1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/page_pool/helpers.h>
42#include <net/selftests.h>
43#include <net/tso.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
46#include <linux/icmp.h>
47#include <linux/spinlock.h>
48#include <linux/workqueue.h>
49#include <linux/bitops.h>
50#include <linux/io.h>
51#include <linux/irq.h>
52#include <linux/clk.h>
53#include <linux/crc32.h>
54#include <linux/platform_device.h>
55#include <linux/property.h>
56#include <linux/mdio.h>
57#include <linux/phy.h>
58#include <linux/fec.h>
59#include <linux/of.h>
60#include <linux/of_mdio.h>
61#include <linux/of_net.h>
62#include <linux/regulator/consumer.h>
63#include <linux/if_vlan.h>
64#include <linux/pinctrl/consumer.h>
65#include <linux/gpio/consumer.h>
66#include <linux/prefetch.h>
67#include <linux/mfd/syscon.h>
68#include <linux/regmap.h>
69#include <soc/imx/cpuidle.h>
70#include <linux/filter.h>
71#include <linux/bpf.h>
72#include <linux/bpf_trace.h>
73
74#include <asm/cacheflush.h>
75
76#include "fec.h"
77
78static void set_multicast_list(struct net_device *ndev);
79static void fec_enet_itr_coal_set(struct net_device *ndev);
80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 int cpu, struct xdp_buff *xdp,
82 u32 dma_sync_len);
83
84#define DRIVER_NAME "fec"
85
86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88/* Pause frame feild and FIFO threshold */
89#define FEC_ENET_FCE (1 << 5)
90#define FEC_ENET_RSEM_V 0x84
91#define FEC_ENET_RSFL_V 16
92#define FEC_ENET_RAEM_V 0x8
93#define FEC_ENET_RAFL_V 0x8
94#define FEC_ENET_OPD_V 0xFFF0
95#define FEC_MDIO_PM_TIMEOUT 100 /* ms */
96
97#define FEC_ENET_XDP_PASS 0
98#define FEC_ENET_XDP_CONSUMED BIT(0)
99#define FEC_ENET_XDP_TX BIT(1)
100#define FEC_ENET_XDP_REDIR BIT(2)
101
102struct fec_devinfo {
103 u32 quirks;
104};
105
106static const struct fec_devinfo fec_imx25_info = {
107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109};
110
111static const struct fec_devinfo fec_imx27_info = {
112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 FEC_QUIRK_HAS_MDIO_C45,
114};
115
116static const struct fec_devinfo fec_imx28_info = {
117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121};
122
123static const struct fec_devinfo fec_imx6q_info = {
124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129};
130
131static const struct fec_devinfo fec_mvf600_info = {
132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_MDIO_C45,
134};
135
136static const struct fec_devinfo fec_imx6x_info = {
137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 FEC_QUIRK_HAS_MDIO_C45,
144};
145
146static const struct fec_devinfo fec_imx6ul_info = {
147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 FEC_QUIRK_HAS_MDIO_C45,
153};
154
155static const struct fec_devinfo fec_imx8mq_info = {
156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 FEC_QUIRK_HAS_MDIO_C45,
164};
165
166static const struct fec_devinfo fec_imx8qm_info = {
167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174};
175
176static const struct fec_devinfo fec_s32v234_info = {
177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 FEC_QUIRK_HAS_MDIO_C45,
182};
183
184static struct platform_device_id fec_devtype[] = {
185 {
186 /* keep it for coldfire */
187 .name = DRIVER_NAME,
188 .driver_data = 0,
189 }, {
190 /* sentinel */
191 }
192};
193MODULE_DEVICE_TABLE(platform, fec_devtype);
194
195static const struct of_device_id fec_dt_ids[] = {
196 { .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
197 { .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
198 { .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
199 { .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
200 { .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
201 { .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
202 { .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
203 { .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
204 { .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
205 { .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
206 { /* sentinel */ }
207};
208MODULE_DEVICE_TABLE(of, fec_dt_ids);
209
210static unsigned char macaddr[ETH_ALEN];
211module_param_array(macaddr, byte, NULL, 0);
212MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
213
214#if defined(CONFIG_M5272)
215/*
216 * Some hardware gets it MAC address out of local flash memory.
217 * if this is non-zero then assume it is the address to get MAC from.
218 */
219#if defined(CONFIG_NETtel)
220#define FEC_FLASHMAC 0xf0006006
221#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
222#define FEC_FLASHMAC 0xf0006000
223#elif defined(CONFIG_CANCam)
224#define FEC_FLASHMAC 0xf0020000
225#elif defined (CONFIG_M5272C3)
226#define FEC_FLASHMAC (0xffe04000 + 4)
227#elif defined(CONFIG_MOD5272)
228#define FEC_FLASHMAC 0xffc0406b
229#else
230#define FEC_FLASHMAC 0
231#endif
232#endif /* CONFIG_M5272 */
233
234/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
235 *
236 * 2048 byte skbufs are allocated. However, alignment requirements
237 * varies between FEC variants. Worst case is 64, so round down by 64.
238 */
239#define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
240#define PKT_MINBUF_SIZE 64
241
242/* FEC receive acceleration */
243#define FEC_RACC_IPDIS (1 << 1)
244#define FEC_RACC_PRODIS (1 << 2)
245#define FEC_RACC_SHIFT16 BIT(7)
246#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
247
248/* MIB Control Register */
249#define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
250
251/*
252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
253 * size bits. Other FEC hardware does not, so we need to take that into
254 * account when setting it.
