1/* bnx2x.h: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 */
15
16#ifndef BNX2X_H
17#define BNX2X_H
18
19#include <linux/pci.h>
20#include <linux/netdevice.h>
21#include <linux/dma-mapping.h>
22#include <linux/types.h>
23#include <linux/pci_regs.h>
24
25#include <linux/ptp_clock_kernel.h>
26#include <linux/net_tstamp.h>
27#include <linux/timecounter.h>
28
29/* compilation time flags */
30
31/* define this to make the driver freeze on error to allow getting debug info
32 * (you will need to reboot afterwards) */
33/* #define BNX2X_STOP_ON_ERROR */
34
35/* FIXME: Delete the DRV_MODULE_VERSION below, but please be warned
36 * that it is not an easy task because such change has all chances
37 * to break this driver due to amount of abuse of in-kernel interfaces
38 * between modules and FW.
39 *
40 * DO NOT UPDATE DRV_MODULE_VERSION below.
41 */
42#define DRV_MODULE_VERSION "1.713.36-0"
43#define BNX2X_BC_VER 0x040200
44
45#if defined(CONFIG_DCB)
46#define BCM_DCBNL
47#endif
48
49#include "bnx2x_hsi.h"
50
51#include "../cnic_if.h"
52
53#define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt)
54
55#include <linux/mdio.h>
56
57#include "bnx2x_reg.h"
58#include "bnx2x_fw_defs.h"
59#include "bnx2x_mfw_req.h"
60#include "bnx2x_link.h"
61#include "bnx2x_sp.h"
62#include "bnx2x_dcb.h"
63#include "bnx2x_stats.h"
64#include "bnx2x_vfpf.h"
65
66enum bnx2x_int_mode {
67 BNX2X_INT_MODE_MSIX,
68 BNX2X_INT_MODE_INTX,
69 BNX2X_INT_MODE_MSI
70};
71
72/* error/debug prints */
73
74#define DRV_MODULE_NAME "bnx2x"
75
76/* for messages that are currently off */
77#define BNX2X_MSG_OFF 0x0
78#define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */
79#define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */
80#define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */
81#define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */
82#define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */
83#define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */
84#define BNX2X_MSG_IOV 0x0800000
85#define BNX2X_MSG_PTP 0x1000000
86#define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/
87#define BNX2X_MSG_ETHTOOL 0x4000000
88#define BNX2X_MSG_DCB 0x8000000
89
90/* regular debug print */
91#define DP_INNER(fmt, ...) \
92 pr_notice("[%s:%d(%s)]" fmt, \
93 __func__, __LINE__, \
94 bp->dev ? (bp->dev->name) : "?", \
95 ##__VA_ARGS__);
96
97#define DP(__mask, fmt, ...) \
98do { \
99 if (unlikely(bp->msg_enable & (__mask))) \
100 DP_INNER(fmt, ##__VA_ARGS__); \
101} while (0)
102
103#define DP_AND(__mask, fmt, ...) \
104do { \
105 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \
106 DP_INNER(fmt, ##__VA_ARGS__); \
107} while (0)
108
109#define DP_CONT(__mask, fmt, ...) \
110do { \
111 if (unlikely(bp->msg_enable & (__mask))) \
112 pr_cont(fmt, ##__VA_ARGS__); \
113} while (0)
114
115/* errors debug print */
116#define BNX2X_DBG_ERR(fmt, ...) \
117do { \
118 if (unlikely(netif_msg_probe(bp))) \
119 pr_err("[%s:%d(%s)]" fmt, \
120 __func__, __LINE__, \
121 bp->dev ? (bp->dev->name) : "?", \
122 ##__VA_ARGS__); \
123} while (0)
124
125/* for errors (never masked) */
126#define BNX2X_ERR(fmt, ...) \
127do { \
128 pr_err("[%s:%d(%s)]" fmt, \
129 __func__, __LINE__, \
130 bp->dev ? (bp->dev->name) : "?", \
131 ##__VA_ARGS__); \
132} while (0)
133
134#define BNX2X_ERROR(fmt, ...) \
135 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
136
137/* before we have a dev->name use dev_info() */
138#define BNX2X_DEV_INFO(fmt, ...) \
139do { \
140 if (unlikely(netif_msg_probe(bp))) \
141 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \
142} while (0)
143
144/* Error handling */
145void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
146#ifdef BNX2X_STOP_ON_ERROR
147#define bnx2x_panic() \
148do { \
149 bp->panic = 1; \
150 BNX2X_ERR("driver assert\n"); \
151 bnx2x_panic_dump(bp, true); \
152} while (0)
153#else
154#define bnx2x_panic() \
155do { \
156 bp->panic = 1; \
157 BNX2X_ERR("driver assert\n"); \
158 bnx2x_panic_dump(bp, false); \
159} while (0)
160#endif
161
162#define bnx2x_mc_addr(ha) ((ha)->addr)
163#define bnx2x_uc_addr(ha) ((ha)->addr)
164
165#define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff))
166#define U64_HI(x) ((u32)(((u64)(x)) >> 32))
167#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
168
169#define REG_ADDR(bp, offset) ((bp->regview) + (offset))
170
171#define REG_RD(bp, offset) readl(REG_ADDR(bp, offset))
172#define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset))
173#define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset))
174
175#define REG_WR_RELAXED(bp, offset, val) \
176 writel_relaxed((u32)val, REG_ADDR(bp, offset))
177
178#define REG_WR16_RELAXED(bp, offset, val) \
179 writew_relaxed((u16)val, REG_ADDR(bp, offset))
180
181#define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset))
182#define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset))
183#define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset))
184
185#define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset)
186#define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val)
187
188#define REG_RD_DMAE(bp, offset, valp, len32) \
189 do { \
190 bnx2x_read_dmae(bp, offset, len32);\
191 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
192 } while (0)
193
194#define REG_WR_DMAE(bp, offset, valp, len32) \
195 do { \
196 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
197 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
198 offset, len32); \
199 } while (0)
200
201#define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
202 REG_WR_DMAE(bp, offset, valp, len32)
203
204#define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
205 do { \
206 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
207 bnx2x_write_big_buf_wb(bp, addr, len32); \
208 } while (0)
209
210#define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \
211 offsetof(struct shmem_region, field))
212#define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field))
213#define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val)
214
215#define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \
216 offsetof(struct shmem2_region, field))
217#define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field))
218#define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val)
219#define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \
220 offsetof(struct mf_cfg, field))
221#define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \
222 offsetof(struct mf2_cfg, field))
223
224#define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field))
225#define MF_CFG_WR(bp, field, val) REG_WR(bp,\
226 MF_CFG_ADDR(bp, field), (val))
227#define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field))
228
229#define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \
230 (SHMEM2_RD((bp), size) > \
231 offsetof(struct shmem2_region, field)))
232
233#define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg)
234#define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val)
235
236/* SP SB indices */
237
238/* General SP events - stats query, cfc delete, etc */
239#define HC_SP_INDEX_ETH_DEF_CONS 3
240
241/* EQ completions */
242#define HC_SP_INDEX_EQ_CONS 7
243
244/* FCoE L2 connection completions */
245#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
246#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
247/* iSCSI L2 */
248#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
249#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
250
251/* Special clients parameters */
252
253/* SB indices */
254/* FCoE L2 */
255#define BNX2X_FCOE_L2_RX_INDEX \
256 (&bp->def_status_blk->sp_sb.\
257 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
258
259#define BNX2X_FCOE_L2_TX_INDEX \
260 (&bp->def_status_blk->sp_sb.\
261 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
262
263/**
264 * CIDs and CLIDs:
265 * CLIDs below is a CLID for func 0, then the CLID for other
266 * functions will be calculated by the formula:
267 *
268 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
269 *
270 */
271enum {
272 BNX2X_ISCSI_ETH_CL_ID_IDX,
273 BNX2X_FCOE_ETH_CL_ID_IDX,
274 BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
275};
276
277/* use a value high enough to be above all the PFs, which has least significant
278 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
279 * calculate doorbell address according to old doorbell configuration scheme
280 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
281 * We must avoid coming up with cid 8 for iscsi since according to this method
282 * the designated UIO cid will come out 0 and it has a special handling for that
283 * case which doesn't suit us. Therefore will will cieling to closes cid which
284 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
285 */
286
287#define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
288 (bp)->max_cos)
289/* amount of cids traversed by UIO's DPM addition to doorbell */
290#define UIO_DPM 8
291/* roundup to DPM offset */
292#define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
293 UIO_DPM))
294/* offset to nearest value which has lsb nibble matching DPM */
295#define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \
296 (UIO_DPM * 2))
297/* add offset to rounded-up cid to get a value which could be used with UIO */
298#define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
299/* but wait - avoid UIO special case for cid 0 */
300#define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \
301 (UIO_DPM_ALIGN(bp) == UIO_DPM))
302/* Properly DPM aligned CID dajusted to cid 0 secal case */
303#define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \
304 (UIO_DPM_CID0_OFFSET(bp)))
305/* how many cids were wasted - need this value for cid allocation */
306#define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \
307 BNX2X_1st_NON_L2_ETH_CID(bp))
308 /* iSCSI L2 */
309#define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp))
310 /* FCoE L2 */
311#define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1)
312
313#define CNIC_SUPPORT(bp) ((bp)->cnic_support)
314#define CNIC_ENABLED(bp) ((bp)->cnic_enabled)
315#define CNIC_LOADED(bp) ((bp)->cnic_loaded)
316#define FCOE_INIT(bp) ((bp)->fcoe_init)
317
318#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
319 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
320
321#define SM_RX_ID 0
322#define SM_TX_ID 1
323
324/* defines for multiple tx priority indices */
325#define FIRST_TX_ONLY_COS_INDEX 1
326#define FIRST_TX_COS_INDEX 0
327
328/* rules for calculating the cids of tx-only connections */
329#define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
330#define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
331 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
332
333/* fp index inside class of service range */
334#define FP_COS_TO_TXQ(fp, cos, bp) \
335 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
336
337/* Indexes for transmission queues array:
338 * txdata for RSS i CoS j is at location i + (j * num of RSS)
339 * txdata for FCoE (if exist) is at location max cos * num of RSS
340 * txdata for FWD (if exist) is one location after FCoE
341 * txdata for OOO (if exist) is one location after FWD
342 */
343enum {
344 FCOE_TXQ_IDX_OFFSET,
345 FWD_TXQ_IDX_OFFSET,
346 OOO_TXQ_IDX_OFFSET,
347};
348#define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
349#define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
350
351/* fast path */
352/*
353 * This driver uses new build_skb() API :
354 * RX ring buffer contains pointer to kmalloc() data only,
355 * skb are built only after Hardware filled the frame.
