1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 *
5 * 2005-2010 (c) Aeroflex Gaisler AB
6 *
7 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
8 * available in the GRLIB VHDL IP core library.
9 *
10 * Full documentation of both cores can be found here:
11 * https://www.gaisler.com/products/grlib/grip.pdf
12 *
13 * The Gigabit version supports scatter/gather DMA, any alignment of
14 * buffers and checksum offloading.
15 *
16 * Contributors: Kristoffer Glembo
17 * Daniel Hellstrom
18 * Marko Isomaki
19 */
20
21#include <linux/dma-mapping.h>
22#include <linux/module.h>
23#include <linux/uaccess.h>
24#include <linux/interrupt.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/ethtool.h>
28#include <linux/skbuff.h>
29#include <linux/io.h>
30#include <linux/crc32.h>
31#include <linux/mii.h>
32#include <linux/of.h>
33#include <linux/of_net.h>
34#include <linux/platform_device.h>
35#include <linux/slab.h>
36#include <asm/cacheflush.h>
37#include <asm/byteorder.h>
38
39#ifdef CONFIG_SPARC
40#include <asm/idprom.h>
41#endif
42
43#include "greth.h"
44
45#define GRETH_DEF_MSG_ENABLE \
46 (NETIF_MSG_DRV | \
47 NETIF_MSG_PROBE | \
48 NETIF_MSG_LINK | \
49 NETIF_MSG_IFDOWN | \
50 NETIF_MSG_IFUP | \
51 NETIF_MSG_RX_ERR | \
52 NETIF_MSG_TX_ERR)
53
54static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
55module_param(greth_debug, int, 0);
56MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
57
58/* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
59static int macaddr[6];
60module_param_array(macaddr, int, NULL, 0);
61MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
62
63static int greth_edcl = 1;
64module_param(greth_edcl, int, 0);
65MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
66
67static int greth_open(struct net_device *dev);
68static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
69 struct net_device *dev);
70static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
71 struct net_device *dev);
72static int greth_rx(struct net_device *dev, int limit);
73static int greth_rx_gbit(struct net_device *dev, int limit);
74static void greth_clean_tx(struct net_device *dev);
75static void greth_clean_tx_gbit(struct net_device *dev);
76static irqreturn_t greth_interrupt(int irq, void *dev_id);
77static int greth_close(struct net_device *dev);
78static int greth_set_mac_add(struct net_device *dev, void *p);
79static void greth_set_multicast_list(struct net_device *dev);
80
81#define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
82#define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
83#define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
84#define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
85
86#define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
87#define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
88#define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
89
90static void greth_print_rx_packet(void *addr, int len)
91{
92 print_hex_dump(KERN_DEBUG, prefix_str: "RX: ", prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1,
93 buf: addr, len, ascii: true);
94}
95
96static void greth_print_tx_packet(struct sk_buff *skb)
97{
98 int i;
99 int length;
100
101 if (skb_shinfo(skb)->nr_frags == 0)
102 length = skb->len;
103 else
104 length = skb_headlen(skb);
105
106 print_hex_dump(KERN_DEBUG, prefix_str: "TX: ", prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1,
107 buf: skb->data, len: length, ascii: true);
108
109 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
110
111 print_hex_dump(KERN_DEBUG, prefix_str: "TX: ", prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1,
112 buf: skb_frag_address(frag: &skb_shinfo(skb)->frags[i]),
113 len: skb_frag_size(frag: &skb_shinfo(skb)->frags[i]), ascii: true);
114 }
115}
116
117static inline void greth_enable_tx(struct greth_private *greth)
118{
119 wmb();
120 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
121}
122
123static inline void greth_enable_tx_and_irq(struct greth_private *greth)
124{
125 wmb(); /* BDs must been written to memory before enabling TX */
126 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI);
127}
128
129static inline void greth_disable_tx(struct greth_private *greth)
130{
131 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
132}
133
134static inline void greth_enable_rx(struct greth_private *greth)
135{
136 wmb();
137 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
138}
139
140static inline void greth_disable_rx(struct greth_private *greth)
141{
142 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
143}
144
145static inline void greth_enable_irqs(struct greth_private *greth)
146{
147 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
148}
149
150static inline void greth_disable_irqs(struct greth_private *greth)
151{
152 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
153}
154
155static inline void greth_write_bd(u32 *bd, u32 val)
156{
157 __raw_writel(cpu_to_be32(val), addr: bd);
158}
159
160static inline u32 greth_read_bd(u32 *bd)
161{
162 return be32_to_cpu(__raw_readl(bd));
163}
164
165static void greth_clean_rings(struct greth_private *greth)
166{
167 int i;
168 struct greth_bd *rx_bdp = greth->rx_bd_base;
169 struct greth_bd *tx_bdp = greth->tx_bd_base;
170
171 if (greth->gbit_mac) {
172
173 /* Free and unmap RX buffers */
174 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
175 if (greth->rx_skbuff[i] != NULL) {
176 dev_kfree_skb(greth->rx_skbuff[i]);
177 dma_unmap_single(greth->dev,
178 greth_read_bd(&rx_bdp->addr),
179 MAX_FRAME_SIZE+NET_IP_ALIGN,
180 DMA_FROM_DEVICE);
181 }
182 }
183
184 /* TX buffers */
185 while (greth->tx_free < GRETH_TXBD_NUM) {
186
187 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