255 */
256#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
257 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
258 defined(CONFIG_ARM64)
259#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
260#else
261#define OPT_FRAME_SIZE 0
262#endif
263
264/* FEC MII MMFR bits definition */
265#define FEC_MMFR_ST (1 << 30)
266#define FEC_MMFR_ST_C45 (0)
267#define FEC_MMFR_OP_READ (2 << 28)
268#define FEC_MMFR_OP_READ_C45 (3 << 28)
269#define FEC_MMFR_OP_WRITE (1 << 28)
270#define FEC_MMFR_OP_ADDR_WRITE (0)
271#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
272#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
273#define FEC_MMFR_TA (2 << 16)
274#define FEC_MMFR_DATA(v) (v & 0xffff)
275/* FEC ECR bits definition */
276#define FEC_ECR_MAGICEN (1 << 2)
277#define FEC_ECR_SLEEP (1 << 3)
278
279#define FEC_MII_TIMEOUT 30000 /* us */
280
281/* Transmitter timeout */
282#define TX_TIMEOUT (2 * HZ)
283
284#define FEC_PAUSE_FLAG_AUTONEG 0x1
285#define FEC_PAUSE_FLAG_ENABLE 0x2
286#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
287#define FEC_WOL_FLAG_ENABLE (0x1 << 1)
288#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
289
290/* Max number of allowed TCP segments for software TSO */
291#define FEC_MAX_TSO_SEGS 100
292#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
293
294#define IS_TSO_HEADER(txq, addr) \
295 ((addr >= txq->tso_hdrs_dma) && \
296 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
297
298static int mii_cnt;
299
300static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
301 struct bufdesc_prop *bd)
302{
303 return (bdp >= bd->last) ? bd->base
304 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
305}
306
307static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
308 struct bufdesc_prop *bd)
309{
310 return (bdp <= bd->base) ? bd->last
311 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
312}
313
314static int fec_enet_get_bd_index(struct bufdesc *bdp,
315 struct bufdesc_prop *bd)
316{
317 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
318}
319
320static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
321{
322 int entries;
323
324 entries = (((const char *)txq->dirty_tx -
325 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
326
327 return entries >= 0 ? entries : entries + txq->bd.ring_size;
328}
329
330static void swap_buffer(void *bufaddr, int len)
331{
332 int i;
333 unsigned int *buf = bufaddr;
334
335 for (i = 0; i < len; i += 4, buf++)
336 swab32s(p: buf);
337}
338
339static void fec_dump(struct net_device *ndev)
340{
341 struct fec_enet_private *fep = netdev_priv(dev: ndev);
342 struct bufdesc *bdp;
343 struct fec_enet_priv_tx_q *txq;
344 int index = 0;
345
346 netdev_info(dev: ndev, format: "TX ring dump\n");
347 pr_info("Nr SC addr len SKB\n");
348
349 txq = fep->tx_queue[0];
350 bdp = txq->bd.base;
351
352 do {
353 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
354 index,
355 bdp == txq->bd.cur ? 'S' : ' ',
356 bdp == txq->dirty_tx ? 'H' : ' ',
357 fec16_to_cpu(bdp->cbd_sc),
358 fec32_to_cpu(bdp->cbd_bufaddr),
359 fec16_to_cpu(bdp->cbd_datlen),
360 txq->tx_buf[index].buf_p);
361 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
362 index++;
363 } while (bdp != txq->bd.base);
364}
365
366/*
367 * Coldfire does not support DMA coherent allocations, and has historically used
368 * a band-aid with a manual flush in fec_enet_rx_queue.
369 */
370#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
371static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
372 gfp_t gfp)
373{
374 return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
375}
376
377static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
378 dma_addr_t handle)
379{
380 dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
381}
382#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
383static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
384 gfp_t gfp)
385{
386 return dma_alloc_coherent(dev, size, dma_handle: handle, gfp);
387}
388
389static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
390 dma_addr_t handle)
391{
392 dma_free_coherent(dev, size, cpu_addr, dma_handle: handle);
393}
394#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
395
396struct fec_dma_devres {
397 size_t size;
398 void *vaddr;
399 dma_addr_t dma_handle;
400};
401
402static void fec_dmam_release(struct device *dev, void *res)
403{
404 struct fec_dma_devres *this = res;
405
406 fec_dma_free(dev, size: this->size, cpu_addr: this->vaddr, handle: this->dma_handle);
407}
408
409static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
410 gfp_t gfp)