356 */
357struct sw_rx_bd {
358 u8 *data;
359 DEFINE_DMA_UNMAP_ADDR(mapping);
360};
361
362struct sw_tx_bd {
363 struct sk_buff *skb;
364 u16 first_bd;
365 u8 flags;
366/* Set on the first BD descriptor when there is a split BD */
367#define BNX2X_TSO_SPLIT_BD (1<<0)
368#define BNX2X_HAS_SECOND_PBD (1<<1)
369};
370
371struct sw_rx_page {
372 struct page *page;
373 DEFINE_DMA_UNMAP_ADDR(mapping);
374 unsigned int offset;
375};
376
377union db_prod {
378 struct doorbell_set_prod data;
379 u32 raw;
380};
381
382/* dropless fc FW/HW related params */
383#define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512)
384#define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \
385 ETH_MAX_AGGREGATION_QUEUES_E1 :\
386 ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
387#define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
388#define FW_PREFETCH_CNT 16
389#define DROPLESS_FC_HEADROOM 100
390
391/* MC hsi */
392#define BCM_PAGE_SHIFT 12
393#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
394#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
395#define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
396
397#define PAGES_PER_SGE_SHIFT 0
398#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
399#define SGE_PAGE_SHIFT 12
400#define SGE_PAGE_SIZE (1 << SGE_PAGE_SHIFT)
401#define SGE_PAGE_MASK (~(SGE_PAGE_SIZE - 1))
402#define SGE_PAGE_ALIGN(addr) (((addr) + SGE_PAGE_SIZE - 1) & SGE_PAGE_MASK)
403#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
404#define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
405 SGE_PAGES), 0xffff)
406
407/* SGE ring related macros */
408#define NUM_RX_SGE_PAGES 2
409#define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
410#define NEXT_PAGE_SGE_DESC_CNT 2
411#define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
412/* RX_SGE_CNT is promised to be a power of 2 */
413#define RX_SGE_MASK (RX_SGE_CNT - 1)
414#define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES)
415#define MAX_RX_SGE (NUM_RX_SGE - 1)
416#define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \
417 (MAX_RX_SGE_CNT - 1)) ? \
418 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
419 (x) + 1)
420#define RX_SGE(x) ((x) & MAX_RX_SGE)
421
422/*
423 * Number of required SGEs is the sum of two:
424 * 1. Number of possible opened aggregations (next packet for
425 * these aggregations will probably consume SGE immediately)
426 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
427 * after placement on BD for new TPA aggregation)
428 *
429 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
430 */
431#define NUM_SGE_REQ (MAX_AGG_QS(bp) + \
432 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
433#define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
434 MAX_RX_SGE_CNT)
435#define SGE_TH_LO(bp) (NUM_SGE_REQ + \
436 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
437#define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
438
439/* Manipulate a bit vector defined as an array of u64 */
440
441/* Number of bits in one sge_mask array element */
442#define BIT_VEC64_ELEM_SZ 64
443#define BIT_VEC64_ELEM_SHIFT 6
444#define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1)
445
446#define __BIT_VEC64_SET_BIT(el, bit) \
447 do { \
448 el = ((el) | ((u64)0x1 << (bit))); \
449 } while (0)
450
451#define __BIT_VEC64_CLEAR_BIT(el, bit) \
452 do { \
453 el = ((el) & (~((u64)0x1 << (bit)))); \
454 } while (0)
455
456#define BIT_VEC64_SET_BIT(vec64, idx) \
457 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
458 (idx) & BIT_VEC64_ELEM_MASK)
459
460#define BIT_VEC64_CLEAR_BIT(vec64, idx) \
461 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
462 (idx) & BIT_VEC64_ELEM_MASK)
463
464#define BIT_VEC64_TEST_BIT(vec64, idx) \
465 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
466 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
467
468/* Creates a bitmask of all ones in less significant bits.
469 idx - index of the most significant bit in the created mask */
470#define BIT_VEC64_ONES_MASK(idx) \
471 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
472#define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0))
473
474/*******************************************************/
475
476/* Number of u64 elements in SGE mask array */
477#define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
478#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
479#define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
480
481union host_hc_status_block {
482 /* pointer to fp status block e1x */
483 struct host_hc_status_block_e1x *e1x_sb;
484 /* pointer to fp status block e2 */
485 struct host_hc_status_block_e2 *e2_sb;
486};
487
488struct bnx2x_agg_info {
489 /*
490 * First aggregation buffer is a data buffer, the following - are pages.
491 * We will preallocate the data buffer for each aggregation when
492 * we open the interface and will replace the BD at the consumer
493 * with this one when we receive the TPA_START CQE in order to
494 * keep the Rx BD ring consistent.
495 */
496 struct sw_rx_bd first_buf;
497 u8 tpa_state;
498#define BNX2X_TPA_START 1
499#define BNX2X_TPA_STOP 2
500#define BNX2X_TPA_ERROR 3
501 u8 placement_offset;
502 u16 parsing_flags;
503 u16 vlan_tag;
504 u16 len_on_bd;
505 u32 rxhash;
506 enum pkt_hash_types rxhash_type;
507 u16 gro_size;
508 u16 full_page;
509};
510
511#define Q_STATS_OFFSET32(stat_name) \
512 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
513
514struct bnx2x_fp_txdata {
515
516 struct sw_tx_bd *tx_buf_ring;
517
518 union eth_tx_bd_types *tx_desc_ring;
519 dma_addr_t tx_desc_mapping;
520
521 u32 cid;
522
523 union db_prod tx_db;
524
525 u16 tx_pkt_prod;
526 u16 tx_pkt_cons;
527 u16 tx_bd_prod;
528 u16 tx_bd_cons;
529
530 unsigned long tx_pkt;
531
532 __le16 *tx_cons_sb;
533
534 int txq_index;
535 struct bnx2x_fastpath *parent_fp;
536 int tx_ring_size;
537};
538
539enum bnx2x_tpa_mode_t {
540 TPA_MODE_DISABLED,
541 TPA_MODE_LRO,
542 TPA_MODE_GRO
543};
544
545struct bnx2x_alloc_pool {
546 struct page *page;
547 unsigned int offset;
548};
549
550struct bnx2x_fastpath {
551 struct bnx2x *bp; /* parent */
552
553 struct napi_struct napi;
554
555 union host_hc_status_block status_blk;
556 /* chip independent shortcuts into sb structure */
557 __le16 *sb_index_values;
558 __le16 *sb_running_index;
559 /* chip independent shortcut into rx_prods_offset memory */
560 u32 ustorm_rx_prods_offset;
561
562 u32 rx_buf_size;
563 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
564 dma_addr_t status_blk_mapping;
565
566 enum bnx2x_tpa_mode_t mode;
567
568 u8 max_cos; /* actual number of active tx coses */
569 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS];
570
571 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */
572 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */
573
574 struct eth_rx_bd *rx_desc_ring;
575 dma_addr_t rx_desc_mapping;
576
577 union eth_rx_cqe *rx_comp_ring;
578 dma_addr_t rx_comp_mapping;
579
580 /* SGE ring */
581 struct eth_rx_sge *rx_sge_ring;
582 dma_addr_t rx_sge_mapping;
583
584 u64 sge_mask[RX_SGE_MASK_LEN];
585
586 u32 cid;
587
588 __le16 fp_hc_idx;
589
590 u8 index; /* number in fp array */
591 u8 rx_queue; /* index for skb_record */
592 u8 cl_id; /* eth client id */
593 u8 cl_qzone_id;
594 u8 fw_sb_id; /* status block number in FW */
595 u8 igu_sb_id; /* status block number in HW */
596
597 u16 rx_bd_prod;
598 u16 rx_bd_cons;
599 u16 rx_comp_prod;
600 u16 rx_comp_cons;
601 u16 rx_sge_prod;
602 /* The last maximal completed SGE */
603 u16 last_max_sge;
604 __le16 *rx_cons_sb;
605
606 /* TPA related */
607 struct bnx2x_agg_info *tpa_info;
608#ifdef BNX2X_STOP_ON_ERROR
609 u64 tpa_queue_used;
610#endif
611 /* The size is calculated using the following:
612 sizeof name field from netdev structure +
613 4 ('-Xx-' string) +
614 4 (for the digits and to make it DWORD aligned) */
615#define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8)
616 char name[FP_NAME_SIZE];
617
618 struct bnx2x_alloc_pool page_pool;
619};
620
621#define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var)
622#define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index])
623#define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index]))
624#define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats))
625
626/* Use 2500 as a mini-jumbo MTU for FCoE */
627#define BNX2X_FCOE_MINI_JUMBO_MTU 2500
628
629#define FCOE_IDX_OFFSET 0
630
631#define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
632 FCOE_IDX_OFFSET)
633#define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)])
634#define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var)
635#define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)])
636#define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var)
637#define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \
638 txdata_ptr[FIRST_TX_COS_INDEX] \
639 ->var)
640
641#define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
642#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp))
643#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp))
644
645/* MC hsi */
646#define MAX_FETCH_BD 13 /* HW max BDs per packet */
647#define RX_COPY_THRESH 92
648
649#define NUM_TX_RINGS 16
650#define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
651#define NEXT_PAGE_TX_DESC_CNT 1
652#define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
653#define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS)
654#define MAX_TX_BD (NUM_TX_BD - 1)
655#define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
656#define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \
657 (MAX_TX_DESC_CNT - 1)) ? \
658 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
659 (x) + 1)
660#define TX_BD(x) ((x) & MAX_TX_BD)
661#define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT)
662
663/* number of NEXT_PAGE descriptors may be required during placement */
664#define NEXT_CNT_PER_TX_PKT(bds) \
665 (((bds) + MAX_TX_DESC_CNT - 1) / \
666 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
667/* max BDs per tx packet w/o next_pages:
668 * START_BD - describes packed
669 * START_BD(splitted) - includes unpaged data segment for GSO
670 * PARSING_BD - for TSO and CSUM data
671 * PARSING_BD2 - for encapsulation data
672 * Frag BDs - describes pages for frags
673 */
674#define BDS_PER_TX_PKT 4
675#define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT)
676/* max BDs per tx packet including next pages */
677#define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \
678 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
679
680/* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
681#define NUM_RX_RINGS 8
682#define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
683#define NEXT_PAGE_RX_DESC_CNT 2
684#define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
685#define RX_DESC_MASK (RX_DESC_CNT - 1)
686#define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS)
687#define MAX_RX_BD (NUM_RX_BD - 1)
688#define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
689
690/* dropless fc calculations for BDs
691 *
692 * Number of BDs should as number of buffers in BRB:
