1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME "starfire"
30
31#include <linux/interrupt.h>
32#include <linux/module.h>
33#include <linux/kernel.h>
34#include <linux/pci.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if_vlan.h>
43#include <linux/mm.h>
44#include <linux/firmware.h>
45#include <asm/processor.h> /* Processor type for cache alignment. */
46#include <linux/uaccess.h>
47#include <asm/io.h>
48
49/*
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
52 */
53#define HAS_BROKEN_FIRMWARE
54
55/*
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
57 */
58#ifdef HAS_BROKEN_FIRMWARE
59#define PADDING_MASK 3
60#endif
61
62/*
63 * Define this if using the driver with the zero-copy patch
64 */
65#define ZEROCOPY
66
67#if IS_ENABLED(CONFIG_VLAN_8021Q)
68#define VLAN_SUPPORT
69#endif
70
71/* The user-configurable values.
72 These may be modified when a driver module is loaded.*/
73
74/* Used for tuning interrupt latency vs. overhead. */
75static int intr_latency;
76static int small_frames;
77
78static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
79static int max_interrupt_work = 20;
80static int mtu;
81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82 The Starfire has a 512 element hash table based on the Ethernet CRC. */
83static const int multicast_filter_limit = 512;
84/* Whether to do TCP/UDP checksums in hardware */
85static int enable_hw_cksum = 1;
86
87#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88/*
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
91 *
92 * NOTE:
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
96 * 23/10/2000 - Jes
97 *
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
100 * penalty. -Ion
101 */
102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103static int rx_copybreak = PKT_BUF_SZ;
104#else
105static int rx_copybreak /* = 0 */;
106#endif
107
108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109#ifdef __sparc__
110#define DMA_BURST_SIZE 64
111#else
112#define DMA_BURST_SIZE 128
113#endif
114
115/* Operational parameters that are set at compile time. */
116
117/* The "native" ring sizes are either 256 or 2048.
118 However in some modes a descriptor may be marked to wrap the ring earlier.
119*/
120#define RX_RING_SIZE 256
121#define TX_RING_SIZE 32
122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123#define DONE_Q_SIZE 1024
124/* All queues must be aligned on a 256-byte boundary */
125#define QUEUE_ALIGN 256
126
127#if RX_RING_SIZE > 256
128#define RX_Q_ENTRIES Rx2048QEntries
129#else
130#define RX_Q_ENTRIES Rx256QEntries
131#endif
132
133/* Operational parameters that usually are not changed. */
134/* Time in jiffies before concluding the transmitter is hung. */
135#define TX_TIMEOUT (2 * HZ)
136
137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138/* 64-bit dma_addr_t */
139#define ADDR_64BITS /* This chip uses 64 bit addresses. */
140#define netdrv_addr_t __le64
141#define cpu_to_dma(x) cpu_to_le64(x)
142#define dma_to_cpu(x) le64_to_cpu(x)
143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
148#else /* 32-bit dma_addr_t */
149#define netdrv_addr_t __le32
150#define cpu_to_dma(x) cpu_to_le32(x)
151#define dma_to_cpu(x) le32_to_cpu(x)
152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
157#endif
158
159#define skb_first_frag_len(skb) skb_headlen(skb)
160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161
162/* Firmware names */
163#define FIRMWARE_RX "adaptec/starfire_rx.bin"
164#define FIRMWARE_TX "adaptec/starfire_tx.bin"
165
166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168MODULE_LICENSE("GPL");
169MODULE_FIRMWARE(FIRMWARE_RX);
170MODULE_FIRMWARE(FIRMWARE_TX);
171
172module_param(max_interrupt_work, int, 0);
173module_param(mtu, int, 0);
174module_param(debug, int, 0);
175module_param(rx_copybreak, int, 0);
176module_param(intr_latency, int, 0);
177module_param(small_frames, int, 0);
178module_param(enable_hw_cksum, int, 0);
179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180MODULE_PARM_DESC(mtu, "MTU (all boards)");
181MODULE_PARM_DESC(debug, "Debug level (0-6)");
182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186
187/*
188 Theory of Operation
189
190I. Board Compatibility
191
192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193
194II. Board-specific settings
195
196III. Driver operation
197
198IIIa. Ring buffers
199
200The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
201ring sizes are set fixed by the hardware, but may optionally be wrapped
202earlier by the END bit in the descriptor.
203This driver uses that hardware queue size for the Rx ring, where a large
204number of entries has no ill effect beyond increases the potential backlog.
205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206disables the queue layer priority ordering and we have no mechanism to
207utilize the hardware two-level priority queue. When modifying the
208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209levels.
210
211IIIb/c. Transmit/Receive Structure
212
213See the Adaptec manual for the many possible structures, and options for
214each structure. There are far too many to document all of them here.
215
216For transmit this driver uses type 0/1 transmit descriptors (depending
217on the 32/64 bitness of the architecture), and relies on automatic
218minimum-length padding. It does not use the completion queue
219consumer index, but instead checks for non-zero status entries.
220
221For receive this driver uses type 2/3 receive descriptors. The driver
222allocates full frame size skbuffs for the Rx ring buffers, so all frames
223should fit in a single descriptor. The driver does not use the completion
224queue consumer index, but instead checks for non-zero status entries.
225
226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227is allocated and the frame is copied to the new skbuff. When the incoming
228frame is larger, the skbuff is passed directly up the protocol stack.
229Buffers consumed this way are replaced by newly allocated skbuffs in a later
230phase of receive.
231
232A notable aspect of operation is that unaligned buffers are not permitted by
233the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
234isn't longword aligned, which may cause problems on some machine
235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236the frame into a new skbuff unconditionally. Copied frames are put into the
237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238
239IIId. Synchronization
240
241The driver runs as two independent, single-threaded flows of control. One
242is the send-packet routine, which enforces single-threaded use by the
243dev->tbusy flag. The other thread is the interrupt handler, which is single
244threaded by the hardware and interrupt handling software.
245
246The send packet thread has partial control over the Tx ring and the netif_queue
247status. If the number of free Tx slots in the ring falls below a certain number
248(currently hardcoded to 4), it signals the upper layer to stop the queue.
249
250The interrupt handler has exclusive control over the Rx ring and records stats
251from the Tx ring. After reaping the stats, it marks the Tx queue entry as
252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253number of free Tx slow is above the threshold, it signals the upper layer to
254restart the queue.
255
256IV. Notes
257
258IVb. References
259
260The Adaptec Starfire manuals, available only from Adaptec.
261http://www.scyld.com/expert/100mbps.html
262http://www.scyld.com/expert/NWay.html
263
264IVc. Errata
265
266- StopOnPerr is broken, don't enable
267- Hardware ethernet padding exposes random data, perform software padding
268 instead (unverified -- works correctly for all the hardware I have)
269
270*/
271
272
273
274enum chip_capability_flags {CanHaveMII=1, };
275
276enum chipset {
277 CH_6915 = 0,
278};
279
280static const struct pci_device_id starfire_pci_tbl[] = {
281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 { 0, }
283};
284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285
286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287static const struct chip_info {
288 const char *name;
289 int drv_flags;
290} netdrv_tbl[] = {
291 { "Adaptec Starfire 6915", CanHaveMII },
292};
293
294
295/* Offsets to the device registers.
296 Unlike software-only systems, device drivers interact with complex hardware.
297 It's not useful to define symbolic names for every register bit in the
298 device. The name can only partially document the semantics and make
299 the driver longer and more difficult to read.
300 In general, only the important configuration values or bits changed
301 multiple times should be defined symbolically.