188 int nr_frags = skb_shinfo(skb)->nr_frags;
189 tx_bdp = greth->tx_bd_base + greth->tx_last;
190 greth->tx_last = NEXT_TX(greth->tx_last);
191
192 dma_unmap_single(greth->dev,
193 greth_read_bd(&tx_bdp->addr),
194 skb_headlen(skb),
195 DMA_TO_DEVICE);
196
197 for (i = 0; i < nr_frags; i++) {
198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
199 tx_bdp = greth->tx_bd_base + greth->tx_last;
200
201 dma_unmap_page(greth->dev,
202 greth_read_bd(&tx_bdp->addr),
203 skb_frag_size(frag),
204 DMA_TO_DEVICE);
205
206 greth->tx_last = NEXT_TX(greth->tx_last);
207 }
208 greth->tx_free += nr_frags+1;
209 dev_kfree_skb(skb);
210 }
211
212
213 } else { /* 10/100 Mbps MAC */
214
215 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
216 kfree(objp: greth->rx_bufs[i]);
217 dma_unmap_single(greth->dev,
218 greth_read_bd(&rx_bdp->addr),
219 MAX_FRAME_SIZE,
220 DMA_FROM_DEVICE);
221 }
222 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
223 kfree(objp: greth->tx_bufs[i]);
224 dma_unmap_single(greth->dev,
225 greth_read_bd(&tx_bdp->addr),
226 MAX_FRAME_SIZE,
227 DMA_TO_DEVICE);
228 }
229 }
230}
231
232static int greth_init_rings(struct greth_private *greth)
233{
234 struct sk_buff *skb;
235 struct greth_bd *rx_bd, *tx_bd;
236 u32 dma_addr;
237 int i;
238
239 rx_bd = greth->rx_bd_base;
240 tx_bd = greth->tx_bd_base;
241
242 /* Initialize descriptor rings and buffers */
243 if (greth->gbit_mac) {
244
245 for (i = 0; i < GRETH_RXBD_NUM; i++) {
246 skb = netdev_alloc_skb(dev: greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
247 if (skb == NULL) {
248 if (netif_msg_ifup(greth))
249 dev_err(greth->dev, "Error allocating DMA ring.\n");
250 goto cleanup;
251 }
252 skb_reserve(skb, NET_IP_ALIGN);
253 dma_addr = dma_map_single(greth->dev,
254 skb->data,
255 MAX_FRAME_SIZE+NET_IP_ALIGN,
256 DMA_FROM_DEVICE);
257
258 if (dma_mapping_error(dev: greth->dev, dma_addr)) {
259 if (netif_msg_ifup(greth))
260 dev_err(greth->dev, "Could not create initial DMA mapping\n");
261 dev_kfree_skb(skb);
262 goto cleanup;
263 }
264 greth->rx_skbuff[i] = skb;
265 greth_write_bd(bd: &rx_bd[i].addr, val: dma_addr);
266 greth_write_bd(bd: &rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
267 }
268
269 } else {
270
271 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
272 for (i = 0; i < GRETH_RXBD_NUM; i++) {
273
274 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
275
276 if (greth->rx_bufs[i] == NULL) {
277 if (netif_msg_ifup(greth))
278 dev_err(greth->dev, "Error allocating DMA ring.\n");
279 goto cleanup;
280 }
281
282 dma_addr = dma_map_single(greth->dev,
283 greth->rx_bufs[i],
284 MAX_FRAME_SIZE,
285 DMA_FROM_DEVICE);
286
287 if (dma_mapping_error(dev: greth->dev, dma_addr)) {
288 if (netif_msg_ifup(greth))
289 dev_err(greth->dev, "Could not create initial DMA mapping\n");
290 goto cleanup;
291 }
292 greth_write_bd(bd: &rx_bd[i].addr, val: dma_addr);
293 greth_write_bd(bd: &rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
294 }
295 for (i = 0; i < GRETH_TXBD_NUM; i++) {
296
297 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
298
299 if (greth->tx_bufs[i] == NULL) {
300 if (netif_msg_ifup(greth))
301 dev_err(greth->dev, "Error allocating DMA ring.\n");
302 goto cleanup;
303 }
304
305 dma_addr = dma_map_single(greth->dev,
306 greth->tx_bufs[i],
307 MAX_FRAME_SIZE,
308 DMA_TO_DEVICE);
309
310 if (dma_mapping_error(dev: greth->dev, dma_addr)) {
311 if (netif_msg_ifup(greth))
312 dev_err(greth->dev, "Could not create initial DMA mapping\n");
313 goto cleanup;
314 }
315 greth_write_bd(bd: &tx_bd[i].addr, val: dma_addr);
316 greth_write_bd(bd: &tx_bd[i].stat, val: 0);
317 }
318 }
319 greth_write_bd(bd: &rx_bd[GRETH_RXBD_NUM - 1].stat,
320 val: greth_read_bd(bd: &rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
321
322 /* Initialize pointers. */
323 greth->rx_cur = 0;
324 greth->tx_next = 0;
325 greth->tx_last = 0;
326 greth->tx_free = GRETH_TXBD_NUM;
327
328 /* Initialize descriptor base address */
329 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
330 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
331
332 return 0;
333
334cleanup:
335 greth_clean_rings(greth);
336 return -ENOMEM;
337}
338
339static int greth_open(struct net_device *dev)
340{
341 struct greth_private *greth = netdev_priv(dev);
342 int err;
343
344 err = greth_init_rings(greth);
345 if (err) {
346 if (netif_msg_ifup(greth))
347 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
348 return err;
349 }
350
351 err = request_irq(irq: greth->irq, handler: greth_interrupt, flags: 0, name: "eth", dev: (void *) dev);
352 if (err) {
353 if (netif_msg_ifup(greth))
354 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
355 greth_clean_rings(greth);
356 return err;
357 }
358
359 if (netif_msg_ifup(greth))
360 dev_dbg(&dev->dev, " starting queue\n");
361 netif_start_queue(dev);
362
363 GRETH_REGSAVE(greth->regs->status, 0xFF);
364
365 napi_enable(n: &greth->napi);
366
367 greth_enable_irqs(greth);
368 greth_enable_tx(greth);
369 greth_enable_rx(greth);
370 return 0;
371
372}
373
374static int greth_close(struct net_device *dev)
375{
376 struct greth_private *greth = netdev_priv(dev);
377
378 napi_disable(n: &greth->napi);
379
380 greth_disable_irqs(greth);
381 greth_disable_tx(greth);
382 greth_disable_rx(greth);
383
384 netif_stop_queue(dev);
385
386 free_irq(greth->irq, (void *) dev);
387
388 greth_clean_rings(greth);
389
390 return 0;
391}
392
393static netdev_tx_t
394greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
395{
396 struct greth_private *greth = netdev_priv(dev);
397 struct greth_bd *bdp;
398 int err = NETDEV_TX_OK;
399 u32 status, dma_addr, ctrl;
400 unsigned long flags;
401
402 /* Clean TX Ring */
403 greth_clean_tx(dev: greth->netdev);