411{
412 struct fec_dma_devres *dr;
413 void *vaddr;
414
415 dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
416 if (!dr)
417 return NULL;
418 vaddr = fec_dma_alloc(dev, size, handle, gfp);
419 if (!vaddr) {
420 devres_free(res: dr);
421 return NULL;
422 }
423 dr->vaddr = vaddr;
424 dr->dma_handle = *handle;
425 dr->size = size;
426 devres_add(dev, res: dr);
427 return vaddr;
428}
429
430static inline bool is_ipv4_pkt(struct sk_buff *skb)
431{
432 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
433}
434
435static int
436fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
437{
438 /* Only run for packets requiring a checksum. */
439 if (skb->ip_summed != CHECKSUM_PARTIAL)
440 return 0;
441
442 if (unlikely(skb_cow_head(skb, 0)))
443 return -1;
444
445 if (is_ipv4_pkt(skb))
446 ip_hdr(skb)->check = 0;
447 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
448
449 return 0;
450}
451
452static int
453fec_enet_create_page_pool(struct fec_enet_private *fep,
454 struct fec_enet_priv_rx_q *rxq, int size)
455{
456 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
457 struct page_pool_params pp_params = {
458 .order = 0,
459 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
460 .pool_size = size,
461 .nid = dev_to_node(dev: &fep->pdev->dev),
462 .dev = &fep->pdev->dev,
463 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
464 .offset = FEC_ENET_XDP_HEADROOM,
465 .max_len = FEC_ENET_RX_FRSIZE,
466 };
467 int err;
468
469 rxq->page_pool = page_pool_create(params: &pp_params);
470 if (IS_ERR(ptr: rxq->page_pool)) {
471 err = PTR_ERR(ptr: rxq->page_pool);
472 rxq->page_pool = NULL;
473 return err;
474 }
475
476 err = xdp_rxq_info_reg(xdp_rxq: &rxq->xdp_rxq, dev: fep->netdev, queue_index: rxq->id, napi_id: 0);
477 if (err < 0)
478 goto err_free_pp;
479
480 err = xdp_rxq_info_reg_mem_model(xdp_rxq: &rxq->xdp_rxq, type: MEM_TYPE_PAGE_POOL,
481 allocator: rxq->page_pool);
482 if (err)
483 goto err_unregister_rxq;
484
485 return 0;
486
487err_unregister_rxq:
488 xdp_rxq_info_unreg(xdp_rxq: &rxq->xdp_rxq);
489err_free_pp:
490 page_pool_destroy(pool: rxq->page_pool);
491 rxq->page_pool = NULL;
492 return err;
493}
494
495static struct bufdesc *
496fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
497 struct sk_buff *skb,
498 struct net_device *ndev)
499{
500 struct fec_enet_private *fep = netdev_priv(dev: ndev);
501 struct bufdesc *bdp = txq->bd.cur;
502 struct bufdesc_ex *ebdp;
503 int nr_frags = skb_shinfo(skb)->nr_frags;
504 int frag, frag_len;
505 unsigned short status;
506 unsigned int estatus = 0;
507 skb_frag_t *this_frag;
508 unsigned int index;
509 void *bufaddr;
510 dma_addr_t addr;
511 int i;
512
513 for (frag = 0; frag < nr_frags; frag++) {
514 this_frag = &skb_shinfo(skb)->frags[frag];
515 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
516 ebdp = (struct bufdesc_ex *)bdp;
517
518 status = fec16_to_cpu(bdp->cbd_sc);
519 status &= ~BD_ENET_TX_STATS;
520 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
521 frag_len = skb_frag_size(frag: &skb_shinfo(skb)->frags[frag]);
522
523 /* Handle the last BD specially */
524 if (frag == nr_frags - 1) {
525 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
526 if (fep->bufdesc_ex) {
527 estatus |= BD_ENET_TX_INT;
528 if (unlikely(skb_shinfo(skb)->tx_flags &
529 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
530 estatus |= BD_ENET_TX_TS;
531 }
532 }
533
534 if (fep->bufdesc_ex) {
535 if (fep->quirks & FEC_QUIRK_HAS_AVB)
536 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
537 if (skb->ip_summed == CHECKSUM_PARTIAL)
538 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
539
540 ebdp->cbd_bdu = 0;
541 ebdp->cbd_esc = cpu_to_fec32(estatus);
542 }
543
544 bufaddr = skb_frag_address(frag: this_frag);
545
546 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
547 if (((unsigned long) bufaddr) & fep->tx_align ||
548 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
549 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
550 bufaddr = txq->tx_bounce[index];
551
552 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
553 swap_buffer(bufaddr, len: frag_len);
554 }
555
556 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
557 DMA_TO_DEVICE);
558 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
559 if (net_ratelimit())
560 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
561 goto dma_mapping_error;
562 }
563
564 bdp->cbd_bufaddr = cpu_to_fec32(addr);
565 bdp->cbd_datlen = cpu_to_fec16(frag_len);
566 /* Make sure the updates to rest of the descriptor are
567 * performed before transferring ownership.