693 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
694 * "next" elements on each page
695 */
696#define NUM_BD_REQ BRB_SIZE(bp)
697#define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
698 MAX_RX_DESC_CNT)
699#define BD_TH_LO(bp) (NUM_BD_REQ + \
700 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
701 FW_DROP_LEVEL(bp))
702#define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
703
704#define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
705
706#define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \
707 ETH_MIN_RX_CQES_WITH_TPA_E1 : \
708 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
709#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
710#define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
711#define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
712 MIN_RX_AVAIL))
713
714#define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \
715 (MAX_RX_DESC_CNT - 1)) ? \
716 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
717 (x) + 1)
718#define RX_BD(x) ((x) & MAX_RX_BD)
719
720/*
721 * As long as CQE is X times bigger than BD entry we have to allocate X times
722 * more pages for CQ ring in order to keep it balanced with BD ring
723 */
724#define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
725#define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL)
726#define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
727#define NEXT_PAGE_RCQ_DESC_CNT 1
728#define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
729#define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS)
730#define MAX_RCQ_BD (NUM_RCQ_BD - 1)
731#define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
732#define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \
733 (MAX_RCQ_DESC_CNT - 1)) ? \
734 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
735 (x) + 1)
736#define RCQ_BD(x) ((x) & MAX_RCQ_BD)
737
738/* dropless fc calculations for RCQs
739 *
740 * Number of RCQs should be as number of buffers in BRB:
741 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
742 * "next" elements on each page
743 */
744#define NUM_RCQ_REQ BRB_SIZE(bp)
745#define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
746 MAX_RCQ_DESC_CNT)
747#define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \
748 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
749 FW_DROP_LEVEL(bp))
750#define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
751
752/* This is needed for determining of last_max */
753#define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b))
754#define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b))
755
756#define BNX2X_SWCID_SHIFT 17
757#define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
758
759/* used on a CID received from the HW */
760#define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK)
761#define CQE_CMD(x) (le32_to_cpu(x) >> \
762 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
763
764#define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \
765 le32_to_cpu((bd)->addr_lo))
766#define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes))
767
768#define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
769#define BNX2X_DB_SHIFT 3 /* 8 bytes*/
770#if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
771#error "Min DB doorbell stride is 8"
772#endif
773#define DOORBELL_RELAXED(bp, cid, val) \
774 writel_relaxed((u32)(val), (bp)->doorbells + ((bp)->db_size * (cid)))
775
776/* TX CSUM helpers */
777#define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \
778 skb->csum_offset)
779#define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \
780 skb->csum_offset))
781
782#define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
783
784#define XMIT_PLAIN 0
785#define XMIT_CSUM_V4 (1 << 0)
786#define XMIT_CSUM_V6 (1 << 1)
787#define XMIT_CSUM_TCP (1 << 2)
788#define XMIT_GSO_V4 (1 << 3)
789#define XMIT_GSO_V6 (1 << 4)
790#define XMIT_CSUM_ENC_V4 (1 << 5)
791#define XMIT_CSUM_ENC_V6 (1 << 6)
792#define XMIT_GSO_ENC_V4 (1 << 7)
793#define XMIT_GSO_ENC_V6 (1 << 8)
794
795#define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
796#define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
797
798#define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
799#define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
800
801/* stuff added to make the code fit 80Col */
802#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
803#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
804#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
805#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
806#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
807
808#define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
809
810#define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
811 (((le16_to_cpu(flags) & \
812 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
813 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
814 == PRS_FLAG_OVERETH_IPV4)
815#define BNX2X_RX_SUM_FIX(cqe) \
816 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
817
818#define FP_USB_FUNC_OFF \
819 offsetof(struct cstorm_status_block_u, func)
820#define FP_CSB_FUNC_OFF \
821 offsetof(struct cstorm_status_block_c, func)
822
823#define HC_INDEX_ETH_RX_CQ_CONS 1
824
825#define HC_INDEX_OOO_TX_CQ_CONS 4
826
827#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
828
829#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
830
831#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
832
833#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
834
835#define BNX2X_RX_SB_INDEX \
836 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
837
838#define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
839
840#define BNX2X_TX_SB_INDEX_COS0 \
841 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
842
843/* end of fast path */
844
845/* common */
846
847struct bnx2x_common {
848
849 u32 chip_id;
850/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
851#define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0)
852
853#define CHIP_NUM(bp) (bp->common.chip_id >> 16)
854#define CHIP_NUM_57710 0x164e
855#define CHIP_NUM_57711 0x164f
856#define CHIP_NUM_57711E 0x1650
857#define CHIP_NUM_57712 0x1662
858#define CHIP_NUM_57712_MF 0x1663
859#define CHIP_NUM_57712_VF 0x166f
860#define CHIP_NUM_57713 0x1651
861#define CHIP_NUM_57713E 0x1652
862#define CHIP_NUM_57800 0x168a
863#define CHIP_NUM_57800_MF 0x16a5
864#define CHIP_NUM_57800_VF 0x16a9
865#define CHIP_NUM_57810 0x168e
866#define CHIP_NUM_57810_MF 0x16ae
867#define CHIP_NUM_57810_VF 0x16af
868#define CHIP_NUM_57811 0x163d
869#define CHIP_NUM_57811_MF 0x163e
870#define CHIP_NUM_57811_VF 0x163f
871#define CHIP_NUM_57840_OBSOLETE 0x168d
872#define CHIP_NUM_57840_MF_OBSOLETE 0x16ab
873#define CHIP_NUM_57840_4_10 0x16a1
874#define CHIP_NUM_57840_2_20 0x16a2
875#define CHIP_NUM_57840_MF 0x16a4
876#define CHIP_NUM_57840_VF 0x16ad
877#define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710)
878#define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711)
879#define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E)
880#define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712)
881#define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF)
882#define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF)
883#define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800)
884#define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF)
885#define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF)
886#define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810)
887#define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF)
888#define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF)
889#define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811)
890#define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF)
891#define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF)
892#define CHIP_IS_57840(bp) \
893 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
894 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
895 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
896#define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
897 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
898#define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF)
899#define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \
900 CHIP_IS_57711E(bp))
901#define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \
902 CHIP_IS_57811_MF(bp) || \
903 CHIP_IS_57811_VF(bp))
904#define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \
905 CHIP_IS_57712_MF(bp) || \
906 CHIP_IS_57712_VF(bp))
907#define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \
908 CHIP_IS_57800_MF(bp) || \
909 CHIP_IS_57800_VF(bp) || \
910 CHIP_IS_57810(bp) || \
911 CHIP_IS_57810_MF(bp) || \
912 CHIP_IS_57810_VF(bp) || \
913 CHIP_IS_57811xx(bp) || \
914 CHIP_IS_57840(bp) || \
915 CHIP_IS_57840_MF(bp) || \
916 CHIP_IS_57840_VF(bp))
917#define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
918#define USES_WARPCORE(bp) (CHIP_IS_E3(bp))
919#define IS_E1H_OFFSET (!CHIP_IS_E1(bp))
920
921#define CHIP_REV_SHIFT 12
922#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
923#define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK)
924#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
925#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
926/* assume maximum 5 revisions */
927#define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000)
928/* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
929#define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \
930 !(CHIP_REV_VAL(bp) & 0x00001000))
931/* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
932#define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \
933 (CHIP_REV_VAL(bp) & 0x00001000))
934
935#define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
936 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
937
938#define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0)
939#define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f)
940#define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
941 (CHIP_REV_SHIFT + 1)) \
942 << CHIP_REV_SHIFT)
943#define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \
944 CHIP_REV_SIM(bp) :\
945 CHIP_REV_VAL(bp))
946#define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \
947 (CHIP_REV(bp) == CHIP_REV_Bx))
948#define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \
949 (CHIP_REV(bp) == CHIP_REV_Ax))
950/* This define is used in two main places:
951 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
952 * to nic-only mode or to offload mode. Offload mode is configured if either the
953 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
954 * registered for this port (which means that the user wants storage services).
955 * 2. During cnic-related load, to know if offload mode is already configured in
956 * the HW or needs to be configured.
957 * Since the transition from nic-mode to offload-mode in HW causes traffic
958 * corruption, nic-mode is configured only in ports on which storage services
959 * where never requested.