404
405 if (unlikely(greth->tx_free <= 0)) {
406 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
407 ctrl = GRETH_REGLOAD(greth->regs->control);
408 /* Enable TX IRQ only if not already in poll() routine */
409 if (ctrl & GRETH_RXI)
410 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
411 netif_stop_queue(dev);
412 spin_unlock_irqrestore(lock: &greth->devlock, flags);
413 return NETDEV_TX_BUSY;
414 }
415
416 if (netif_msg_pktdata(greth))
417 greth_print_tx_packet(skb);
418
419
420 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
421 dev->stats.tx_errors++;
422 goto out;
423 }
424
425 bdp = greth->tx_bd_base + greth->tx_next;
426 dma_addr = greth_read_bd(bd: &bdp->addr);
427
428 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
429
430 dma_sync_single_for_device(dev: greth->dev, addr: dma_addr, size: skb->len, dir: DMA_TO_DEVICE);
431
432 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
433 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN;
434
435 /* Wrap around descriptor ring */
436 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
437 status |= GRETH_BD_WR;
438 }
439
440 greth->tx_next = NEXT_TX(greth->tx_next);
441 greth->tx_free--;
442
443 /* Write descriptor control word and enable transmission */
444 greth_write_bd(bd: &bdp->stat, val: status);
445 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
446 greth_enable_tx(greth);
447 spin_unlock_irqrestore(lock: &greth->devlock, flags);
448
449out:
450 dev_kfree_skb(skb);
451 return err;
452}
453
454static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next)
455{
456 if (tx_next < tx_last)
457 return (tx_last - tx_next) - 1;
458 else
459 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1;
460}
461
462static netdev_tx_t
463greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
464{
465 struct greth_private *greth = netdev_priv(dev);
466 struct greth_bd *bdp;
467 u32 status, dma_addr;
468 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
469 unsigned long flags;
470 u16 tx_last;
471
472 nr_frags = skb_shinfo(skb)->nr_frags;
473 tx_last = greth->tx_last;
474 rmb(); /* tx_last is updated by the poll task */
475
476 if (greth_num_free_bds(tx_last, tx_next: greth->tx_next) < nr_frags + 1) {
477 netif_stop_queue(dev);
478 err = NETDEV_TX_BUSY;
479 goto out;
480 }
481
482 if (netif_msg_pktdata(greth))
483 greth_print_tx_packet(skb);
484
485 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
486 dev->stats.tx_errors++;
487 goto out;
488 }
489
490 /* Save skb pointer. */
491 greth->tx_skbuff[greth->tx_next] = skb;
492
493 /* Linear buf */
494 if (nr_frags != 0)
495 status = GRETH_TXBD_MORE;
496 else
497 status = GRETH_BD_IE;
498
499 if (skb->ip_summed == CHECKSUM_PARTIAL)
500 status |= GRETH_TXBD_CSALL;
501 status |= skb_headlen(skb) & GRETH_BD_LEN;
502 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
503 status |= GRETH_BD_WR;
504
505
506 bdp = greth->tx_bd_base + greth->tx_next;
507 greth_write_bd(bd: &bdp->stat, val: status);
508 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
509
510 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
511 goto map_error;
512
513 greth_write_bd(bd: &bdp->addr, val: dma_addr);
514
515 curr_tx = NEXT_TX(greth->tx_next);
516
517 /* Frags */
518 for (i = 0; i < nr_frags; i++) {
519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
520 greth->tx_skbuff[curr_tx] = NULL;
521 bdp = greth->tx_bd_base + curr_tx;
522
523 status = GRETH_BD_EN;
524 if (skb->ip_summed == CHECKSUM_PARTIAL)
525 status |= GRETH_TXBD_CSALL;
526 status |= skb_frag_size(frag) & GRETH_BD_LEN;
527
528 /* Wrap around descriptor ring */
529 if (curr_tx == GRETH_TXBD_NUM_MASK)
530 status |= GRETH_BD_WR;
531
532 /* More fragments left */
533 if (i < nr_frags - 1)
534 status |= GRETH_TXBD_MORE;
535 else
536 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
537
538 greth_write_bd(bd: &bdp->stat, val: status);
539
540 dma_addr = skb_frag_dma_map(dev: greth->dev, frag, offset: 0, size: skb_frag_size(frag),
541 dir: DMA_TO_DEVICE);
542
543 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
544 goto frag_map_error;
545
546 greth_write_bd(bd: &bdp->addr, val: dma_addr);
547
548 curr_tx = NEXT_TX(curr_tx);
549 }
550
551 wmb();
552
553 /* Enable the descriptor chain by enabling the first descriptor */
554 bdp = greth->tx_bd_base + greth->tx_next;
555 greth_write_bd(bd: &bdp->stat,
556 val: greth_read_bd(bd: &bdp->stat) | GRETH_BD_EN);
557
558 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
559 greth->tx_next = curr_tx;
560 greth_enable_tx_and_irq(greth);
561 spin_unlock_irqrestore(lock: &greth->devlock, flags);
562
563 return NETDEV_TX_OK;
564
565frag_map_error:
566 /* Unmap SKB mappings that succeeded and disable descriptor */
567 for (i = 0; greth->tx_next + i != curr_tx; i++) {
568 bdp = greth->tx_bd_base + greth->tx_next + i;
569 dma_unmap_single(greth->dev,
570 greth_read_bd(&bdp->addr),
571 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
572 DMA_TO_DEVICE);
573 greth_write_bd(bd: &bdp->stat, val: 0);
574 }
575map_error:
576 if (net_ratelimit())
577 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
578 dev_kfree_skb(skb);
579out:
580 return err;
581}
582
583static irqreturn_t greth_interrupt(int irq, void *dev_id)
584{
585 struct net_device *dev = dev_id;
586 struct greth_private *greth;
587 u32 status, ctrl;
588 irqreturn_t retval = IRQ_NONE;
589
590 greth = netdev_priv(dev);
591
592 spin_lock(lock: &greth->devlock);
593
594 /* Get the interrupt events that caused us to be here. */
595 status = GRETH_REGLOAD(greth->regs->status);
596
597 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
598 * set regardless of whether IRQ is enabled or not. Especially
599 * important when shared IRQ.
