value so that it could be
225 * written into eSDHC register.
226 *
227 * @host: pointer to sdhci_host
228 * @spec_reg: SD spec register address
229 * @value: 8/16/32bit SD spec register value that would be written
230 * @old_value: 32bit eSDHC register value on spec_reg address
231 *
232 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
233 * registers are 32 bits. There are differences in register size, register
234 * address, register function, bit position and function between eSDHC spec
235 * and SD spec.
236 *
237 * Return a fixed up register value
238 */
239static u32 esdhc_writel_fixup(struct sdhci_host *host,
240 int spec_reg, u32 value, u32 old_value)
241{
242 u32 ret;
243
244 /*
245 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
246 * when SYSCTL[RSTD] is set for some special operations.
247 * No any impact on other operation.
248 */
249 if (spec_reg == SDHCI_INT_ENABLE)
250 ret = value | SDHCI_INT_BLK_GAP;
251 else
252 ret = value;
253
254 return ret;
255}
256
257static u32 esdhc_writew_fixup(struct sdhci_host *host,
258 int spec_reg, u16 value, u32 old_value)
259{
260 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
261 int shift = (spec_reg & 0x2) * 8;
262 u32 ret;
263
264 switch (spec_reg) {
265 case SDHCI_TRANSFER_MODE:
266 /*
267 * Postpone this write, we must do it together with a
268 * command write that is down below. Return old value.
269 */
270 pltfm_host->xfer_mode_shadow = value;
271 return old_value;
272 case SDHCI_COMMAND:
273 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
274 return ret;
275 }
276
277 ret = old_value & (~(0xffff << shift));
278 ret |= (value << shift);
279
280 if (spec_reg == SDHCI_BLOCK_SIZE) {
281 /*
282 * Two last DMA bits are reserved, and first one is used for
283 * non-standard blksz of 4096 bytes that we don't support
284 * yet. So clear the DMA boundary bits.
285 */
286 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
287 }
288 return ret;
289}
290
291static u32 esdhc_writeb_fixup(struct sdhci_host *host,
292 int spec_reg, u8 value, u32 old_value)
293{
294 u32 ret;
295 u32 dma_bits;
296 u8 tmp;
297 int shift = (spec_reg & 0x3) * 8;
298
299 /*
300 * eSDHC doesn't have a standard power control register, so we do
301 * nothing here to avoid incorrect operation.
302 */
303 if (spec_reg == SDHCI_POWER_CONTROL)
304 return old_value;
305 /*
306 * "DMA select" location is offset 0x28 in SD specification, but on
307 * P5020 or P3041, it's located at 0x29.
308 */
309 if (spec_reg == SDHCI_HOST_CONTROL) {
310 /*
311 * If host control register is not standard, exit
312 * this function
313 */
314 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
315 return old_value;
316
317 /* DMA select is 22,23 bits in Protocol Control Register */
318 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
319 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
320 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
321 (old_value & SDHCI_CTRL_DMA_MASK);
322 ret = (ret & (~0xff)) | tmp;
323
324 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
325 ret &= ~ESDHC_HOST_CONTROL_RES;
326 return ret;
327 }
328
329 ret = (old_value & (~(0xff << shift))) | (value << shift);
330 return ret;
331}
332
333static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
334{
335 u32 ret;
336 u32 value;
337
338 if (reg == SDHCI_CAPABILITIES_1)
339 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
340 else
341 value = ioread32be(host->ioaddr + reg);
342
343 ret = esdhc_readl_fixup(host, spec_reg: reg, value);
344
345 return ret;
346}
347
348static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
349{
350 u32 ret;
351 u32 value;
352
353 if (reg == SDHCI_CAPABILITIES_1)
354 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
355 else
356 value = ioread32(host->ioaddr + reg);
357
358 ret = esdhc_readl_fixup(host, spec_reg: reg, value);
359
360 return ret;
361}
362
363static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
364{
365 u16 ret;
366 u32 value;
367 int base = reg & ~0x3;
368
369 value = ioread32be(host->ioaddr + base);
370 ret = esdhc_readw_fixup(host, spec_reg: reg, value);
371 return ret;
372}
373
374static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
375{
376 u16 ret;
377 u32 value;
378 int base = reg & ~0x3;
379
380 value = ioread32(host->ioaddr + base);
381 ret = esdhc_readw_fixup(host, spec_reg: reg, value);
382 return ret;
383}
384
385static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
386{
387 u8 ret;
388 u32 value;
389 int base = reg & ~0x3;
390
391 value = ioread32be(host->ioaddr + base);
392 ret = esdhc_readb_fixup(host, spec_reg: reg, value);
393 return ret;
394}
395
396static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
397{
398 u8 ret;
399 u32 value;
400 int base = reg & ~0x3;
401
402 value = ioread32(host->ioaddr + base);
403 ret = esdhc_readb_fixup(host, spec_reg: reg, value);
404 return ret;
405}
406
407static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
408{
409 u32 value;
410
411 value = esdhc_writel_fixup(host, spec_reg: reg, value: val, old_value: 0);
412 iowrite32be(value, host->ioaddr + reg);
413}
414
415static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
416{
417 u32 value;
418
419 value = esdhc_writel_fixup(host, spec_reg: reg, value: val, old_value: 0);
420 iowrite32(value, host->ioaddr + reg);
421}
422
423static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
424{
425 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
426 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
427 int base = reg & ~0x3;
428 u32 value;
429 u32 ret;
430
431 value = ioread32be(host->ioaddr + base);
432 ret = esdhc_writew_fixup(host, spec_reg: reg, value: val, old_value: value);
433 if (reg != SDHCI_TRANSFER_MODE)
434 iowrite32be(ret, host->ioaddr + base);
435
436 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
437 * 1us later after ESDHC_EXTN is set.