960 */
961#define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
962
963 int flash_size;
964#define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */
965#define BNX2X_NVRAM_TIMEOUT_COUNT 30000
966#define BNX2X_NVRAM_PAGE_SIZE 256
967
968 u32 shmem_base;
969 u32 shmem2_base;
970 u32 mf_cfg_base;
971 u32 mf2_cfg_base;
972
973 u32 hw_config;
974
975 u32 bc_ver;
976
977 u8 int_block;
978#define INT_BLOCK_HC 0
979#define INT_BLOCK_IGU 1
980#define INT_BLOCK_MODE_NORMAL 0
981#define INT_BLOCK_MODE_BW_COMP 2
982#define CHIP_INT_MODE_IS_NBC(bp) \
983 (!CHIP_IS_E1x(bp) && \
984 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
985#define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
986
987 u8 chip_port_mode;
988#define CHIP_4_PORT_MODE 0x0
989#define CHIP_2_PORT_MODE 0x1
990#define CHIP_PORT_MODE_NONE 0x2
991#define CHIP_MODE(bp) (bp->common.chip_port_mode)
992#define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
993
994 u32 boot_mode;
995};
996
997/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
998#define BNX2X_IGU_STAS_MSG_VF_CNT 64
999#define BNX2X_IGU_STAS_MSG_PF_CNT 4
1000
1001#define MAX_IGU_ATTN_ACK_TO 100
1002/* end of common */
1003
1004/* port */
1005
1006struct bnx2x_port {
1007 u32 pmf;
1008
1009 u32 link_config[LINK_CONFIG_SIZE];
1010
1011 u32 supported[LINK_CONFIG_SIZE];
1012
1013 u32 advertising[LINK_CONFIG_SIZE];
1014
1015 u32 phy_addr;
1016
1017 /* used to synchronize phy accesses */
1018 struct mutex phy_mutex;
1019
1020 u32 port_stx;
1021
1022 struct nig_stats old_nig_stats;
1023};
1024
1025/* end of port */
1026
1027#define STATS_OFFSET32(stat_name) \
1028 (offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1029
1030/* slow path */
1031#define BNX2X_MAX_NUM_OF_VFS 64
1032#define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */
1033#define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND)
1034
1035/* We need to reserve doorbell addresses for all VF and queue combinations */
1036#define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1037
1038/* The doorbell is configured to have the same number of CIDs for PFs and for
1039 * VFs. For this reason the PF CID zone is as large as the VF zone.
1040 */
1041#define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS
1042#define BNX2X_MAX_NUM_VF_QUEUES 64
1043#define BNX2X_VF_ID_INVALID 0xFF
1044
1045/* the number of VF CIDS multiplied by the amount of bytes reserved for each
1046 * cid must not exceed the size of the VF doorbell
1047 */
1048#define BNX2X_VF_BAR_SIZE 512
1049#if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1050#error "VF doorbell bar size is 512"
1051#endif
1052
1053/*
1054 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1055 * control by the number of fast-path status blocks supported by the
1056 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1057 * status block represents an independent interrupts context that can
1058 * serve a regular L2 networking queue. However special L2 queues such
1059 * as the FCoE queue do not require a FP-SB and other components like
1060 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1061 *
1062 * If the maximum number of FP-SB available is X then:
1063 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1064 * regular L2 queues is Y=X-1
1065 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1066 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1067 * is Y+1
1068 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1069 * slow-path interrupts) or Y+2 if CNIC is supported (one additional
1070 * FP interrupt context for the CNIC).
1071 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1072 * L2 queue is supported. The cid for the FCoE L2 queue is always X.
1073 */
1074
1075/* fast-path interrupt contexts E1x */
1076#define FP_SB_MAX_E1x 16
1077/* fast-path interrupt contexts E2 */
1078#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
1079
1080union cdu_context {
1081 struct eth_context eth;
1082 char pad[1024];
1083};
1084
1085/* CDU host DB constants */
1086#define CDU_ILT_PAGE_SZ_HW 2
1087#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1088#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1089
1090#define CNIC_ISCSI_CID_MAX 256
1091#define CNIC_FCOE_CID_MAX 2048
1092#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1093#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1094
1095#define QM_ILT_PAGE_SZ_HW 0
1096#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1097#define QM_CID_ROUND 1024
1098
1099/* TM (timers) host DB constants */
1100#define TM_ILT_PAGE_SZ_HW 0
1101#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1102#define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \
1103 BNX2X_VF_CIDS + \
1104 CNIC_ISCSI_CID_MAX)
1105#define TM_ILT_SZ (8 * TM_CONN_NUM)
1106#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1107
1108/* SRC (Searcher) host DB constants */
1109#define SRC_ILT_PAGE_SZ_HW 0
1110#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1111#define SRC_HASH_BITS 10
1112#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
1113#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
1114#define SRC_T2_SZ SRC_ILT_SZ
1115#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1116
1117#define MAX_DMAE_C 8
1118
1119/* DMA memory not used in fastpath */
1120struct bnx2x_slowpath {
1121 union {
1122 struct mac_configuration_cmd e1x;
1123 struct eth_classify_rules_ramrod_data e2;
1124 } mac_rdata;
1125
1126 union {
1127 struct eth_classify_rules_ramrod_data e2;
1128 } vlan_rdata;
1129
1130 union {
1131 struct tstorm_eth_mac_filter_config e1x;
1132 struct eth_filter_rules_ramrod_data e2;
1133 } rx_mode_rdata;
1134
1135 union {
1136 struct mac_configuration_cmd e1;
1137 struct eth_multicast_rules_ramrod_data e2;
1138 } mcast_rdata;
1139
1140 struct eth_rss_update_ramrod_data rss_rdata;
1141
1142 /* Queue State related ramrods are always sent under rtnl_lock */
1143 union {
1144 struct client_init_ramrod_data init_data;
1145 struct client_update_ramrod_data update_data;
1146 struct tpa_update_ramrod_data tpa_data;
1147 } q_rdata;
1148
1149 union {
1150 struct function_start_data func_start;
1151 /* pfc configuration for DCBX ramrod */
1152 struct flow_control_configuration pfc_config;
1153 } func_rdata;
1154
1155 /* afex ramrod can not be a part of func_rdata union because these
1156 * events might arrive in parallel to other events from func_rdata.
1157 * Therefore, if they would have been defined in the same union,
1158 * data can get corrupted.
1159 */
1160 union {
1161 struct afex_vif_list_ramrod_data viflist_data;
1162 struct function_update_data func_update;
1163 } func_afex_rdata;
1164
1165 /* used by dmae command executer */
1166 struct dmae_command dmae[MAX_DMAE_C];
1167
1168 u32 stats_comp;
1169 union mac_stats mac_stats;
1170 struct nig_stats nig_stats;
1171 struct host_port_stats port_stats;
1172 struct host_func_stats func_stats;
1173
1174 u32 wb_comp;
1175 u32 wb_data[4];
1176
1177 union drv_info_to_mcp drv_info_to_mcp;
1178};
1179
1180#define bnx2x_sp(bp, var) (&bp->slowpath->var)
1181#define bnx2x_sp_mapping(bp, var) \
1182 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1183
1184/* attn group wiring */
1185#define MAX_DYNAMIC_ATTN_GRPS 8
1186
1187struct attn_route {
1188 u32 sig[5];
1189};
1190
1191struct iro {
1192 u32 base;
1193 u16 m1;
1194 u16 m2;
1195 u16 m3;
1196 u16 size;
1197};
1198
1199struct hw_context {
1200 union cdu_context *vcxt;
1201 dma_addr_t cxt_mapping;
1202 size_t size;
1203};
1204
1205/* forward */
1206struct bnx2x_ilt;
1207
1208struct bnx2x_vfdb;
1209
1210enum bnx2x_recovery_state {
1211 BNX2X_RECOVERY_DONE,
1212 BNX2X_RECOVERY_INIT,
1213 BNX2X_RECOVERY_WAIT,
1214 BNX2X_RECOVERY_FAILED,
1215 BNX2X_RECOVERY_NIC_LOADING
1216};
1217
1218/*
1219 * Event queue (EQ or event ring) MC hsi
1220 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1221 */
1222#define NUM_EQ_PAGES 1
1223#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1224#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1225#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1226#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
1227#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1228
1229/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1230#define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \
1231 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1232
1233/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1234#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1235
1236#define BNX2X_EQ_INDEX \
1237 (&bp->def_status_blk->sp_sb.\
1238 index_values[HC_SP_INDEX_EQ_CONS])
1239
1240/* This is a data that will be used to create a link report message.
1241 * We will keep the data used for the last link report in order
1242 * to prevent reporting the same link parameters twice.