600 */
601 ctrl = GRETH_REGLOAD(greth->regs->control);
602
603 /* Handle rx and tx interrupts through poll */
604 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
605 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
606 retval = IRQ_HANDLED;
607
608 /* Disable interrupts and schedule poll() */
609 greth_disable_irqs(greth);
610 napi_schedule(n: &greth->napi);
611 }
612
613 spin_unlock(lock: &greth->devlock);
614
615 return retval;
616}
617
618static void greth_clean_tx(struct net_device *dev)
619{
620 struct greth_private *greth;
621 struct greth_bd *bdp;
622 u32 stat;
623
624 greth = netdev_priv(dev);
625
626 while (1) {
627 bdp = greth->tx_bd_base + greth->tx_last;
628 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
629 mb();
630 stat = greth_read_bd(bd: &bdp->stat);
631
632 if (unlikely(stat & GRETH_BD_EN))
633 break;
634
635 if (greth->tx_free == GRETH_TXBD_NUM)
636 break;
637
638 /* Check status for errors */
639 if (unlikely(stat & GRETH_TXBD_STATUS)) {
640 dev->stats.tx_errors++;
641 if (stat & GRETH_TXBD_ERR_AL)
642 dev->stats.tx_aborted_errors++;
643 if (stat & GRETH_TXBD_ERR_UE)
644 dev->stats.tx_fifo_errors++;
645 }
646 dev->stats.tx_packets++;
647 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last];
648 greth->tx_last = NEXT_TX(greth->tx_last);
649 greth->tx_free++;
650 }
651
652 if (greth->tx_free > 0) {
653 netif_wake_queue(dev);
654 }
655}
656
657static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
658{
659 /* Check status for errors */
660 if (unlikely(stat & GRETH_TXBD_STATUS)) {
661 dev->stats.tx_errors++;
662 if (stat & GRETH_TXBD_ERR_AL)
663 dev->stats.tx_aborted_errors++;
664 if (stat & GRETH_TXBD_ERR_UE)
665 dev->stats.tx_fifo_errors++;
666 if (stat & GRETH_TXBD_ERR_LC)
667 dev->stats.tx_aborted_errors++;
668 }
669 dev->stats.tx_packets++;
670}
671
672static void greth_clean_tx_gbit(struct net_device *dev)
673{
674 struct greth_private *greth;
675 struct greth_bd *bdp, *bdp_last_frag;
676 struct sk_buff *skb = NULL;
677 u32 stat;
678 int nr_frags, i;
679 u16 tx_last;
680
681 greth = netdev_priv(dev);
682 tx_last = greth->tx_last;
683
684 while (tx_last != greth->tx_next) {
685
686 skb = greth->tx_skbuff[tx_last];
687
688 nr_frags = skb_shinfo(skb)->nr_frags;
689
690 /* We only clean fully completed SKBs */
691 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags);
692
693 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
694 mb();
695 stat = greth_read_bd(bd: &bdp_last_frag->stat);
696
697 if (stat & GRETH_BD_EN)
698 break;
699
700 greth->tx_skbuff[tx_last] = NULL;
701
702 greth_update_tx_stats(dev, stat);
703 dev->stats.tx_bytes += skb->len;
704
705 bdp = greth->tx_bd_base + tx_last;
706
707 tx_last = NEXT_TX(tx_last);
708
709 dma_unmap_single(greth->dev,
710 greth_read_bd(&bdp->addr),
711 skb_headlen(skb),
712 DMA_TO_DEVICE);
713
714 for (i = 0; i < nr_frags; i++) {
715 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
716 bdp = greth->tx_bd_base + tx_last;
717
718 dma_unmap_page(greth->dev,
719 greth_read_bd(&bdp->addr),
720 skb_frag_size(frag),
721 DMA_TO_DEVICE);
722
723 tx_last = NEXT_TX(tx_last);
724 }
725 dev_kfree_skb(skb);
726 }
727 if (skb) { /* skb is set only if the above while loop was entered */
728 wmb();
729 greth->tx_last = tx_last;
730
731 if (netif_queue_stopped(dev) &&
732 (greth_num_free_bds(tx_last, tx_next: greth->tx_next) >
733 (MAX_SKB_FRAGS+1)))
734 netif_wake_queue(dev);
735 }
736}
737
738static int greth_rx(struct net_device *dev, int limit)
739{
740 struct greth_private *greth;
741 struct greth_bd *bdp;
742 struct sk_buff *skb;
743 int pkt_len;
744 int bad, count;
745 u32 status, dma_addr;
746 unsigned long flags;
747
748 greth = netdev_priv(dev);
749
750 for (count = 0; count < limit; ++count) {
751
752 bdp = greth->rx_bd_base + greth->rx_cur;
753 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
754 mb();
755 status = greth_read_bd(bd: &bdp->stat);
756
757 if (unlikely(status & GRETH_BD_EN)) {
758 break;
759 }
760
761 dma_addr = greth_read_bd(bd: &bdp->addr);
762 bad = 0;
763
764 /* Check status for errors. */
765 if (unlikely(status & GRETH_RXBD_STATUS)) {
766 if (status & GRETH_RXBD_ERR_FT) {
767 dev->stats.rx_length_errors++;
768 bad = 1;
769 }
770 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
771 dev->stats.rx_frame_errors++;
772 bad = 1;
773 }
774 if (status & GRETH_RXBD_ERR_CRC) {
775 dev->stats.rx_crc_errors++;
776 bad = 1;
777 }
778 }
779 if (unlikely(bad)) {
780 dev->stats.rx_errors++;
781
782 } else {
783
784 pkt_len = status & GRETH_BD_LEN;
785
786 skb = netdev_alloc_skb(dev, length: pkt_len + NET_IP_ALIGN);
787
788 if (unlikely(skb == NULL)) {
789
790 if (net_ratelimit())
791 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
792
793 dev->stats.rx_dropped++;
794
795 } else {
796 skb_reserve(skb, NET_IP_ALIGN);
797
798 dma_sync_single_for_cpu(dev: greth->dev,
799 addr: dma_addr,
800 size: pkt_len,
801 dir: DMA_FROM_DEVICE);
802
803 if (netif_msg_pktdata(greth))
804 greth_print_rx_packet(phys_to_virt(address: dma_addr), len: pkt_len);
805
806 skb_put_data(skb, phys_to_virt(address: dma_addr),
807 len: pkt_len);
808
809 skb->protocol = eth_type_trans(skb, dev);
810 dev->stats.rx_bytes += pkt_len;
811 dev->stats.rx_packets++;
812 netif_receive_skb(skb);
813 }
814 }
815
816 status = GRETH_BD_EN | GRETH_BD_IE;