438 */
439 if (base == ESDHC_SYSTEM_CONTROL_2) {
440 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
441 esdhc->in_sw_tuning) {
442 udelay(1);
443 ret |= ESDHC_SMPCLKSEL;
444 iowrite32be(ret, host->ioaddr + base);
445 }
446 }
447}
448
449static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
450{
451 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
452 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
453 int base = reg & ~0x3;
454 u32 value;
455 u32 ret;
456
457 value = ioread32(host->ioaddr + base);
458 ret = esdhc_writew_fixup(host, spec_reg: reg, value: val, old_value: value);
459 if (reg != SDHCI_TRANSFER_MODE)
460 iowrite32(ret, host->ioaddr + base);
461
462 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
463 * 1us later after ESDHC_EXTN is set.
464 */
465 if (base == ESDHC_SYSTEM_CONTROL_2) {
466 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
467 esdhc->in_sw_tuning) {
468 udelay(1);
469 ret |= ESDHC_SMPCLKSEL;
470 iowrite32(ret, host->ioaddr + base);
471 }
472 }
473}
474
475static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
476{
477 int base = reg & ~0x3;
478 u32 value;
479 u32 ret;
480
481 value = ioread32be(host->ioaddr + base);
482 ret = esdhc_writeb_fixup(host, spec_reg: reg, value: val, old_value: value);
483 iowrite32be(ret, host->ioaddr + base);
484}
485
486static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
487{
488 int base = reg & ~0x3;
489 u32 value;
490 u32 ret;
491
492 value = ioread32(host->ioaddr + base);
493 ret = esdhc_writeb_fixup(host, spec_reg: reg, value: val, old_value: value);
494 iowrite32(ret, host->ioaddr + base);
495}
496
497/*
498 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
499 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
500 * and Block Gap Event(IRQSTAT[BGE]) are also set.
501 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
502 * and re-issue the entire read transaction from beginning.
503 */
504static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
505{
506 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
507 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
508 bool applicable;
509 dma_addr_t dmastart;
510 dma_addr_t dmanow;
511
512 applicable = (intmask & SDHCI_INT_DATA_END) &&
513 (intmask & SDHCI_INT_BLK_GAP) &&
514 (esdhc->vendor_ver == VENDOR_V_23);
515 if (!applicable)
516 return;
517
518 host->data->error = 0;
519 dmastart = sg_dma_address(host->data->sg);
520 dmanow = dmastart + host->data->bytes_xfered;
521 /*
522 * Force update to the next DMA block boundary.
523 */
524 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
525 SDHCI_DEFAULT_BOUNDARY_SIZE;
526 host->data->bytes_xfered = dmanow - dmastart;
527 sdhci_writel(host, val: dmanow, SDHCI_DMA_ADDRESS);
528}
529
530static int esdhc_of_enable_dma(struct sdhci_host *host)
531{
532 int ret;
533 u32 value;
534 struct device *dev = mmc_dev(host->mmc);
535
536 if (of_device_is_compatible(device: dev->of_node, "fsl,ls1043a-esdhc") ||
537 of_device_is_compatible(device: dev->of_node, "fsl,ls1046a-esdhc")) {
538 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
539 if (ret)
540 return ret;
541 }
542
543 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
544
545 if (of_dma_is_coherent(np: dev->of_node))
546 value |= ESDHC_DMA_SNOOP;
547 else
548 value &= ~ESDHC_DMA_SNOOP;
549
550 sdhci_writel(host, val: value, ESDHC_DMA_SYSCTL);
551 return 0;
552}
553
554static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
555{
556 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
557 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
558
559 if (esdhc->peripheral_clock)
560 return esdhc->peripheral_clock;
561 else
562 return pltfm_host->clock;
563}
564
565static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
566{
567 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
568 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
569 unsigned int clock;
570
571 if (esdhc->peripheral_clock)
572 clock = esdhc->peripheral_clock;
573 else
574 clock = pltfm_host->clock;
575 return clock / 256 / 16;
576}
577
578static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
579{
580 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
581 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
582 ktime_t timeout;
583 u32 val, clk_en;
584
585 clk_en = ESDHC_CLOCK_SDCLKEN;
586
587 /*
588 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
589 * is 2.2 or lower.
590 */
591 if (esdhc->vendor_ver <= VENDOR_V_22)
592 clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
593 ESDHC_CLOCK_PEREN);
594
595 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
596
597 if (enable)
598 val |= clk_en;
599 else
600 val &= ~clk_en;
601
602 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
603
604 /*
605 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
606 * wait clock stable bit which does not exist.