1243 */
1244struct bnx2x_link_report_data {
1245 u16 line_speed; /* Effective line speed */
1246 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1247};
1248
1249enum {
1250 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */
1251 BNX2X_LINK_REPORT_LINK_DOWN,
1252 BNX2X_LINK_REPORT_RX_FC_ON,
1253 BNX2X_LINK_REPORT_TX_FC_ON,
1254};
1255
1256enum {
1257 BNX2X_PORT_QUERY_IDX,
1258 BNX2X_PF_QUERY_IDX,
1259 BNX2X_FCOE_QUERY_IDX,
1260 BNX2X_FIRST_QUEUE_QUERY_IDX,
1261};
1262
1263struct bnx2x_fw_stats_req {
1264 struct stats_query_header hdr;
1265 struct stats_query_entry query[FP_SB_MAX_E1x+
1266 BNX2X_FIRST_QUEUE_QUERY_IDX];
1267};
1268
1269struct bnx2x_fw_stats_data {
1270 struct stats_counter storm_counters;
1271 struct per_port_stats port;
1272 struct per_pf_stats pf;
1273 struct fcoe_statistics_params fcoe;
1274 struct per_queue_stats queue_stats[];
1275};
1276
1277/* Public slow path states */
1278enum sp_rtnl_flag {
1279 BNX2X_SP_RTNL_SETUP_TC,
1280 BNX2X_SP_RTNL_TX_TIMEOUT,
1281 BNX2X_SP_RTNL_FAN_FAILURE,
1282 BNX2X_SP_RTNL_AFEX_F_UPDATE,
1283 BNX2X_SP_RTNL_ENABLE_SRIOV,
1284 BNX2X_SP_RTNL_VFPF_MCAST,
1285 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1286 BNX2X_SP_RTNL_RX_MODE,
1287 BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1288 BNX2X_SP_RTNL_TX_STOP,
1289 BNX2X_SP_RTNL_GET_DRV_VERSION,
1290 BNX2X_SP_RTNL_UPDATE_SVID,
1291};
1292
1293enum bnx2x_iov_flag {
1294 BNX2X_IOV_HANDLE_VF_MSG,
1295 BNX2X_IOV_HANDLE_FLR,
1296};
1297
1298struct bnx2x_prev_path_list {
1299 struct list_head list;
1300 u8 bus;
1301 u8 slot;
1302 u8 path;
1303 u8 aer;
1304 u8 undi;
1305};
1306
1307struct bnx2x_sp_objs {
1308 /* MACs object */
1309 struct bnx2x_vlan_mac_obj mac_obj;
1310
1311 /* Queue State object */
1312 struct bnx2x_queue_sp_obj q_obj;
1313
1314 /* VLANs object */
1315 struct bnx2x_vlan_mac_obj vlan_obj;
1316};
1317
1318struct bnx2x_fp_stats {
1319 struct tstorm_per_queue_stats old_tclient;
1320 struct ustorm_per_queue_stats old_uclient;
1321 struct xstorm_per_queue_stats old_xclient;
1322 struct bnx2x_eth_q_stats eth_q_stats;
1323 struct bnx2x_eth_q_stats_old eth_q_stats_old;
1324};
1325
1326enum {
1327 SUB_MF_MODE_UNKNOWN = 0,
1328 SUB_MF_MODE_UFP,
1329 SUB_MF_MODE_NPAR1_DOT_5,
1330 SUB_MF_MODE_BD,
1331};
1332
1333struct bnx2x_vlan_entry {
1334 struct list_head link;
1335 u16 vid;
1336 bool hw;
1337};
1338
1339enum bnx2x_udp_port_type {
1340 BNX2X_UDP_PORT_VXLAN,
1341 BNX2X_UDP_PORT_GENEVE,
1342 BNX2X_UDP_PORT_MAX,
1343};
1344
1345struct bnx2x {
1346 /* Fields used in the tx and intr/napi performance paths
1347 * are grouped together in the beginning of the structure
1348 */
1349 struct bnx2x_fastpath *fp;
1350 struct bnx2x_sp_objs *sp_objs;
1351 struct bnx2x_fp_stats *fp_stats;
1352 struct bnx2x_fp_txdata *bnx2x_txq;
1353 void __iomem *regview;
1354 void __iomem *doorbells;
1355 u16 db_size;
1356
1357 u8 pf_num; /* absolute PF number */
1358 u8 pfid; /* per-path PF number */
1359 int base_fw_ndsb; /**/
1360#define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1361#define BP_PORT(bp) (bp->pfid & 1)
1362#define BP_FUNC(bp) (bp->pfid)
1363#define BP_ABS_FUNC(bp) (bp->pf_num)
1364#define BP_VN(bp) ((bp)->pfid >> 1)
1365#define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1366#define BP_L_ID(bp) (BP_VN(bp) << 2)
1367#define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\
1368 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1))
1369#define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1370
1371#ifdef CONFIG_BNX2X_SRIOV
1372 /* protects vf2pf mailbox from simultaneous access */
1373 struct mutex vf2pf_mutex;
1374 /* vf pf channel mailbox contains request and response buffers */
1375 struct bnx2x_vf_mbx_msg *vf2pf_mbox;
1376 dma_addr_t vf2pf_mbox_mapping;
1377
1378 /* we set aside a copy of the acquire response */
1379 struct pfvf_acquire_resp_tlv acquire_resp;
1380
1381 /* bulletin board for messages from pf to vf */
1382 union pf_vf_bulletin *pf2vf_bulletin;
1383 dma_addr_t pf2vf_bulletin_mapping;
1384
1385 union pf_vf_bulletin shadow_bulletin;
1386 struct pf_vf_bulletin_content old_bulletin;
1387
1388 u16 requested_nr_virtfn;
1389#endif /* CONFIG_BNX2X_SRIOV */
1390
1391 struct net_device *dev;
1392 struct pci_dev *pdev;
1393
1394 const struct iro *iro_arr;
1395#define IRO (bp->iro_arr)
1396
1397 enum bnx2x_recovery_state recovery_state;
1398 int is_leader;
1399 struct msix_entry *msix_table;
1400
1401 int tx_ring_size;
1402
1403/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1404#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
1405#define ETH_MIN_PACKET_SIZE (ETH_ZLEN - ETH_HLEN)
1406#define ETH_MAX_PACKET_SIZE ETH_DATA_LEN
1407#define ETH_MAX_JUMBO_PACKET_SIZE 9600
1408/* TCP with Timestamp Option (32) + IPv6 (40) */
1409#define ETH_MAX_TPA_HEADER_SIZE 72
1410
1411 /* Max supported alignment is 256 (8 shift)
1412 * minimal alignment shift 6 is optimal for 57xxx HW performance
1413 */
1414#define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT))
1415
1416 /* FW uses 2 Cache lines Alignment for start packet and size
1417 *
1418 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1419 * at the end of skb->data, to avoid wasting a full cache line.
1420 * This reduces memory use (skb->truesize).
1421 */
1422#define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT)
1423
1424#define BNX2X_FW_RX_ALIGN_END \
1425 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \
1426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1427
1428#define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
1429
1430 struct host_sp_status_block *def_status_blk;
1431#define DEF_SB_IGU_ID 16
1432#define DEF_SB_ID HC_SP_SB_ID
1433 __le16 def_idx;
1434 __le16 def_att_idx;
1435 u32 attn_state;
1436 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
1437
1438 /* slow path ring */
1439 struct eth_spe *spq;
1440 dma_addr_t spq_mapping;
1441 u16 spq_prod_idx;
1442 struct eth_spe *spq_prod_bd;
1443 struct eth_spe *spq_last_bd;
1444 __le16 *dsb_sp_prod;
1445 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */
1446 /* used to synchronize spq accesses */
1447 spinlock_t spq_lock;
1448
1449 /* event queue */
1450 union event_ring_elem *eq_ring;
1451 dma_addr_t eq_mapping;
1452 u16 eq_prod;
1453 u16 eq_cons;
1454 __le16 *eq_cons_sb;
1455 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */
1456
1457 /* Counter for marking that there is a STAT_QUERY ramrod pending */
1458 u16 stats_pending;
1459 /* Counter for completed statistics ramrods */
1460 u16 stats_comp;
1461
1462 /* End of fields used in the performance code paths */
1463
1464 int panic;
1465 int msg_enable;
1466
1467 u32 flags;
1468#define PCIX_FLAG (1 << 0)
1469#define PCI_32BIT_FLAG (1 << 1)
1470#define ONE_PORT_FLAG (1 << 2)
1471#define NO_WOL_FLAG (1 << 3)
1472#define USING_MSIX_FLAG (1 << 5)
1473#define USING_MSI_FLAG (1 << 6)
1474#define DISABLE_MSI_FLAG (1 << 7)
1475#define NO_MCP_FLAG (1 << 9)
1476#define MF_FUNC_DIS (1 << 11)
1477#define OWN_CNIC_IRQ (1 << 12)
1478#define NO_ISCSI_OOO_FLAG (1 << 13)
1479#define NO_ISCSI_FLAG (1 << 14)
1480#define NO_FCOE_FLAG (1 << 15)
1481#define BC_SUPPORTS_PFC_STATS (1 << 17)
1482#define TX_SWITCHING (1 << 18)
1483#define BC_SUPPORTS_FCOE_FEATURES (1 << 19)
1484#define USING_SINGLE_MSIX_FLAG (1 << 20)
1485#define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21)
1486#define IS_VF_FLAG (1 << 22)
1487#define BC_SUPPORTS_RMMOD_CMD (1 << 23)
1488#define HAS_PHYS_PORT_ID (1 << 24)
1489#define PTP_SUPPORTED (1 << 26)
1490#define TX_TIMESTAMPING_EN (1 << 27)
1491
1492#define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG)
1493
1494#ifdef CONFIG_BNX2X_SRIOV
1495#define IS_VF(bp) ((bp)->flags & IS_VF_FLAG)
1496#define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG))
1497#else
1498#define IS_VF(bp) false
1499#define IS_PF(bp) true
1500#endif
1501
1502#define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG)
1503#define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG)
1504#define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG)
1505
1506 u8 cnic_support;
1507 bool cnic_enabled;
1508 bool cnic_loaded;
1509 struct cnic_eth_dev *(*cnic_probe)(struct net_device *);
1510
1511 bool nic_stopped;
1512
1513 /* Flag that indicates that we can start looking for FCoE L2 queue
1514 * completions in the default status block.