817 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
818 status |= GRETH_BD_WR;
819 }
820
821 wmb();
822 greth_write_bd(bd: &bdp->stat, val: status);
823
824 dma_sync_single_for_device(dev: greth->dev, addr: dma_addr, MAX_FRAME_SIZE, dir: DMA_FROM_DEVICE);
825
826 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
827 greth_enable_rx(greth);
828 spin_unlock_irqrestore(lock: &greth->devlock, flags);
829
830 greth->rx_cur = NEXT_RX(greth->rx_cur);
831 }
832
833 return count;
834}
835
836static inline int hw_checksummed(u32 status)
837{
838
839 if (status & GRETH_RXBD_IP_FRAG)
840 return 0;
841
842 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
843 return 0;
844
845 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
846 return 0;
847
848 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
849 return 0;
850
851 return 1;
852}
853
854static int greth_rx_gbit(struct net_device *dev, int limit)
855{
856 struct greth_private *greth;
857 struct greth_bd *bdp;
858 struct sk_buff *skb, *newskb;
859 int pkt_len;
860 int bad, count = 0;
861 u32 status, dma_addr;
862 unsigned long flags;
863
864 greth = netdev_priv(dev);
865
866 for (count = 0; count < limit; ++count) {
867
868 bdp = greth->rx_bd_base + greth->rx_cur;
869 skb = greth->rx_skbuff[greth->rx_cur];
870 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
871 mb();
872 status = greth_read_bd(bd: &bdp->stat);
873 bad = 0;
874
875 if (status & GRETH_BD_EN)
876 break;
877
878 /* Check status for errors. */
879 if (unlikely(status & GRETH_RXBD_STATUS)) {
880
881 if (status & GRETH_RXBD_ERR_FT) {
882 dev->stats.rx_length_errors++;
883 bad = 1;
884 } else if (status &
885 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
886 dev->stats.rx_frame_errors++;
887 bad = 1;
888 } else if (status & GRETH_RXBD_ERR_CRC) {
889 dev->stats.rx_crc_errors++;
890 bad = 1;
891 }
892 }
893
894 /* Allocate new skb to replace current, not needed if the
895 * current skb can be reused */
896 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
897 skb_reserve(skb: newskb, NET_IP_ALIGN);
898
899 dma_addr = dma_map_single(greth->dev,
900 newskb->data,
901 MAX_FRAME_SIZE + NET_IP_ALIGN,
902 DMA_FROM_DEVICE);
903
904 if (!dma_mapping_error(dev: greth->dev, dma_addr)) {
905 /* Process the incoming frame. */
906 pkt_len = status & GRETH_BD_LEN;
907
908 dma_unmap_single(greth->dev,
909 greth_read_bd(&bdp->addr),
910 MAX_FRAME_SIZE + NET_IP_ALIGN,
911 DMA_FROM_DEVICE);
912
913 if (netif_msg_pktdata(greth))
914 greth_print_rx_packet(phys_to_virt(address: greth_read_bd(bd: &bdp->addr)), len: pkt_len);
915
916 skb_put(skb, len: pkt_len);
917
918 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
919 skb->ip_summed = CHECKSUM_UNNECESSARY;
920 else
921 skb_checksum_none_assert(skb);
922
923 skb->protocol = eth_type_trans(skb, dev);
924 dev->stats.rx_packets++;
925 dev->stats.rx_bytes += pkt_len;
926 netif_receive_skb(skb);
927
928 greth->rx_skbuff[greth->rx_cur] = newskb;
929 greth_write_bd(bd: &bdp->addr, val: dma_addr);
930 } else {
931 if (net_ratelimit())
932 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
933 dev_kfree_skb(newskb);
934 /* reusing current skb, so it is a drop */
935 dev->stats.rx_dropped++;
936 }
937 } else if (bad) {
938 /* Bad Frame transfer, the skb is reused */
939 dev->stats.rx_dropped++;
940 } else {
941 /* Failed Allocating a new skb. This is rather stupid
942 * but the current "filled" skb is reused, as if
943 * transfer failure. One could argue that RX descriptor
944 * table handling should be divided into cleaning and
945 * filling as the TX part of the driver
946 */
947 if (net_ratelimit())
948 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
949 /* reusing current skb, so it is a drop */
950 dev->stats.rx_dropped++;
951 }
952
953 status = GRETH_BD_EN | GRETH_BD_IE;
954 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
955 status |= GRETH_BD_WR;
956 }
957
958 wmb();
959 greth_write_bd(bd: &bdp->stat, val: status);
960 spin_lock_irqsave(&greth->devlock, flags);
961 greth_enable_rx(greth);
962 spin_unlock_irqrestore(lock: &greth->devlock, flags);
963 greth->rx_cur = NEXT_RX(greth->rx_cur);
964 }
965
966 return count;
967
968}
969
970static int greth_poll(struct napi_struct *napi, int budget)
971{
972 struct greth_private *greth;
973 int work_done = 0;
974 unsigned long flags;
975 u32 mask, ctrl;
976 greth = container_of(napi, struct greth_private, napi);
977
978restart_txrx_poll:
979 if (greth->gbit_mac) {
980 greth_clean_tx_gbit(dev: greth->netdev);
981 work_done += greth_rx_gbit(dev: greth->netdev, limit: budget - work_done);
982 } else {
983 if (netif_queue_stopped(dev: greth->netdev))
984 greth_clean_tx(dev: greth->netdev);
985 work_done += greth_rx(dev: greth->netdev, limit: budget - work_done);
986 }
987
988 if (work_done < budget) {
989
990 spin_lock_irqsave(&greth->devlock, flags);
991
992 ctrl = GRETH_REGLOAD(greth->regs->control);
993 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) ||
994 (!greth->gbit_mac && netif_queue_stopped(dev: greth->netdev))) {
995 GRETH_REGSAVE(greth->regs->control,
996 ctrl | GRETH_TXI | GRETH_RXI);
997 mask = GRETH_INT_RX | GRETH_INT_RE |
998 GRETH_INT_TX | GRETH_INT_TE;
999 } else {
1000 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
1001 mask = GRETH_INT_RX | GRETH_INT_RE;