607 */
608 timeout = ktime_add_ms(kt: ktime_get(), msec: 20);
609 while (esdhc->vendor_ver > VENDOR_V_22) {
610 bool timedout = ktime_after(cmp1: ktime_get(), cmp2: timeout);
611
612 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
613 break;
614 if (timedout) {
615 pr_err("%s: Internal clock never stabilised.\n",
616 mmc_hostname(host->mmc));
617 break;
618 }
619 usleep_range(min: 10, max: 20);
620 }
621}
622
623static void esdhc_flush_async_fifo(struct sdhci_host *host)
624{
625 ktime_t timeout;
626 u32 val;
627
628 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
629 val |= ESDHC_FLUSH_ASYNC_FIFO;
630 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
631
632 /* Wait max 20 ms */
633 timeout = ktime_add_ms(kt: ktime_get(), msec: 20);
634 while (1) {
635 bool timedout = ktime_after(cmp1: ktime_get(), cmp2: timeout);
636
637 if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
638 ESDHC_FLUSH_ASYNC_FIFO))
639 break;
640 if (timedout) {
641 pr_err("%s: flushing asynchronous FIFO timeout.\n",
642 mmc_hostname(host->mmc));
643 break;
644 }
645 usleep_range(min: 10, max: 20);
646 }
647}
648
649static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
650{
651 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
652 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
653 unsigned int pre_div = 1, div = 1;
654 unsigned int clock_fixup = 0;
655 ktime_t timeout;
656 u32 temp;
657
658 if (clock == 0) {
659 host->mmc->actual_clock = 0;
660 esdhc_clock_enable(host, enable: false);
661 return;
662 }
663
664 /* Start pre_div at 2 for vendor version < 2.3. */
665 if (esdhc->vendor_ver < VENDOR_V_23)
666 pre_div = 2;
667
668 /* Fix clock value. */
669 if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
670 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
671 clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
672 else if (esdhc->clk_fixup)
673 clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
674
675 if (clock_fixup == 0 || clock < clock_fixup)
676 clock_fixup = clock;
677
678 /* Calculate pre_div and div. */
679 while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
680 pre_div *= 2;
681
682 while (host->max_clk / pre_div / div > clock_fixup && div < 16)
683 div++;
684
685 esdhc->div_ratio = pre_div * div;
686
687 /* Limit clock division for HS400 200MHz clock for quirk. */
688 if (esdhc->quirk_limited_clk_division &&
689 clock == MMC_HS200_MAX_DTR &&
690 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
691 host->flags & SDHCI_HS400_TUNING)) {
692 if (esdhc->div_ratio <= 4) {
693 pre_div = 4;
694 div = 1;
695 } else if (esdhc->div_ratio <= 8) {
696 pre_div = 4;
697 div = 2;
698 } else if (esdhc->div_ratio <= 12) {
699 pre_div = 4;
700 div = 3;
701 } else {
702 pr_warn("%s: using unsupported clock division.\n",
703 mmc_hostname(host->mmc));
704 }
705 esdhc->div_ratio = pre_div * div;
706 }
707
708 host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
709
710 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
711 clock, host->mmc->actual_clock);
712
713 /* Set clock division into register. */
714 pre_div >>= 1;
715 div--;
716
717 esdhc_clock_enable(host, enable: false);
718
719 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
720 temp &= ~ESDHC_CLOCK_MASK;
721 temp |= ((div << ESDHC_DIVIDER_SHIFT) |
722 (pre_div << ESDHC_PREDIV_SHIFT));
723 sdhci_writel(host, val: temp, ESDHC_SYSTEM_CONTROL);
724
725 /*
726 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
727 * wait clock stable bit which does not exist.
728 */
729 timeout = ktime_add_ms(kt: ktime_get(), msec: 20);
730 while (esdhc->vendor_ver > VENDOR_V_22) {
731 bool timedout = ktime_after(cmp1: ktime_get(), cmp2: timeout);
732
733 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
734 break;
735 if (timedout) {
736 pr_err("%s: Internal clock never stabilised.\n",
737 mmc_hostname(host->mmc));
738 break;
739 }
740 usleep_range(min: 10, max: 20);
741 }
742
743 /* Additional setting for HS400. */
744 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
745 clock == MMC_HS200_MAX_DTR) {
746 temp = sdhci_readl(host, ESDHC_TBCTL);
747 sdhci_writel(host, val: temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
748 temp = sdhci_readl(host, ESDHC_SDCLKCTL);
749 sdhci_writel(host, val: temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
750 esdhc_clock_enable(host, enable: true);
751
752 temp = sdhci_readl(host, ESDHC_DLLCFG0);
753 temp |= ESDHC_DLL_ENABLE;
754 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
755 temp |= ESDHC_DLL_FREQ_SEL;
756 sdhci_writel(host, val: temp, ESDHC_DLLCFG0);
757
758 temp |= ESDHC_DLL_RESET;
759 sdhci_writel(host, val: temp, ESDHC_DLLCFG0);
760 udelay(1);
761 temp &= ~ESDHC_DLL_RESET;
762 sdhci_writel(host, val: temp, ESDHC_DLLCFG0);
763
764 /* Wait max 20 ms */
765 if (read_poll_timeout(sdhci_readl, temp,
766 temp & ESDHC_DLL_STS_SLV_LOCK,
767 10, 20000, false,
768 host, ESDHC_DLLSTAT0))
769 pr_err("%s: timeout for delay chain lock.\n",
770 mmc_hostname(host->mmc));
771
772 temp = sdhci_readl(host, ESDHC_TBCTL);
773 sdhci_writel(host, val: temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
774
775 esdhc_clock_enable(host, enable: false);
776 esdhc_flush_async_fifo(host);
777 }
778 esdhc_clock_enable(host, enable: true);
779}
780
781static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
782{
783 u32 ctrl;
784
785 ctrl = sdhci_readl(host, ESDHC_PROCTL);
786 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
787 switch (width) {
788 case MMC_BUS_WIDTH_8:
789 ctrl |= ESDHC_CTRL_8BITBUS;
790 break;
791
792 case MMC_BUS_WIDTH_4:
793 ctrl |= ESDHC_CTRL_4BITBUS;
794 break;
795
796 default:
797 break;
798 }
799
800 sdhci_writel(host, val: ctrl, ESDHC_PROCTL);
801}
802
803static void esdhc_reset(struct sdhci_host *host, u8 mask)
804{
805 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
806 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
807 u32 val, bus_width = 0;
808
809 /*
810 * Add delay to make sure all the DMA transfers are finished
811 * for quirk.