302*/
303enum register_offsets {
304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 TxThreshold=0x500B0,
312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 TxMode=0x55000, VlanType=0x55064,
318 PerfFilterTable=0x56000, HashTable=0x56100,
319 TxGfpMem=0x58000, RxGfpMem=0x5a000,
320};
321
322/*
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
326 */
327enum intr_status_bits {
328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 IntrTxGfp=0x02, IntrPCIPad=0x01,
342 /* not quite bits */
343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346};
347
348/* Bits in the RxFilterMode register. */
349enum rx_mode_bits {
350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 WakeupOnGFP=0x0800,
354};
355
356/* Bits in the TxMode register */
357enum tx_mode_bits {
358 MiiSoftReset=0x8000, MIILoopback=0x4000,
359 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361};
362
363/* Bits in the TxDescCtrl register. */
364enum tx_ctrl_bits {
365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 TxDescSpace128=0x30, TxDescSpace256=0x40,
367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 TxDescType3=0x03, TxDescType4=0x04,
369 TxNoDMACompletion=0x08,
370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 TxDMABurstSizeShift=8,
373};
374
375/* Bits in the RxDescQCtrl register. */
376enum rx_ctrl_bits {
377 RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 Rx2048QEntries=0x4000, Rx256QEntries=0,
380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 RxDescSpace4=0x000, RxDescSpace8=0x100,
383 RxDescSpace16=0x200, RxDescSpace32=0x300,
384 RxDescSpace64=0x400, RxDescSpace128=0x500,
385 RxConsumerWrEn=0x80,
386};
387
388/* Bits in the RxDMACtrl register. */
389enum rx_dmactrl_bits {
390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 RxChecksumRejectTCPOnly=0x01000000,
395 RxCompletionQ2Enable=0x800000,
396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 RxDMAQ2NonIP=0x400000,
399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 RxBurstSizeShift=0,
402};
403
404/* Bits in the RxCompletionAddr register */
405enum rx_compl_bits {
406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 RxComplProducerWrEn=0x40,
408 RxComplType0=0x00, RxComplType1=0x10,
409 RxComplType2=0x20, RxComplType3=0x30,
410 RxComplThreshShift=0,
411};
412
413/* Bits in the TxCompletionAddr register */
414enum tx_compl_bits {
415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 TxComplProducerWrEn=0x40,
417 TxComplIntrStatus=0x20,
418 CommonQueueMode=0x10,
419 TxComplThreshShift=0,
420};
421
422/* Bits in the GenCtrl register */
423enum gen_ctrl_bits {
424 RxEnable=0x05, TxEnable=0x0a,
425 RxGFPEnable=0x10, TxGFPEnable=0x20,
426};
427
428/* Bits in the IntrTimerCtrl register */
429enum intr_ctrl_bits {
430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 IntrLatencyMask=0x1f,
433};
434
435/* The Rx and Tx buffer descriptors. */
436struct starfire_rx_desc {
437 netdrv_addr_t rxaddr;
438};
439enum rx_desc_bits {
440 RxDescValid=1, RxDescEndRing=2,
441};
442
443/* Completion queue entry. */
444struct short_rx_done_desc {
445 __le32 status; /* Low 16 bits is length. */
446};
447struct basic_rx_done_desc {
448 __le32 status; /* Low 16 bits is length. */
449 __le16 vlanid;
450 __le16 status2;
451};
452struct csum_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
454 __le16 csum; /* Partial checksum */
455 __le16 status2;
456};
457struct full_rx_done_desc {
458 __le32 status; /* Low 16 bits is length. */
459 __le16 status3;
460 __le16 status2;
461 __le16 vlanid;
462 __le16 csum; /* partial checksum */
463 __le32 timestamp;
464};
465/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
466#ifdef VLAN_SUPPORT
467typedef struct full_rx_done_desc rx_done_desc;
468#define RxComplType RxComplType3
469#else /* not VLAN_SUPPORT */
470typedef struct csum_rx_done_desc rx_done_desc;
471#define RxComplType RxComplType2
472#endif /* not VLAN_SUPPORT */
473
474enum rx_done_bits {
475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
476};
477
478/* Type 1 Tx descriptor. */
479struct starfire_tx_desc_1 {
480 __le32 status; /* Upper bits are status, lower 16 length. */
481 __le32 addr;
482};
483
484/* Type 2 Tx descriptor. */
485struct starfire_tx_desc_2 {
486 __le32 status; /* Upper bits are status, lower 16 length. */
487 __le32 reserved;
488 __le64 addr;
489};
490
491#ifdef ADDR_64BITS
492typedef struct starfire_tx_desc_2 starfire_tx_desc;
493#define TX_DESC_TYPE TxDescType2
494#else /* not ADDR_64BITS */
495typedef struct starfire_tx_desc_1 starfire_tx_desc;
496#define TX_DESC_TYPE TxDescType1
497#endif /* not ADDR_64BITS */
498#define TX_DESC_SPACING TxDescSpaceUnlim
499
500enum tx_desc_bits {
501 TxDescID=0xB0000000,
502 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
504};
505struct tx_done_desc {
506 __le32 status; /* timestamp, index. */
507#if 0
508 __le32 intrstatus; /* interrupt status */
509#endif
510};
511
512struct rx_ring_info {
513 struct sk_buff *skb;
514 dma_addr_t mapping;
515};
516struct tx_ring_info {
517 struct sk_buff *skb;
518 dma_addr_t mapping;
519 unsigned int used_slots;
520};
521
522#define PHY_CNT 2
523struct netdev_private {
524 /* Descriptor rings first for alignment. */
525 struct starfire_rx_desc *rx_ring;
526 starfire_tx_desc *tx_ring;
527 dma_addr_t rx_ring_dma;
528 dma_addr_t tx_ring_dma;
529 /* The addresses of rx/tx-in-place skbuffs. */
530 struct rx_ring_info rx_info[RX_RING_SIZE];
531 struct tx_ring_info tx_info[TX_RING_SIZE];
532 /* Pointers to completion queues (full pages). */
533 rx_done_desc *rx_done_q;
534 dma_addr_t rx_done_q_dma;
535 unsigned int rx_done;
536 struct tx_done_desc *tx_done_q;
537 dma_addr_t tx_done_q_dma;
538 unsigned int tx_done;
539 struct napi_struct napi;
540 struct net_device *dev;
541 struct pci_dev *pci_dev;
542#ifdef VLAN_SUPPORT
543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
544#endif
545 void *queue_mem;
546 dma_addr_t queue_mem_dma;
547 size_t queue_mem_size;
548
549 /* Frequently used values: keep some adjacent for cache effect. */
550 spinlock_t lock;
551 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
552 unsigned int cur_tx, dirty_tx, reap_tx;
553 unsigned int rx_buf_sz; /* Based on MTU+slack. */
554 /* These values keep track of the transceiver/media in use. */
555 int speed100; /* Set if speed == 100MBit. */
556 u32 tx_mode;
557 u32 intr_timer_ctrl;
558 u8 tx_threshold;
559 /* MII transceiver section. */
560 struct mii_if_info mii_if; /* MII lib hooks/info */
561 int phy_cnt; /* MII device addresses. */
562 unsigned char phys[PHY_CNT]; /* MII device addresses. */
563 void __iomem *base;
564};
565
566
567static int mdio_read(struct net_device *dev, int phy_id, int location);
568static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
569static int netdev_open(struct net_device *dev);
570static void check_duplex(struct net_device *dev);
571static void tx_timeout(struct net_device *dev, unsigned int txqueue);
572static void init_ring(struct net_device *dev);
573static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574static irqreturn_t intr_handler(int irq, void *dev_instance);
575static void netdev_error(struct net_device *dev, int intr_status);
576static int __netdev_rx(struct net_device *dev, int *quota);
577static int netdev_poll(struct napi_struct *napi, int budget);
578static void refill_rx_ring(struct net_device *dev);
579static void netdev_error(struct net_device *dev, int intr_status);
580static void set_rx_mode(struct net_device *dev);
581static struct net_device_stats *get_stats(struct net_device *dev);
582static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583static int netdev_close(struct net_device *dev);
584static void netdev_media_change(struct net_device *dev);
585static const struct ethtool_ops ethtool_ops;
586
587
588#ifdef VLAN_SUPPORT
589static int netdev_vlan_rx_add_vid(struct net_device *dev,
590 __be16 proto, u16 vid)
591{
592 struct netdev_private *np = netdev_priv(dev);
593
594 spin_lock(lock: &np->lock);
