1// SPDX-License-Identifier: GPL-2.0-or-later
2/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3/*
4 Copyright (c) 2001, 2002 by D-Link Corporation
5 Written by Edward Peng.<edward_peng@dlink.com.tw>
6 Created 03-May-2001, base on Linux' sundance.c.
7
8*/
9
10#include "dl2k.h"
11#include <linux/dma-mapping.h>
12
13#define dw32(reg, val) iowrite32(val, ioaddr + (reg))
14#define dw16(reg, val) iowrite16(val, ioaddr + (reg))
15#define dw8(reg, val) iowrite8(val, ioaddr + (reg))
16#define dr32(reg) ioread32(ioaddr + (reg))
17#define dr16(reg) ioread16(ioaddr + (reg))
18#define dr8(reg) ioread8(ioaddr + (reg))
19
20#define MAX_UNITS 8
21static int mtu[MAX_UNITS];
22static int vlan[MAX_UNITS];
23static int jumbo[MAX_UNITS];
24static char *media[MAX_UNITS];
25static int tx_flow=-1;
26static int rx_flow=-1;
27static int copy_thresh;
28static int rx_coalesce=10; /* Rx frame count each interrupt */
29static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
30static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
31
32
33MODULE_AUTHOR ("Edward Peng");
34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35MODULE_LICENSE("GPL");
36module_param_array(mtu, int, NULL, 0);
37module_param_array(media, charp, NULL, 0);
38module_param_array(vlan, int, NULL, 0);
39module_param_array(jumbo, int, NULL, 0);
40module_param(tx_flow, int, 0);
41module_param(rx_flow, int, 0);
42module_param(copy_thresh, int, 0);
43module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
44module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46
47
48/* Enable the default interrupts */
49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50 UpdateStats | LinkEvent)
51
52static void dl2k_enable_int(struct netdev_private *np)
53{
54 void __iomem *ioaddr = np->ioaddr;
55
56 dw16(IntEnable, DEFAULT_INTR);
57}
58
59static const int max_intrloop = 50;
60static const int multicast_filter_limit = 0x40;
61
62static int rio_open (struct net_device *dev);
63static void rio_timer (struct timer_list *t);
64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67static void rio_free_tx (struct net_device *dev, int irq);
68static void tx_error (struct net_device *dev, int tx_status);
69static int receive_packet (struct net_device *dev);
70static void rio_error (struct net_device *dev, int int_status);
71static void set_multicast (struct net_device *dev);
72static struct net_device_stats *get_stats (struct net_device *dev);
73static int clear_stats (struct net_device *dev);
74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75static int rio_close (struct net_device *dev);
76static int find_miiphy (struct net_device *dev);
77static int parse_eeprom (struct net_device *dev);
78static int read_eeprom (struct netdev_private *, int eep_addr);
79static int mii_wait_link (struct net_device *dev, int wait);
80static int mii_set_media (struct net_device *dev);
81static int mii_get_media (struct net_device *dev);
82static int mii_set_media_pcs (struct net_device *dev);
83static int mii_get_media_pcs (struct net_device *dev);
84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 u16 data);
87
88static const struct ethtool_ops ethtool_ops;
89
90static const struct net_device_ops netdev_ops = {
91 .ndo_open = rio_open,
92 .ndo_start_xmit = start_xmit,
93 .ndo_stop = rio_close,
94 .ndo_get_stats = get_stats,
95 .ndo_validate_addr = eth_validate_addr,
96 .ndo_set_mac_address = eth_mac_addr,
97 .ndo_set_rx_mode = set_multicast,
98 .ndo_eth_ioctl = rio_ioctl,
99 .ndo_tx_timeout = rio_tx_timeout,
100};
101
102static int
103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104{
105 struct net_device *dev;
106 struct netdev_private *np;
107 static int card_idx;
108 int chip_idx = ent->driver_data;
109 int err, irq;
110 void __iomem *ioaddr;
111 void *ring_space;
112 dma_addr_t ring_dma;
113
114 err = pci_enable_device (dev: pdev);
115 if (err)
116 return err;
117
118 irq = pdev->irq;
119 err = pci_request_regions (pdev, "dl2k");
120 if (err)
121 goto err_out_disable;
122
123 pci_set_master (dev: pdev);
124
125 err = -ENOMEM;
126
127 dev = alloc_etherdev (sizeof (*np));
128 if (!dev)
129 goto err_out_res;
130 SET_NETDEV_DEV(dev, &pdev->dev);
131
132 np = netdev_priv(dev);
133
134 /* IO registers range. */
135 ioaddr = pci_iomap(dev: pdev, bar: 0, max: 0);
136 if (!ioaddr)
137 goto err_out_dev;
138 np->eeprom_addr = ioaddr;
139
140#ifdef MEM_MAPPING
141 /* MM registers range. */
142 ioaddr = pci_iomap(pdev, 1, 0);
143 if (!ioaddr)
144 goto err_out_iounmap;
145#endif
146 np->ioaddr = ioaddr;
147 np->chip_id = chip_idx;
148 np->pdev = pdev;
149 spin_lock_init (&np->tx_lock);
150 spin_lock_init (&np->rx_lock);
151
152 /* Parse manual configuration */
153 np->an_enable = 1;
154 np->tx_coalesce = 1;
155 if (card_idx < MAX_UNITS) {
156 if (media[card_idx] != NULL) {
157 np->an_enable = 0;
158 if (strcmp (media[card_idx], "auto") == 0 ||
159 strcmp (media[card_idx], "autosense") == 0 ||
160 strcmp (media[card_idx], "0") == 0 ) {
161 np->an_enable = 2;
162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 strcmp (media[card_idx], "4") == 0) {
164 np->speed = 100;
165 np->full_duplex = 1;
166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 strcmp (media[card_idx], "3") == 0) {
168 np->speed = 100;
169 np->full_duplex = 0;
170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 strcmp (media[card_idx], "2") == 0) {
172 np->speed = 10;
173 np->full_duplex = 1;
174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 strcmp (media[card_idx], "1") == 0) {
176 np->speed = 10;
177 np->full_duplex = 0;
178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 strcmp (media[card_idx], "6") == 0) {
180 np->speed=1000;
181 np->full_duplex=1;
182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 strcmp (media[card_idx], "5") == 0) {
184 np->speed = 1000;
185 np->full_duplex = 0;
186 } else {
187 np->an_enable = 1;
188 }
189 }
190 if (jumbo[card_idx] != 0) {
191 np->jumbo = 1;
192 dev->mtu = MAX_JUMBO;
193 } else {
194 np->jumbo = 0;
195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 dev->mtu = mtu[card_idx];
197 }
198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 vlan[card_idx] : 0;
200 if (rx_coalesce > 0 && rx_timeout > 0) {
201 np->rx_coalesce = rx_coalesce;
202 np->rx_timeout = rx_timeout;
203 np->coalesce = 1;
204 }
205 np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208 if (tx_coalesce < 1)
209 tx_coalesce = 1;
210 else if (tx_coalesce > TX_RING_SIZE-1)
211 tx_coalesce = TX_RING_SIZE - 1;
212 }
213 dev->netdev_ops = &netdev_ops;
214 dev->watchdog_timeo = TX_TIMEOUT;
215 dev->ethtool_ops = &ethtool_ops;
216#if 0
217 dev->features = NETIF_F_IP_CSUM;
218#endif
219 /* MTU range: 68 - 1536 or 8000 */
