1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Macintosh 68K onboard MACE controller with PSC
4 * driven DMA. The MACE driver code is derived from mace.c. The
5 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 *
7 * Copyright (C) 1996 Paul Mackerras.
8 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
9 *
10 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
11 *
12 * Copyright (C) 2007 Finn Thain
13 *
14 * Converted to DMA API, converted to unified driver model,
15 * sync'd some routines with mace.c and fixed various bugs.
16 */
17
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <linux/etherdevice.h>
23#include <linux/delay.h>
24#include <linux/string.h>
25#include <linux/crc32.h>
26#include <linux/bitrev.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/gfp.h>
30#include <linux/interrupt.h>
31#include <asm/io.h>
32#include <asm/macints.h>
33#include <asm/mac_psc.h>
34#include <asm/page.h>
35#include "mace.h"
36
37static char mac_mace_string[] = "macmace";
38
39#define N_TX_BUFF_ORDER 0
40#define N_TX_RING (1 << N_TX_BUFF_ORDER)
41#define N_RX_BUFF_ORDER 3
42#define N_RX_RING (1 << N_RX_BUFF_ORDER)
43
44#define TX_TIMEOUT HZ
45
46#define MACE_BUFF_SIZE 0x800
47
48/* Chip rev needs workaround on HW & multicast addr change */
49#define BROKEN_ADDRCHG_REV 0x0941
50
51/* The MACE is simply wired down on a Mac68K box */
52
53#define MACE_BASE (void *)(0x50F1C000)
54#define MACE_PROM (void *)(0x50F08001)
55
56struct mace_data {
57 volatile struct mace *mace;
58 unsigned char *tx_ring;
59 dma_addr_t tx_ring_phys;
60 unsigned char *rx_ring;
61 dma_addr_t rx_ring_phys;
62 int dma_intr;
63 int rx_slot, rx_tail;
64 int tx_slot, tx_sloti, tx_count;
65 int chipid;
66 struct device *device;
67};
68
69struct mace_frame {
70 u8 rcvcnt;
71 u8 pad1;
72 u8 rcvsts;
73 u8 pad2;
74 u8 rntpc;
75 u8 pad3;
76 u8 rcvcc;
77 u8 pad4;
78 u32 pad5;
79 u32 pad6;
80 DECLARE_FLEX_ARRAY(u8, data);
81 /* And frame continues.. */
82};
83
84#define PRIV_BYTES sizeof(struct mace_data)
85
86static int mace_open(struct net_device *dev);
87static int mace_close(struct net_device *dev);
88static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
89static void mace_set_multicast(struct net_device *dev);
90static int mace_set_address(struct net_device *dev, void *addr);
91static void mace_reset(struct net_device *dev);
92static irqreturn_t mace_interrupt(int irq, void *dev_id);
93static irqreturn_t mace_dma_intr(int irq, void *dev_id);
94static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue);
95static void __mace_set_address(struct net_device *dev, const void *addr);
96
97/*
98 * Load a receive DMA channel with a base address and ring length
99 */
100
101static void mace_load_rxdma_base(struct net_device *dev, int set)
102{
103 struct mace_data *mp = netdev_priv(dev);
104
105 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
106 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
107 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
108 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
109 mp->rx_tail = 0;
110}
111
112/*
113 * Reset the receive DMA subsystem
114 */
115
116static void mace_rxdma_reset(struct net_device *dev)
117{
118 struct mace_data *mp = netdev_priv(dev);
119 volatile struct mace *mace = mp->mace;
120 u8 maccc = mace->maccc;
121
122 mace->maccc = maccc & ~ENRCV;
123
124 psc_write_word(PSC_ENETRD_CTL, 0x8800);