1515 */
1516 bool fcoe_init;
1517
1518 int mrrs;
1519
1520 struct delayed_work sp_task;
1521 struct delayed_work iov_task;
1522
1523 atomic_t interrupt_occurred;
1524 struct delayed_work sp_rtnl_task;
1525
1526 struct delayed_work period_task;
1527 struct timer_list timer;
1528 int current_interval;
1529
1530 u16 fw_seq;
1531 u16 fw_drv_pulse_wr_seq;
1532 u32 func_stx;
1533
1534 struct link_params link_params;
1535 struct link_vars link_vars;
1536 u32 link_cnt;
1537 struct bnx2x_link_report_data last_reported_link;
1538 bool force_link_down;
1539
1540 struct mdio_if_info mdio;
1541
1542 struct bnx2x_common common;
1543 struct bnx2x_port port;
1544
1545 struct cmng_init cmng;
1546
1547 u32 mf_config[E1HVN_MAX];
1548 u32 mf_ext_config;
1549 u32 path_has_ovlan; /* E3 */
1550 u16 mf_ov;
1551 u8 mf_mode;
1552#define IS_MF(bp) (bp->mf_mode != 0)
1553#define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI)
1554#define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD)
1555#define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX)
1556 u8 mf_sub_mode;
1557#define IS_MF_UFP(bp) (IS_MF_SD(bp) && \
1558 bp->mf_sub_mode == SUB_MF_MODE_UFP)
1559#define IS_MF_BD(bp) (IS_MF_SD(bp) && \
1560 bp->mf_sub_mode == SUB_MF_MODE_BD)
1561
1562 u8 wol;
1563
1564 int rx_ring_size;
1565
1566 u16 tx_quick_cons_trip_int;
1567 u16 tx_quick_cons_trip;
1568 u16 tx_ticks_int;
1569 u16 tx_ticks;
1570
1571 u16 rx_quick_cons_trip_int;
1572 u16 rx_quick_cons_trip;
1573 u16 rx_ticks_int;
1574 u16 rx_ticks;
1575/* Maximal coalescing timeout in us */
1576#define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR)
1577
1578 u32 lin_cnt;
1579
1580 u16 state;
1581#define BNX2X_STATE_CLOSED 0
1582#define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000
1583#define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000
1584#define BNX2X_STATE_OPEN 0x3000
1585#define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000
1586#define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1587
1588#define BNX2X_STATE_DIAG 0xe000
1589#define BNX2X_STATE_ERROR 0xf000
1590
1591#define BNX2X_MAX_PRIORITY 8
1592 int num_queues;
1593 uint num_ethernet_queues;
1594 uint num_cnic_queues;
1595 int disable_tpa;
1596
1597 u32 rx_mode;
1598#define BNX2X_RX_MODE_NONE 0
1599#define BNX2X_RX_MODE_NORMAL 1
1600#define BNX2X_RX_MODE_ALLMULTI 2
1601#define BNX2X_RX_MODE_PROMISC 3
1602#define BNX2X_MAX_MULTICAST 64
1603
1604 u8 igu_dsb_id;
1605 u8 igu_base_sb;
1606 u8 igu_sb_cnt;
1607 u8 min_msix_vec_cnt;
1608
1609 u32 igu_base_addr;
1610 dma_addr_t def_status_blk_mapping;
1611
1612 struct bnx2x_slowpath *slowpath;
1613 dma_addr_t slowpath_mapping;
1614
1615 /* Mechanism protecting the drv_info_to_mcp */
1616 struct mutex drv_info_mutex;
1617 bool drv_info_mng_owner;
1618
1619 /* Total number of FW statistics requests */
1620 u8 fw_stats_num;
1621
1622 /*
1623 * This is a memory buffer that will contain both statistics
1624 * ramrod request and data.
1625 */
1626 void *fw_stats;
1627 dma_addr_t fw_stats_mapping;
1628
1629 /*
1630 * FW statistics request shortcut (points at the
1631 * beginning of fw_stats buffer).
1632 */
1633 struct bnx2x_fw_stats_req *fw_stats_req;
1634 dma_addr_t fw_stats_req_mapping;
1635 int fw_stats_req_sz;
1636
1637 /*
1638 * FW statistics data shortcut (points at the beginning of
1639 * fw_stats buffer + fw_stats_req_sz).
1640 */
1641 struct bnx2x_fw_stats_data *fw_stats_data;
1642 dma_addr_t fw_stats_data_mapping;
1643 int fw_stats_data_sz;
1644
1645 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1646 * context size we need 8 ILT entries.
1647 */
1648#define ILT_MAX_L2_LINES 32
1649 struct hw_context context[ILT_MAX_L2_LINES];
1650
1651 struct bnx2x_ilt *ilt;
1652#define BP_ILT(bp) ((bp)->ilt)
1653#define ILT_MAX_LINES 256
1654/*
1655 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1656 * to CNIC.
1657 */
1658#define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1659
1660/*
1661 * Maximum CID count that might be required by the bnx2x:
1662 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1663 */
1664
1665#define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1666 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1667#define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1668 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1669#define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1670 ILT_PAGE_CIDS))
1671
1672 int qm_cid_count;
1673
1674 bool dropless_fc;
1675
1676 void *t2;
1677 dma_addr_t t2_mapping;
1678 struct cnic_ops __rcu *cnic_ops;
1679 void *cnic_data;
1680 u32 cnic_tag;
1681 struct cnic_eth_dev cnic_eth_dev;
1682 union host_hc_status_block cnic_sb;
1683 dma_addr_t cnic_sb_mapping;
1684 struct eth_spe *cnic_kwq;
1685 struct eth_spe *cnic_kwq_prod;
1686 struct eth_spe *cnic_kwq_cons;
1687 struct eth_spe *cnic_kwq_last;
1688 u16 cnic_kwq_pending;
1689 u16 cnic_spq_pending;
1690 u8 fip_mac[ETH_ALEN];
1691 struct mutex cnic_mutex;
1692 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1693
1694 /* Start index of the "special" (CNIC related) L2 clients */
1695 u8 cnic_base_cl_id;
1696
1697 int dmae_ready;
1698 /* used to synchronize dmae accesses */
1699 spinlock_t dmae_lock;
1700
1701 /* used to protect the FW mail box */
1702 struct mutex fw_mb_mutex;
1703
1704 /* used to synchronize stats collecting */
1705 int stats_state;
1706
1707 /* used for synchronization of concurrent threads statistics handling */
1708 struct semaphore stats_lock;
1709
1710 /* used by dmae command loader */
1711 struct dmae_command stats_dmae;
1712 int executer_idx;
1713
1714 u16 stats_counter;
1715 struct bnx2x_eth_stats eth_stats;
1716 struct host_func_stats func_stats;
1717 struct bnx2x_eth_stats_old eth_stats_old;
1718 struct bnx2x_net_stats_old net_stats_old;
1719 struct bnx2x_fw_port_stats_old fw_stats_old;
1720 bool stats_init;
1721
1722 struct z_stream_s *strm;
1723 void *gunzip_buf;
1724 dma_addr_t gunzip_mapping;
1725 int gunzip_outlen;
1726#define FW_BUF_SIZE 0x8000
1727#define GUNZIP_BUF(bp) (bp->gunzip_buf)
1728#define GUNZIP_PHYS(bp) (bp->gunzip_mapping)
1729#define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen)
1730
1731 struct raw_op *init_ops;
1732 /* Init blocks offsets inside init_ops */
1733 u16 *init_ops_offsets;
1734 /* Data blob - has 32 bit granularity */
1735 u32 *init_data;
1736 u32 init_mode_flags;
1737#define INIT_MODE_FLAGS(bp) (bp->init_mode_flags)
1738 /* Zipped PRAM blobs - raw data */
1739 const u8 *tsem_int_table_data;
1740 const u8 *tsem_pram_data;
1741 const u8 *usem_int_table_data;
1742 const u8 *usem_pram_data;
1743 const u8 *xsem_int_table_data;
1744 const u8 *xsem_pram_data;
1745 const u8 *csem_int_table_data;
1746 const u8 *csem_pram_data;
1747#define INIT_OPS(bp) (bp->init_ops)
1748#define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets)
1749#define INIT_DATA(bp) (bp->init_data)
1750#define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data)
1751#define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data)
1752#define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data)
1753#define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data)
1754#define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data)
1755#define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data)
1756#define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data)
1757#define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data)
1758
1759#define PHY_FW_VER_LEN 20
1760 char fw_ver[32];
1761 const struct firmware *firmware;
1762
1763 struct bnx2x_vfdb *vfdb;
1764#define IS_SRIOV(bp) ((bp)->vfdb)
1765
1766 /* DCB support on/off */
1767 u16 dcb_state;
1768#define BNX2X_DCB_STATE_OFF 0
1769#define BNX2X_DCB_STATE_ON 1
1770
1771 /* DCBX engine mode */
1772 int dcbx_enabled;
1773#define BNX2X_DCBX_ENABLED_OFF 0
1774#define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
1775#define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
1776#define BNX2X_DCBX_ENABLED_INVALID (-1)
1777
1778 bool dcbx_mode_uset;
1779
1780 struct bnx2x_config_dcbx_params dcbx_config_params;
1781 struct bnx2x_dcbx_port_params dcbx_port_params;
1782 int dcb_version;
1783
1784 /* CAM credit pools */
1785 struct bnx2x_credit_pool_obj vlans_pool;
1786
1787 struct bnx2x_credit_pool_obj macs_pool;
1788
1789 /* RX_MODE object */
1790 struct bnx2x_rx_mode_obj rx_mode_obj;
1791
1792 /* MCAST object */
1793 struct bnx2x_mcast_obj mcast_obj;
1794
1795 /* RSS configuration object */
1796 struct bnx2x_rss_config_obj rss_conf_obj;
1797
1798 /* Function State controlling object */
1799 struct bnx2x_func_sp_obj func_obj;
1800
1801 unsigned long sp_state;
1802
1803 /* operation indication for the sp_rtnl task */
1804 unsigned long sp_rtnl_state;
1805
1806 /* Indication of the IOV tasks */
1807 unsigned long iov_task_state;
1808
1809 /* DCBX Negotiation results */
1810 struct dcbx_features dcbx_local_feat;
1811 u32 dcbx_error;
1812
1813#ifdef BCM_DCBNL
1814 struct dcbx_features dcbx_remote_feat;
1815 u32 dcbx_remote_flags;
1816#endif
1817 /* AFEX: store default vlan used */
1818 int afex_def_vlan_tag;
1819 enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1820 u32 pending_max;
1821
1822 /* multiple tx classes of service */
1823 u8 max_cos;
1824
1825 /* priority to cos mapping */
1826 u8 prio_to_cos[8];
1827
1828 int fp_array_size;
1829 u32 dump_preset_idx;
1830
1831 u8 phys_port_id[ETH_ALEN];
1832
1833 /* PTP related context */
1834 struct ptp_clock *ptp_clock;
1835 struct ptp_clock_info ptp_clock_info;
1836 struct work_struct ptp_task;
1837 struct cyclecounter cyclecounter;
1838 struct timecounter timecounter;
1839 bool timecounter_init_done;
1840 struct sk_buff *ptp_tx_skb;
1841 unsigned long ptp_tx_start;
1842 bool hwtstamp_ioctl_called;
1843 u16 tx_type;
1844 u16 rx_filter;
1845
1846 struct bnx2x_link_report_data vf_link_vars;
1847 struct list_head vlan_reg;
1848 u16 vlan_cnt;
1849 u16 vlan_credit;
1850 bool accept_any_vlan;
1851
1852 /* Vxlan/Geneve related information */
1853 u16 udp_tunnel_ports[BNX2X_UDP_PORT_MAX];
1854
1855#define FW_CAP_INVALIDATE_VF_FP_HSI BIT(0)
1856 u32 fw_cap;
1857
1858 u32 fw_major;
1859 u32 fw_minor;
1860 u32 fw_rev;
1861 u32 fw_eng;
1862};
1863
1864/* Tx queues may be less or equal to Rx queues */
1865extern int num_queues;
1866#define BNX2X_NUM_QUEUES(bp) (bp->num_queues)
1867#define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1868#define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \
1869 (bp)->num_cnic_queues)
1870#define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp)
1871
1872#define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1)
1873
1874#define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp)