220 dev->min_mtu = ETH_MIN_MTU;
221 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222
223 pci_set_drvdata (pdev, data: dev);
224
225 ring_space = dma_alloc_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, dma_handle: &ring_dma,
226 GFP_KERNEL);
227 if (!ring_space)
228 goto err_out_iounmap;
229 np->tx_ring = ring_space;
230 np->tx_ring_dma = ring_dma;
231
232 ring_space = dma_alloc_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, dma_handle: &ring_dma,
233 GFP_KERNEL);
234 if (!ring_space)
235 goto err_out_unmap_tx;
236 np->rx_ring = ring_space;
237 np->rx_ring_dma = ring_dma;
238
239 /* Parse eeprom data */
240 parse_eeprom (dev);
241
242 /* Find PHY address */
243 err = find_miiphy (dev);
244 if (err)
245 goto err_out_unmap_rx;
246
247 /* Fiber device? */
248 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249 np->link_status = 0;
250 /* Set media and reset PHY */
251 if (np->phy_media) {
252 /* default Auto-Negotiation for fiber deivices */
253 if (np->an_enable == 2) {
254 np->an_enable = 1;
255 }
256 } else {
257 /* Auto-Negotiation is mandatory for 1000BASE-T,
258 IEEE 802.3ab Annex 28D page 14 */
259 if (np->speed == 1000)
260 np->an_enable = 1;
261 }
262
263 err = register_netdev (dev);
264 if (err)
265 goto err_out_unmap_rx;
266
267 card_idx++;
268
269 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 dev->name, np->name, dev->dev_addr, irq);
271 if (tx_coalesce > 1)
272 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273 tx_coalesce);
274 if (np->coalesce)
275 printk(KERN_INFO
276 "rx_coalesce:\t%d packets\n"
277 "rx_timeout: \t%d ns\n",
278 np->rx_coalesce, np->rx_timeout*640);
279 if (np->vlan)
280 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281 return 0;
282
283err_out_unmap_rx:
284 dma_free_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, cpu_addr: np->rx_ring,
285 dma_handle: np->rx_ring_dma);
286err_out_unmap_tx:
287 dma_free_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, cpu_addr: np->tx_ring,
288 dma_handle: np->tx_ring_dma);
289err_out_iounmap:
290#ifdef MEM_MAPPING
291 pci_iounmap(pdev, np->ioaddr);
292#endif
293 pci_iounmap(dev: pdev, np->eeprom_addr);
294err_out_dev:
295 free_netdev (dev);
296err_out_res:
297 pci_release_regions (pdev);
298err_out_disable:
299 pci_disable_device (dev: pdev);
300 return err;
301}
302
303static int
304find_miiphy (struct net_device *dev)
305{
306 struct netdev_private *np = netdev_priv(dev);
307 int i, phy_found = 0;
308
309 np->phy_addr = 1;
310
311 for (i = 31; i >= 0; i--) {
312 int mii_status = mii_read (dev, phy_addr: i, reg_num: 1);
313 if (mii_status != 0xffff && mii_status != 0x0000) {
314 np->phy_addr = i;
315 phy_found++;
316 }
317 }
318 if (!phy_found) {
319 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320 return -ENODEV;
321 }
322 return 0;
323}
324
325static int
326parse_eeprom (struct net_device *dev)
327{
328 struct netdev_private *np = netdev_priv(dev);
329 void __iomem *ioaddr = np->ioaddr;
330 int i, j;
331 u8 sromdata[256];
332 u8 *psib;
333 u32 crc;
334 PSROM_t psrom = (PSROM_t) sromdata;
335
336 int cid, next;
337
338 for (i = 0; i < 128; i++)
339 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340
341 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
342 /* Check CRC */
343 crc = ~ether_crc_le (256 - 4, sromdata);
344 if (psrom->crc != cpu_to_le32(crc)) {
345 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346 dev->name);
347 return -1;
348 }
349 }
350
351 /* Set MAC address */
352 eth_hw_addr_set(dev, addr: psrom->mac_addr);
353
354 if (np->chip_id == CHIP_IP1000A) {
355 np->led_mode = psrom->led_mode;
356 return 0;
357 }
358
359 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360 return 0;
361 }
362
363 /* Parse Software Information Block */
364 i = 0x30;
365 psib = (u8 *) sromdata;
366 do {
367 cid = psib[i++];
368 next = psib[i++];
369 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 printk (KERN_ERR "Cell data error\n");
371 return -1;
372 }
373 switch (cid) {
374 case 0: /* Format version */
375 break;
376 case 1: /* End of cell */
377 return 0;
378 case 2: /* Duplex Polarity */
379 np->duplex_polarity = psib[i];
380 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
381 break;
382 case 3: /* Wake Polarity */
383 np->wake_polarity = psib[i];
384 break;
385 case 9: /* Adapter description */
386 j = (next - i > 255) ? 255 : next - i;
387 memcpy (np->name, &(psib[i]), j);
388 break;
389 case 4:
390 case 5:
391 case 6:
392 case 7:
393 case 8: /* Reversed */
394 break;
395 default: /* Unknown cell */
396 return -1;
397 }
398 i = next;
399 } while (1);
400
401 return 0;
402}
403
404static void rio_set_led_mode(struct net_device *dev)
405{
406 struct netdev_private *np = netdev_priv(dev);
407 void __iomem *ioaddr = np->ioaddr;
408 u32 mode;
409
410 if (np->chip_id != CHIP_IP1000A)
411 return;
412
413 mode = dr32(ASICCtrl);
414 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
415
416 if (np->led_mode & 0x01)
417 mode |= IPG_AC_LED_MODE;
418 if (np->led_mode & 0x02)
419 mode |= IPG_AC_LED_MODE_BIT_1;
420 if (np->led_mode & 0x08)
421 mode |= IPG_AC_LED_SPEED;
422
423 dw32(ASICCtrl, mode);
424}
425
426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
427{
428 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
429}
430
431static void free_list(struct net_device *dev)
432{
433 struct netdev_private *np = netdev_priv(dev);
434 struct sk_buff *skb;
435 int i;
436
437 /* Free all the skbuffs in the queue. */
438 for (i = 0; i < RX_RING_SIZE; i++) {
439 skb = np->rx_skbuff[i];
440 if (skb) {
441 dma_unmap_single(&np->pdev->dev,
442 desc_to_dma(&np->rx_ring[i]),
443 skb->len, DMA_FROM_DEVICE);
444 dev_kfree_skb(skb);
445 np->rx_skbuff[i] = NULL;
446 }
447 np->rx_ring[i].status = 0;
448 np->rx_ring[i].fraginfo = 0;
449 }
450 for (i = 0; i < TX_RING_SIZE; i++) {
451 skb = np->tx_skbuff[i];
452 if (skb) {
453 dma_unmap_single(&np->pdev->dev,
454 desc_to_dma(&np->tx_ring[i]),
455 skb->len, DMA_TO_DEVICE);
456 dev_kfree_skb(skb);
457 np->tx_skbuff[i] = NULL;
458 }
459 }
460}
461
462static void rio_reset_ring(struct netdev_private *np)
463{
464 int i;
465
466 np->cur_rx = 0;
467 np->cur_tx = 0;
468 np->old_rx = 0;
469 np->old_tx = 0;
470
471 for (i = 0; i < TX_RING_SIZE; i++)
472 np->tx_ring[i].status = cpu_to_le64(TFDDone);
473
474 for (i = 0; i < RX_RING_SIZE; i++)
475 np->rx_ring[i].status = 0;
476}
477
478 /* allocate and initialize Tx and Rx descriptors */
479static int alloc_list(struct net_device *dev)
480{
481 struct netdev_private *np = netdev_priv(dev);
482 int i;
483
484 rio_reset_ring(np);
485 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
486