812 */
813 if (esdhc->quirk_delay_before_data_reset &&
814 (mask & SDHCI_RESET_DATA) &&
815 (host->flags & SDHCI_REQ_USE_DMA))
816 mdelay(5);
817
818 /*
819 * Save bus-width for eSDHC whose vendor version is 2.2
820 * or lower for data reset.
821 */
822 if ((mask & SDHCI_RESET_DATA) &&
823 (esdhc->vendor_ver <= VENDOR_V_22)) {
824 val = sdhci_readl(host, ESDHC_PROCTL);
825 bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
826 }
827
828 sdhci_reset(host, mask);
829
830 /*
831 * Restore bus-width setting and interrupt registers for eSDHC
832 * whose vendor version is 2.2 or lower for data reset.
833 */
834 if ((mask & SDHCI_RESET_DATA) &&
835 (esdhc->vendor_ver <= VENDOR_V_22)) {
836 val = sdhci_readl(host, ESDHC_PROCTL);
837 val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
838 val |= bus_width;
839 sdhci_writel(host, val, ESDHC_PROCTL);
840
841 sdhci_writel(host, val: host->ier, SDHCI_INT_ENABLE);
842 sdhci_writel(host, val: host->ier, SDHCI_SIGNAL_ENABLE);
843 }
844
845 /*
846 * Some bits have to be cleaned manually for eSDHC whose spec
847 * version is higher than 3.0 for all reset.
848 */
849 if ((mask & SDHCI_RESET_ALL) &&
850 (esdhc->spec_ver >= SDHCI_SPEC_300)) {
851 val = sdhci_readl(host, ESDHC_TBCTL);
852 val &= ~ESDHC_TB_EN;
853 sdhci_writel(host, val, ESDHC_TBCTL);
854
855 /*
856 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
857 * 0 for quirk.
858 */
859 if (esdhc->quirk_unreliable_pulse_detection) {
860 val = sdhci_readl(host, ESDHC_DLLCFG1);
861 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
862 sdhci_writel(host, val, ESDHC_DLLCFG1);
863 }
864 }
865}
866
867/* The SCFG, Supplemental Configuration Unit, provides SoC specific
868 * configuration and status registers for the device. There is a
869 * SDHC IO VSEL control register on SCFG for some platforms. It's
870 * used to support SDHC IO voltage switching.
871 */
872static const struct of_device_id scfg_device_ids[] = {
873 { .compatible = "fsl,t1040-scfg", },
874 { .compatible = "fsl,ls1012a-scfg", },
875 { .compatible = "fsl,ls1046a-scfg", },
876 {}
877};
878
879/* SDHC IO VSEL control register definition */
880#define SCFG_SDHCIOVSELCR 0x408
881#define SDHCIOVSELCR_TGLEN 0x80000000
882#define SDHCIOVSELCR_VSELVAL 0x60000000
883#define SDHCIOVSELCR_SDHC_VS 0x00000001
884
885static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
886 struct mmc_ios *ios)
887{
888 struct sdhci_host *host = mmc_priv(host: mmc);
889 struct device_node *scfg_node;
890 void __iomem *scfg_base = NULL;
891 u32 sdhciovselcr;
892 u32 val;
893
894 /*
895 * Signal Voltage Switching is only applicable for Host Controllers
896 * v3.00 and above.
897 */
898 if (host->version < SDHCI_SPEC_300)
899 return 0;
900
901 val = sdhci_readl(host, ESDHC_PROCTL);
902
903 switch (ios->signal_voltage) {
904 case MMC_SIGNAL_VOLTAGE_330:
905 val &= ~ESDHC_VOLT_SEL;
906 sdhci_writel(host, val, ESDHC_PROCTL);
907 return 0;
908 case MMC_SIGNAL_VOLTAGE_180:
909 scfg_node = of_find_matching_node(NULL, matches: scfg_device_ids);
910 if (scfg_node)
911 scfg_base = of_iomap(node: scfg_node, index: 0);
912 of_node_put(node: scfg_node);
913 if (scfg_base) {
914 sdhciovselcr = SDHCIOVSELCR_TGLEN |
915 SDHCIOVSELCR_VSELVAL;
916 iowrite32be(sdhciovselcr,
917 scfg_base + SCFG_SDHCIOVSELCR);
918
919 val |= ESDHC_VOLT_SEL;
920 sdhci_writel(host, val, ESDHC_PROCTL);
921 mdelay(5);
922
923 sdhciovselcr = SDHCIOVSELCR_TGLEN |
924 SDHCIOVSELCR_SDHC_VS;
925 iowrite32be(sdhciovselcr,
926 scfg_base + SCFG_SDHCIOVSELCR);
927 iounmap(addr: scfg_base);
928 } else {
929 val |= ESDHC_VOLT_SEL;
930 sdhci_writel(host, val, ESDHC_PROCTL);
931 }
932 return 0;
933 default:
934 return 0;
935 }
936}
937
938static struct soc_device_attribute soc_tuning_erratum_type1[] = {
939 { .family = "QorIQ T1023", },
940 { .family = "QorIQ T1040", },
941 { .family = "QorIQ T2080", },
942 { .family = "QorIQ LS1021A", },
943 { /* sentinel */ }
944};
945
946static struct soc_device_attribute soc_tuning_erratum_type2[] = {
947 { .family = "QorIQ LS1012A", },
948 { .family = "QorIQ LS1043A", },
949 { .family = "QorIQ LS1046A", },
950 { .family = "QorIQ LS1080A", },
951 { .family = "QorIQ LS2080A", },
952 { .family = "QorIQ LA1575A", },
953 { /* sentinel */ }
954};