568 */
569 wmb();
570 bdp->cbd_sc = cpu_to_fec16(status);
571 }
572
573 return bdp;
574dma_mapping_error:
575 bdp = txq->bd.cur;
576 for (i = 0; i < frag; i++) {
577 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
578 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
579 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
580 }
581 return ERR_PTR(error: -ENOMEM);
582}
583
584static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
585 struct sk_buff *skb, struct net_device *ndev)
586{
587 struct fec_enet_private *fep = netdev_priv(dev: ndev);
588 int nr_frags = skb_shinfo(skb)->nr_frags;
589 struct bufdesc *bdp, *last_bdp;
590 void *bufaddr;
591 dma_addr_t addr;
592 unsigned short status;
593 unsigned short buflen;
594 unsigned int estatus = 0;
595 unsigned int index;
596 int entries_free;
597
598 entries_free = fec_enet_get_free_txdesc_num(txq);
599 if (entries_free < MAX_SKB_FRAGS + 1) {
600 dev_kfree_skb_any(skb);
601 if (net_ratelimit())
602 netdev_err(dev: ndev, format: "NOT enough BD for SG!\n");
603 return NETDEV_TX_OK;
604 }
605
606 /* Protocol checksum off-load for TCP and UDP. */
607 if (fec_enet_clear_csum(skb, ndev)) {
608 dev_kfree_skb_any(skb);
609 return NETDEV_TX_OK;
610 }
611
612 /* Fill in a Tx ring entry */
613 bdp = txq->bd.cur;
614 last_bdp = bdp;
615 status = fec16_to_cpu(bdp->cbd_sc);
616 status &= ~BD_ENET_TX_STATS;
617
618 /* Set buffer length and buffer pointer */
619 bufaddr = skb->data;
620 buflen = skb_headlen(skb);
621
622 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
623 if (((unsigned long) bufaddr) & fep->tx_align ||
624 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
625 memcpy(txq->tx_bounce[index], skb->data, buflen);
626 bufaddr = txq->tx_bounce[index];
627
628 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
629 swap_buffer(bufaddr, len: buflen);
630 }
631
632 /* Push the data cache so the CPM does not get stale memory data. */
633 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
634 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
635 dev_kfree_skb_any(skb);
636 if (net_ratelimit())
637 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
638 return NETDEV_TX_OK;
639 }
640
641 if (nr_frags) {
642 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
643 if (IS_ERR(ptr: last_bdp)) {
644 dma_unmap_single(&fep->pdev->dev, addr,
645 buflen, DMA_TO_DEVICE);
646 dev_kfree_skb_any(skb);
647 return NETDEV_TX_OK;
648 }
649 } else {
650 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
651 if (fep->bufdesc_ex) {
652 estatus = BD_ENET_TX_INT;
653 if (unlikely(skb_shinfo(skb)->tx_flags &
654 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
655 estatus |= BD_ENET_TX_TS;
656 }
657 }
658 bdp->cbd_bufaddr = cpu_to_fec32(addr);
659 bdp->cbd_datlen = cpu_to_fec16(buflen);
660
661 if (fep->bufdesc_ex) {
662
663 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
664
665 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
666 fep->hwts_tx_en))
667 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
668
669 if (fep->quirks & FEC_QUIRK_HAS_AVB)
670 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
671
672 if (skb->ip_summed == CHECKSUM_PARTIAL)
673 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
674
675 ebdp->cbd_bdu = 0;
676 ebdp->cbd_esc = cpu_to_fec32(estatus);
677 }
678
679 index = fec_enet_get_bd_index(bdp: last_bdp, bd: &txq->bd);
680 /* Save skb pointer */
681 txq->tx_buf[index].buf_p = skb;
682
683 /* Make sure the updates to rest of the descriptor are performed before
684 * transferring ownership.
685 */
686 wmb();
687
688 /* Send it on its way. Tell FEC it's ready, interrupt when done,
689 * it's the last BD of the frame, and to put the CRC on the end.
690 */
691 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
692 bdp->cbd_sc = cpu_to_fec16(status);
693
694 /* If this was the last BD in the ring, start at the beginning again. */
695 bdp = fec_enet_get_nextdesc(bdp: last_bdp, bd: &txq->bd);
696
697 skb_tx_timestamp(skb);
698
699 /* Make sure the update to bdp is performed before txq->bd.cur. */
700 wmb();
701 txq->bd.cur = bdp;
702
703 /* Trigger transmission start */
704 writel(val: 0, addr: txq->bd.reg_desc_active);
705
706 return 0;
707}
708
709static int
710fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
711 struct net_device *ndev,
712 struct bufdesc *bdp, int index, char *data,
713 int size, bool last_tcp, bool is_last)
714{
715 struct fec_enet_private *fep = netdev_priv(dev: ndev);
716 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
717 unsigned short status;
718 unsigned int estatus = 0;
719 dma_addr_t addr;
720
721 status = fec16_to_cpu(bdp->cbd_sc);
722 status &= ~BD_ENET_TX_STATS;
723
724 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
725
726 if (((unsigned long) data) & fep->tx_align ||
727 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
728 memcpy(txq->tx_bounce[index], data, size);
729 data = txq->tx_bounce[index];
730
731 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
732 swap_buffer(bufaddr: data, len: size);
733 }
734
735 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
736 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: addr)) {
737 dev_kfree_skb_any(skb);
738 if (net_ratelimit())
739 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
740 return NETDEV_TX_OK;
741 }
742
743 bdp->cbd_datlen = cpu_to_fec16(size);
744 bdp->cbd_bufaddr = cpu_to_fec32(addr);
745
746 if (fep->bufdesc_ex) {
747 if (fep->quirks & FEC_QUIRK_HAS_AVB)
748 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
749 if (skb->ip_summed == CHECKSUM_PARTIAL)
750 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
751 ebdp->cbd_bdu = 0;
752 ebdp->cbd_esc = cpu_to_fec32(estatus);