487 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488 for (i = 0; i < TX_RING_SIZE; i++) {
489 np->tx_skbuff[i] = NULL;
490 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491 ((i + 1) % TX_RING_SIZE) *
492 sizeof(struct netdev_desc));
493 }
494
495 /* Initialize Rx descriptors & allocate buffers */
496 for (i = 0; i < RX_RING_SIZE; i++) {
497 /* Allocated fixed size of skbuff */
498 struct sk_buff *skb;
499
500 skb = netdev_alloc_skb_ip_align(dev, length: np->rx_buf_sz);
501 np->rx_skbuff[i] = skb;
502 if (!skb) {
503 free_list(dev);
504 return -ENOMEM;
505 }
506
507 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508 ((i + 1) % RX_RING_SIZE) *
509 sizeof(struct netdev_desc));
510 /* Rubicon now supports 40 bits of addressing space. */
511 np->rx_ring[i].fraginfo =
512 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513 np->rx_buf_sz, DMA_FROM_DEVICE));
514 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
515 }
516
517 return 0;
518}
519
520static void rio_hw_init(struct net_device *dev)
521{
522 struct netdev_private *np = netdev_priv(dev);
523 void __iomem *ioaddr = np->ioaddr;
524 int i;
525 u16 macctrl;
526
527 /* Reset all logic functions */
528 dw16(ASICCtrl + 2,
529 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
530 mdelay(10);
531
532 rio_set_led_mode(dev);
533
534 /* DebugCtrl bit 4, 5, 9 must set */
535 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
536
537 if (np->chip_id == CHIP_IP1000A &&
538 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539 /* PHY magic taken from ipg driver, undocumented registers */
540 mii_write(dev, phy_addr: np->phy_addr, reg_num: 31, data: 0x0001);
541 mii_write(dev, phy_addr: np->phy_addr, reg_num: 27, data: 0x01e0);
542 mii_write(dev, phy_addr: np->phy_addr, reg_num: 31, data: 0x0002);
543 mii_write(dev, phy_addr: np->phy_addr, reg_num: 27, data: 0xeb8e);
544 mii_write(dev, phy_addr: np->phy_addr, reg_num: 31, data: 0x0000);
545 mii_write(dev, phy_addr: np->phy_addr, reg_num: 30, data: 0x005e);
546 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
547 mii_write(dev, phy_addr: np->phy_addr, MII_CTRL1000, data: 0x0700);
548 }
549
550 if (np->phy_media)
551 mii_set_media_pcs(dev);
552 else
553 mii_set_media(dev);
554
555 /* Jumbo frame */
556 if (np->jumbo != 0)
557 dw16(MaxFrameSize, MAX_JUMBO+14);
558
559 /* Set RFDListPtr */
560 dw32(RFDListPtr0, np->rx_ring_dma);
561 dw32(RFDListPtr1, 0);
562
563 /* Set station address */
564 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565 * too. However, it doesn't work on IP1000A so we use 16-bit access.
566 */
567 for (i = 0; i < 3; i++)
568 dw16(StationAddr0 + 2 * i,
569 cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
570
571 set_multicast (dev);
572 if (np->coalesce) {
573 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
574 }
575 /* Set RIO to poll every N*320nsec. */
576 dw8(RxDMAPollPeriod, 0x20);
577 dw8(TxDMAPollPeriod, 0xff);
578 dw8(RxDMABurstThresh, 0x30);
579 dw8(RxDMAUrgentThresh, 0x30);
580 dw32(RmonStatMask, 0x0007ffff);
581 /* clear statistics */
582 clear_stats (dev);
583
584 /* VLAN supported */
585 if (np->vlan) {
586 /* priority field in RxDMAIntCtrl */
587 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
588 /* VLANId */
589 dw16(VLANId, np->vlan);
590 /* Length/Type should be 0x8100 */
591 dw32(VLANTag, 0x8100 << 16 | np->vlan);
592 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
593 VLAN information tagged by TFC' VID, CFI fields. */
594 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
595 }
596
597 /* Start Tx/Rx */
598 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
599
600 macctrl = 0;
601 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
602 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
603 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
604 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
605 dw16(MACCtrl, macctrl);
606}
607
608static void rio_hw_stop(struct net_device *dev)
609{
610 struct netdev_private *np = netdev_priv(dev);
611 void __iomem *ioaddr = np->ioaddr;
612
613 /* Disable interrupts */
614 dw16(IntEnable, 0);
615
616 /* Stop Tx and Rx logics */
617 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
618}
619
620static int rio_open(struct net_device *dev)
621{
622 struct netdev_private *np = netdev_priv(dev);
623 const int irq = np->pdev->irq;
624 int i;
625
626 i = alloc_list(dev);
627 if (i)
628 return i;
629
630 rio_hw_init(dev);
631
632 i = request_irq(irq, handler: rio_interrupt, IRQF_SHARED, name: dev->name, dev);
633 if (i) {
634 rio_hw_stop(dev);
635 free_list(dev);
636 return i;
637 }
638
639 timer_setup(&np->timer, rio_timer, 0);
640 np->timer.expires = jiffies + 1 * HZ;
641 add_timer(timer: &np->timer);
642
643 netif_start_queue (dev);
644
645 dl2k_enable_int(np);
646 return 0;
647}
648
649static void
650rio_timer (struct timer_list *t)
651{
652 struct netdev_private *np = from_timer(np, t, timer);
653 struct net_device *dev = pci_get_drvdata(pdev: np->pdev);
654 unsigned int entry;
655 int next_tick = 1*HZ;
656 unsigned long flags;
657
658 spin_lock_irqsave(&np->rx_lock, flags);
659 /* Recover rx ring exhausted error */
660 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
661 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
662 /* Re-allocate skbuffs to fill the descriptor ring */
663 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
664 struct sk_buff *skb;
665 entry = np->old_rx % RX_RING_SIZE;
666 /* Dropped packets don't need to re-allocate */
667 if (np->rx_skbuff[entry] == NULL) {
668 skb = netdev_alloc_skb_ip_align(dev,
669 length: np->rx_buf_sz);
670 if (skb == NULL) {
671 np->rx_ring[entry].fraginfo = 0;
672 printk (KERN_INFO
673 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
674 dev->name, entry);
675 break;
676 }
677 np->rx_skbuff[entry] = skb;
678 np->rx_ring[entry].fraginfo =
679 cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
680 np->rx_buf_sz, DMA_FROM_DEVICE));
681 }
682 np->rx_ring[entry].fraginfo |=
683 cpu_to_le64((u64)np->rx_buf_sz << 48);
684 np->rx_ring[entry].status = 0;
685 } /* end for */
686 } /* end if */
687 spin_unlock_irqrestore (lock: &np->rx_lock, flags);
688 np->timer.expires = jiffies + next_tick;
689 add_timer(timer: &np->timer);
690}
691
692static void
693rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
694{
695 struct netdev_private *np = netdev_priv(dev);
696 void __iomem *ioaddr = np->ioaddr;
697
698 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
699 dev->name, dr32(TxStatus));
700 rio_free_tx(dev, irq: 0);
701 dev->if_port = 0;
702 netif_trans_update(dev); /* prevent tx timeout */
703}
704
705static netdev_tx_t
706start_xmit (struct sk_buff *skb, struct net_device *dev)