955
956static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
957{
958 u32 val;
959
960 esdhc_clock_enable(host, enable: false);
961 esdhc_flush_async_fifo(host);
962
963 val = sdhci_readl(host, ESDHC_TBCTL);
964 if (enable)
965 val |= ESDHC_TB_EN;
966 else
967 val &= ~ESDHC_TB_EN;
968 sdhci_writel(host, val, ESDHC_TBCTL);
969
970 esdhc_clock_enable(host, enable: true);
971}
972
973static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
974 u8 *window_end)
975{
976 u32 val;
977
978 /* Write TBCTL[11:8]=4'h8 */
979 val = sdhci_readl(host, ESDHC_TBCTL);
980 val &= ~(0xf << 8);
981 val |= 8 << 8;
982 sdhci_writel(host, val, ESDHC_TBCTL);
983
984 mdelay(1);
985
986 /* Read TBCTL[31:0] register and rewrite again */
987 val = sdhci_readl(host, ESDHC_TBCTL);
988 sdhci_writel(host, val, ESDHC_TBCTL);
989
990 mdelay(1);
991
992 /* Read the TBSTAT[31:0] register twice */
993 val = sdhci_readl(host, ESDHC_TBSTAT);
994 val = sdhci_readl(host, ESDHC_TBSTAT);
995
996 *window_end = val & 0xff;
997 *window_start = (val >> 8) & 0xff;
998}
999
1000static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
1001 u8 *window_end)
1002{
1003 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1004 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
1005 u8 start_ptr, end_ptr;
1006
1007 if (esdhc->quirk_tuning_erratum_type1) {
1008 *window_start = 5 * esdhc->div_ratio;
1009 *window_end = 3 * esdhc->div_ratio;
1010 return;
1011 }
1012
1013 esdhc_tuning_window_ptr(host, window_start: &start_ptr, window_end: &end_ptr);
1014
1015 /* Reset data lines by setting ESDHCCTL[RSTD] */
1016 sdhci_reset(host, SDHCI_RESET_DATA);
1017 /* Write 32'hFFFF_FFFF to IRQSTAT register */
1018 sdhci_writel(host, val: 0xFFFFFFFF, SDHCI_INT_STATUS);
1019
1020 /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1021 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1022 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1023 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1024 */
1025
1026 if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1027 *window_start = 8 * esdhc->div_ratio;
1028 *window_end = 4 * esdhc->div_ratio;
1029 } else {
1030 *window_start = 5 * esdhc->div_ratio;
1031 *window_end = 3 * esdhc->div_ratio;
1032 }
1033}
1034
1035static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1036 u8 window_start, u8 window_end)
1037{
1038 struct sdhci_host *host = mmc_priv(host: mmc);
1039 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1040 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
1041 u32 val;
1042 int ret;
1043
1044 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1045 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1046 ESDHC_WNDW_STRT_PTR_MASK;
1047 val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1048 sdhci_writel(host, val, ESDHC_TBPTR);
1049
1050 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1051 val = sdhci_readl(host, ESDHC_TBCTL);
1052 val &= ~ESDHC_TB_MODE_MASK;
1053 val |= ESDHC_TB_MODE_SW;
1054 sdhci_writel(host, val, ESDHC_TBCTL);
1055
1056 esdhc->in_sw_tuning = true;
1057 ret = sdhci_execute_tuning(mmc, opcode);
1058 esdhc->in_sw_tuning = false;
1059 return ret;
1060}
1061
1062static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1063{
1064 struct sdhci_host *host = mmc_priv(host: mmc);
1065 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1066 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
1067 u8 window_start, window_end;
1068 int ret, retries = 1;
1069 bool hs400_tuning;
1070 unsigned int clk;
1071 u32 val;
1072
1073 /* For tuning mode, the sd clock divisor value
1074 * must be larger than 3 according to reference manual.
1075 */
1076 clk = esdhc->peripheral_clock / 3;
1077 if (host->clock > clk)
1078 esdhc_of_set_clock(host, clock: clk);
1079
1080 esdhc_tuning_block_enable(host, enable: true);
1081
1082 /*
1083 * The eSDHC controller takes the data timeout value into account
1084 * during tuning. If the SD card is too slow sending the response, the
1085 * timer will expire and a "Buffer Read Ready" interrupt without data
1086 * is triggered. This leads to tuning errors.
1087 *
1088 * Just set the timeout to the maximum value because the core will
1089 * already take care of it in sdhci_send_tuning().