595 if (debug > 1)
596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597 set_bit(nr: vid, addr: np->active_vlans);
598 set_rx_mode(dev);
599 spin_unlock(lock: &np->lock);
600
601 return 0;
602}
603
604static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605 __be16 proto, u16 vid)
606{
607 struct netdev_private *np = netdev_priv(dev);
608
609 spin_lock(lock: &np->lock);
610 if (debug > 1)
611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612 clear_bit(nr: vid, addr: np->active_vlans);
613 set_rx_mode(dev);
614 spin_unlock(lock: &np->lock);
615
616 return 0;
617}
618#endif /* VLAN_SUPPORT */
619
620
621static const struct net_device_ops netdev_ops = {
622 .ndo_open = netdev_open,
623 .ndo_stop = netdev_close,
624 .ndo_start_xmit = start_tx,
625 .ndo_tx_timeout = tx_timeout,
626 .ndo_get_stats = get_stats,
627 .ndo_set_rx_mode = set_rx_mode,
628 .ndo_eth_ioctl = netdev_ioctl,
629 .ndo_set_mac_address = eth_mac_addr,
630 .ndo_validate_addr = eth_validate_addr,
631#ifdef VLAN_SUPPORT
632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
634#endif
635};
636
637static int starfire_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
639{
640 struct device *d = &pdev->dev;
641 struct netdev_private *np;
642 int i, irq, chip_idx = ent->driver_data;
643 struct net_device *dev;
644 u8 addr[ETH_ALEN];
645 long ioaddr;
646 void __iomem *base;
647 int drv_flags, io_size;
648 int boguscnt;
649
650 if (pci_enable_device (dev: pdev))
651 return -EIO;
652
653 ioaddr = pci_resource_start(pdev, 0);
654 io_size = pci_resource_len(pdev, 0);
655 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
656 dev_err(d, "no PCI MEM resources, aborting\n");
657 return -ENODEV;
658 }
659
660 dev = alloc_etherdev(sizeof(*np));
661 if (!dev)
662 return -ENOMEM;
663
664 SET_NETDEV_DEV(dev, &pdev->dev);
665
666 irq = pdev->irq;
667
668 if (pci_request_regions (pdev, DRV_NAME)) {
669 dev_err(d, "cannot reserve PCI resources, aborting\n");
670 goto err_out_free_netdev;
671 }
672
673 base = ioremap(offset: ioaddr, size: io_size);
674 if (!base) {
675 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
676 io_size, ioaddr);
677 goto err_out_free_res;
678 }
679
680 pci_set_master(dev: pdev);
681
682 /* enable MWI -- it vastly improves Rx performance on sparc64 */
683 pci_try_set_mwi(dev: pdev);
684
685#ifdef ZEROCOPY
686 /* Starfire can do TCP/UDP checksumming */
687 if (enable_hw_cksum)
688 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
689#endif /* ZEROCOPY */
690
691#ifdef VLAN_SUPPORT
692 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
693#endif /* VLAN_RX_KILL_VID */
694#ifdef ADDR_64BITS
695 dev->features |= NETIF_F_HIGHDMA;
696#endif /* ADDR_64BITS */
697
698 /* Serial EEPROM reads are hidden by the hardware. */
699 for (i = 0; i < 6; i++)
700 addr[i] = readb(addr: base + EEPROMCtrl + 20 - i);
701 eth_hw_addr_set(dev, addr);
702
703#if ! defined(final_version) /* Dump the EEPROM contents during development. */
704 if (debug > 4)
705 for (i = 0; i < 0x20; i++)
706 printk("%2.2x%s",
707 (unsigned int)readb(base + EEPROMCtrl + i),
708 i % 16 != 15 ? " " : "\n");
709#endif
710
711 /* Issue soft reset */
712 writel(val: MiiSoftReset, addr: base + TxMode);
713 udelay(1000);
714 writel(val: 0, addr: base + TxMode);
715
716 /* Reset the chip to erase previous misconfiguration. */
717 writel(val: 1, addr: base + PCIDeviceConfig);
718 boguscnt = 1000;
719 while (--boguscnt > 0) {
720 udelay(10);
721 if ((readl(addr: base + PCIDeviceConfig) & 1) == 0)
722 break;
723 }
724 if (boguscnt == 0)
725 printk("%s: chipset reset never completed!\n", dev->name);
726 /* wait a little longer */
727 udelay(1000);
728
729 np = netdev_priv(dev);
730 np->dev = dev;
731 np->base = base;
732 spin_lock_init(&np->lock);
733 pci_set_drvdata(pdev, data: dev);
734
735 np->pci_dev = pdev;
736
737 np->mii_if.dev = dev;
738 np->mii_if.mdio_read = mdio_read;
739 np->mii_if.mdio_write = mdio_write;
740 np->mii_if.phy_id_mask = 0x1f;
741 np->mii_if.reg_num_mask = 0x1f;
742
743 drv_flags = netdrv_tbl[chip_idx].drv_flags;
744
745 np->speed100 = 1;
746
747 /* timer resolution is 128 * 0.8us */
748 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
749 Timer10X | EnableIntrMasking;
750
751 if (small_frames > 0) {
752 np->intr_timer_ctrl |= SmallFrameBypass;
753 switch (small_frames) {
754 case 1 ... 64:
755 np->intr_timer_ctrl |= SmallFrame64;
756 break;
757 case 65 ... 128:
758 np->intr_timer_ctrl |= SmallFrame128;
759 break;
760 case 129 ... 256:
761 np->intr_timer_ctrl |= SmallFrame256;
762 break;
763 default:
764 np->intr_timer_ctrl |= SmallFrame512;
765 if (small_frames > 512)
766 printk("Adjusting small_frames down to 512\n");
767 break;
768 }
769 }
770
771 dev->netdev_ops = &netdev_ops;
772 dev->watchdog_timeo = TX_TIMEOUT;
773 dev->ethtool_ops = &ethtool_ops;
774
775 netif_napi_add_weight(dev, napi: &np->napi, poll: netdev_poll, weight: max_interrupt_work);
776
777 if (mtu)
778 dev->mtu = mtu;
779
780 if (register_netdev(dev))
781 goto err_out_cleardev;
782
783 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
784 dev->name, netdrv_tbl[chip_idx].name, base,
785 dev->dev_addr, irq);
786
787 if (drv_flags & CanHaveMII) {
788 int phy, phy_idx = 0;
789 int mii_status;
790 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
791 mdio_write(dev, phy_id: phy, MII_BMCR, BMCR_RESET);
792 msleep(msecs: 100);
793 boguscnt = 1000;
794 while (--boguscnt > 0)
795 if ((mdio_read(dev, phy_id: phy, MII_BMCR) & BMCR_RESET) == 0)
796 break;
797 if (boguscnt == 0) {
798 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
799 continue;
800 }
801 mii_status = mdio_read(dev, phy_id: phy, MII_BMSR);
802 if (mii_status != 0) {
803 np->phys[phy_idx++] = phy;
804 np->mii_if.advertising = mdio_read(dev, phy_id: phy, MII_ADVERTISE);
805 printk(KERN_INFO "%s: MII PHY found at address %d, status "
806 "%#4.4x advertising %#4.4x.\n",
807 dev->name, phy, mii_status, np->mii_if.advertising);
808 /* there can be only one PHY on-board */
809 break;
810 }
811 }
812 np->phy_cnt = phy_idx;
813 if (np->phy_cnt > 0)
814 np->mii_if.phy_id = np->phys[0];
815 else
816 memset(&np->mii_if, 0, sizeof(np->mii_if));
817 }
818
819 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
820 dev->name, enable_hw_cksum ? "enabled" : "disabled");
821 return 0;
822
823err_out_cleardev:
824 iounmap(addr: base);
825err_out_free_res:
826 pci_release_regions (pdev);
827err_out_free_netdev:
828 free_netdev(dev);
829 return -ENODEV;
830}
831
832
833/* Read the MII Management Data I/O (MDIO) interfaces. */
834static int mdio_read(struct net_device *dev, int phy_id, int location)
835{
836 struct netdev_private *np = netdev_priv(dev);
837 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
838 int result, boguscnt=1000;
839 /* ??? Should we add a busy-wait here? */
840 do {
841 result = readl(addr: mdio_addr);
842 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
843 if (boguscnt == 0)
844 return 0;
845 if ((result & 0xffff) == 0xffff)
846 return 0;
847 return result & 0xffff;
848}
849
850
851static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
852{
853 struct netdev_private *np = netdev_priv(dev);
854 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
855 writel(val: value, addr: mdio_addr);
856 /* The busy-wait will occur before a read. */
857}
858
859
860static int netdev_open(struct net_device *dev)
861{
862 const struct firmware *fw_rx, *fw_tx;
863 const __be32 *fw_rx_data, *fw_tx_data;
864 struct netdev_private *np = netdev_priv(dev);
865 void __iomem *ioaddr = np->base;
866 const int irq = np->pci_dev->irq;
867 int i, retval;
868 size_t tx_size, rx_size;
869 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
870
871 /* Do we ever need to reset the chip??? */
872
873 retval = request_irq(irq, handler: intr_handler, IRQF_SHARED, name: dev->name, dev);
874 if (retval)
875 return retval;
876
877 /* Disable the Rx and Tx, and reset the chip. */
878 writel(val: 0, addr: ioaddr + GenCtrl);
879 writel(val: 1, addr: ioaddr + PCIDeviceConfig);