707{
708 struct netdev_private *np = netdev_priv(dev);
709 void __iomem *ioaddr = np->ioaddr;
710 struct netdev_desc *txdesc;
711 unsigned entry;
712 u64 tfc_vlan_tag = 0;
713
714 if (np->link_status == 0) { /* Link Down */
715 dev_kfree_skb(skb);
716 return NETDEV_TX_OK;
717 }
718 entry = np->cur_tx % TX_RING_SIZE;
719 np->tx_skbuff[entry] = skb;
720 txdesc = &np->tx_ring[entry];
721
722#if 0
723 if (skb->ip_summed == CHECKSUM_PARTIAL) {
724 txdesc->status |=
725 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
726 IPChecksumEnable);
727 }
728#endif
729 if (np->vlan) {
730 tfc_vlan_tag = VLANTagInsert |
731 ((u64)np->vlan << 32) |
732 ((u64)skb->priority << 45);
733 }
734 txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
735 skb->len, DMA_TO_DEVICE));
736 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
737
738 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
739 * Work around: Always use 1 descriptor in 10Mbps mode */
740 if (entry % np->tx_coalesce == 0 || np->speed == 10)
741 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
742 WordAlignDisable |
743 TxDMAIndicate |
744 (1 << FragCountShift));
745 else
746 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
747 WordAlignDisable |
748 (1 << FragCountShift));
749
750 /* TxDMAPollNow */
751 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
752 /* Schedule ISR */
753 dw32(CountDown, 10000);
754 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
755 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
756 < TX_QUEUE_LEN - 1 && np->speed != 10) {
757 /* do nothing */
758 } else if (!netif_queue_stopped(dev)) {
759 netif_stop_queue (dev);
760 }
761
762 /* The first TFDListPtr */
763 if (!dr32(TFDListPtr0)) {
764 dw32(TFDListPtr0, np->tx_ring_dma +
765 entry * sizeof (struct netdev_desc));
766 dw32(TFDListPtr1, 0);
767 }
768
769 return NETDEV_TX_OK;
770}
771
772static irqreturn_t
773rio_interrupt (int irq, void *dev_instance)
774{
775 struct net_device *dev = dev_instance;
776 struct netdev_private *np = netdev_priv(dev);
777 void __iomem *ioaddr = np->ioaddr;
778 unsigned int_status;
779 int cnt = max_intrloop;
780 int handled = 0;
781
782 while (1) {
783 int_status = dr16(IntStatus);
784 dw16(IntStatus, int_status);
785 int_status &= DEFAULT_INTR;
786 if (int_status == 0 || --cnt < 0)
787 break;
788 handled = 1;
789 /* Processing received packets */
790 if (int_status & RxDMAComplete)
791 receive_packet (dev);
792 /* TxDMAComplete interrupt */
793 if ((int_status & (TxDMAComplete|IntRequested))) {
794 int tx_status;
795 tx_status = dr32(TxStatus);
796 if (tx_status & 0x01)
797 tx_error (dev, tx_status);
798 /* Free used tx skbuffs */
799 rio_free_tx (dev, irq: 1);
800 }
801
802 /* Handle uncommon events */
803 if (int_status &
804 (HostError | LinkEvent | UpdateStats))
805 rio_error (dev, int_status);
806 }
807 if (np->cur_tx != np->old_tx)
808 dw32(CountDown, 100);
809 return IRQ_RETVAL(handled);
810}
811
812static void
813rio_free_tx (struct net_device *dev, int irq)
814{
815 struct netdev_private *np = netdev_priv(dev);
816 int entry = np->old_tx % TX_RING_SIZE;
817 unsigned long flag = 0;
818
819 if (irq)
820 spin_lock(lock: &np->tx_lock);
821 else
822 spin_lock_irqsave(&np->tx_lock, flag);
823
824 /* Free used tx skbuffs */
825 while (entry != np->cur_tx) {
826 struct sk_buff *skb;
827
828 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
829 break;
830 skb = np->tx_skbuff[entry];
831 dma_unmap_single(&np->pdev->dev,
832 desc_to_dma(&np->tx_ring[entry]), skb->len,
833 DMA_TO_DEVICE);
834 if (irq)
835 dev_consume_skb_irq(skb);
836 else
837 dev_kfree_skb(skb);
838
839 np->tx_skbuff[entry] = NULL;
840 entry = (entry + 1) % TX_RING_SIZE;
841 }
842 if (irq)
843 spin_unlock(lock: &np->tx_lock);
844 else
845 spin_unlock_irqrestore(lock: &np->tx_lock, flags: flag);
846 np->old_tx = entry;
847
848 /* If the ring is no longer full, clear tx_full and
849 call netif_wake_queue() */
850
851 if (netif_queue_stopped(dev) &&
852 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
853 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
854 netif_wake_queue (dev);
855 }
856}
857
858static void
859tx_error (struct net_device *dev, int tx_status)
860{
861 struct netdev_private *np = netdev_priv(dev);
862 void __iomem *ioaddr = np->ioaddr;
863 int frame_id;
864 int i;
865
866 frame_id = (tx_status & 0xffff0000);
867 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
868 dev->name, tx_status, frame_id);
869 dev->stats.tx_errors++;
870 /* Ttransmit Underrun */
871 if (tx_status & 0x10) {
872 dev->stats.tx_fifo_errors++;
873 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
874 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875 dw16(ASICCtrl + 2,
876 TxReset | DMAReset | FIFOReset | NetworkReset);
877 /* Wait for ResetBusy bit clear */
878 for (i = 50; i > 0; i--) {
879 if (!(dr16(ASICCtrl + 2) & ResetBusy))
880 break;
881 mdelay (1);
882 }
883 rio_set_led_mode(dev);
884 rio_free_tx (dev, irq: 1);
885 /* Reset TFDListPtr */
886 dw32(TFDListPtr0, np->tx_ring_dma +
887 np->old_tx * sizeof (struct netdev_desc));
888 dw32(TFDListPtr1, 0);
889
890 /* Let TxStartThresh stay default value */
891 }
892 /* Late Collision */
893 if (tx_status & 0x04) {
894 dev->stats.tx_fifo_errors++;
895 /* TxReset and clear FIFO */
896 dw16(ASICCtrl + 2, TxReset | FIFOReset);
897 /* Wait reset done */
898 for (i = 50; i > 0; i--) {
899 if (!(dr16(ASICCtrl + 2) & ResetBusy))
900 break;
901 mdelay (1);
902 }
903 rio_set_led_mode(dev);
904 /* Let TxStartThresh stay default value */
905 }
906 /* Maximum Collisions */
907 if (tx_status & 0x08)
908 dev->stats.collisions++;
909 /* Restart the Tx */
910 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
911}
912
913static int
914receive_packet (struct net_device *dev)
915{
916 struct netdev_private *np = netdev_priv(dev);
917 int entry = np->cur_rx % RX_RING_SIZE;
918 int cnt = 30;
919
920 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
921 while (1) {
922 struct netdev_desc *desc = &np->rx_ring[entry];
923 int pkt_len;
924 u64 frame_status;
925
926 if (!(desc->status & cpu_to_le64(RFDDone)) ||
927 !(desc->status & cpu_to_le64(FrameStart)) ||
928 !(desc->status & cpu_to_le64(FrameEnd)))
929 break;
930
931 /* Chip omits the CRC. */
932 frame_status = le64_to_cpu(desc->status);
933 pkt_len = frame_status & 0xffff;
934 if (--cnt < 0)
935 break;
936 /* Update rx error statistics, drop packet. */
937 if (frame_status & RFS_Errors) {
938 dev->stats.rx_errors++;
939 if (frame_status & (RxRuntFrame | RxLengthError))
940 dev->stats.rx_length_errors++;
941 if (frame_status & RxFCSError)
942 dev->stats.rx_crc_errors++;