1090 */
1091 sdhci_writeb(host, val: 0xe, SDHCI_TIMEOUT_CONTROL);
1092
1093 hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1094
1095 do {
1096 if (esdhc->quirk_limited_clk_division &&
1097 hs400_tuning)
1098 esdhc_of_set_clock(host, clock: host->clock);
1099
1100 /* Do HW tuning */
1101 val = sdhci_readl(host, ESDHC_TBCTL);
1102 val &= ~ESDHC_TB_MODE_MASK;
1103 val |= ESDHC_TB_MODE_3;
1104 sdhci_writel(host, val, ESDHC_TBCTL);
1105
1106 ret = sdhci_execute_tuning(mmc, opcode);
1107 if (ret)
1108 break;
1109
1110 /* For type2 affected platforms of the tuning erratum,
1111 * tuning may succeed although eSDHC might not have
1112 * tuned properly. Need to check tuning window.
1113 */
1114 if (esdhc->quirk_tuning_erratum_type2 &&
1115 !host->tuning_err) {
1116 esdhc_tuning_window_ptr(host, window_start: &window_start,
1117 window_end: &window_end);
1118 if (abs(window_start - window_end) >
1119 (4 * esdhc->div_ratio + 2))
1120 host->tuning_err = -EAGAIN;
1121 }
1122
1123 /* If HW tuning fails and triggers erratum,
1124 * try workaround.
1125 */
1126 ret = host->tuning_err;
1127 if (ret == -EAGAIN &&
1128 (esdhc->quirk_tuning_erratum_type1 ||
1129 esdhc->quirk_tuning_erratum_type2)) {
1130 /* Recover HS400 tuning flag */
1131 if (hs400_tuning)
1132 host->flags |= SDHCI_HS400_TUNING;
1133 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1134 mmc_hostname(mmc));
1135 /* Do SW tuning */
1136 esdhc_prepare_sw_tuning(host, window_start: &window_start,
1137 window_end: &window_end);
1138 ret = esdhc_execute_sw_tuning(mmc, opcode,
1139 window_start,
1140 window_end);
1141 if (ret)
1142 break;
1143
1144 /* Retry both HW/SW tuning with reduced clock. */
1145 ret = host->tuning_err;
1146 if (ret == -EAGAIN && retries) {
1147 /* Recover HS400 tuning flag */
1148 if (hs400_tuning)
1149 host->flags |= SDHCI_HS400_TUNING;
1150
1151 clk = host->max_clk / (esdhc->div_ratio + 1);
1152 esdhc_of_set_clock(host, clock: clk);
1153 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1154 mmc_hostname(mmc));
1155 } else {
1156 break;
1157 }
1158 } else {
1159 break;
1160 }
1161 } while (retries--);
1162
1163 if (ret) {
1164 esdhc_tuning_block_enable(host, enable: false);
1165 } else if (hs400_tuning) {
1166 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1167 val |= ESDHC_FLW_CTL_BG;
1168 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1169 }
1170
1171 return ret;
1172}
1173
1174static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1175 unsigned int timing)
1176{
1177 u32 val;
1178
1179 /*
1180 * There are specific registers setting for HS400 mode.
1181 * Clean all of them if controller is in HS400 mode to
1182 * exit HS400 mode before re-setting any speed mode.
1183 */
1184 val = sdhci_readl(host, ESDHC_TBCTL);
1185 if (val & ESDHC_HS400_MODE) {
1186 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1187 val &= ~ESDHC_FLW_CTL_BG;
1188 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1189
1190 val = sdhci_readl(host, ESDHC_SDCLKCTL);
1191 val &= ~ESDHC_CMD_CLK_CTL;
1192 sdhci_writel(host, val, ESDHC_SDCLKCTL);
1193
1194 esdhc_clock_enable(host, enable: false);
1195 val = sdhci_readl(host, ESDHC_TBCTL);
1196 val &= ~ESDHC_HS400_MODE;
1197 sdhci_writel(host, val, ESDHC_TBCTL);
1198 esdhc_clock_enable(host, enable: true);
1199
1200 val = sdhci_readl(host, ESDHC_DLLCFG0);
1201 val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1202 sdhci_writel(host, val, ESDHC_DLLCFG0);
1203
1204 val = sdhci_readl(host, ESDHC_TBCTL);
1205 val &= ~ESDHC_HS400_WNDW_ADJUST;
1206 sdhci_writel(host, val, ESDHC_TBCTL);
1207
1208 esdhc_tuning_block_enable(host, enable: false);
1209 }
1210
1211 if (timing == MMC_TIMING_MMC_HS400)
1212 esdhc_tuning_block_enable(host, enable: true);
1213 else
1214 sdhci_set_uhs_signaling(host, timing);
1215}
1216
1217static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1218{
1219 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1220 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(host: pltfm_host);
1221 u32 command;
1222
1223 if (esdhc->quirk_trans_complete_erratum) {
1224 command = SDHCI_GET_CMD(sdhci_readw(host,
1225 SDHCI_COMMAND));
1226 if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1227 sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1228 intmask & SDHCI_INT_DATA_END) {
1229 intmask &= ~SDHCI_INT_DATA_END;
1230 sdhci_writel(host, SDHCI_INT_DATA_END,
1231 SDHCI_INT_STATUS);
1232 }
1233 }
1234 return intmask;
1235}
1236
1237#ifdef CONFIG_PM_SLEEP
1238static u32 esdhc_proctl;
1239static int esdhc_of_suspend(struct device *dev)
1240{
1241 struct sdhci_host *host = dev_get_drvdata(dev);
1242
1243 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1244
1245 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1246 mmc_retune_needed(host: host->mmc);