880 if (debug > 1)
881 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
882 dev->name, irq);
883
884 /* Allocate the various queues. */
885 if (!np->queue_mem) {
886 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
888 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
889 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
890 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
891 np->queue_mem = dma_alloc_coherent(dev: &np->pci_dev->dev,
892 size: np->queue_mem_size,
893 dma_handle: &np->queue_mem_dma, GFP_ATOMIC);
894 if (np->queue_mem == NULL) {
895 free_irq(irq, dev);
896 return -ENOMEM;
897 }
898
899 np->tx_done_q = np->queue_mem;
900 np->tx_done_q_dma = np->queue_mem_dma;
901 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
902 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
903 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
904 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
905 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
906 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
907 }
908
909 /* Start with no carrier, it gets adjusted later */
910 netif_carrier_off(dev);
911 init_ring(dev);
912 /* Set the size of the Rx buffers. */
913 writel(val: (np->rx_buf_sz << RxBufferLenShift) |
914 (0 << RxMinDescrThreshShift) |
915 RxPrefetchMode | RxVariableQ |
916 RX_Q_ENTRIES |
917 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
918 RxDescSpace4,
919 addr: ioaddr + RxDescQCtrl);
920
921 /* Set up the Rx DMA controller. */
922 writel(val: RxChecksumIgnore |
923 (0 << RxEarlyIntThreshShift) |
924 (6 << RxHighPrioThreshShift) |
925 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
926 addr: ioaddr + RxDMACtrl);
927
928 /* Set Tx descriptor */
929 writel(val: (2 << TxHiPriFIFOThreshShift) |
930 (0 << TxPadLenShift) |
931 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
932 TX_DESC_Q_ADDR_SIZE |
933 TX_DESC_SPACING | TX_DESC_TYPE,
934 addr: ioaddr + TxDescCtrl);
935
936 writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + RxDescQHiAddr);
937 writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + TxRingHiAddr);
938 writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + CompletionHiAddr);
939 writel(val: np->rx_ring_dma, addr: ioaddr + RxDescQAddr);
940 writel(val: np->tx_ring_dma, addr: ioaddr + TxRingPtr);
941
942 writel(val: np->tx_done_q_dma, addr: ioaddr + TxCompletionAddr);
943 writel(val: np->rx_done_q_dma |
944 RxComplType |
945 (0 << RxComplThreshShift),
946 addr: ioaddr + RxCompletionAddr);
947
948 if (debug > 1)
949 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
950
951 /* Fill both the Tx SA register and the Rx perfect filter. */
952 for (i = 0; i < 6; i++)
953 writeb(val: dev->dev_addr[i], addr: ioaddr + TxStationAddr + 5 - i);
954 /* The first entry is special because it bypasses the VLAN filter.
955 Don't use it. */
956 writew(val: 0, addr: ioaddr + PerfFilterTable);
957 writew(val: 0, addr: ioaddr + PerfFilterTable + 4);
958 writew(val: 0, addr: ioaddr + PerfFilterTable + 8);
959 for (i = 1; i < 16; i++) {
960 const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
961 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
962 writew(be16_to_cpu(eaddrs[2]), addr: setup_frm); setup_frm += 4;
963 writew(be16_to_cpu(eaddrs[1]), addr: setup_frm); setup_frm += 4;
964 writew(be16_to_cpu(eaddrs[0]), addr: setup_frm); setup_frm += 8;
965 }
966
967 /* Initialize other registers. */
968 /* Configure the PCI bus bursts and FIFO thresholds. */
969 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
970 writel(val: MiiSoftReset | np->tx_mode, addr: ioaddr + TxMode);
971 udelay(1000);
972 writel(val: np->tx_mode, addr: ioaddr + TxMode);
973 np->tx_threshold = 4;
974 writel(val: np->tx_threshold, addr: ioaddr + TxThreshold);
975
976 writel(val: np->intr_timer_ctrl, addr: ioaddr + IntrTimerCtrl);
977
978 napi_enable(n: &np->napi);
979
980 netif_start_queue(dev);
981
982 if (debug > 1)
983 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
984 set_rx_mode(dev);
985
986 np->mii_if.advertising = mdio_read(dev, phy_id: np->phys[0], MII_ADVERTISE);
987 check_duplex(dev);
988
989 /* Enable GPIO interrupts on link change */
990 writel(val: 0x0f00ff00, addr: ioaddr + GPIOCtrl);
991
992 /* Set the interrupt mask */
993 writel(val: IntrRxDone | IntrRxEmpty | IntrDMAErr |
994 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
995 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
996 addr: ioaddr + IntrEnable);
997 /* Enable PCI interrupts. */
998 writel(val: 0x00800000 | readl(addr: ioaddr + PCIDeviceConfig),
999 addr: ioaddr + PCIDeviceConfig);
1000
1001#ifdef VLAN_SUPPORT
1002 /* Set VLAN type to 802.1q */
1003 writel(ETH_P_8021Q, addr: ioaddr + VlanType);
1004#endif /* VLAN_SUPPORT */
1005
1006 retval = request_firmware(fw: &fw_rx, FIRMWARE_RX, device: &np->pci_dev->dev);
1007 if (retval) {
1008 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1009 FIRMWARE_RX);
1010 goto out_init;
1011 }
1012 if (fw_rx->size % 4) {
1013 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014 fw_rx->size, FIRMWARE_RX);
1015 retval = -EINVAL;
1016 goto out_rx;
1017 }
1018 retval = request_firmware(fw: &fw_tx, FIRMWARE_TX, device: &np->pci_dev->dev);
1019 if (retval) {
1020 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 FIRMWARE_TX);
1022 goto out_rx;
1023 }
1024 if (fw_tx->size % 4) {
1025 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 fw_tx->size, FIRMWARE_TX);
1027 retval = -EINVAL;
1028 goto out_tx;
1029 }
1030 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032 rx_size = fw_rx->size / 4;
1033 tx_size = fw_tx->size / 4;
1034
1035 /* Load Rx/Tx firmware into the frame processors */
1036 for (i = 0; i < rx_size; i++)
1037 writel(be32_to_cpup(p: &fw_rx_data[i]), addr: ioaddr + RxGfpMem + i * 4);
1038 for (i = 0; i < tx_size; i++)
1039 writel(be32_to_cpup(p: &fw_tx_data[i]), addr: ioaddr + TxGfpMem + i * 4);
1040 if (enable_hw_cksum)
1041 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1042 writel(val: TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, addr: ioaddr + GenCtrl);
1043 else
1044 /* Enable the Rx and Tx units only. */
1045 writel(val: TxEnable|RxEnable, addr: ioaddr + GenCtrl);
1046
1047 if (debug > 1)
1048 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1049 dev->name);
1050
1051out_tx:
1052 release_firmware(fw: fw_tx);
1053out_rx:
1054 release_firmware(fw: fw_rx);
1055out_init:
1056 if (retval)
1057 netdev_close(dev);
1058 return retval;
1059}
1060
1061
1062static void check_duplex(struct net_device *dev)
1063{
1064 struct netdev_private *np = netdev_priv(dev);
1065 u16 reg0;
1066 int silly_count = 1000;
1067
1068 mdio_write(dev, phy_id: np->phys[0], MII_ADVERTISE, value: np->mii_if.advertising);
1069 mdio_write(dev, phy_id: np->phys[0], MII_BMCR, BMCR_RESET);
1070 udelay(500);
1071 while (--silly_count && mdio_read(dev, phy_id: np->phys[0], MII_BMCR) & BMCR_RESET)
1072 /* do nothing */;
1073 if (!silly_count) {
1074 printk("%s: MII reset failed!\n", dev->name);
1075 return;
1076 }
1077
1078 reg0 = mdio_read(dev, phy_id: np->phys[0], MII_BMCR);
1079
1080 if (!np->mii_if.force_media) {
1081 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1082 } else {
1083 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1084 if (np->speed100)
1085 reg0 |= BMCR_SPEED100;
1086 if (np->mii_if.full_duplex)
1087 reg0 |= BMCR_FULLDPLX;
1088 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1089 dev->name,
1090 np->speed100 ? "100" : "10",
1091 np->mii_if.full_duplex ? "full" : "half");
1092 }
1093 mdio_write(dev, phy_id: np->phys[0], MII_BMCR, value: reg0);
1094}
1095
1096
1097static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1098{
1099 struct netdev_private *np = netdev_priv(dev);
1100 void __iomem *ioaddr = np->base;
1101 int old_debug;
1102
1103 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1105
1106 /* Perhaps we should reinitialize the hardware here. */
1107
1108 /*
1109 * Stop and restart the interface.