943 if (frame_status & RxAlignmentError && np->speed != 1000)
944 dev->stats.rx_frame_errors++;
945 if (frame_status & RxFIFOOverrun)
946 dev->stats.rx_fifo_errors++;
947 } else {
948 struct sk_buff *skb;
949
950 /* Small skbuffs for short packets */
951 if (pkt_len > copy_thresh) {
952 dma_unmap_single(&np->pdev->dev,
953 desc_to_dma(desc),
954 np->rx_buf_sz,
955 DMA_FROM_DEVICE);
956 skb_put (skb: skb = np->rx_skbuff[entry], len: pkt_len);
957 np->rx_skbuff[entry] = NULL;
958 } else if ((skb = netdev_alloc_skb_ip_align(dev, length: pkt_len))) {
959 dma_sync_single_for_cpu(dev: &np->pdev->dev,
960 addr: desc_to_dma(desc),
961 size: np->rx_buf_sz,
962 dir: DMA_FROM_DEVICE);
963 skb_copy_to_linear_data (skb,
964 from: np->rx_skbuff[entry]->data,
965 len: pkt_len);
966 skb_put (skb, len: pkt_len);
967 dma_sync_single_for_device(dev: &np->pdev->dev,
968 addr: desc_to_dma(desc),
969 size: np->rx_buf_sz,
970 dir: DMA_FROM_DEVICE);
971 }
972 skb->protocol = eth_type_trans (skb, dev);
973#if 0
974 /* Checksum done by hw, but csum value unavailable. */
975 if (np->pdev->pci_rev_id >= 0x0c &&
976 !(frame_status & (TCPError | UDPError | IPError))) {
977 skb->ip_summed = CHECKSUM_UNNECESSARY;
978 }
979#endif
980 netif_rx (skb);
981 }
982 entry = (entry + 1) % RX_RING_SIZE;
983 }
984 spin_lock(lock: &np->rx_lock);
985 np->cur_rx = entry;
986 /* Re-allocate skbuffs to fill the descriptor ring */
987 entry = np->old_rx;
988 while (entry != np->cur_rx) {
989 struct sk_buff *skb;
990 /* Dropped packets don't need to re-allocate */
991 if (np->rx_skbuff[entry] == NULL) {
992 skb = netdev_alloc_skb_ip_align(dev, length: np->rx_buf_sz);
993 if (skb == NULL) {
994 np->rx_ring[entry].fraginfo = 0;
995 printk (KERN_INFO
996 "%s: receive_packet: "
997 "Unable to re-allocate Rx skbuff.#%d\n",
998 dev->name, entry);
999 break;
1000 }
1001 np->rx_skbuff[entry] = skb;
1002 np->rx_ring[entry].fraginfo =
1003 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1004 np->rx_buf_sz, DMA_FROM_DEVICE));
1005 }
1006 np->rx_ring[entry].fraginfo |=
1007 cpu_to_le64((u64)np->rx_buf_sz << 48);
1008 np->rx_ring[entry].status = 0;
1009 entry = (entry + 1) % RX_RING_SIZE;
1010 }
1011 np->old_rx = entry;
1012 spin_unlock(lock: &np->rx_lock);
1013 return 0;
1014}
1015
1016static void
1017rio_error (struct net_device *dev, int int_status)
1018{
1019 struct netdev_private *np = netdev_priv(dev);
1020 void __iomem *ioaddr = np->ioaddr;
1021 u16 macctrl;
1022
1023 /* Link change event */
1024 if (int_status & LinkEvent) {
1025 if (mii_wait_link (dev, wait: 10) == 0) {
1026 printk (KERN_INFO "%s: Link up\n", dev->name);
1027 if (np->phy_media)
1028 mii_get_media_pcs (dev);
1029 else
1030 mii_get_media (dev);
1031 if (np->speed == 1000)
1032 np->tx_coalesce = tx_coalesce;
1033 else
1034 np->tx_coalesce = 1;
1035 macctrl = 0;
1036 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1037 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1038 macctrl |= (np->tx_flow) ?
1039 TxFlowControlEnable : 0;
1040 macctrl |= (np->rx_flow) ?
1041 RxFlowControlEnable : 0;
1042 dw16(MACCtrl, macctrl);
1043 np->link_status = 1;
1044 netif_carrier_on(dev);
1045 } else {
1046 printk (KERN_INFO "%s: Link off\n", dev->name);
1047 np->link_status = 0;
1048 netif_carrier_off(dev);
1049 }
1050 }
1051
1052 /* UpdateStats statistics registers */
1053 if (int_status & UpdateStats) {
1054 get_stats (dev);
1055 }
1056
1057 /* PCI Error, a catastronphic error related to the bus interface
1058 occurs, set GlobalReset and HostReset to reset. */
1059 if (int_status & HostError) {
1060 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1061 dev->name, int_status);
1062 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1063 mdelay (500);
1064 rio_set_led_mode(dev);
1065 }
1066}
1067
1068static struct net_device_stats *
1069get_stats (struct net_device *dev)
1070{
1071 struct netdev_private *np = netdev_priv(dev);
1072 void __iomem *ioaddr = np->ioaddr;
1073#ifdef MEM_MAPPING
1074 int i;
1075#endif
1076 unsigned int stat_reg;
1077
1078 /* All statistics registers need to be acknowledged,
1079 else statistic overflow could cause problems */
1080
1081 dev->stats.rx_packets += dr32(FramesRcvOk);
1082 dev->stats.tx_packets += dr32(FramesXmtOk);
1083 dev->stats.rx_bytes += dr32(OctetRcvOk);
1084 dev->stats.tx_bytes += dr32(OctetXmtOk);
1085
1086 dev->stats.multicast = dr32(McstFramesRcvdOk);
1087 dev->stats.collisions += dr32(SingleColFrames)
1088 + dr32(MultiColFrames);
1089
1090 /* detailed tx errors */
1091 stat_reg = dr16(FramesAbortXSColls);
1092 dev->stats.tx_aborted_errors += stat_reg;
1093 dev->stats.tx_errors += stat_reg;
1094
1095 stat_reg = dr16(CarrierSenseErrors);
1096 dev->stats.tx_carrier_errors += stat_reg;
1097 dev->stats.tx_errors += stat_reg;
1098
1099 /* Clear all other statistic register. */
1100 dr32(McstOctetXmtOk);
1101 dr16(BcstFramesXmtdOk);
1102 dr32(McstFramesXmtdOk);
1103 dr16(BcstFramesRcvdOk);
1104 dr16(MacControlFramesRcvd);
1105 dr16(FrameTooLongErrors);
1106 dr16(InRangeLengthErrors);
1107 dr16(FramesCheckSeqErrors);
1108 dr16(FramesLostRxErrors);
1109 dr32(McstOctetXmtOk);
1110 dr32(BcstOctetXmtOk);
1111 dr32(McstFramesXmtdOk);
1112 dr32(FramesWDeferredXmt);
1113 dr32(LateCollisions);
1114 dr16(BcstFramesXmtdOk);
1115 dr16(MacControlFramesXmtd);
1116 dr16(FramesWEXDeferal);
1117
1118#ifdef MEM_MAPPING
1119 for (i = 0x100; i <= 0x150; i += 4)
1120 dr32(i);
1121#endif
1122 dr16(TxJumboFrames);
1123 dr16(RxJumboFrames);
1124 dr16(TCPCheckSumErrors);
1125 dr16(UDPCheckSumErrors);
1126 dr16(IPCheckSumErrors);
1127 return &dev->stats;
1128}
1129
1130static int
1131clear_stats (struct net_device *dev)
1132{
1133 struct netdev_private *np = netdev_priv(dev);
1134 void __iomem *ioaddr = np->ioaddr;
1135#ifdef MEM_MAPPING
1136 int i;
1137#endif
1138
1139 /* All statistics registers need to be acknowledged,
1140 else statistic overflow could cause problems */
1141 dr32(FramesRcvOk);
1142 dr32(FramesXmtOk);
1143 dr32(OctetRcvOk);
1144 dr32(OctetXmtOk);
1145
1146 dr32(McstFramesRcvdOk);
1147 dr32(SingleColFrames);
1148 dr32(MultiColFrames);
1149 dr32(LateCollisions);
1150 /* detailed rx errors */
1151 dr16(FrameTooLongErrors);
1152 dr16(InRangeLengthErrors);
1153 dr16(FramesCheckSeqErrors);
1154 dr16(FramesLostRxErrors);
1155
1156 /* detailed tx errors */
1157 dr16(FramesAbortXSColls);
1158 dr16(CarrierSenseErrors);
1159
1160 /* Clear all other statistic register. */
1161 dr32(McstOctetXmtOk);
1162 dr16(BcstFramesXmtdOk);
1163 dr32(McstFramesXmtdOk);
1164 dr16(BcstFramesRcvdOk);
1165 dr16(MacControlFramesRcvd);
1166 dr32(McstOctetXmtOk);
1167 dr32(BcstOctetXmtOk);
1168 dr32(McstFramesXmtdOk);
1169 dr32(FramesWDeferredXmt);