125 mace_load_rxdma_base(dev, set: 0x00);
126 psc_write_word(PSC_ENETRD_CTL, 0x0400);
127
128 psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 mace_load_rxdma_base(dev, set: 0x10);
130 psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132 mace->maccc = maccc;
133 mp->rx_slot = 0;
134
135 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
136 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
137}
138
139/*
140 * Reset the transmit DMA subsystem
141 */
142
143static void mace_txdma_reset(struct net_device *dev)
144{
145 struct mace_data *mp = netdev_priv(dev);
146 volatile struct mace *mace = mp->mace;
147 u8 maccc;
148
149 psc_write_word(PSC_ENETWR_CTL, 0x8800);
150
151 maccc = mace->maccc;
152 mace->maccc = maccc & ~ENXMT;
153
154 mp->tx_slot = mp->tx_sloti = 0;
155 mp->tx_count = N_TX_RING;
156
157 psc_write_word(PSC_ENETWR_CTL, 0x0400);
158 mace->maccc = maccc;
159}
160
161/*
162 * Disable DMA
163 */
164
165static void mace_dma_off(struct net_device *dev)
166{
167 psc_write_word(PSC_ENETRD_CTL, 0x8800);
168 psc_write_word(PSC_ENETRD_CTL, 0x1000);
169 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
170 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
171
172 psc_write_word(PSC_ENETWR_CTL, 0x8800);
173 psc_write_word(PSC_ENETWR_CTL, 0x1000);
174 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
175 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
176}
177
178static const struct net_device_ops mace_netdev_ops = {
179 .ndo_open = mace_open,
180 .ndo_stop = mace_close,
181 .ndo_start_xmit = mace_xmit_start,
182 .ndo_tx_timeout = mace_tx_timeout,
183 .ndo_set_rx_mode = mace_set_multicast,
184 .ndo_set_mac_address = mace_set_address,
185 .ndo_validate_addr = eth_validate_addr,
186};
187
188/*
189 * Not really much of a probe. The hardware table tells us if this
190 * model of Macintrash has a MACE (AV macintoshes)
191 */
192
193static int mace_probe(struct platform_device *pdev)
194{
195 int j;
196 struct mace_data *mp;
197 unsigned char *addr;
198 struct net_device *dev;
199 unsigned char checksum = 0;
200 u8 macaddr[ETH_ALEN];
201 int err;
202
203 dev = alloc_etherdev(PRIV_BYTES);
204 if (!dev)
205 return -ENOMEM;
206
207 mp = netdev_priv(dev);
208
209 mp->device = &pdev->dev;
210 platform_set_drvdata(pdev, data: dev);
211 SET_NETDEV_DEV(dev, &pdev->dev);
212
213 dev->base_addr = (u32)MACE_BASE;
214 mp->mace = MACE_BASE;
215
216 dev->irq = IRQ_MAC_MACE;
217 mp->dma_intr = IRQ_MAC_MACE_DMA;
218
219 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
220
221 /*
222 * The PROM contains 8 bytes which total 0xFF when XOR'd
223 * together. Due to the usual peculiar apple brain damage
224 * the bytes are spaced out in a strange boundary and the
225 * bits are reversed.
226 */
227
228 addr = MACE_PROM;
229
230 for (j = 0; j < 6; ++j) {
231 u8 v = bitrev8(addr[j<<4]);
232 checksum ^= v;
233 macaddr[j] = v;
234 }
235 eth_hw_addr_set(dev, addr: macaddr);
236 for (; j < 8; ++j) {
237 checksum ^= bitrev8(addr[j<<4]);
238 }
239
240 if (checksum != 0xFF) {
241 free_netdev(dev);
242 return -ENODEV;
243 }
244
245 dev->netdev_ops = &mace_netdev_ops;
246 dev->watchdog_timeo = TX_TIMEOUT;
247
248 pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
249 dev->dev_addr, mp->chipid);
250
251 err = register_netdev(dev);
252 if (!err)
253 return 0;
254
255 free_netdev(dev);
256 return err;
257}
258
259/*
260 * Reset the chip.