1110 * Cheat and increase the debug level temporarily.
1111 */
1112 old_debug = debug;
1113 debug = 2;
1114 netdev_close(dev);
1115 netdev_open(dev);
1116 debug = old_debug;
1117
1118 /* Trigger an immediate transmit demand. */
1119
1120 netif_trans_update(dev); /* prevent tx timeout */
1121 dev->stats.tx_errors++;
1122 netif_wake_queue(dev);
1123}
1124
1125
1126/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1127static void init_ring(struct net_device *dev)
1128{
1129 struct netdev_private *np = netdev_priv(dev);
1130 int i;
1131
1132 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1134
1135 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1136
1137 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1138 for (i = 0; i < RX_RING_SIZE; i++) {
1139 struct sk_buff *skb = netdev_alloc_skb(dev, length: np->rx_buf_sz);
1140 np->rx_info[i].skb = skb;
1141 if (skb == NULL)
1142 break;
1143 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1144 skb->data,
1145 np->rx_buf_sz,
1146 DMA_FROM_DEVICE);
1147 if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->rx_info[i].mapping)) {
1148 dev_kfree_skb(skb);
1149 np->rx_info[i].skb = NULL;
1150 break;
1151 }
1152 /* Grrr, we cannot offset to correctly align the IP header. */
1153 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1154 }
1155 writew(val: i - 1, addr: np->base + RxDescQIdx);
1156 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1157
1158 /* Clear the remainder of the Rx buffer ring. */
1159 for ( ; i < RX_RING_SIZE; i++) {
1160 np->rx_ring[i].rxaddr = 0;
1161 np->rx_info[i].skb = NULL;
1162 np->rx_info[i].mapping = 0;
1163 }
1164 /* Mark the last entry as wrapping the ring. */
1165 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1166
1167 /* Clear the completion rings. */
1168 for (i = 0; i < DONE_Q_SIZE; i++) {
1169 np->rx_done_q[i].status = 0;
1170 np->tx_done_q[i].status = 0;
1171 }
1172
1173 for (i = 0; i < TX_RING_SIZE; i++)
1174 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175}
1176
1177
1178static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1179{
1180 struct netdev_private *np = netdev_priv(dev);
1181 unsigned int entry;
1182 unsigned int prev_tx;
1183 u32 status;
1184 int i, j;
1185
1186 /*
1187 * be cautious here, wrapping the queue has weird semantics
1188 * and we may not have enough slots even when it seems we do.
1189 */
1190 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191 netif_stop_queue(dev);
1192 return NETDEV_TX_BUSY;
1193 }
1194
1195#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197 if (skb_padto(skb, len: (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198 return NETDEV_TX_OK;
1199 }
1200#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1201
1202 prev_tx = np->cur_tx;
1203 entry = np->cur_tx % TX_RING_SIZE;
1204 for (i = 0; i < skb_num_frags(skb); i++) {
1205 int wrap_ring = 0;
1206 status = TxDescID;
1207
1208 if (i == 0) {
1209 np->tx_info[entry].skb = skb;
1210 status |= TxCRCEn;
1211 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212 status |= TxRingWrap;
1213 wrap_ring = 1;
1214 }
1215 if (np->reap_tx) {
1216 status |= TxDescIntr;
1217 np->reap_tx = 0;
1218 }
1219 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1220 status |= TxCalTCP;
1221 dev->stats.tx_compressed++;
1222 }
1223 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1224
1225 np->tx_info[entry].mapping =
1226 dma_map_single(&np->pci_dev->dev, skb->data,
1227 skb_first_frag_len(skb),
1228 DMA_TO_DEVICE);
1229 } else {
1230 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 status |= skb_frag_size(frag: this_frag);
1232 np->tx_info[entry].mapping =
1233 dma_map_single(&np->pci_dev->dev,
1234 skb_frag_address(this_frag),
1235 skb_frag_size(this_frag),
1236 DMA_TO_DEVICE);
1237 }
1238 if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->tx_info[entry].mapping)) {
1239 dev->stats.tx_dropped++;
1240 goto err_out;
1241 }
1242
1243 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244 np->tx_ring[entry].status = cpu_to_le32(status);
1245 if (debug > 3)
1246 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247 dev->name, np->cur_tx, np->dirty_tx,
1248 entry, status);
1249 if (wrap_ring) {
1250 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251 np->cur_tx += np->tx_info[entry].used_slots;
1252 entry = 0;
1253 } else {
1254 np->tx_info[entry].used_slots = 1;
1255 np->cur_tx += np->tx_info[entry].used_slots;
1256 entry++;
1257 }
1258 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1259 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1260 np->reap_tx = 1;
1261 }
1262
1263 /* Non-x86: explicitly flush descriptor cache lines here. */
1264 /* Ensure all descriptors are written back before the transmit is
1265 initiated. - Jes */
1266 wmb();
1267
1268 /* Update the producer index. */
1269 writel(val: entry * (sizeof(starfire_tx_desc) / 8), addr: np->base + TxProducerIdx);
1270
1271 /* 4 is arbitrary, but should be ok */
1272 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273 netif_stop_queue(dev);
1274
1275 return NETDEV_TX_OK;
1276
1277err_out:
1278 entry = prev_tx % TX_RING_SIZE;
1279 np->tx_info[entry].skb = NULL;
1280 if (i > 0) {
1281 dma_unmap_single(&np->pci_dev->dev,
1282 np->tx_info[entry].mapping,
1283 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284 np->tx_info[entry].mapping = 0;
1285 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286 for (j = 1; j < i; j++) {
1287 dma_unmap_single(&np->pci_dev->dev,
1288 np->tx_info[entry].mapping,
1289 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1290 DMA_TO_DEVICE);
1291 entry++;
1292 }
1293 }
1294 dev_kfree_skb_any(skb);
1295 np->cur_tx = prev_tx;
1296 return NETDEV_TX_OK;
1297}
1298
1299/* The interrupt handler does all of the Rx thread work and cleans up
1300 after the Tx thread. */
1301static irqreturn_t intr_handler(int irq, void *dev_instance)
1302{
1303 struct net_device *dev = dev_instance;
1304 struct netdev_private *np = netdev_priv(dev);
1305 void __iomem *ioaddr = np->base;
1306 int boguscnt = max_interrupt_work;
1307 int consumer;
1308 int tx_status;
1309 int handled = 0;
1310
1311 do {
1312 u32 intr_status = readl(addr: ioaddr + IntrClear);
1313
1314 if (debug > 4)
1315 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316 dev->name, intr_status);
1317
1318 if (intr_status == 0 || intr_status == (u32) -1)
1319 break;
1320
1321 handled = 1;
1322
1323 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1324 u32 enable;
1325
1326 if (likely(napi_schedule_prep(&np->napi))) {
1327 __napi_schedule(n: &np->napi);
1328 enable = readl(addr: ioaddr + IntrEnable);
1329 enable &= ~(IntrRxDone | IntrRxEmpty);
1330 writel(val: enable, addr: ioaddr + IntrEnable);
1331 /* flush PCI posting buffers */
1332 readl(addr: ioaddr + IntrEnable);
1333 } else {
1334 /* Paranoia check */
1335 enable = readl(addr: ioaddr + IntrEnable);
1336 if (enable & (IntrRxDone | IntrRxEmpty)) {
1337 printk(KERN_INFO
1338 "%s: interrupt while in poll!\n",
1339 dev->name);
1340 enable &= ~(IntrRxDone | IntrRxEmpty);
1341 writel(val: enable, addr: ioaddr + IntrEnable);
1342 }
1343 }
1344 }
1345
1346 /* Scavenge the skbuff list based on the Tx-done queue.