1170 dr16(BcstFramesXmtdOk);
1171 dr16(MacControlFramesXmtd);
1172 dr16(FramesWEXDeferal);
1173#ifdef MEM_MAPPING
1174 for (i = 0x100; i <= 0x150; i += 4)
1175 dr32(i);
1176#endif
1177 dr16(TxJumboFrames);
1178 dr16(RxJumboFrames);
1179 dr16(TCPCheckSumErrors);
1180 dr16(UDPCheckSumErrors);
1181 dr16(IPCheckSumErrors);
1182 return 0;
1183}
1184
1185static void
1186set_multicast (struct net_device *dev)
1187{
1188 struct netdev_private *np = netdev_priv(dev);
1189 void __iomem *ioaddr = np->ioaddr;
1190 u32 hash_table[2];
1191 u16 rx_mode = 0;
1192
1193 hash_table[0] = hash_table[1] = 0;
1194 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1195 hash_table[1] |= 0x02000000;
1196 if (dev->flags & IFF_PROMISC) {
1197 /* Receive all frames promiscuously. */
1198 rx_mode = ReceiveAllFrames;
1199 } else if ((dev->flags & IFF_ALLMULTI) ||
1200 (netdev_mc_count(dev) > multicast_filter_limit)) {
1201 /* Receive broadcast and multicast frames */
1202 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1203 } else if (!netdev_mc_empty(dev)) {
1204 struct netdev_hw_addr *ha;
1205 /* Receive broadcast frames and multicast frames filtering
1206 by Hashtable */
1207 rx_mode =
1208 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1209 netdev_for_each_mc_addr(ha, dev) {
1210 int bit, index = 0;
1211 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1212 /* The inverted high significant 6 bits of CRC are
1213 used as an index to hashtable */
1214 for (bit = 0; bit < 6; bit++)
1215 if (crc & (1 << (31 - bit)))
1216 index |= (1 << bit);
1217 hash_table[index / 32] |= (1 << (index % 32));
1218 }
1219 } else {
1220 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1221 }
1222 if (np->vlan) {
1223 /* ReceiveVLANMatch field in ReceiveMode */
1224 rx_mode |= ReceiveVLANMatch;
1225 }
1226
1227 dw32(HashTable0, hash_table[0]);
1228 dw32(HashTable1, hash_table[1]);
1229 dw16(ReceiveMode, rx_mode);
1230}
1231
1232static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1233{
1234 struct netdev_private *np = netdev_priv(dev);
1235
1236 strscpy(p: info->driver, q: "dl2k", size: sizeof(info->driver));
1237 strscpy(p: info->bus_info, q: pci_name(pdev: np->pdev), size: sizeof(info->bus_info));
1238}
1239
1240static int rio_get_link_ksettings(struct net_device *dev,
1241 struct ethtool_link_ksettings *cmd)
1242{
1243 struct netdev_private *np = netdev_priv(dev);
1244 u32 supported, advertising;
1245
1246 if (np->phy_media) {
1247 /* fiber device */
1248 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1249 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1250 cmd->base.port = PORT_FIBRE;
1251 } else {
1252 /* copper device */
1253 supported = SUPPORTED_10baseT_Half |
1254 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1255 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1256 SUPPORTED_Autoneg | SUPPORTED_MII;
1257 advertising = ADVERTISED_10baseT_Half |
1258 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1259 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1260 ADVERTISED_Autoneg | ADVERTISED_MII;
1261 cmd->base.port = PORT_MII;
1262 }
1263 if (np->link_status) {
1264 cmd->base.speed = np->speed;
1265 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1266 } else {
1267 cmd->base.speed = SPEED_UNKNOWN;
1268 cmd->base.duplex = DUPLEX_UNKNOWN;
1269 }
1270 if (np->an_enable)
1271 cmd->base.autoneg = AUTONEG_ENABLE;
1272 else
1273 cmd->base.autoneg = AUTONEG_DISABLE;
1274
1275 cmd->base.phy_address = np->phy_addr;
1276
1277 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.supported,
1278 legacy_u32: supported);
1279 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.advertising,
1280 legacy_u32: advertising);
1281
1282 return 0;
1283}
1284
1285static int rio_set_link_ksettings(struct net_device *dev,
1286 const struct ethtool_link_ksettings *cmd)
1287{
1288 struct netdev_private *np = netdev_priv(dev);
1289 u32 speed = cmd->base.speed;
1290 u8 duplex = cmd->base.duplex;
1291
1292 netif_carrier_off(dev);
1293 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1294 if (np->an_enable) {
1295 return 0;
1296 } else {
1297 np->an_enable = 1;
1298 mii_set_media(dev);
1299 return 0;
1300 }
1301 } else {
1302 np->an_enable = 0;
1303 if (np->speed == 1000) {
1304 speed = SPEED_100;
1305 duplex = DUPLEX_FULL;
1306 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1307 }
1308 switch (speed) {
1309 case SPEED_10:
1310 np->speed = 10;
1311 np->full_duplex = (duplex == DUPLEX_FULL);
1312 break;
1313 case SPEED_100:
1314 np->speed = 100;
1315 np->full_duplex = (duplex == DUPLEX_FULL);
1316 break;
1317 case SPEED_1000: /* not supported */
1318 default:
1319 return -EINVAL;
1320 }
1321 mii_set_media(dev);
1322 }
1323 return 0;
1324}
1325
1326static u32 rio_get_link(struct net_device *dev)
1327{
1328 struct netdev_private *np = netdev_priv(dev);
1329 return np->link_status;
1330}
1331
1332static const struct ethtool_ops ethtool_ops = {
1333 .get_drvinfo = rio_get_drvinfo,
1334 .get_link = rio_get_link,
1335 .get_link_ksettings = rio_get_link_ksettings,
1336 .set_link_ksettings = rio_set_link_ksettings,
1337};
1338
1339static int
1340rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1341{
1342 int phy_addr;
1343 struct netdev_private *np = netdev_priv(dev);
1344 struct mii_ioctl_data *miidata = if_mii(rq);
1345
1346 phy_addr = np->phy_addr;
1347 switch (cmd) {
1348 case SIOCGMIIPHY:
1349 miidata->phy_id = phy_addr;
1350 break;
1351 case SIOCGMIIREG:
1352 miidata->val_out = mii_read (dev, phy_addr, reg_num: miidata->reg_num);
1353 break;
1354 case SIOCSMIIREG:
1355 if (!capable(CAP_NET_ADMIN))
1356 return -EPERM;
1357 mii_write (dev, phy_addr, reg_num: miidata->reg_num, data: miidata->val_in);
1358 break;
1359 default:
1360 return -EOPNOTSUPP;
1361 }
1362 return 0;
1363}
1364
1365#define EEP_READ 0x0200
1366#define EEP_BUSY 0x8000
1367/* Read the EEPROM word */
1368/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1369static int read_eeprom(struct netdev_private *np, int eep_addr)
1370{
1371 void __iomem *ioaddr = np->eeprom_addr;
1372 int i = 1000;
1373
1374 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1375 while (i-- > 0) {
1376 if (!(dr16(EepromCtrl) & EEP_BUSY))
1377 return dr16(EepromData);
1378 }
1379 return 0;
1380}
1381
1382enum phy_ctrl_bits {
1383 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1384 MII_DUPLEX = 0x08,
1385};
1386
1387#define mii_delay() dr8(PhyCtrl)
1388static void
1389mii_sendbit (struct net_device *dev, u32 data)
1390{
1391 struct netdev_private *np = netdev_priv(dev);
1392 void __iomem *ioaddr = np->ioaddr;
1393
1394 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1395 dw8(PhyCtrl, data);