753 }
754
755 /* Handle the last BD specially */
756 if (last_tcp)
757 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
758 if (is_last) {
759 status |= BD_ENET_TX_INTR;
760 if (fep->bufdesc_ex)
761 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
762 }
763
764 bdp->cbd_sc = cpu_to_fec16(status);
765
766 return 0;
767}
768
769static int
770fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
771 struct sk_buff *skb, struct net_device *ndev,
772 struct bufdesc *bdp, int index)
773{
774 struct fec_enet_private *fep = netdev_priv(dev: ndev);
775 int hdr_len = skb_tcp_all_headers(skb);
776 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
777 void *bufaddr;
778 unsigned long dmabuf;
779 unsigned short status;
780 unsigned int estatus = 0;
781
782 status = fec16_to_cpu(bdp->cbd_sc);
783 status &= ~BD_ENET_TX_STATS;
784 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
785
786 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
787 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
788 if (((unsigned long)bufaddr) & fep->tx_align ||
789 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
790 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
791 bufaddr = txq->tx_bounce[index];
792
793 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
794 swap_buffer(bufaddr, len: hdr_len);
795
796 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
797 hdr_len, DMA_TO_DEVICE);
798 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr: dmabuf)) {
799 dev_kfree_skb_any(skb);
800 if (net_ratelimit())
801 netdev_err(dev: ndev, format: "Tx DMA memory map failed\n");
802 return NETDEV_TX_OK;
803 }
804 }
805
806 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
807 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
808
809 if (fep->bufdesc_ex) {
810 if (fep->quirks & FEC_QUIRK_HAS_AVB)
811 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
812 if (skb->ip_summed == CHECKSUM_PARTIAL)
813 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
814 ebdp->cbd_bdu = 0;
815 ebdp->cbd_esc = cpu_to_fec32(estatus);
816 }
817
818 bdp->cbd_sc = cpu_to_fec16(status);
819
820 return 0;
821}
822
823static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
824 struct sk_buff *skb,
825 struct net_device *ndev)
826{
827 struct fec_enet_private *fep = netdev_priv(dev: ndev);
828 int hdr_len, total_len, data_left;
829 struct bufdesc *bdp = txq->bd.cur;
830 struct tso_t tso;
831 unsigned int index = 0;
832 int ret;
833
834 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
835 dev_kfree_skb_any(skb);
836 if (net_ratelimit())
837 netdev_err(dev: ndev, format: "NOT enough BD for TSO!\n");
838 return NETDEV_TX_OK;
839 }
840
841 /* Protocol checksum off-load for TCP and UDP. */
842 if (fec_enet_clear_csum(skb, ndev)) {
843 dev_kfree_skb_any(skb);
844 return NETDEV_TX_OK;
845 }
846
847 /* Initialize the TSO handler, and prepare the first payload */
848 hdr_len = tso_start(skb, tso: &tso);
849
850 total_len = skb->len - hdr_len;
851 while (total_len > 0) {
852 char *hdr;
853
854 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
855 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
856 total_len -= data_left;
857
858 /* prepare packet headers: MAC + IP + TCP */
859 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
860 tso_build_hdr(skb, hdr, tso: &tso, size: data_left, is_last: total_len == 0);
861 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
862 if (ret)
863 goto err_release;
864
865 while (data_left > 0) {
866 int size;
867
868 size = min_t(int, tso.size, data_left);
869 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
870 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
871 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
872 bdp, index,
873 data: tso.data, size,
874 last_tcp: size == data_left,
875 is_last: total_len == 0);
876 if (ret)
877 goto err_release;
878
879 data_left -= size;
880 tso_build_data(skb, tso: &tso, size);
881 }
882
883 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
884 }
885
886 /* Save skb pointer */
887 txq->tx_buf[index].buf_p = skb;
888
889 skb_tx_timestamp(skb);
890 txq->bd.cur = bdp;
891
892 /* Trigger transmission start */
893 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
894 !readl(addr: txq->bd.reg_desc_active) ||
895 !readl(addr: txq->bd.reg_desc_active) ||
896 !readl(addr: txq->bd.reg_desc_active) ||
897 !readl(addr: txq->bd.reg_desc_active))
898 writel(val: 0, addr: txq->bd.reg_desc_active);
899
900 return 0;
901
902err_release:
903 /* TODO: Release all used data descriptors for TSO */
904 return ret;
905}
906
907static netdev_tx_t
908fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
909{
910 struct fec_enet_private *fep = netdev_priv(dev: ndev);
911 int entries_free;
912 unsigned short queue;
913 struct fec_enet_priv_tx_q *txq;
914 struct netdev_queue *nq;
915 int ret;
916
917 queue = skb_get_queue_mapping(skb);
918 txq = fep->tx_queue[queue];
919 nq = netdev_get_tx_queue(dev: ndev, index: queue);
920
921 if (skb_is_gso(skb))
922 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
923 else
924 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
925 if (ret)
926 return ret;
927
928 entries_free = fec_enet_get_free_txdesc_num(txq);
929 if (entries_free <= txq->tx_stop_threshold)
930 netif_tx_stop_queue(dev_queue: nq);
931
932 return NETDEV_TX_OK;
933}
934
935/* Init RX & TX buffer descriptors
936 */
937static void fec_enet_bd_init(struct net_device *dev)
938{
939 struct fec_enet_private *fep = netdev_priv(dev);
940 struct fec_enet_priv_tx_q *txq;
941 struct fec_enet_priv_rx_q *rxq;
942 struct bufdesc *bdp;
943 unsigned int i;
944 unsigned int q;
945
946 for (q = 0; q < fep->num_rx_queues; q++) {