1347 There are redundant checks here that may be cleaned up
1348 after the driver has proven to be reliable. */
1349 consumer = readl(addr: ioaddr + TxConsumerIdx);
1350 if (debug > 3)
1351 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352 dev->name, consumer);
1353
1354 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1355 if (debug > 3)
1356 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357 dev->name, np->dirty_tx, np->tx_done, tx_status);
1358 if ((tx_status & 0xe0000000) == 0xa0000000) {
1359 dev->stats.tx_packets++;
1360 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1361 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362 struct sk_buff *skb = np->tx_info[entry].skb;
1363 np->tx_info[entry].skb = NULL;
1364 dma_unmap_single(&np->pci_dev->dev,
1365 np->tx_info[entry].mapping,
1366 skb_first_frag_len(skb),
1367 DMA_TO_DEVICE);
1368 np->tx_info[entry].mapping = 0;
1369 np->dirty_tx += np->tx_info[entry].used_slots;
1370 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1371 {
1372 int i;
1373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374 dma_unmap_single(&np->pci_dev->dev,
1375 np->tx_info[entry].mapping,
1376 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1377 DMA_TO_DEVICE);
1378 np->dirty_tx++;
1379 entry++;
1380 }
1381 }
1382
1383 dev_consume_skb_irq(skb);
1384 }
1385 np->tx_done_q[np->tx_done].status = 0;
1386 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1387 }
1388 writew(val: np->tx_done, addr: ioaddr + CompletionQConsumerIdx + 2);
1389
1390 if (netif_queue_stopped(dev) &&
1391 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392 /* The ring is no longer full, wake the queue. */
1393 netif_wake_queue(dev);
1394 }
1395
1396 /* Stats overflow */
1397 if (intr_status & IntrStatsMax)
1398 get_stats(dev);
1399
1400 /* Media change interrupt. */
1401 if (intr_status & IntrLinkChange)
1402 netdev_media_change(dev);
1403
1404 /* Abnormal error summary/uncommon events handlers. */
1405 if (intr_status & IntrAbnormalSummary)
1406 netdev_error(dev, intr_status);
1407
1408 if (--boguscnt < 0) {
1409 if (debug > 1)
1410 printk(KERN_WARNING "%s: Too much work at interrupt, "
1411 "status=%#8.8x.\n",
1412 dev->name, intr_status);
1413 break;
1414 }
1415 } while (1);
1416
1417 if (debug > 4)
1418 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419 dev->name, (int) readl(ioaddr + IntrStatus));
1420 return IRQ_RETVAL(handled);
1421}
1422
1423
1424/*
1425 * This routine is logically part of the interrupt/poll handler, but separated
1426 * for clarity and better register allocation.
1427 */
1428static int __netdev_rx(struct net_device *dev, int *quota)
1429{
1430 struct netdev_private *np = netdev_priv(dev);
1431 u32 desc_status;
1432 int retcode = 0;
1433
1434 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1435 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436 struct sk_buff *skb;
1437 u16 pkt_len;
1438 int entry;
1439 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1440
1441 if (debug > 4)
1442 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443 if (!(desc_status & RxOK)) {
1444 /* There was an error. */
1445 if (debug > 2)
1446 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447 dev->stats.rx_errors++;
1448 if (desc_status & RxFIFOErr)
1449 dev->stats.rx_fifo_errors++;
1450 goto next_rx;
1451 }
1452
1453 if (*quota <= 0) { /* out of rx quota */
1454 retcode = 1;
1455 goto out;
1456 }
1457 (*quota)--;
1458
1459 pkt_len = desc_status; /* Implicitly Truncate */
1460 entry = (desc_status >> 16) & 0x7ff;
1461
1462 if (debug > 4)
1463 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464 /* Check if the packet is long enough to accept without copying
1465 to a minimally-sized skbuff. */
1466 if (pkt_len < rx_copybreak &&
1467 (skb = netdev_alloc_skb(dev, length: pkt_len + 2)) != NULL) {
1468 skb_reserve(skb, len: 2); /* 16 byte align the IP header */
1469 dma_sync_single_for_cpu(dev: &np->pci_dev->dev,
1470 addr: np->rx_info[entry].mapping,
1471 size: pkt_len, dir: DMA_FROM_DEVICE);
1472 skb_copy_to_linear_data(skb, from: np->rx_info[entry].skb->data, len: pkt_len);
1473 dma_sync_single_for_device(dev: &np->pci_dev->dev,
1474 addr: np->rx_info[entry].mapping,
1475 size: pkt_len, dir: DMA_FROM_DEVICE);
1476 skb_put(skb, len: pkt_len);
1477 } else {
1478 dma_unmap_single(&np->pci_dev->dev,
1479 np->rx_info[entry].mapping,
1480 np->rx_buf_sz, DMA_FROM_DEVICE);
1481 skb = np->rx_info[entry].skb;
1482 skb_put(skb, len: pkt_len);
1483 np->rx_info[entry].skb = NULL;
1484 np->rx_info[entry].mapping = 0;
1485 }
1486#ifndef final_version /* Remove after testing. */
1487 /* You will want this info for the initial debug. */
1488 if (debug > 5) {
1489 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1490 skb->data, skb->data + 6,
1491 skb->data[12], skb->data[13]);
1492 }
1493#endif
1494
1495 skb->protocol = eth_type_trans(skb, dev);
1496#ifdef VLAN_SUPPORT
1497 if (debug > 4)
1498 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1499#endif
1500 if (le16_to_cpu(desc->status2) & 0x0100) {
1501 skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 dev->stats.rx_compressed++;
1503 }
1504 /*
1505 * This feature doesn't seem to be working, at least
1506 * with the two firmware versions I have. If the GFP sees
1507 * an IP fragment, it either ignores it completely, or reports
1508 * "bad checksum" on it.
1509 *
1510 * Maybe I missed something -- corrections are welcome.