261 */
262
263static void mace_reset(struct net_device *dev)
264{
265 struct mace_data *mp = netdev_priv(dev);
266 volatile struct mace *mb = mp->mace;
267 int i;
268
269 /* soft-reset the chip */
270 i = 200;
271 while (--i) {
272 mb->biucc = SWRST;
273 if (mb->biucc & SWRST) {
274 udelay(10);
275 continue;
276 }
277 break;
278 }
279 if (!i) {
280 printk(KERN_ERR "macmace: cannot reset chip!\n");
281 return;
282 }
283
284 mb->maccc = 0; /* turn off tx, rx */
285 mb->imr = 0xFF; /* disable all intrs for now */
286 i = mb->ir;
287
288 mb->biucc = XMTSP_64;
289 mb->utr = RTRD;
290 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
291
292 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
293 mb->rcvfc = 0;
294
295 /* load up the hardware address */
296 __mace_set_address(dev, addr: dev->dev_addr);
297
298 /* clear the multicast filter */
299 if (mp->chipid == BROKEN_ADDRCHG_REV)
300 mb->iac = LOGADDR;
301 else {
302 mb->iac = ADDRCHG | LOGADDR;
303 while ((mb->iac & ADDRCHG) != 0)
304 ;
305 }
306 for (i = 0; i < 8; ++i)
307 mb->ladrf = 0;
308
309 /* done changing address */
310 if (mp->chipid != BROKEN_ADDRCHG_REV)
311 mb->iac = 0;
312
313 mb->plscc = PORTSEL_AUI;
314}
315
316/*
317 * Load the address on a mace controller.
318 */
319
320static void __mace_set_address(struct net_device *dev, const void *addr)
321{
322 struct mace_data *mp = netdev_priv(dev);
323 volatile struct mace *mb = mp->mace;
324 const unsigned char *p = addr;
325 u8 macaddr[ETH_ALEN];
326 int i;
327
328 /* load up the hardware address */
329 if (mp->chipid == BROKEN_ADDRCHG_REV)
330 mb->iac = PHYADDR;
331 else {
332 mb->iac = ADDRCHG | PHYADDR;
333 while ((mb->iac & ADDRCHG) != 0)
334 ;
335 }
336 for (i = 0; i < 6; ++i)
337 mb->padr = macaddr[i] = p[i];
338 eth_hw_addr_set(dev, addr: macaddr);
339 if (mp->chipid != BROKEN_ADDRCHG_REV)
340 mb->iac = 0;
341}
342
343static int mace_set_address(struct net_device *dev, void *addr)
344{
345 struct mace_data *mp = netdev_priv(dev);
346 volatile struct mace *mb = mp->mace;
347 unsigned long flags;
348 u8 maccc;
349
350 local_irq_save(flags);
351
352 maccc = mb->maccc;
353
354 __mace_set_address(dev, addr);
355
356 mb->maccc = maccc;
357
358 local_irq_restore(flags);
359
360 return 0;
361}
362
363/*
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
366 */
367
368static int mace_open(struct net_device *dev)
369{
370 struct mace_data *mp = netdev_priv(dev);
371 volatile struct mace *mb = mp->mace;
372
373 /* reset the chip */
374 mace_reset(dev);
375
376 if (request_irq(irq: dev->irq, handler: mace_interrupt, flags: 0, name: dev->name, dev)) {
377 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378 return -EAGAIN;
379 }
380 if (request_irq(irq: mp->dma_intr, handler: mace_dma_intr, flags: 0, name: dev->name, dev)) {
381 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382 free_irq(dev->irq, dev);
383 return -EAGAIN;
384 }
385
386 /* Allocate the DMA ring buffers */
387
388 mp->tx_ring = dma_alloc_coherent(dev: mp->device,
389 N_TX_RING * MACE_BUFF_SIZE,
390 dma_handle: &mp->tx_ring_phys, GFP_KERNEL);
391 if (mp->tx_ring == NULL)
392 goto out1;
393
394 mp->rx_ring = dma_alloc_coherent(dev: mp->device,
395 N_RX_RING * MACE_BUFF_SIZE,
396 dma_handle: &mp->rx_ring_phys, GFP_KERNEL);
397 if (mp->rx_ring == NULL)
398 goto out2;
399
400 mace_dma_off(dev);
401
402 /* Not sure what these do */
403
404 psc_write_word(PSC_ENETWR_CTL, 0x9000);
405 psc_write_word(PSC_ENETRD_CTL, 0x9000);