1875/* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1876
1877#define RSS_IPV4_CAP_MASK \
1878 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1879
1880#define RSS_IPV4_TCP_CAP_MASK \
1881 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1882
1883#define RSS_IPV6_CAP_MASK \
1884 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1885
1886#define RSS_IPV6_TCP_CAP_MASK \
1887 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1888
1889struct bnx2x_func_init_params {
1890 /* dma */
1891 bool spq_active;
1892 dma_addr_t spq_map;
1893 u16 spq_prod;
1894
1895 u16 func_id; /* abs fid */
1896 u16 pf_id;
1897};
1898
1899#define for_each_cnic_queue(bp, var) \
1900 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1901 (var)++) \
1902 if (skip_queue(bp, var)) \
1903 continue; \
1904 else
1905
1906#define for_each_eth_queue(bp, var) \
1907 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1908
1909#define for_each_nondefault_eth_queue(bp, var) \
1910 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
1911
1912#define for_each_queue(bp, var) \
1913 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1914 if (skip_queue(bp, var)) \
1915 continue; \
1916 else
1917
1918/* Skip forwarding FP */
1919#define for_each_valid_rx_queue(bp, var) \
1920 for ((var) = 0; \
1921 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
1922 BNX2X_NUM_ETH_QUEUES(bp)); \
1923 (var)++) \
1924 if (skip_rx_queue(bp, var)) \
1925 continue; \
1926 else
1927
1928#define for_each_rx_queue_cnic(bp, var) \
1929 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1930 (var)++) \
1931 if (skip_rx_queue(bp, var)) \
1932 continue; \
1933 else
1934
1935#define for_each_rx_queue(bp, var) \
1936 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1937 if (skip_rx_queue(bp, var)) \
1938 continue; \
1939 else
1940
1941/* Skip OOO FP */
1942#define for_each_valid_tx_queue(bp, var) \
1943 for ((var) = 0; \
1944 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
1945 BNX2X_NUM_ETH_QUEUES(bp)); \
1946 (var)++) \
1947 if (skip_tx_queue(bp, var)) \
1948 continue; \
1949 else
1950
1951#define for_each_tx_queue_cnic(bp, var) \
1952 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
1953 (var)++) \
1954 if (skip_tx_queue(bp, var)) \
1955 continue; \
1956 else
1957
1958#define for_each_tx_queue(bp, var) \
1959 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1960 if (skip_tx_queue(bp, var)) \
1961 continue; \
1962 else
1963
1964#define for_each_nondefault_queue(bp, var) \
1965 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
1966 if (skip_queue(bp, var)) \
1967 continue; \
1968 else
1969
1970#define for_each_cos_in_tx_queue(fp, var) \
1971 for ((var) = 0; (var) < (fp)->max_cos; (var)++)
1972
1973/* skip rx queue
1974 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1975 */
1976#define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1977
1978/* skip tx queue
1979 * if FCOE l2 support is disabled and this is the fcoe L2 queue
1980 */
1981#define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1982
1983#define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
1984
1985/*self test*/
1986int bnx2x_idle_chk(struct bnx2x *bp);
1987
1988/**
1989 * bnx2x_set_mac_one - configure a single MAC address
1990 *
1991 * @bp: driver handle
1992 * @mac: MAC to configure
1993 * @obj: MAC object handle
1994 * @set: if 'true' add a new MAC, otherwise - delete
1995 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list)
1996 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
1997 *
1998 * Configures one MAC according to provided parameters or continues the
1999 * execution of previously scheduled commands if RAMROD_CONT is set in
2000 * ramrod_flags.
2001 *
2002 * Returns zero if operation has successfully completed, a positive value if the
2003 * operation has been successfully scheduled and a negative - if a requested
2004 * operations has failed.
2005 */
2006int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
2007 struct bnx2x_vlan_mac_obj *obj, bool set,
2008 int mac_type, unsigned long *ramrod_flags);
2009
2010int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
2011 struct bnx2x_vlan_mac_obj *obj, bool set,
2012 unsigned long *ramrod_flags);
2013
2014/**
2015 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2016 *
2017 * @bp: driver handle
2018 * @mac_obj: MAC object handle
2019 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC)
2020 * @wait_for_comp: if 'true' block until completion
2021 *
2022 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2023 *
2024 * Returns zero if operation has successfully completed, a positive value if the
2025 * operation has been successfully scheduled and a negative - if a requested
2026 * operations has failed.
2027 */
2028int bnx2x_del_all_macs(struct bnx2x *bp,
2029 struct bnx2x_vlan_mac_obj *mac_obj,
2030 int mac_type, bool wait_for_comp);
2031
2032/* Init Function API */
2033void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2034void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2035 u8 vf_valid, int fw_sb_id, int igu_sb_id);
2036int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2037int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2038int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2039int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2040void bnx2x_read_mf_cfg(struct bnx2x *bp);
2041
2042int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2043
2044/* dmae */
2045void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2046void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2047 u32 len32);
2048void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2049u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2050u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2051u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2052 bool with_comp, u8 comp_type);
2053
2054void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2055 u8 src_type, u8 dst_type);
2056int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2057 u32 *comp);
2058
2059/* FLR related routines */
2060u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2061void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2062int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2063u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2064int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2065 char *msg, u32 poll_cnt);
2066
2067void bnx2x_calc_fc_adv(struct bnx2x *bp);
2068int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2069 u32 data_hi, u32 data_lo, int cmd_type);
2070void bnx2x_update_coalesce(struct bnx2x *bp);
2071int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2072
2073bool bnx2x_port_after_undi(struct bnx2x *bp);
2074
2075static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2076 int wait)
2077{
2078 u32 val;
2079
2080 do {
2081 val = REG_RD(bp, reg);
2082 if (val == expected)
2083 break;
2084 ms -= wait;
2085 msleep(msecs: wait);
2086
2087 } while (ms > 0);
2088
2089 return val;
2090}
2091
2092void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2093 bool is_pf);
2094
2095#define BNX2X_ILT_ZALLOC(x, y, size) \
2096 x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2097
2098#define BNX2X_ILT_FREE(x, y, size) \
2099 do { \
2100 if (x) { \
2101 dma_free_coherent(&bp->pdev->dev, size, x, y); \
2102 x = NULL; \
2103 y = 0; \
2104 } \
2105 } while (0)
2106
2107#define ILOG2(x) (ilog2((x)))
2108
2109#define ILT_NUM_PAGE_ENTRIES (3072)
2110/* In 57710/11 we use whole table since we have 8 func
2111 * In 57712 we have only 4 func, but use same size per func, then only half of
2112 * the table in use
2113 */
2114#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8)
2115
2116#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
2117/*
2118 * the phys address is shifted right 12 bits and has an added
2119 * 1=valid bit added to the 53rd bit
2120 * then since this is a wide register(TM)
2121 * we split it into two 32 bit writes
2122 */
2123#define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2124#define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
2125
2126/* load/unload mode */
2127#define LOAD_NORMAL 0
2128#define LOAD_OPEN 1
2129#define LOAD_DIAG 2
2130#define LOAD_LOOPBACK_EXT 3
2131#define UNLOAD_NORMAL 0
2132#define UNLOAD_CLOSE 1
2133#define UNLOAD_RECOVERY 2
2134
2135/* DMAE command defines */
2136#define DMAE_TIMEOUT -1
2137#define DMAE_PCI_ERROR -2 /* E2 and onward */
2138#define DMAE_NOT_RDY -3
2139#define DMAE_PCI_ERR_FLAG 0x80000000
2140
2141#define DMAE_SRC_PCI 0
2142#define DMAE_SRC_GRC 1
2143
2144#define DMAE_DST_NONE 0
2145#define DMAE_DST_PCI 1
2146#define DMAE_DST_GRC 2
2147
2148#define DMAE_COMP_PCI 0
2149#define DMAE_COMP_GRC 1
2150
2151/* E2 and onward - PCI error handling in the completion */
2152
2153#define DMAE_COMP_REGULAR 0
2154#define DMAE_COM_SET_ERR 1
2155
2156#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \
2157 DMAE_COMMAND_SRC_SHIFT)
2158#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \
2159 DMAE_COMMAND_SRC_SHIFT)
2160
2161#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \
2162 DMAE_COMMAND_DST_SHIFT)
2163#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \
2164 DMAE_COMMAND_DST_SHIFT)
2165
2166#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \
2167 DMAE_COMMAND_C_DST_SHIFT)
2168#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \
2169 DMAE_COMMAND_C_DST_SHIFT)
2170
2171#define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE
2172
2173#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2174#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2175#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2176#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2177
2178#define DMAE_CMD_PORT_0 0
2179#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2180
2181#define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET
2182#define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET
2183#define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT
2184
2185#define DMAE_SRC_PF 0
2186#define DMAE_SRC_VF 1
2187
2188#define DMAE_DST_PF 0
2189#define DMAE_DST_VF 1
2190
2191#define DMAE_C_SRC 0
2192#define DMAE_C_DST 1
2193
2194#define DMAE_LEN32_RD_MAX 0x80
2195#define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2196
2197#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit
2198 * indicates error
2199 */
2200
2201#define MAX_DMAE_C_PER_PORT 8
2202#define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2203 BP_VN(bp))
2204#define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2205 E1HVN_MAX)
2206
2207/* Following is the DMAE channel number allocation for the clients.