1511 * Until then, the printk stays. :-) -Ion
1512 */
1513 else if (le16_to_cpu(desc->status2) & 0x0040) {
1514 skb->ip_summed = CHECKSUM_COMPLETE;
1515 skb->csum = le16_to_cpu(desc->csum);
1516 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1517 }
1518#ifdef VLAN_SUPPORT
1519 if (le16_to_cpu(desc->status2) & 0x0200) {
1520 u16 vlid = le16_to_cpu(desc->vlanid);
1521
1522 if (debug > 4) {
1523 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1524 vlid);
1525 }
1526 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vlid);
1527 }
1528#endif /* VLAN_SUPPORT */
1529 netif_receive_skb(skb);
1530 dev->stats.rx_packets++;
1531
1532 next_rx:
1533 np->cur_rx++;
1534 desc->status = 0;
1535 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1536 }
1537
1538 if (*quota == 0) { /* out of rx quota */
1539 retcode = 1;
1540 goto out;
1541 }
1542 writew(val: np->rx_done, addr: np->base + CompletionQConsumerIdx);
1543
1544 out:
1545 refill_rx_ring(dev);
1546 if (debug > 5)
1547 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548 retcode, np->rx_done, desc_status);
1549 return retcode;
1550}
1551
1552static int netdev_poll(struct napi_struct *napi, int budget)
1553{
1554 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555 struct net_device *dev = np->dev;
1556 u32 intr_status;
1557 void __iomem *ioaddr = np->base;
1558 int quota = budget;
1559
1560 do {
1561 writel(val: IntrRxDone | IntrRxEmpty, addr: ioaddr + IntrClear);
1562
1563 if (__netdev_rx(dev, quota: &quota))
1564 goto out;
1565
1566 intr_status = readl(addr: ioaddr + IntrStatus);
1567 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1568
1569 napi_complete(n: napi);
1570 intr_status = readl(addr: ioaddr + IntrEnable);
1571 intr_status |= IntrRxDone | IntrRxEmpty;
1572 writel(val: intr_status, addr: ioaddr + IntrEnable);
1573
1574 out:
1575 if (debug > 5)
1576 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1577 budget - quota);
1578
1579 /* Restart Rx engine if stopped. */
1580 return budget - quota;
1581}
1582
1583static void refill_rx_ring(struct net_device *dev)
1584{
1585 struct netdev_private *np = netdev_priv(dev);
1586 struct sk_buff *skb;
1587 int entry = -1;
1588
1589 /* Refill the Rx ring buffers. */
1590 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591 entry = np->dirty_rx % RX_RING_SIZE;
1592 if (np->rx_info[entry].skb == NULL) {
1593 skb = netdev_alloc_skb(dev, length: np->rx_buf_sz);
1594 np->rx_info[entry].skb = skb;
1595 if (skb == NULL)
1596 break; /* Better luck next round. */
1597 np->rx_info[entry].mapping =
1598 dma_map_single(&np->pci_dev->dev, skb->data,
1599 np->rx_buf_sz, DMA_FROM_DEVICE);
1600 if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->rx_info[entry].mapping)) {
1601 dev_kfree_skb(skb);
1602 np->rx_info[entry].skb = NULL;
1603 break;
1604 }
1605 np->rx_ring[entry].rxaddr =
1606 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607 }
1608 if (entry == RX_RING_SIZE - 1)
1609 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610 }
1611 if (entry >= 0)
1612 writew(val: entry, addr: np->base + RxDescQIdx);
1613}
1614
1615
1616static void netdev_media_change(struct net_device *dev)
1617{
1618 struct netdev_private *np = netdev_priv(dev);
1619 void __iomem *ioaddr = np->base;
1620 u16 reg0, reg1, reg4, reg5;
1621 u32 new_tx_mode;
1622 u32 new_intr_timer_ctrl;
1623
1624 /* reset status first */
1625 mdio_read(dev, phy_id: np->phys[0], MII_BMCR);
1626 mdio_read(dev, phy_id: np->phys[0], MII_BMSR);
1627
1628 reg0 = mdio_read(dev, phy_id: np->phys[0], MII_BMCR);
1629 reg1 = mdio_read(dev, phy_id: np->phys[0], MII_BMSR);
1630
1631 if (reg1 & BMSR_LSTATUS) {
1632 /* link is up */
1633 if (reg0 & BMCR_ANENABLE) {
1634 /* autonegotiation is enabled */
1635 reg4 = mdio_read(dev, phy_id: np->phys[0], MII_ADVERTISE);
1636 reg5 = mdio_read(dev, phy_id: np->phys[0], MII_LPA);
1637 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1638 np->speed100 = 1;
1639 np->mii_if.full_duplex = 1;
1640 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1641 np->speed100 = 1;
1642 np->mii_if.full_duplex = 0;
1643 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1644 np->speed100 = 0;
1645 np->mii_if.full_duplex = 1;
1646 } else {
1647 np->speed100 = 0;
1648 np->mii_if.full_duplex = 0;
1649 }
1650 } else {
1651 /* autonegotiation is disabled */
1652 if (reg0 & BMCR_SPEED100)
1653 np->speed100 = 1;
1654 else
1655 np->speed100 = 0;
1656 if (reg0 & BMCR_FULLDPLX)
1657 np->mii_if.full_duplex = 1;
1658 else
1659 np->mii_if.full_duplex = 0;
1660 }
1661 netif_carrier_on(dev);
1662 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1663 dev->name,
1664 np->speed100 ? "100" : "10",
1665 np->mii_if.full_duplex ? "full" : "half");
1666
1667 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1668 if (np->mii_if.full_duplex)
1669 new_tx_mode |= FullDuplex;
1670 if (np->tx_mode != new_tx_mode) {
1671 np->tx_mode = new_tx_mode;
1672 writel(val: np->tx_mode | MiiSoftReset, addr: ioaddr + TxMode);
1673 udelay(1000);
1674 writel(val: np->tx_mode, addr: ioaddr + TxMode);
1675 }
1676
1677 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1678 if (np->speed100)
1679 new_intr_timer_ctrl |= Timer10X;
1680 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681 np->intr_timer_ctrl = new_intr_timer_ctrl;
1682 writel(val: new_intr_timer_ctrl, addr: ioaddr + IntrTimerCtrl);
1683 }
1684 } else {
1685 netif_carrier_off(dev);
1686 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1687 }
1688}
1689
1690
1691static void netdev_error(struct net_device *dev, int intr_status)
1692{
1693 struct netdev_private *np = netdev_priv(dev);
1694
1695 /* Came close to underrunning the Tx FIFO, increase threshold. */
1696 if (intr_status & IntrTxDataLow) {
1697 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698 writel(val: ++np->tx_threshold, addr: np->base + TxThreshold);
1699 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700 dev->name, np->tx_threshold * 16);
1701 } else
1702 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703 }
1704 if (intr_status & IntrRxGFPDead) {
1705 dev->stats.rx_fifo_errors++;
1706 dev->stats.rx_errors++;
1707 }
1708 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709 dev->stats.tx_fifo_errors++;
1710 dev->stats.tx_errors++;
1711 }
1712 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714 dev->name, intr_status);
1715}
1716
1717
1718static struct net_device_stats *get_stats(struct net_device *dev)
1719{
1720 struct netdev_private *np = netdev_priv(dev);
1721 void __iomem *ioaddr = np->base;
1722
1723 /* This adapter architecture needs no SMP locks. */
1724 dev->stats.tx_bytes = readl(addr: ioaddr + 0x57010);
1725 dev->stats.rx_bytes = readl(addr: ioaddr + 0x57044);
1726 dev->stats.tx_packets = readl(addr: ioaddr + 0x57000);
1727 dev->stats.tx_aborted_errors =
1728 readl(addr: ioaddr + 0x57024) + readl(addr: ioaddr + 0x57028);
1729 dev->stats.tx_window_errors = readl(addr: ioaddr + 0x57018);
1730 dev->stats.collisions =
1731 readl(addr: ioaddr + 0x57004) + readl(addr: ioaddr + 0x57008);
1732
1733 /* The chip only need report frame silently dropped. */
1734 dev->stats.rx_dropped += readw(addr: ioaddr + RxDMAStatus);
1735 writew(val: 0, addr: ioaddr + RxDMAStatus);
1736 dev->stats.rx_crc_errors = readl(addr: ioaddr + 0x5703C);
1737 dev->stats.rx_frame_errors = readl(addr: ioaddr + 0x57040);
1738 dev->stats.rx_length_errors = readl(addr: ioaddr + 0x57058);
1739 dev->stats.rx_missed_errors = readl(addr: ioaddr + 0x5707C);
1740
1741 return &dev->stats;
1742}
1743
1744#ifdef VLAN_SUPPORT
1745static u32 set_vlan_mode(struct netdev_private *np)
1746{
1747 u32 ret = VlanMode;
1748 u16 vid;
1749 void __iomem *filter_addr = np->base + HashTable + 8;
1750 int vlan_count = 0;
1751
1752 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753 if (vlan_count == 32)
1754 break;
1755 writew(val: vid, addr: filter_addr);
1756 filter_addr += 16;
1757 vlan_count++;
1758 }
1759 if (vlan_count == 32) {
1760 ret |= PerfectFilterVlan;
1761 while (vlan_count < 32) {
1762 writew(val: 0, addr: filter_addr);
1763 filter_addr += 16;
1764 vlan_count++;
1765 }
1766 }
1767 return ret;
1768}
1769#endif /* VLAN_SUPPORT */
1770
1771static void set_rx_mode(struct net_device *dev)