1002 }
1003
1004 if (GRETH_REGLOAD(greth->regs->status) & mask) {
1005 GRETH_REGSAVE(greth->regs->control, ctrl);
1006 spin_unlock_irqrestore(lock: &greth->devlock, flags);
1007 goto restart_txrx_poll;
1008 } else {
1009 napi_complete_done(n: napi, work_done);
1010 spin_unlock_irqrestore(lock: &greth->devlock, flags);
1011 }
1012 }
1013
1014 return work_done;
1015}
1016
1017static int greth_set_mac_add(struct net_device *dev, void *p)
1018{
1019 struct sockaddr *addr = p;
1020 struct greth_private *greth;
1021 struct greth_regs *regs;
1022
1023 greth = netdev_priv(dev);
1024 regs = greth->regs;
1025
1026 if (!is_valid_ether_addr(addr: addr->sa_data))
1027 return -EADDRNOTAVAIL;
1028
1029 eth_hw_addr_set(dev, addr: addr->sa_data);
1030 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1031 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1032 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1033
1034 return 0;
1035}
1036
1037static u32 greth_hash_get_index(__u8 *addr)
1038{
1039 return (ether_crc(6, addr)) & 0x3F;
1040}
1041
1042static void greth_set_hash_filter(struct net_device *dev)
1043{
1044 struct netdev_hw_addr *ha;
1045 struct greth_private *greth = netdev_priv(dev);
1046 struct greth_regs *regs = greth->regs;
1047 u32 mc_filter[2];
1048 unsigned int bitnr;
1049
1050 mc_filter[0] = mc_filter[1] = 0;
1051
1052 netdev_for_each_mc_addr(ha, dev) {
1053 bitnr = greth_hash_get_index(addr: ha->addr);
1054 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1055 }
1056
1057 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1058 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1059}
1060
1061static void greth_set_multicast_list(struct net_device *dev)
1062{
1063 int cfg;
1064 struct greth_private *greth = netdev_priv(dev);
1065 struct greth_regs *regs = greth->regs;
1066
1067 cfg = GRETH_REGLOAD(regs->control);
1068 if (dev->flags & IFF_PROMISC)
1069 cfg |= GRETH_CTRL_PR;
1070 else
1071 cfg &= ~GRETH_CTRL_PR;
1072
1073 if (greth->multicast) {
1074 if (dev->flags & IFF_ALLMULTI) {
1075 GRETH_REGSAVE(regs->hash_msb, -1);
1076 GRETH_REGSAVE(regs->hash_lsb, -1);
1077 cfg |= GRETH_CTRL_MCEN;
1078 GRETH_REGSAVE(regs->control, cfg);
1079 return;
1080 }
1081
1082 if (netdev_mc_empty(dev)) {
1083 cfg &= ~GRETH_CTRL_MCEN;
1084 GRETH_REGSAVE(regs->control, cfg);
1085 return;
1086 }
1087
1088 /* Setup multicast filter */
1089 greth_set_hash_filter(dev);
1090 cfg |= GRETH_CTRL_MCEN;
1091 }
1092 GRETH_REGSAVE(regs->control, cfg);
1093}
1094
1095static u32 greth_get_msglevel(struct net_device *dev)
1096{
1097 struct greth_private *greth = netdev_priv(dev);
1098 return greth->msg_enable;
1099}
1100
1101static void greth_set_msglevel(struct net_device *dev, u32 value)
1102{
1103 struct greth_private *greth = netdev_priv(dev);
1104 greth->msg_enable = value;
1105}
1106
1107static int greth_get_regs_len(struct net_device *dev)
1108{
1109 return sizeof(struct greth_regs);
1110}
1111
1112static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1113{
1114 struct greth_private *greth = netdev_priv(dev);
1115
1116 strscpy(p: info->driver, q: dev_driver_string(dev: greth->dev),
1117 size: sizeof(info->driver));
1118 strscpy(p: info->bus_info, q: greth->dev->bus->name, size: sizeof(info->bus_info));
1119}
1120
1121static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1122{
1123 int i;
1124 struct greth_private *greth = netdev_priv(dev);
1125 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1126 u32 *buff = p;
1127
1128 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1129 buff[i] = greth_read_bd(bd: &greth_regs[i]);
1130}
1131
1132static const struct ethtool_ops greth_ethtool_ops = {
1133 .get_msglevel = greth_get_msglevel,
1134 .set_msglevel = greth_set_msglevel,
1135 .get_drvinfo = greth_get_drvinfo,
1136 .get_regs_len = greth_get_regs_len,
1137 .get_regs = greth_get_regs,
1138 .get_link = ethtool_op_get_link,
1139 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1140 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1141};
1142
1143static struct net_device_ops greth_netdev_ops = {
1144 .ndo_open = greth_open,
1145 .ndo_stop = greth_close,
1146 .ndo_start_xmit = greth_start_xmit,
1147 .ndo_set_mac_address = greth_set_mac_add,
1148 .ndo_validate_addr = eth_validate_addr,
1149};
1150
1151static inline int wait_for_mdio(struct greth_private *greth)
1152{
1153 unsigned long timeout = jiffies + 4*HZ/100;
1154 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1155 if (time_after(jiffies, timeout))
1156 return 0;
1157 }
1158 return 1;
1159}
1160
1161static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1162{
1163 struct greth_private *greth = bus->priv;
1164 int data;
1165
1166 if (!wait_for_mdio(greth))
1167 return -EBUSY;
1168
1169 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1170
1171 if (!wait_for_mdio(greth))
1172 return -EBUSY;
1173
1174 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1175 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1176 return data;
1177
1178 } else {
1179 return -1;
1180 }
1181}
1182
1183static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1184{
1185 struct greth_private *greth = bus->priv;
1186
1187 if (!wait_for_mdio(greth))
1188 return -EBUSY;
1189
1190 GRETH_REGSAVE(greth->regs->mdio,
1191 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1192