1247
1248 return sdhci_suspend_host(host);
1249}
1250
1251static int esdhc_of_resume(struct device *dev)
1252{
1253 struct sdhci_host *host = dev_get_drvdata(dev);
1254 int ret = sdhci_resume_host(host);
1255
1256 if (ret == 0) {
1257 /* Isn't this already done by sdhci_resume_host() ? --rmk */
1258 esdhc_of_enable_dma(host);
1259 sdhci_writel(host, val: esdhc_proctl, SDHCI_HOST_CONTROL);
1260 }
1261 return ret;
1262}
1263#endif
1264
1265static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1266 esdhc_of_suspend,
1267 esdhc_of_resume);
1268
1269static const struct sdhci_ops sdhci_esdhc_be_ops = {
1270 .read_l = esdhc_be_readl,
1271 .read_w = esdhc_be_readw,
1272 .read_b = esdhc_be_readb,
1273 .write_l = esdhc_be_writel,
1274 .write_w = esdhc_be_writew,
1275 .write_b = esdhc_be_writeb,
1276 .set_clock = esdhc_of_set_clock,
1277 .enable_dma = esdhc_of_enable_dma,
1278 .get_max_clock = esdhc_of_get_max_clock,
1279 .get_min_clock = esdhc_of_get_min_clock,
1280 .adma_workaround = esdhc_of_adma_workaround,
1281 .set_bus_width = esdhc_pltfm_set_bus_width,
1282 .reset = esdhc_reset,
1283 .set_uhs_signaling = esdhc_set_uhs_signaling,
1284 .irq = esdhc_irq,
1285};
1286
1287static const struct sdhci_ops sdhci_esdhc_le_ops = {
1288 .read_l = esdhc_le_readl,
1289 .read_w = esdhc_le_readw,
1290 .read_b = esdhc_le_readb,
1291 .write_l = esdhc_le_writel,
1292 .write_w = esdhc_le_writew,
1293 .write_b = esdhc_le_writeb,
1294 .set_clock = esdhc_of_set_clock,
1295 .enable_dma = esdhc_of_enable_dma,
1296 .get_max_clock = esdhc_of_get_max_clock,
1297 .get_min_clock = esdhc_of_get_min_clock,
1298 .adma_workaround = esdhc_of_adma_workaround,
1299 .set_bus_width = esdhc_pltfm_set_bus_width,
1300 .reset = esdhc_reset,
1301 .set_uhs_signaling = esdhc_set_uhs_signaling,
1302 .irq = esdhc_irq,
1303};
1304
1305static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1306 .quirks = ESDHC_DEFAULT_QUIRKS |
1307#ifdef CONFIG_PPC
1308 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1309#endif
1310 SDHCI_QUIRK_NO_CARD_NO_RESET |
1311 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1312 .ops = &sdhci_esdhc_be_ops,
1313};
1314
1315static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1316 .quirks = ESDHC_DEFAULT_QUIRKS |
1317 SDHCI_QUIRK_NO_CARD_NO_RESET |
1318 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1319 .ops = &sdhci_esdhc_le_ops,
1320};
1321
1322static struct soc_device_attribute soc_incorrect_hostver[] = {
1323 { .family = "QorIQ T4240", .revision = "1.0", },
1324 { .family = "QorIQ T4240", .revision = "2.0", },
1325 { /* sentinel */ }
1326};
1327
1328static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1329 { .family = "QorIQ LX2160A", .revision = "1.0", },
1330 { .family = "QorIQ LX2160A", .revision = "2.0", },
1331 { .family = "QorIQ LS1028A", .revision = "1.0", },
1332 { /* sentinel */ }
1333};
1334
1335static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1336 { .family = "QorIQ LX2160A", .revision = "1.0", },
1337 { .family = "QorIQ LX2160A", .revision = "2.0", },
1338 { .family = "QorIQ LS1028A", .revision = "1.0", },
1339 { /* sentinel */ }
1340};
1341
1342static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1343{
1344 const struct of_device_id *match;
1345 struct sdhci_pltfm_host *pltfm_host;
1346 struct sdhci_esdhc *esdhc;
1347 struct device_node *np;
1348 struct clk *clk;
1349 u32 val;
1350 u16 host_ver;
1351
1352 pltfm_host = sdhci_priv(host);
1353 esdhc = sdhci_pltfm_priv(host: pltfm_host);
1354
1355 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1356 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1357 SDHCI_VENDOR_VER_SHIFT;
1358 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1359 if (soc_device_match(matches: soc_incorrect_hostver))
1360 esdhc->quirk_incorrect_hostver = true;
1361 else
1362 esdhc->quirk_incorrect_hostver = false;
1363
1364 if (soc_device_match(matches: soc_fixup_sdhc_clkdivs))
1365 esdhc->quirk_limited_clk_division = true;
1366 else
1367 esdhc->quirk_limited_clk_division = false;
1368
1369 if (soc_device_match(matches: soc_unreliable_pulse_detection))
1370 esdhc->quirk_unreliable_pulse_detection = true;
1371 else
1372 esdhc->quirk_unreliable_pulse_detection = false;
1373
1374 match = of_match_node(matches: sdhci_esdhc_of_match, node: pdev->dev.of_node);
1375 if (match)
1376 esdhc->clk_fixup = match->data;
1377 np = pdev->dev.of_node;
1378
1379 if (of_device_is_compatible(device: np, "fsl,p2020-esdhc")) {
1380 esdhc->quirk_delay_before_data_reset = true;
1381 esdhc->quirk_trans_complete_erratum = true;
1382 }
1383
1384 clk = of_clk_get(np, index: 0);
1385 if (!IS_ERR(ptr: clk)) {
1386 /*
1387 * esdhc->peripheral_clock would be assigned with a value
1388 * which is eSDHC base clock when use periperal clock.