1772{
1773 struct netdev_private *np = netdev_priv(dev);
1774 void __iomem *ioaddr = np->base;
1775 u32 rx_mode = MinVLANPrio;
1776 struct netdev_hw_addr *ha;
1777 int i;
1778
1779#ifdef VLAN_SUPPORT
1780 rx_mode |= set_vlan_mode(np);
1781#endif /* VLAN_SUPPORT */
1782
1783 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1784 rx_mode |= AcceptAll;
1785 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786 (dev->flags & IFF_ALLMULTI)) {
1787 /* Too many to match, or accept all multicasts. */
1788 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789 } else if (netdev_mc_count(dev) <= 14) {
1790 /* Use the 16 element perfect filter, skip first two entries. */
1791 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 const __be16 *eaddrs;
1793 netdev_for_each_mc_addr(ha, dev) {
1794 eaddrs = (__be16 *) ha->addr;
1795 writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 8;
1798 }
1799 eaddrs = (const __be16 *)dev->dev_addr;
1800 i = netdev_mc_count(dev) + 2;
1801 while (i++ < 16) {
1802 writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 4;
1803 writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 8;
1805 }
1806 rx_mode |= AcceptBroadcast|PerfectFilter;
1807 } else {
1808 /* Must use a multicast hash table. */
1809 void __iomem *filter_addr;
1810 const __be16 *eaddrs;
1811 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1812
1813 memset(mc_filter, 0, sizeof(mc_filter));
1814 netdev_for_each_mc_addr(ha, dev) {
1815 /* The chip uses the upper 9 CRC bits
1816 as index into the hash table */
1817 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819
1820 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821 }
1822 /* Clear the perfect filter list, skip first two entries. */
1823 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824 eaddrs = (const __be16 *)dev->dev_addr;
1825 for (i = 2; i < 16; i++) {
1826 writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 4;
1827 writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 8;
1829 }
1830 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831 writew(val: mc_filter[i], addr: filter_addr);
1832 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833 }
1834 writel(val: rx_mode, addr: ioaddr + RxFilterMode);
1835}
1836
1837static int check_if_running(struct net_device *dev)
1838{
1839 if (!netif_running(dev))
1840 return -EINVAL;
1841 return 0;
1842}
1843
1844static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845{
1846 struct netdev_private *np = netdev_priv(dev);
1847 strscpy(p: info->driver, DRV_NAME, size: sizeof(info->driver));
1848 strscpy(p: info->bus_info, q: pci_name(pdev: np->pci_dev), size: sizeof(info->bus_info));
1849}
1850
1851static int get_link_ksettings(struct net_device *dev,
1852 struct ethtool_link_ksettings *cmd)
1853{
1854 struct netdev_private *np = netdev_priv(dev);
1855 spin_lock_irq(lock: &np->lock);
1856 mii_ethtool_get_link_ksettings(mii: &np->mii_if, cmd);
1857 spin_unlock_irq(lock: &np->lock);
1858 return 0;
1859}
1860
1861static int set_link_ksettings(struct net_device *dev,
1862 const struct ethtool_link_ksettings *cmd)
1863{
1864 struct netdev_private *np = netdev_priv(dev);
1865 int res;
1866 spin_lock_irq(lock: &np->lock);
1867 res = mii_ethtool_set_link_ksettings(mii: &np->mii_if, cmd);
1868 spin_unlock_irq(lock: &np->lock);
1869 check_duplex(dev);
1870 return res;
1871}
1872
1873static int nway_reset(struct net_device *dev)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(mii: &np->mii_if);
1877}
1878
1879static u32 get_link(struct net_device *dev)
1880{
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(mii: &np->mii_if);
1883}
1884
1885static u32 get_msglevel(struct net_device *dev)
1886{
1887 return debug;
1888}
1889
1890static void set_msglevel(struct net_device *dev, u32 val)
1891{
1892 debug = val;
1893}
1894
1895static const struct ethtool_ops ethtool_ops = {
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .nway_reset = nway_reset,
1899 .get_link = get_link,
1900 .get_msglevel = get_msglevel,
1901 .set_msglevel = set_msglevel,
1902 .get_link_ksettings = get_link_ksettings,
1903 .set_link_ksettings = set_link_ksettings,
1904};
1905
1906static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907{
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1910 int rc;
1911
1912 if (!netif_running(dev))
1913 return -EINVAL;
1914
1915 spin_lock_irq(lock: &np->lock);
1916 rc = generic_mii_ioctl(mii_if: &np->mii_if, mii_data: data, cmd, NULL);
1917 spin_unlock_irq(lock: &np->lock);
1918
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920 check_duplex(dev);
1921
1922 return rc;
1923}
1924
1925static int netdev_close(struct net_device *dev)
1926{
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1929 int i;
1930
1931 netif_stop_queue(dev);
1932
1933 napi_disable(n: &np->napi);
1934
1935 if (debug > 1) {
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1941 }
1942
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 writel(val: 0, addr: ioaddr + IntrEnable);
1945
1946 /* Stop the chip's Tx and Rx processes. */
1947 writel(val: 0, addr: ioaddr + GenCtrl);
1948 readl(addr: ioaddr + GenCtrl);
1949
1950 if (debug > 5) {
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1960 if (np->rx_done_q)
1961 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964 }
1965 }
1966
1967 free_irq(np->pci_dev->irq, dev);
1968
1969 /* Free all the skbuffs in the Rx queue. */
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972 if (np->rx_info[i].skb != NULL) {
1973 dma_unmap_single(&np->pci_dev->dev,
1974 np->rx_info[i].mapping,
1975 np->rx_buf_sz, DMA_FROM_DEVICE);
1976 dev_kfree_skb(np->rx_info[i].skb);
1977 }
1978 np->rx_info[i].skb = NULL;
1979 np->rx_info[i].mapping = 0;
1980 }
1981 for (i = 0; i < TX_RING_SIZE; i++) {
1982 struct sk_buff *skb = np->tx_info[i].skb;
1983 if (skb == NULL)
1984 continue;
1985 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), DMA_TO_DEVICE);
1987 np->tx_info[i].mapping = 0;
1988 dev_kfree_skb(skb);
1989 np->tx_info[i].skb = NULL;
1990 }
1991
1992 return 0;
1993}
1994
1995static int __maybe_unused starfire_suspend(struct device *dev_d)
1996{
1997 struct net_device *dev = dev_get_drvdata(dev: dev_d);
1998
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2001 netdev_close(dev);
2002 }
2003
2004 return 0;
2005}
2006
2007static int __maybe_unused starfire_resume(struct device *dev_d)
2008{
2009 struct net_device *dev = dev_get_drvdata(dev: dev_d);
2010
2011 if (netif_running(dev)) {
2012 netdev_open(dev);
2013 netif_device_attach(dev);
2014 }
2015
2016 return 0;
2017}
2018
2019static void starfire_remove_one(struct pci_dev *pdev)
2020{
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022 struct netdev_private *np = netdev_priv(dev);
2023
2024 BUG_ON(!dev);
2025
2026 unregister_netdev(dev);
2027
2028 if (np->queue_mem)
2029 dma_free_coherent(dev: &pdev->dev, size: np->queue_mem_size,
2030 cpu_addr: np->queue_mem, dma_handle: np->queue_mem_dma);
2031
2032
2033 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2034 pci_set_power_state(dev: pdev, PCI_D3hot); /* go to sleep in D3 mode */
2035 pci_disable_device(dev: pdev);
2036
2037 iounmap(addr: np->base);
2038 pci_release_regions(pdev);
2039
2040 free_netdev(dev); /* Will also free np!! */
2041}
2042
2043static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2044
2045static struct pci_driver starfire_driver = {
2046 .name = DRV_NAME,
2047 .probe = starfire_init_one,
2048 .remove = starfire_remove_one,
2049 .driver.pm = &starfire_pm_ops,
2050 .id_table = starfire_pci_tbl,
2051};
2052
2053
2054static int __init starfire_init (void)
2055{
2056/* when a module, this is printed whether or not devices are found in probe */
2057#ifdef MODULE
2058 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2059#endif
2060
2061 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2062
2063 return pci_register_driver(&starfire_driver);
2064}
2065
2066
2067static void __exit starfire_cleanup (void)
2068{
2069 pci_unregister_driver (dev: &starfire_driver);
2070}
2071
2072
2073module_init(starfire_init);
2074module_exit(starfire_cleanup);
2075

source code of linux/drivers/net/ethernet/adaptec/starfire.c