1396 mii_delay ();
1397 dw8(PhyCtrl, data | MII_CLK);
1398 mii_delay ();
1399}
1400
1401static int
1402mii_getbit (struct net_device *dev)
1403{
1404 struct netdev_private *np = netdev_priv(dev);
1405 void __iomem *ioaddr = np->ioaddr;
1406 u8 data;
1407
1408 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1409 dw8(PhyCtrl, data);
1410 mii_delay ();
1411 dw8(PhyCtrl, data | MII_CLK);
1412 mii_delay ();
1413 return (dr8(PhyCtrl) >> 1) & 1;
1414}
1415
1416static void
1417mii_send_bits (struct net_device *dev, u32 data, int len)
1418{
1419 int i;
1420
1421 for (i = len - 1; i >= 0; i--) {
1422 mii_sendbit (dev, data: data & (1 << i));
1423 }
1424}
1425
1426static int
1427mii_read (struct net_device *dev, int phy_addr, int reg_num)
1428{
1429 u32 cmd;
1430 int i;
1431 u32 retval = 0;
1432
1433 /* Preamble */
1434 mii_send_bits (dev, data: 0xffffffff, len: 32);
1435 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1436 /* ST,OP = 0110'b for read operation */
1437 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1438 mii_send_bits (dev, data: cmd, len: 14);
1439 /* Turnaround */
1440 if (mii_getbit (dev))
1441 goto err_out;
1442 /* Read data */
1443 for (i = 0; i < 16; i++) {
1444 retval |= mii_getbit (dev);
1445 retval <<= 1;
1446 }
1447 /* End cycle */
1448 mii_getbit (dev);
1449 return (retval >> 1) & 0xffff;
1450
1451 err_out:
1452 return 0;
1453}
1454static int
1455mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1456{
1457 u32 cmd;
1458
1459 /* Preamble */
1460 mii_send_bits (dev, data: 0xffffffff, len: 32);
1461 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1462 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1463 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1464 mii_send_bits (dev, data: cmd, len: 32);
1465 /* End cycle */
1466 mii_getbit (dev);
1467 return 0;
1468}
1469static int
1470mii_wait_link (struct net_device *dev, int wait)
1471{
1472 __u16 bmsr;
1473 int phy_addr;
1474 struct netdev_private *np;
1475
1476 np = netdev_priv(dev);
1477 phy_addr = np->phy_addr;
1478
1479 do {
1480 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1481 if (bmsr & BMSR_LSTATUS)
1482 return 0;
1483 mdelay (1);
1484 } while (--wait > 0);
1485 return -1;
1486}
1487static int
1488mii_get_media (struct net_device *dev)
1489{
1490 __u16 negotiate;
1491 __u16 bmsr;
1492 __u16 mscr;
1493 __u16 mssr;
1494 int phy_addr;
1495 struct netdev_private *np;
1496
1497 np = netdev_priv(dev);
1498 phy_addr = np->phy_addr;
1499
1500 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1501 if (np->an_enable) {
1502 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1503 /* Auto-Negotiation not completed */
1504 return -1;
1505 }
1506 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1507 mii_read (dev, phy_addr, MII_LPA);
1508 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1509 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1510 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1511 np->speed = 1000;
1512 np->full_duplex = 1;
1513 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1514 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1515 np->speed = 1000;
1516 np->full_duplex = 0;
1517 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1518 } else if (negotiate & ADVERTISE_100FULL) {
1519 np->speed = 100;
1520 np->full_duplex = 1;
1521 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1522 } else if (negotiate & ADVERTISE_100HALF) {
1523 np->speed = 100;
1524 np->full_duplex = 0;
1525 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1526 } else if (negotiate & ADVERTISE_10FULL) {
1527 np->speed = 10;
1528 np->full_duplex = 1;
1529 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1530 } else if (negotiate & ADVERTISE_10HALF) {
1531 np->speed = 10;
1532 np->full_duplex = 0;
1533 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1534 }
1535 if (negotiate & ADVERTISE_PAUSE_CAP) {
1536 np->tx_flow &= 1;
1537 np->rx_flow &= 1;
1538 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1539 np->tx_flow = 0;
1540 np->rx_flow &= 1;
1541 }
1542 /* else tx_flow, rx_flow = user select */
1543 } else {
1544 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1545 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1546 case BMCR_SPEED1000:
1547 printk (KERN_INFO "Operating at 1000 Mbps, ");
1548 break;
1549 case BMCR_SPEED100:
1550 printk (KERN_INFO "Operating at 100 Mbps, ");
1551 break;
1552 case 0:
1553 printk (KERN_INFO "Operating at 10 Mbps, ");
1554 }
1555 if (bmcr & BMCR_FULLDPLX) {
1556 printk (KERN_CONT "Full duplex\n");
1557 } else {
1558 printk (KERN_CONT "Half duplex\n");
1559 }
1560 }
1561 if (np->tx_flow)
1562 printk(KERN_INFO "Enable Tx Flow Control\n");
1563 else
1564 printk(KERN_INFO "Disable Tx Flow Control\n");
1565 if (np->rx_flow)
1566 printk(KERN_INFO "Enable Rx Flow Control\n");
1567 else
1568 printk(KERN_INFO "Disable Rx Flow Control\n");
1569
1570 return 0;
1571}
1572
1573static int
1574mii_set_media (struct net_device *dev)
1575{
1576 __u16 pscr;
1577 __u16 bmcr;
1578 __u16 bmsr;
1579 __u16 anar;
1580 int phy_addr;
1581 struct netdev_private *np;
1582 np = netdev_priv(dev);
1583 phy_addr = np->phy_addr;
1584
1585 /* Does user set speed? */
1586 if (np->an_enable) {
1587 /* Advertise capabilities */
1588 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1589 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1590 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1591 ADVERTISE_100HALF | ADVERTISE_10HALF |
1592 ADVERTISE_100BASE4);
1593 if (bmsr & BMSR_100FULL)
1594 anar |= ADVERTISE_100FULL;
1595 if (bmsr & BMSR_100HALF)
1596 anar |= ADVERTISE_100HALF;
1597 if (bmsr & BMSR_100BASE4)
1598 anar |= ADVERTISE_100BASE4;
1599 if (bmsr & BMSR_10FULL)
1600 anar |= ADVERTISE_10FULL;
1601 if (bmsr & BMSR_10HALF)
1602 anar |= ADVERTISE_10HALF;
1603 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1604 mii_write (dev, phy_addr, MII_ADVERTISE, data: anar);
1605
1606 /* Enable Auto crossover */
1607 pscr = mii_read (dev, phy_addr, reg_num: MII_PHY_SCR);
1608 pscr |= 3 << 5; /* 11'b */
1609 mii_write (dev, phy_addr, reg_num: MII_PHY_SCR, data: pscr);
1610
1611 /* Soft reset PHY */
1612 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1613 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1614 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1615 mdelay(1);
1616 } else {
1617 /* Force speed setting */
1618 /* 1) Disable Auto crossover */
1619 pscr = mii_read (dev, phy_addr, reg_num: MII_PHY_SCR);
1620 pscr &= ~(3 << 5);
1621 mii_write (dev, phy_addr, reg_num: MII_PHY_SCR, data: pscr);
1622
1623 /* 2) PHY Reset */
1624 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1625 bmcr |= BMCR_RESET;