1389 * For some platforms, the clock value got by common clk
1390 * API is peripheral clock while the eSDHC base clock is
1391 * 1/2 peripheral clock.
1392 */
1393 if (of_device_is_compatible(device: np, "fsl,ls1046a-esdhc") ||
1394 of_device_is_compatible(device: np, "fsl,ls1028a-esdhc") ||
1395 of_device_is_compatible(device: np, "fsl,ls1088a-esdhc"))
1396 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1397 else
1398 esdhc->peripheral_clock = clk_get_rate(clk);
1399
1400 clk_put(clk);
1401 }
1402
1403 esdhc_clock_enable(host, enable: false);
1404 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1405 /*
1406 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1407 * initialize it as 1 or 0 once, to override the different value
1408 * which may be configured in bootloader.
1409 */
1410 if (esdhc->peripheral_clock)
1411 val |= ESDHC_PERIPHERAL_CLK_SEL;
1412 else
1413 val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1414 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1415 esdhc_clock_enable(host, enable: true);
1416}
1417
1418static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1419{
1420 esdhc_tuning_block_enable(host: mmc_priv(host: mmc), enable: false);
1421 return 0;
1422}
1423
1424static int sdhci_esdhc_probe(struct platform_device *pdev)
1425{
1426 struct sdhci_host *host;
1427 struct device_node *np, *tp;
1428 struct sdhci_pltfm_host *pltfm_host;
1429 struct sdhci_esdhc *esdhc;
1430 int ret;
1431
1432 np = pdev->dev.of_node;
1433
1434 if (of_property_read_bool(np, propname: "little-endian"))
1435 host = sdhci_pltfm_init(pdev, pdata: &sdhci_esdhc_le_pdata,
1436 priv_size: sizeof(struct sdhci_esdhc));
1437 else
1438 host = sdhci_pltfm_init(pdev, pdata: &sdhci_esdhc_be_pdata,
1439 priv_size: sizeof(struct sdhci_esdhc));
1440
1441 if (IS_ERR(ptr: host))
1442 return PTR_ERR(ptr: host);
1443
1444 host->mmc_host_ops.start_signal_voltage_switch =
1445 esdhc_signal_voltage_switch;
1446 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1447 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1448 host->tuning_delay = 1;
1449
1450 esdhc_init(pdev, host);
1451
1452 sdhci_get_of_property(pdev);
1453
1454 pltfm_host = sdhci_priv(host);
1455 esdhc = sdhci_pltfm_priv(host: pltfm_host);
1456 if (soc_device_match(matches: soc_tuning_erratum_type1))
1457 esdhc->quirk_tuning_erratum_type1 = true;
1458 else
1459 esdhc->quirk_tuning_erratum_type1 = false;
1460
1461 if (soc_device_match(matches: soc_tuning_erratum_type2))
1462 esdhc->quirk_tuning_erratum_type2 = true;
1463 else
1464 esdhc->quirk_tuning_erratum_type2 = false;
1465
1466 if (esdhc->vendor_ver == VENDOR_V_22)
1467 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1468
1469 if (esdhc->vendor_ver > VENDOR_V_22)
1470 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1471
1472 tp = of_find_compatible_node(NULL, NULL, compat: "fsl,p2020-esdhc");
1473 if (tp) {
1474 of_node_put(node: tp);
1475 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1476 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1477 }
1478
1479 if (of_device_is_compatible(device: np, "fsl,p5040-esdhc") ||
1480 of_device_is_compatible(device: np, "fsl,p5020-esdhc") ||
1481 of_device_is_compatible(device: np, "fsl,p4080-esdhc") ||
1482 of_device_is_compatible(device: np, "fsl,p1020-esdhc") ||
1483 of_device_is_compatible(device: np, "fsl,t1040-esdhc"))
1484 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1485
1486 if (of_device_is_compatible(device: np, "fsl,ls1021a-esdhc"))
1487 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1488
1489 esdhc->quirk_ignore_data_inhibit = false;
1490 if (of_device_is_compatible(device: np, "fsl,p2020-esdhc")) {
1491 /*
1492 * Freescale messed up with P2020 as it has a non-standard
1493 * host control register
1494 */
1495 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1496 esdhc->quirk_ignore_data_inhibit = true;
1497 }
1498
1499 /* call to generic mmc_of_parse to support additional capabilities */
1500 ret = mmc_of_parse(host: host->mmc);
1501 if (ret)
1502 goto err;
1503
1504 mmc_of_parse_voltage(host: host->mmc, mask: &host->ocr_mask);
1505
1506 ret = sdhci_add_host(host);
1507 if (ret)
1508 goto err;
1509
1510 return 0;
1511 err:
1512 sdhci_pltfm_free(pdev);
1513 return ret;
1514}
1515
1516static struct platform_driver sdhci_esdhc_driver = {
1517 .driver = {
1518 .name = "sdhci-esdhc",
1519 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1520 .of_match_table = sdhci_esdhc_of_match,
1521 .pm = &esdhc_of_dev_pm_ops,
1522 },
1523 .probe = sdhci_esdhc_probe,
1524 .remove_new = sdhci_pltfm_remove,
1525};
1526
1527module_platform_driver(sdhci_esdhc_driver);
1528
1529MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1530MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1531 "Anton Vorontsov <avorontsov@ru.mvista.com>");
1532MODULE_LICENSE("GPL v2");
1533

source code of linux/drivers/mmc/host/sdhci-of-esdhc.c