947 /* Initialize the receive buffer descriptors. */
948 rxq = fep->rx_queue[q];
949 bdp = rxq->bd.base;
950
951 for (i = 0; i < rxq->bd.ring_size; i++) {
952
953 /* Initialize the BD for every fragment in the page. */
954 if (bdp->cbd_bufaddr)
955 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
956 else
957 bdp->cbd_sc = cpu_to_fec16(0);
958 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
959 }
960
961 /* Set the last buffer to wrap */
962 bdp = fec_enet_get_prevdesc(bdp, bd: &rxq->bd);
963 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
964
965 rxq->bd.cur = rxq->bd.base;
966 }
967
968 for (q = 0; q < fep->num_tx_queues; q++) {
969 /* ...and the same for transmit */
970 txq = fep->tx_queue[q];
971 bdp = txq->bd.base;
972 txq->bd.cur = bdp;
973
974 for (i = 0; i < txq->bd.ring_size; i++) {
975 /* Initialize the BD for every fragment in the page. */
976 bdp->cbd_sc = cpu_to_fec16(0);
977 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
978 if (bdp->cbd_bufaddr &&
979 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
980 dma_unmap_single(&fep->pdev->dev,
981 fec32_to_cpu(bdp->cbd_bufaddr),
982 fec16_to_cpu(bdp->cbd_datlen),
983 DMA_TO_DEVICE);
984 if (txq->tx_buf[i].buf_p)
985 dev_kfree_skb_any(skb: txq->tx_buf[i].buf_p);
986 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
987 if (bdp->cbd_bufaddr)
988 dma_unmap_single(&fep->pdev->dev,
989 fec32_to_cpu(bdp->cbd_bufaddr),
990 fec16_to_cpu(bdp->cbd_datlen),
991 DMA_TO_DEVICE);
992
993 if (txq->tx_buf[i].buf_p)
994 xdp_return_frame(xdpf: txq->tx_buf[i].buf_p);
995 } else {
996 struct page *page = txq->tx_buf[i].buf_p;
997
998 if (page)
999 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: false);
1000 }
1001
1002 txq->tx_buf[i].buf_p = NULL;
1003 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1004 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1005 bdp->cbd_bufaddr = cpu_to_fec32(0);
1006 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1007 }
1008
1009 /* Set the last buffer to wrap */
1010 bdp = fec_enet_get_prevdesc(bdp, bd: &txq->bd);
1011 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1012 txq->dirty_tx = bdp;
1013 }
1014}
1015
1016static void fec_enet_active_rxring(struct net_device *ndev)
1017{
1018 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1019 int i;
1020
1021 for (i = 0; i < fep->num_rx_queues; i++)
1022 writel(val: 0, addr: fep->rx_queue[i]->bd.reg_desc_active);
1023}
1024
1025static void fec_enet_enable_ring(struct net_device *ndev)
1026{
1027 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1028 struct fec_enet_priv_tx_q *txq;
1029 struct fec_enet_priv_rx_q *rxq;
1030 int i;
1031
1032 for (i = 0; i < fep->num_rx_queues; i++) {
1033 rxq = fep->rx_queue[i];
1034 writel(val: rxq->bd.dma, addr: fep->hwp + FEC_R_DES_START(i));
1035 writel(PKT_MAXBUF_SIZE, addr: fep->hwp + FEC_R_BUFF_SIZE(i));
1036
1037 /* enable DMA1/2 */
1038 if (i)
1039 writel(RCMR_MATCHEN | RCMR_CMP(i),
1040 addr: fep->hwp + FEC_RCMR(i));
1041 }
1042
1043 for (i = 0; i < fep->num_tx_queues; i++) {
1044 txq = fep->tx_queue[i];
1045 writel(val: txq->bd.dma, addr: fep->hwp + FEC_X_DES_START(i));
1046
1047 /* enable DMA1/2 */
1048 if (i)
1049 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1050 addr: fep->hwp + FEC_DMA_CFG(i));
1051 }
1052}
1053
1054/*
1055 * This function is called to start or restart the FEC during a link
1056 * change, transmit timeout, or to reconfigure the FEC. The network
1057 * packet processing for this device must be stopped before this call.
1058 */
1059static void
1060fec_restart(struct net_device *ndev)
1061{
1062 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1063 u32 temp_mac[2];
1064 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1065 u32 ecntl = 0x2; /* ETHEREN */
1066
1067 /* Whack a reset. We should wait for this.
1068 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1069 * instead of reset MAC itself.
1070 */
1071 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1072 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1073 writel(val: 0, addr: fep->hwp + FEC_ECNTRL);
1074 } else {
1075 writel(val: 1, addr: fep->hwp + FEC_ECNTRL);
1076 udelay(10);
1077 }
1078
1079 /*
1080 * enet-mac reset will reset mac address registers too,
1081 * so need to reconfigure it.
1082 */
1083 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1084 writel(val: (__force u32)cpu_to_be32(temp_mac[0]),
1085 addr: fep->hwp + FEC_ADDR_LOW);
1086 writel(val: (__force u32)cpu_to_be32(temp_mac[1]),
1087 addr: fep->hwp + FEC_ADDR_HIGH);
1088
1089 /* Clear any outstanding interrupt, except MDIO. */
1090 writel(val: (0xffffffff & ~FEC_ENET_MII), addr: fep->hwp + FEC_IEVENT);
1091
1092 fec_enet_bd_init(dev: ndev);
1093
1094 fec_enet_enable_ring(ndev);
1095
1096 /* Enable MII mode */
1097 if (fep->full_duplex == DUPLEX_FULL) {
1098 /* FD enable */
1099 writel(val: 0x04, addr: fep->hwp + FEC_X_CNTRL);
1100 } else {
1101 /* No Rcv on Xmit */
1102 rcntl |= 0x02;
1103 writel(val: 0x0, addr: fep->hwp + FEC_X_CNTRL);
1104 }
1105
1106 /* Set MII speed */
1107 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
1108
1109#if !defined(CONFIG_M5272)
1110 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1111 u32 val = readl(addr: fep->hwp + FEC_RACC);
1112
1113 /* align IP header */
1114 val |= FEC_RACC_SHIFT16;
1115 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1116 /* set RX checksum */
1117 val |= FEC_RACC_OPTIONS;
1118 else
1119 val &= ~FEC_RACC_OPTIONS;
1120 writel(val, addr: fep->hwp + FEC_RACC);
1121 writel(PKT_MAXBUF_SIZE, addr: fep->hwp + FEC_FTRL);
1122 }
1123#endif
1124
1125 /*
1126 * The phy interface and speed need to get configured
1127 * differently on enet-mac.