2208 * MFW: OCBB/OCSD implementations use DMAE channels 14/15 respectively.
2209 * Driver: 0-3 and 8-11 (for PF dmae operations)
2210 * 4 and 12 (for stats requests)
2211 */
2212#define BNX2X_FW_DMAE_C 13 /* Channel for FW DMAE operations */
2213
2214/* PCIE link and speed */
2215#define PCICFG_LINK_WIDTH 0x1f00000
2216#define PCICFG_LINK_WIDTH_SHIFT 20
2217#define PCICFG_LINK_SPEED 0xf0000
2218#define PCICFG_LINK_SPEED_SHIFT 16
2219
2220#define BNX2X_NUM_TESTS_SF 7
2221#define BNX2X_NUM_TESTS_MF 3
2222#define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2223 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2224
2225#define BNX2X_PHY_LOOPBACK 0
2226#define BNX2X_MAC_LOOPBACK 1
2227#define BNX2X_EXT_LOOPBACK 2
2228#define BNX2X_PHY_LOOPBACK_FAILED 1
2229#define BNX2X_MAC_LOOPBACK_FAILED 2
2230#define BNX2X_EXT_LOOPBACK_FAILED 3
2231#define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \
2232 BNX2X_PHY_LOOPBACK_FAILED)
2233
2234#define STROM_ASSERT_ARRAY_SIZE 50
2235
2236/* must be used on a CID before placing it on a HW ring */
2237#define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \
2238 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2239 (x))
2240
2241#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
2242#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
2243
2244#define BNX2X_BTR 4
2245#define MAX_SPQ_PENDING 8
2246
2247/* CMNG constants, as derived from system spec calculations */
2248/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2249#define DEF_MIN_RATE 100
2250/* resolution of the rate shaping timer - 400 usec */
2251#define RS_PERIODIC_TIMEOUT_USEC 400
2252/* number of bytes in single QM arbitration cycle -
2253 * coefficient for calculating the fairness timer */
2254#define QM_ARB_BYTES 160000
2255/* resolution of Min algorithm 1:100 */
2256#define MIN_RES 100
2257/* how many bytes above threshold for the minimal credit of Min algorithm*/
2258#define MIN_ABOVE_THRESH 32768
2259/* Fairness algorithm integration time coefficient -
2260 * for calculating the actual Tfair */
2261#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
2262/* Memory of fairness algorithm . 2 cycles */
2263#define FAIR_MEM 2
2264
2265#define ATTN_NIG_FOR_FUNC (1L << 8)
2266#define ATTN_SW_TIMER_4_FUNC (1L << 9)
2267#define GPIO_2_FUNC (1L << 10)
2268#define GPIO_3_FUNC (1L << 11)
2269#define GPIO_4_FUNC (1L << 12)
2270#define ATTN_GENERAL_ATTN_1 (1L << 13)
2271#define ATTN_GENERAL_ATTN_2 (1L << 14)
2272#define ATTN_GENERAL_ATTN_3 (1L << 15)
2273#define ATTN_GENERAL_ATTN_4 (1L << 13)
2274#define ATTN_GENERAL_ATTN_5 (1L << 14)
2275#define ATTN_GENERAL_ATTN_6 (1L << 15)
2276
2277#define ATTN_HARD_WIRED_MASK 0xff00
2278#define ATTENTION_ID 4
2279
2280#define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \
2281 IS_MF_FCOE_AFEX(bp))
2282
2283/* stuff added to make the code fit 80Col */
2284
2285#define BNX2X_PMF_LINK_ASSERT \
2286 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2287
2288#define BNX2X_MC_ASSERT_BITS \
2289 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2290 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2291 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2292 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2293
2294#define BNX2X_MCP_ASSERT \
2295 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2296
2297#define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2298#define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2299 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2300 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2301 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2302 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2303 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2304
2305#define HW_INTERRUPT_ASSERT_SET_0 \
2306 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2307 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2308 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2309 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2310 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2311#define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2312 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2313 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2314 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2315 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2316 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2317 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2318#define HW_INTERRUPT_ASSERT_SET_1 \
2319 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2320 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2321 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2322 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2323 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2324 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2325 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2326 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2327 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2328 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2329 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2330#define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2331 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2332 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2333 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2334 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2335 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2336 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2337 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2338 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2339 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2340 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2341 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2342 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2343 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2344 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2345 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2346#define HW_INTERRUPT_ASSERT_SET_2 \
2347 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2348 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2349 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2350 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2351 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2352#define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2353 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2354 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2355 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2356 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2357 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2358 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2359 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2360
2361#define HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD \
2362 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2363 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2364 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
2365
2366#define HW_PRTY_ASSERT_SET_3 (HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD | \
2367 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2368
2369#define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2370 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2371
2372#define MULTI_MASK 0x7f
2373
2374#define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func)
2375#define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func)
2376#define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func)
2377#define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func)
2378
2379#define DEF_USB_IGU_INDEX_OFF \
2380 offsetof(struct cstorm_def_status_block_u, igu_index)
2381#define DEF_CSB_IGU_INDEX_OFF \
2382 offsetof(struct cstorm_def_status_block_c, igu_index)
2383#define DEF_XSB_IGU_INDEX_OFF \
2384 offsetof(struct xstorm_def_status_block, igu_index)
2385#define DEF_TSB_IGU_INDEX_OFF \
2386 offsetof(struct tstorm_def_status_block, igu_index)
2387
2388#define DEF_USB_SEGMENT_OFF \
2389 offsetof(struct cstorm_def_status_block_u, segment)
2390#define DEF_CSB_SEGMENT_OFF \
2391 offsetof(struct cstorm_def_status_block_c, segment)
2392#define DEF_XSB_SEGMENT_OFF \
2393 offsetof(struct xstorm_def_status_block, segment)
2394#define DEF_TSB_SEGMENT_OFF \
2395 offsetof(struct tstorm_def_status_block, segment)
2396
2397#define BNX2X_SP_DSB_INDEX \
2398 (&bp->def_status_blk->sp_sb.\
2399 index_values[HC_SP_INDEX_ETH_DEF_CONS])
2400
2401#define CAM_IS_INVALID(x) \
2402 (GET_FLAG(x.flags, \
2403 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2404 (T_ETH_MAC_COMMAND_INVALIDATE))
2405
2406/* Number of u32 elements in MC hash array */
2407#define MC_HASH_SIZE 8
2408#define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \
2409 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2410
2411#ifndef PXP2_REG_PXP2_INT_STS
2412#define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0
2413#endif
2414
2415#ifndef ETH_MAX_RX_CLIENTS_E2
2416#define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H
2417#endif
2418
2419#define VENDOR_ID_LEN 4
2420
2421#define VF_ACQUIRE_THRESH 3
2422#define VF_ACQUIRE_MAC_FILTERS 1
2423#define VF_ACQUIRE_MC_FILTERS 10
2424#define VF_ACQUIRE_VLAN_FILTERS 2 /* VLAN0 + 'real' VLAN */
2425
2426#define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2427 (!((me_reg) & ME_REG_VF_ERR)))
2428int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err);
2429
2430/* Congestion management fairness mode */
2431#define CMNG_FNS_NONE 0
2432#define CMNG_FNS_MINMAX 1
2433
2434#define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/
2435#define HC_SEG_ACCESS_ATTN 4
2436#define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/
2437
2438void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2439void bnx2x_notify_link_changed(struct bnx2x *bp);
2440
2441#define BNX2X_MF_SD_PROTOCOL(bp) \
2442 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2443
2444#define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2445 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2446
2447#define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2448 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2449
2450#define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2451#define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2452#define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp))
2453
2454#define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp))
2455
2456#define BNX2X_MF_EXT_PROTOCOL_MASK \
2457 (MACP_FUNC_CFG_FLAGS_ETHERNET | \
2458 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \
2459 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2460
2461#define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \
2462 BNX2X_MF_EXT_PROTOCOL_MASK)
2463
2464#define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \
2465 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2466
2467#define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \
2468 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2469
2470#define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \
2471 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD)
2472
2473#define IS_MF_FCOE_AFEX(bp) \
2474 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))
2475
2476#define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \
2477 (IS_MF_SD(bp) && \
2478 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2479 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2480
2481#define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \
2482 (IS_MF_SI(bp) && \
2483 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \
2484 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)))
2485
2486#define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \
2487 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \
2488 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp))
2489
2490/* Determines whether BW configuration arrives in 100Mb units or in
2491 * percentages from actual physical link speed.
2492 */
2493#define IS_MF_PERCENT_BW(bp) (IS_MF_SI(bp) || IS_MF_UFP(bp) || IS_MF_BD(bp))
2494
2495#define SET_FLAG(value, mask, flag) \
2496 do {\
2497 (value) &= ~(mask);\
2498 (value) |= ((flag) << (mask##_SHIFT));\
2499 } while (0)
2500
2501#define GET_FLAG(value, mask) \
2502 (((value) & (mask)) >> (mask##_SHIFT))
2503
2504#define GET_FIELD(value, fname) \
2505 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
2506
2507enum {
2508 SWITCH_UPDATE,
2509 AFEX_UPDATE,
2510};
2511
2512#define NUM_MACS 8
2513
2514void bnx2x_set_local_cmng(struct bnx2x *bp);
2515
2516void bnx2x_update_mng_version(struct bnx2x *bp);
2517
2518void bnx2x_update_mfw_dump(struct bnx2x *bp);
2519
2520#define MCPR_SCRATCH_BASE(bp) \
2521 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2522
2523#define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2524
2525void bnx2x_init_ptp(struct bnx2x *bp);
2526int bnx2x_configure_ptp_filters(struct bnx2x *bp);
2527void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb);
2528void bnx2x_register_phc(struct bnx2x *bp);
2529
2530#define BNX2X_MAX_PHC_DRIFT 31000000
2531#define BNX2X_PTP_TX_TIMEOUT
2532
2533/* Re-configure all previously configured vlan filters.
2534 * Meant for implicit re-load flows.
2535 */
2536int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp);
2537#endif /* bnx2x.h */
2538

source code of linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x.h