1193 if (!wait_for_mdio(greth))
1194 return -EBUSY;
1195
1196 return 0;
1197}
1198
1199static void greth_link_change(struct net_device *dev)
1200{
1201 struct greth_private *greth = netdev_priv(dev);
1202 struct phy_device *phydev = dev->phydev;
1203 unsigned long flags;
1204 int status_change = 0;
1205 u32 ctrl;
1206
1207 spin_lock_irqsave(&greth->devlock, flags);
1208
1209 if (phydev->link) {
1210
1211 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1212 ctrl = GRETH_REGLOAD(greth->regs->control) &
1213 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1214
1215 if (phydev->duplex)
1216 ctrl |= GRETH_CTRL_FD;
1217
1218 if (phydev->speed == SPEED_100)
1219 ctrl |= GRETH_CTRL_SP;
1220 else if (phydev->speed == SPEED_1000)
1221 ctrl |= GRETH_CTRL_GB;
1222
1223 GRETH_REGSAVE(greth->regs->control, ctrl);
1224 greth->speed = phydev->speed;
1225 greth->duplex = phydev->duplex;
1226 status_change = 1;
1227 }
1228 }
1229
1230 if (phydev->link != greth->link) {
1231 if (!phydev->link) {
1232 greth->speed = 0;
1233 greth->duplex = -1;
1234 }
1235 greth->link = phydev->link;
1236
1237 status_change = 1;
1238 }
1239
1240 spin_unlock_irqrestore(lock: &greth->devlock, flags);
1241
1242 if (status_change) {
1243 if (phydev->link)
1244 pr_debug("%s: link up (%d/%s)\n",
1245 dev->name, phydev->speed,
1246 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1247 else
1248 pr_debug("%s: link down\n", dev->name);
1249 }
1250}
1251
1252static int greth_mdio_probe(struct net_device *dev)
1253{
1254 struct greth_private *greth = netdev_priv(dev);
1255 struct phy_device *phy = NULL;
1256 int ret;
1257
1258 /* Find the first PHY */
1259 phy = phy_find_first(bus: greth->mdio);
1260
1261 if (!phy) {
1262 if (netif_msg_probe(greth))
1263 dev_err(&dev->dev, "no PHY found\n");
1264 return -ENXIO;
1265 }
1266
1267 ret = phy_connect_direct(dev, phydev: phy, handler: &greth_link_change,
1268 interface: greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII);
1269 if (ret) {
1270 if (netif_msg_ifup(greth))
1271 dev_err(&dev->dev, "could not attach to PHY\n");
1272 return ret;
1273 }
1274
1275 if (greth->gbit_mac)
1276 phy_set_max_speed(phydev: phy, SPEED_1000);
1277 else
1278 phy_set_max_speed(phydev: phy, SPEED_100);
1279
1280 linkmode_copy(dst: phy->advertising, src: phy->supported);
1281
1282 greth->link = 0;
1283 greth->speed = 0;
1284 greth->duplex = -1;
1285
1286 return 0;
1287}
1288
1289static int greth_mdio_init(struct greth_private *greth)
1290{
1291 int ret;
1292 unsigned long timeout;
1293 struct net_device *ndev = greth->netdev;
1294
1295 greth->mdio = mdiobus_alloc();
1296 if (!greth->mdio) {
1297 return -ENOMEM;
1298 }
1299
1300 greth->mdio->name = "greth-mdio";
1301 snprintf(buf: greth->mdio->id, MII_BUS_ID_SIZE, fmt: "%s-%d", greth->mdio->name, greth->irq);
1302 greth->mdio->read = greth_mdio_read;
1303 greth->mdio->write = greth_mdio_write;
1304 greth->mdio->priv = greth;
1305
1306 ret = mdiobus_register(greth->mdio);
1307 if (ret) {
1308 goto error;
1309 }
1310
1311 ret = greth_mdio_probe(dev: greth->netdev);
1312 if (ret) {
1313 if (netif_msg_probe(greth))
1314 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1315 goto unreg_mdio;
1316 }
1317
1318 phy_start(phydev: ndev->phydev);
1319
1320 /* If Ethernet debug link is used make autoneg happen right away */
1321 if (greth->edcl && greth_edcl == 1) {
1322 phy_start_aneg(phydev: ndev->phydev);
1323 timeout = jiffies + 6*HZ;
1324 while (!phy_aneg_done(phydev: ndev->phydev) &&
1325 time_before(jiffies, timeout)) {
1326 }
1327 phy_read_status(phydev: ndev->phydev);
1328 greth_link_change(dev: greth->netdev);
1329 }
1330
1331 return 0;
1332
1333unreg_mdio:
1334 mdiobus_unregister(bus: greth->mdio);
1335error:
1336 mdiobus_free(bus: greth->mdio);
1337 return ret;
1338}
1339
1340/* Initialize the GRETH MAC */
1341static int greth_of_probe(struct platform_device *ofdev)
1342{
1343 struct net_device *dev;
1344 struct greth_private *greth;
1345 struct greth_regs *regs;
1346
1347 int i;
1348 int err;
1349 int tmp;
1350 u8 addr[ETH_ALEN];
1351 unsigned long timeout;
1352
1353 dev = alloc_etherdev(sizeof(struct greth_private));
1354
1355 if (dev == NULL)
1356 return -ENOMEM;
1357
1358 greth = netdev_priv(dev);
1359 greth->netdev = dev;
1360 greth->dev = &ofdev->dev;
1361
1362 if (greth_debug > 0)
1363 greth->msg_enable = greth_debug;
1364 else
1365 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1366
1367 spin_lock_init(&greth->devlock);
1368
1369 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1370 resource_size(res: &ofdev->resource[0]),
1371 "grlib-greth regs");
1372
1373 if (greth->regs == NULL) {
1374 if (netif_msg_probe(greth))
1375 dev_err(greth->dev, "ioremap failure.\n");
1376 err = -EIO;
1377 goto error1;
1378 }
1379
1380 regs = greth->regs;
1381 greth->irq = ofdev->archdata.irqs[0];
1382
1383 dev_set_drvdata(dev: greth->dev, data: dev);
1384 SET_NETDEV_DEV(dev, greth->dev);
1385
1386 if (netif_msg_probe(greth))
1387 dev_dbg(greth->dev, "resetting controller.\n");
1388
1389 /* Reset the controller. */
1390 GRETH_REGSAVE(regs->control, GRETH_RESET);
1391
1392 /* Wait for MAC to reset itself */
1393 timeout = jiffies + HZ/100;
1394 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1395 if (time_after(jiffies, timeout)) {