1128 */
1129 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1130 /* Enable flow control and length check */
1131 rcntl |= 0x40000000 | 0x00000020;
1132
1133 /* RGMII, RMII or MII */
1134 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1135 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1137 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138 rcntl |= (1 << 6);
1139 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1140 rcntl |= (1 << 8);
1141 else
1142 rcntl &= ~(1 << 8);
1143
1144 /* 1G, 100M or 10M */
1145 if (ndev->phydev) {
1146 if (ndev->phydev->speed == SPEED_1000)
1147 ecntl |= (1 << 5);
1148 else if (ndev->phydev->speed == SPEED_100)
1149 rcntl &= ~(1 << 9);
1150 else
1151 rcntl |= (1 << 9);
1152 }
1153 } else {
1154#ifdef FEC_MIIGSK_ENR
1155 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1156 u32 cfgr;
1157 /* disable the gasket and wait */
1158 writel(val: 0, addr: fep->hwp + FEC_MIIGSK_ENR);
1159 while (readl(addr: fep->hwp + FEC_MIIGSK_ENR) & 4)
1160 udelay(1);
1161
1162 /*
1163 * configure the gasket:
1164 * RMII, 50 MHz, no loopback, no echo
1165 * MII, 25 MHz, no loopback, no echo
1166 */
1167 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1168 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1169 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1170 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1171 writel(val: cfgr, addr: fep->hwp + FEC_MIIGSK_CFGR);
1172
1173 /* re-enable the gasket */
1174 writel(val: 2, addr: fep->hwp + FEC_MIIGSK_ENR);
1175 }
1176#endif
1177 }
1178
1179#if !defined(CONFIG_M5272)
1180 /* enable pause frame*/
1181 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1182 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1183 ndev->phydev && ndev->phydev->pause)) {
1184 rcntl |= FEC_ENET_FCE;
1185
1186 /* set FIFO threshold parameter to reduce overrun */
1187 writel(FEC_ENET_RSEM_V, addr: fep->hwp + FEC_R_FIFO_RSEM);
1188 writel(FEC_ENET_RSFL_V, addr: fep->hwp + FEC_R_FIFO_RSFL);
1189 writel(FEC_ENET_RAEM_V, addr: fep->hwp + FEC_R_FIFO_RAEM);
1190 writel(FEC_ENET_RAFL_V, addr: fep->hwp + FEC_R_FIFO_RAFL);
1191
1192 /* OPD */
1193 writel(FEC_ENET_OPD_V, addr: fep->hwp + FEC_OPD);
1194 } else {
1195 rcntl &= ~FEC_ENET_FCE;
1196 }
1197#endif /* !defined(CONFIG_M5272) */
1198
1199 writel(val: rcntl, addr: fep->hwp + FEC_R_CNTRL);
1200
1201 /* Setup multicast filter. */
1202 set_multicast_list(ndev);
1203#ifndef CONFIG_M5272
1204 writel(val: 0, addr: fep->hwp + FEC_HASH_TABLE_HIGH);
1205 writel(val: 0, addr: fep->hwp + FEC_HASH_TABLE_LOW);
1206#endif
1207
1208 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1209 /* enable ENET endian swap */
1210 ecntl |= (1 << 8);
1211 /* enable ENET store and forward mode */
1212 writel(val: 1 << 8, addr: fep->hwp + FEC_X_WMRK);
1213 }
1214
1215 if (fep->bufdesc_ex)
1216 ecntl |= (1 << 4);
1217
1218 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 fep->rgmii_txc_dly)
1220 ecntl |= FEC_ENET_TXC_DLY;
1221 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1222 fep->rgmii_rxc_dly)
1223 ecntl |= FEC_ENET_RXC_DLY;
1224
1225#ifndef CONFIG_M5272
1226 /* Enable the MIB statistic event counters */
1227 writel(val: 0 << 31, addr: fep->hwp + FEC_MIB_CTRLSTAT);
1228#endif
1229
1230 /* And last, enable the transmit and receive processing */
1231 writel(val: ecntl, addr: fep->hwp + FEC_ECNTRL);
1232 fec_enet_active_rxring(ndev);
1233
1234 if (fep->bufdesc_ex)
1235 fec_ptp_start_cyclecounter(ndev);
1236
1237 /* Enable interrupts we wish to service */
1238 if (fep->link)
1239 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1240 else
1241 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1242
1243 /* Init the interrupt coalescing */
1244 if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1245 fec_enet_itr_coal_set(ndev);
1246}
1247
1248static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1249{
1250 if (!(of_machine_is_compatible(compat: "fsl,imx8qm") ||
1251 of_machine_is_compatible(compat: "fsl,imx8qxp") ||
1252 of_machine_is_compatible(compat: "fsl,imx8dxl")))
1253 return 0;
1254
1255 return imx_scu_get_handle(ipc: &fep->ipc_handle);
1256}
1257
1258static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1259{
1260 struct device_node *np = fep->pdev->dev.of_node;
1261 u32 rsrc_id, val;
1262 int idx;
1263
1264 if (!np || !fep->ipc_handle)
1265 return;
1266
1267 idx = of_alias_get_id(np, stem: "ethernet");
1268 if (idx < 0)
1269 idx = 0;
1270 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1271
1272 val = enabled ? 1 : 0;
1273 imx_sc_misc_set_control(ipc: fep->ipc_handle, resource: rsrc_id, IMX_SC_C_IPG_STOP, val);
1274}
1275
1276static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1277{
1278 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1279 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1280