1626 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1627
1628 /* 3) Power Down */
1629 bmcr = 0x1940; /* must be 0x1940 */
1630 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1631 mdelay (100); /* wait a certain time */
1632
1633 /* 4) Advertise nothing */
1634 mii_write (dev, phy_addr, MII_ADVERTISE, data: 0);
1635
1636 /* 5) Set media and Power Up */
1637 bmcr = BMCR_PDOWN;
1638 if (np->speed == 100) {
1639 bmcr |= BMCR_SPEED100;
1640 printk (KERN_INFO "Manual 100 Mbps, ");
1641 } else if (np->speed == 10) {
1642 printk (KERN_INFO "Manual 10 Mbps, ");
1643 }
1644 if (np->full_duplex) {
1645 bmcr |= BMCR_FULLDPLX;
1646 printk (KERN_CONT "Full duplex\n");
1647 } else {
1648 printk (KERN_CONT "Half duplex\n");
1649 }
1650#if 0
1651 /* Set 1000BaseT Master/Slave setting */
1652 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1653 mscr |= MII_MSCR_CFG_ENABLE;
1654 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1655#endif
1656 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1657 mdelay(10);
1658 }
1659 return 0;
1660}
1661
1662static int
1663mii_get_media_pcs (struct net_device *dev)
1664{
1665 __u16 negotiate;
1666 __u16 bmsr;
1667 int phy_addr;
1668 struct netdev_private *np;
1669
1670 np = netdev_priv(dev);
1671 phy_addr = np->phy_addr;
1672
1673 bmsr = mii_read (dev, phy_addr, reg_num: PCS_BMSR);
1674 if (np->an_enable) {
1675 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1676 /* Auto-Negotiation not completed */
1677 return -1;
1678 }
1679 negotiate = mii_read (dev, phy_addr, reg_num: PCS_ANAR) &
1680 mii_read (dev, phy_addr, reg_num: PCS_ANLPAR);
1681 np->speed = 1000;
1682 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1683 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1684 np->full_duplex = 1;
1685 } else {
1686 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1687 np->full_duplex = 0;
1688 }
1689 if (negotiate & PCS_ANAR_PAUSE) {
1690 np->tx_flow &= 1;
1691 np->rx_flow &= 1;
1692 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1693 np->tx_flow = 0;
1694 np->rx_flow &= 1;
1695 }
1696 /* else tx_flow, rx_flow = user select */
1697 } else {
1698 __u16 bmcr = mii_read (dev, phy_addr, reg_num: PCS_BMCR);
1699 printk (KERN_INFO "Operating at 1000 Mbps, ");
1700 if (bmcr & BMCR_FULLDPLX) {
1701 printk (KERN_CONT "Full duplex\n");
1702 } else {
1703 printk (KERN_CONT "Half duplex\n");
1704 }
1705 }
1706 if (np->tx_flow)
1707 printk(KERN_INFO "Enable Tx Flow Control\n");
1708 else
1709 printk(KERN_INFO "Disable Tx Flow Control\n");
1710 if (np->rx_flow)
1711 printk(KERN_INFO "Enable Rx Flow Control\n");
1712 else
1713 printk(KERN_INFO "Disable Rx Flow Control\n");
1714
1715 return 0;
1716}
1717
1718static int
1719mii_set_media_pcs (struct net_device *dev)
1720{
1721 __u16 bmcr;
1722 __u16 esr;
1723 __u16 anar;
1724 int phy_addr;
1725 struct netdev_private *np;
1726 np = netdev_priv(dev);
1727 phy_addr = np->phy_addr;
1728
1729 /* Auto-Negotiation? */
1730 if (np->an_enable) {
1731 /* Advertise capabilities */
1732 esr = mii_read (dev, phy_addr, reg_num: PCS_ESR);
1733 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1734 ~PCS_ANAR_HALF_DUPLEX &
1735 ~PCS_ANAR_FULL_DUPLEX;
1736 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1737 anar |= PCS_ANAR_HALF_DUPLEX;
1738 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1739 anar |= PCS_ANAR_FULL_DUPLEX;
1740 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1741 mii_write (dev, phy_addr, MII_ADVERTISE, data: anar);
1742
1743 /* Soft reset PHY */
1744 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1745 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1746 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1747 mdelay(1);
1748 } else {
1749 /* Force speed setting */
1750 /* PHY Reset */
1751 bmcr = BMCR_RESET;
1752 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1753 mdelay(10);
1754 if (np->full_duplex) {
1755 bmcr = BMCR_FULLDPLX;
1756 printk (KERN_INFO "Manual full duplex\n");
1757 } else {
1758 bmcr = 0;
1759 printk (KERN_INFO "Manual half duplex\n");
1760 }
1761 mii_write (dev, phy_addr, MII_BMCR, data: bmcr);
1762 mdelay(10);
1763
1764 /* Advertise nothing */
1765 mii_write (dev, phy_addr, MII_ADVERTISE, data: 0);
1766 }
1767 return 0;
1768}
1769
1770
1771static int
1772rio_close (struct net_device *dev)
1773{
1774 struct netdev_private *np = netdev_priv(dev);
1775 struct pci_dev *pdev = np->pdev;
1776
1777 netif_stop_queue (dev);
1778
1779 rio_hw_stop(dev);
1780
1781 free_irq(pdev->irq, dev);
1782 del_timer_sync (timer: &np->timer);
1783
1784 free_list(dev);
1785
1786 return 0;
1787}
1788
1789static void
1790rio_remove1 (struct pci_dev *pdev)
1791{
1792 struct net_device *dev = pci_get_drvdata (pdev);
1793
1794 if (dev) {
1795 struct netdev_private *np = netdev_priv(dev);
1796
1797 unregister_netdev (dev);
1798 dma_free_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, cpu_addr: np->rx_ring,
1799 dma_handle: np->rx_ring_dma);
1800 dma_free_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, cpu_addr: np->tx_ring,
1801 dma_handle: np->tx_ring_dma);
1802#ifdef MEM_MAPPING
1803 pci_iounmap(pdev, np->ioaddr);
1804#endif
1805 pci_iounmap(dev: pdev, np->eeprom_addr);
1806 free_netdev (dev);
1807 pci_release_regions (pdev);
1808 pci_disable_device (dev: pdev);
1809 }
1810}
1811
1812#ifdef CONFIG_PM_SLEEP
1813static int rio_suspend(struct device *device)
1814{
1815 struct net_device *dev = dev_get_drvdata(dev: device);
1816 struct netdev_private *np = netdev_priv(dev);
1817
1818 if (!netif_running(dev))
1819 return 0;
1820
1821 netif_device_detach(dev);
1822 del_timer_sync(timer: &np->timer);
1823 rio_hw_stop(dev);
1824
1825 return 0;
1826}
1827
1828static int rio_resume(struct device *device)
1829{
1830 struct net_device *dev = dev_get_drvdata(dev: device);
1831 struct netdev_private *np = netdev_priv(dev);
1832
1833 if (!netif_running(dev))
1834 return 0;
1835
1836 rio_reset_ring(np);
1837 rio_hw_init(dev);
1838 np->timer.expires = jiffies + 1 * HZ;
1839 add_timer(timer: &np->timer);
1840 netif_device_attach(dev);
1841 dl2k_enable_int(np);
1842
1843 return 0;
1844}
1845
1846static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1847#define RIO_PM_OPS (&rio_pm_ops)
1848
1849#else
1850
1851#define RIO_PM_OPS NULL
1852
1853#endif /* CONFIG_PM_SLEEP */
1854
1855static struct pci_driver rio_driver = {
1856 .name = "dl2k",
1857 .id_table = rio_pci_tbl,
1858 .probe = rio_probe1,
1859 .remove = rio_remove1,
1860 .driver.pm = RIO_PM_OPS,
1861};
1862
1863module_pci_driver(rio_driver);
1864
1865/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1866

source code of linux/drivers/net/ethernet/dlink/dl2k.c