406 psc_write_word(PSC_ENETWR_CTL, 0x0400);
407 psc_write_word(PSC_ENETRD_CTL, 0x0400);
408
409 mace_rxdma_reset(dev);
410 mace_txdma_reset(dev);
411
412 /* turn it on! */
413 mb->maccc = ENXMT | ENRCV;
414 /* enable all interrupts except receive interrupts */
415 mb->imr = RCVINT;
416 return 0;
417
418out2:
419 dma_free_coherent(dev: mp->device, N_TX_RING * MACE_BUFF_SIZE,
420 cpu_addr: mp->tx_ring, dma_handle: mp->tx_ring_phys);
421out1:
422 free_irq(dev->irq, dev);
423 free_irq(mp->dma_intr, dev);
424 return -ENOMEM;
425}
426
427/*
428 * Shut down the mace and its interrupt channel
429 */
430
431static int mace_close(struct net_device *dev)
432{
433 struct mace_data *mp = netdev_priv(dev);
434 volatile struct mace *mb = mp->mace;
435
436 mb->maccc = 0; /* disable rx and tx */
437 mb->imr = 0xFF; /* disable all irqs */
438 mace_dma_off(dev); /* disable rx and tx dma */
439
440 return 0;
441}
442
443/*
444 * Transmit a frame
445 */
446
447static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
448{
449 struct mace_data *mp = netdev_priv(dev);
450 unsigned long flags;
451
452 /* Stop the queue since there's only the one buffer */
453
454 local_irq_save(flags);
455 netif_stop_queue(dev);
456 if (!mp->tx_count) {
457 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
458 local_irq_restore(flags);
459 return NETDEV_TX_BUSY;
460 }
461 mp->tx_count--;
462 local_irq_restore(flags);
463
464 dev->stats.tx_packets++;
465 dev->stats.tx_bytes += skb->len;
466
467 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
468 skb_copy_from_linear_data(skb, to: mp->tx_ring, len: skb->len);
469
470 /* load the Tx DMA and fire it off */
471
472 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
473 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
474 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
475
476 mp->tx_slot ^= 0x10;
477
478 dev_kfree_skb(skb);
479
480 return NETDEV_TX_OK;
481}
482
483static void mace_set_multicast(struct net_device *dev)
484{
485 struct mace_data *mp = netdev_priv(dev);
486 volatile struct mace *mb = mp->mace;
487 int i;
488 u32 crc;
489 u8 maccc;
490 unsigned long flags;
491
492 local_irq_save(flags);
493 maccc = mb->maccc;
494 mb->maccc &= ~PROM;
495
496 if (dev->flags & IFF_PROMISC) {
497 mb->maccc |= PROM;
498 } else {
499 unsigned char multicast_filter[8];
500 struct netdev_hw_addr *ha;
501
502 if (dev->flags & IFF_ALLMULTI) {
503 for (i = 0; i < 8; i++) {
504 multicast_filter[i] = 0xFF;
505 }
506 } else {
507 for (i = 0; i < 8; i++)
508 multicast_filter[i] = 0;
509 netdev_for_each_mc_addr(ha, dev) {
510 crc = ether_crc_le(6, ha->addr);
511 /* bit number in multicast_filter */
512 i = crc >> 26;
513 multicast_filter[i >> 3] |= 1 << (i & 7);
514 }
515 }
516
517 if (mp->chipid == BROKEN_ADDRCHG_REV)
518 mb->iac = LOGADDR;
519 else {
520 mb->iac = ADDRCHG | LOGADDR;
521 while ((mb->iac & ADDRCHG) != 0)
522 ;
523 }
524 for (i = 0; i < 8; ++i)
525 mb->ladrf = multicast_filter[i];
526 if (mp->chipid != BROKEN_ADDRCHG_REV)
527 mb->iac = 0;
528 }
529
530 mb->maccc = maccc;
531 local_irq_restore(flags);
532}
533
534static void mace_handle_misc_intrs(struct net_device *dev, int intr)
535{
536 struct mace_data *mp = netdev_priv(dev);
537 volatile struct mace *mb = mp->mace;
538 static int mace_babbles, mace_jabbers;
539
540 if (intr & MPCO)
541 dev->stats.rx_missed_errors += 256;
542 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