1396 err = -EIO;
1397 if (netif_msg_probe(greth))
1398 dev_err(greth->dev, "timeout when waiting for reset.\n");
1399 goto error2;
1400 }
1401 }
1402
1403 /* Get default PHY address */
1404 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1405
1406 /* Check if we have GBIT capable MAC */
1407 tmp = GRETH_REGLOAD(regs->control);
1408 greth->gbit_mac = (tmp >> 27) & 1;
1409
1410 /* Check for multicast capability */
1411 greth->multicast = (tmp >> 25) & 1;
1412
1413 greth->edcl = (tmp >> 31) & 1;
1414
1415 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1416 * it doesn't interfere with the software */
1417 if (greth->edcl != 0)
1418 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1419
1420 /* Check if MAC can handle MDIO interrupts */
1421 greth->mdio_int_en = (tmp >> 26) & 1;
1422
1423 err = greth_mdio_init(greth);
1424 if (err) {
1425 if (netif_msg_probe(greth))
1426 dev_err(greth->dev, "failed to register MDIO bus\n");
1427 goto error2;
1428 }
1429
1430 /* Allocate TX descriptor ring in coherent memory */
1431 greth->tx_bd_base = dma_alloc_coherent(dev: greth->dev, size: 1024,
1432 dma_handle: &greth->tx_bd_base_phys,
1433 GFP_KERNEL);
1434 if (!greth->tx_bd_base) {
1435 err = -ENOMEM;
1436 goto error3;
1437 }
1438
1439 /* Allocate RX descriptor ring in coherent memory */
1440 greth->rx_bd_base = dma_alloc_coherent(dev: greth->dev, size: 1024,
1441 dma_handle: &greth->rx_bd_base_phys,
1442 GFP_KERNEL);
1443 if (!greth->rx_bd_base) {
1444 err = -ENOMEM;
1445 goto error4;
1446 }
1447
1448 /* Get MAC address from: module param, OF property or ID prom */
1449 for (i = 0; i < 6; i++) {
1450 if (macaddr[i] != 0)
1451 break;
1452 }
1453 if (i == 6) {
1454 err = of_get_mac_address(np: ofdev->dev.of_node, mac: addr);
1455 if (!err) {
1456 for (i = 0; i < 6; i++)
1457 macaddr[i] = (unsigned int) addr[i];
1458 } else {
1459#ifdef CONFIG_SPARC
1460 for (i = 0; i < 6; i++)
1461 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1462#endif
1463 }
1464 }
1465
1466 for (i = 0; i < 6; i++)
1467 addr[i] = macaddr[i];
1468 eth_hw_addr_set(dev, addr);
1469
1470 macaddr[5]++;
1471
1472 if (!is_valid_ether_addr(addr: &dev->dev_addr[0])) {
1473 if (netif_msg_probe(greth))
1474 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1475 err = -EINVAL;
1476 goto error5;
1477 }
1478
1479 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1480 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1481 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1482
1483 /* Clear all pending interrupts except PHY irq */
1484 GRETH_REGSAVE(regs->status, 0xFF);
1485
1486 if (greth->gbit_mac) {
1487 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1488 NETIF_F_RXCSUM;
1489 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1490 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1491 }
1492
1493 if (greth->multicast) {
1494 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1495 dev->flags |= IFF_MULTICAST;
1496 } else {
1497 dev->flags &= ~IFF_MULTICAST;
1498 }
1499
1500 dev->netdev_ops = &greth_netdev_ops;
1501 dev->ethtool_ops = &greth_ethtool_ops;
1502
1503 err = register_netdev(dev);
1504 if (err) {
1505 if (netif_msg_probe(greth))
1506 dev_err(greth->dev, "netdevice registration failed.\n");
1507 goto error5;
1508 }
1509
1510 /* setup NAPI */
1511 netif_napi_add(dev, napi: &greth->napi, poll: greth_poll);
1512
1513 return 0;
1514
1515error5:
1516 dma_free_coherent(dev: greth->dev, size: 1024, cpu_addr: greth->rx_bd_base, dma_handle: greth->rx_bd_base_phys);
1517error4:
1518 dma_free_coherent(dev: greth->dev, size: 1024, cpu_addr: greth->tx_bd_base, dma_handle: greth->tx_bd_base_phys);
1519error3:
1520 mdiobus_unregister(bus: greth->mdio);
1521error2:
1522 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(res: &ofdev->resource[0]));
1523error1:
1524 free_netdev(dev);
1525 return err;
1526}
1527
1528static void greth_of_remove(struct platform_device *of_dev)
1529{
1530 struct net_device *ndev = platform_get_drvdata(pdev: of_dev);
1531 struct greth_private *greth = netdev_priv(dev: ndev);
1532
1533 /* Free descriptor areas */
1534 dma_free_coherent(dev: &of_dev->dev, size: 1024, cpu_addr: greth->rx_bd_base, dma_handle: greth->rx_bd_base_phys);
1535
1536 dma_free_coherent(dev: &of_dev->dev, size: 1024, cpu_addr: greth->tx_bd_base, dma_handle: greth->tx_bd_base_phys);
1537
1538 if (ndev->phydev)
1539 phy_stop(phydev: ndev->phydev);
1540 mdiobus_unregister(bus: greth->mdio);
1541
1542 unregister_netdev(dev: ndev);
1543
1544 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(res: &of_dev->resource[0]));
1545
1546 free_netdev(dev: ndev);
1547}
1548
1549static const struct of_device_id greth_of_match[] = {
1550 {
1551 .name = "GAISLER_ETHMAC",
1552 },
1553 {
1554 .name = "01_01d",
1555 },
1556 {},
1557};
1558
1559MODULE_DEVICE_TABLE(of, greth_of_match);
1560
1561static struct platform_driver greth_of_driver = {
1562 .driver = {
1563 .name = "grlib-greth",
1564 .of_match_table = greth_of_match,
1565 },
1566 .probe = greth_of_probe,
1567 .remove_new = greth_of_remove,
1568};
1569
1570module_platform_driver(greth_of_driver);
1571
1572MODULE_AUTHOR("Aeroflex Gaisler AB.");
1573MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1574MODULE_LICENSE("GPL");
1575

source code of linux/drivers/net/ethernet/aeroflex/greth.c