543 if (intr & RNTPCO)
544 dev->stats.rx_length_errors += 256;
545 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
546 if (intr & CERR)
547 ++dev->stats.tx_heartbeat_errors;
548 if (intr & BABBLE)
549 if (mace_babbles++ < 4)
550 printk(KERN_DEBUG "macmace: babbling transmitter\n");
551 if (intr & JABBER)
552 if (mace_jabbers++ < 4)
553 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
554}
555
556static irqreturn_t mace_interrupt(int irq, void *dev_id)
557{
558 struct net_device *dev = (struct net_device *) dev_id;
559 struct mace_data *mp = netdev_priv(dev);
560 volatile struct mace *mb = mp->mace;
561 int intr, fs;
562 unsigned long flags;
563
564 /* don't want the dma interrupt handler to fire */
565 local_irq_save(flags);
566
567 intr = mb->ir; /* read interrupt register */
568 mace_handle_misc_intrs(dev, intr);
569
570 if (intr & XMTINT) {
571 fs = mb->xmtfs;
572 if ((fs & XMTSV) == 0) {
573 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
574 mace_reset(dev);
575 /*
576 * XXX mace likes to hang the machine after a xmtfs error.
577 * This is hard to reproduce, resetting *may* help
578 */
579 }
580 /* dma should have finished */
581 if (!mp->tx_count) {
582 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
583 }
584 /* Update stats */
585 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
586 ++dev->stats.tx_errors;
587 if (fs & LCAR)
588 ++dev->stats.tx_carrier_errors;
589 else if (fs & (UFLO|LCOL|RTRY)) {
590 ++dev->stats.tx_aborted_errors;
591 if (mb->xmtfs & UFLO) {
592 dev->stats.tx_fifo_errors++;
593 mace_txdma_reset(dev);
594 }
595 }
596 }
597 }
598
599 if (mp->tx_count)
600 netif_wake_queue(dev);
601
602 local_irq_restore(flags);
603
604 return IRQ_HANDLED;
605}
606
607static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue)
608{
609 struct mace_data *mp = netdev_priv(dev);
610 volatile struct mace *mb = mp->mace;
611 unsigned long flags;
612
613 local_irq_save(flags);
614
615 /* turn off both tx and rx and reset the chip */
616 mb->maccc = 0;
617 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
618 mace_txdma_reset(dev);
619 mace_reset(dev);
620
621 /* restart rx dma */
622 mace_rxdma_reset(dev);
623
624 mp->tx_count = N_TX_RING;
625 netif_wake_queue(dev);
626
627 /* turn it on! */
628 mb->maccc = ENXMT | ENRCV;
629 /* enable all interrupts except receive interrupts */
630 mb->imr = RCVINT;
631
632 local_irq_restore(flags);
633}
634
635/*
636 * Handle a newly arrived frame
637 */
638
639static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
640{
641 struct sk_buff *skb;
642 unsigned int frame_status = mf->rcvsts;
643
644 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
645 dev->stats.rx_errors++;
646 if (frame_status & RS_OFLO)
647 dev->stats.rx_fifo_errors++;
648 if (frame_status & RS_CLSN)
649 dev->stats.collisions++;
650 if (frame_status & RS_FRAMERR)
651 dev->stats.rx_frame_errors++;
652 if (frame_status & RS_FCSERR)
653 dev->stats.rx_crc_errors++;
654 } else {
655 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
656
657 skb = netdev_alloc_skb(dev, length: frame_length + 2);
658 if (!skb) {
659 dev->stats.rx_dropped++;
660 return;
661 }
662 skb_reserve(skb, len: 2);
663 skb_put_data(skb, data: mf->data, len: frame_length);
664
665 skb->protocol = eth_type_trans(skb, dev);
666 netif_rx(skb);
667 dev->stats.rx_packets++;
668 dev->stats.rx_bytes += frame_length;
669 }
670}
671
672/*
673 * The PSC has passed us a DMA interrupt event.
674 */
675
676static irqreturn_t mace_dma_intr(int irq, void *dev_id)
677{
678 struct net_device *dev = (struct net_device *) dev_id;
679 struct mace_data *mp = netdev_priv(dev);
680 int left, head;
681 u16 status;
682 u32 baka;
683
684 /* Not sure what this does */
685
686 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
687 if (!(baka & 0x60000000)) return IRQ_NONE;
688
689 /*
690 * Process the read queue
691 */
692
693 status = psc_read_word(PSC_ENETRD_CTL);
694
695 if (status & 0x2000) {
696 mace_rxdma_reset(dev);
697 } else if (status & 0x0100) {
698 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
699
700 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
701 head = N_RX_RING - left;
702
703 /* Loop through the ring buffer and process new packages */
704
705 while (mp->rx_tail < head) {
706 mace_dma_rx_frame(dev, mf: (struct mace_frame*) (mp->rx_ring
707 + (mp->rx_tail * MACE_BUFF_SIZE)));
708 mp->rx_tail++;
709 }
710
711 /* If we're out of buffers in this ring then switch to */
712 /* the other set, otherwise just reactivate this one. */
713
714 if (!left) {
715 mace_load_rxdma_base(dev, set: mp->rx_slot);
716 mp->rx_slot ^= 0x10;
717 } else {
718 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
719 }
720 }
721
722 /*
723 * Process the write queue
724 */
725
726 status = psc_read_word(PSC_ENETWR_CTL);
727
728 if (status & 0x2000) {
729 mace_txdma_reset(dev);
730 } else if (status & 0x0100) {
731 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
732 mp->tx_sloti ^= 0x10;
733 mp->tx_count++;
734 }
735 return IRQ_HANDLED;
736}
737
738MODULE_LICENSE("GPL");
739MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
740MODULE_ALIAS("platform:macmace");
741
742static void mac_mace_device_remove(struct platform_device *pdev)
743{
744 struct net_device *dev = platform_get_drvdata(pdev);
745 struct mace_data *mp = netdev_priv(dev);
746
747 unregister_netdev(dev);
748
749 free_irq(dev->irq, dev);
750 free_irq(IRQ_MAC_MACE_DMA, dev);
751
752 dma_free_coherent(dev: mp->device, N_RX_RING * MACE_BUFF_SIZE,
753 cpu_addr: mp->rx_ring, dma_handle: mp->rx_ring_phys);
754 dma_free_coherent(dev: mp->device, N_TX_RING * MACE_BUFF_SIZE,
755 cpu_addr: mp->tx_ring, dma_handle: mp->tx_ring_phys);
756
757 free_netdev(dev);
758}
759
760static struct platform_driver mac_mace_driver = {
761 .probe = mace_probe,
762 .remove_new = mac_mace_device_remove,
763 .driver = {
764 .name = mac_mace_string,
765 },
766};
767
768module_platform_driver(mac_mace_driver);
769

source code of linux/drivers/net/ethernet/apple/macmace.c