1281 if (stop_gpr->gpr) {
1282 if (enabled)
1283 regmap_update_bits(map: stop_gpr->gpr, reg: stop_gpr->reg,
1284 BIT(stop_gpr->bit),
1285 BIT(stop_gpr->bit));
1286 else
1287 regmap_update_bits(map: stop_gpr->gpr, reg: stop_gpr->reg,
1288 BIT(stop_gpr->bit), val: 0);
1289 } else if (pdata && pdata->sleep_mode_enable) {
1290 pdata->sleep_mode_enable(enabled);
1291 } else {
1292 fec_enet_ipg_stop_set(fep, enabled);
1293 }
1294}
1295
1296static void fec_irqs_disable(struct net_device *ndev)
1297{
1298 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1299
1300 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1301}
1302
1303static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1304{
1305 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1306
1307 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1308 writel(FEC_ENET_WAKEUP, addr: fep->hwp + FEC_IMASK);
1309}
1310
1311static void
1312fec_stop(struct net_device *ndev)
1313{
1314 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1315 u32 rmii_mode = readl(addr: fep->hwp + FEC_R_CNTRL) & (1 << 8);
1316 u32 val;
1317
1318 /* We cannot expect a graceful transmit stop without link !!! */
1319 if (fep->link) {
1320 writel(val: 1, addr: fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1321 udelay(10);
1322 if (!(readl(addr: fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1323 netdev_err(dev: ndev, format: "Graceful transmit stop did not complete!\n");
1324 }
1325
1326 /* Whack a reset. We should wait for this.
1327 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328 * instead of reset MAC itself.
1329 */
1330 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332 writel(val: 0, addr: fep->hwp + FEC_ECNTRL);
1333 } else {
1334 writel(val: 1, addr: fep->hwp + FEC_ECNTRL);
1335 udelay(10);
1336 }
1337 } else {
1338 val = readl(addr: fep->hwp + FEC_ECNTRL);
1339 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340 writel(val, addr: fep->hwp + FEC_ECNTRL);
1341 }
1342 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
1343 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1344
1345 /* We have to keep ENET enabled to have MII interrupt stay working */
1346 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348 writel(val: 2, addr: fep->hwp + FEC_ECNTRL);
1349 writel(val: rmii_mode, addr: fep->hwp + FEC_R_CNTRL);
1350 }
1351}
1352
1353
1354static void
1355fec_timeout(struct net_device *ndev, unsigned int txqueue)
1356{
1357 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1358
1359 fec_dump(ndev);
1360
1361 ndev->stats.tx_errors++;
1362
1363 schedule_work(work: &fep->tx_timeout_work);
1364}
1365
1366static void fec_enet_timeout_work(struct work_struct *work)
1367{
1368 struct fec_enet_private *fep =
1369 container_of(work, struct fec_enet_private, tx_timeout_work);
1370 struct net_device *ndev = fep->netdev;
1371
1372 rtnl_lock();
1373 if (netif_device_present(dev: ndev) || netif_running(dev: ndev)) {
1374 napi_disable(n: &fep->napi);
1375 netif_tx_lock_bh(dev: ndev);
1376 fec_restart(ndev);
1377 netif_tx_wake_all_queues(dev: ndev);
1378 netif_tx_unlock_bh(dev: ndev);
1379 napi_enable(n: &fep->napi);
1380 }
1381 rtnl_unlock();
1382}
1383
1384static void
1385fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1386 struct skb_shared_hwtstamps *hwtstamps)
1387{
1388 unsigned long flags;
1389 u64 ns;
1390
1391 spin_lock_irqsave(&fep->tmreg_lock, flags);
1392 ns = timecounter_cyc2time(tc: &fep->tc, cycle_tstamp: ts);
1393 spin_unlock_irqrestore(lock: &fep->tmreg_lock, flags);
1394
1395 memset(hwtstamps, 0, sizeof(*hwtstamps));
1396 hwtstamps->hwtstamp = ns_to_ktime(ns);
1397}
1398
1399static void
1400fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1401{
1402 struct fec_enet_private *fep;
1403 struct xdp_frame *xdpf;
1404 struct bufdesc *bdp;
1405 unsigned short status;
1406 struct sk_buff *skb;
1407 struct fec_enet_priv_tx_q *txq;
1408 struct netdev_queue *nq;
1409 int index = 0;
1410 int entries_free;
1411 struct page *page;
1412 int frame_len;
1413
1414 fep = netdev_priv(dev: ndev);
1415
1416 txq = fep->tx_queue[queue_id];
1417 /* get next bdp of dirty_tx */
1418 nq = netdev_get_tx_queue(dev: ndev, index: queue_id);
1419 bdp = txq->dirty_tx;
1420
1421 /* get next bdp of dirty_tx */
1422 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1423
1424 while (bdp != READ_ONCE(txq->bd.cur)) {
1425 /* Order the load of bd.cur and cbd_sc */
1426 rmb();
1427 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1428 if (status & BD_ENET_TX_READY)
1429 break;
1430
1431 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
1432
1433 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1434 skb = txq->tx_buf[index].buf_p;
1435 if (bdp->cbd_bufaddr &&
1436 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1437 dma_unmap_single(&fep->pdev->dev,
1438 fec32_to_cpu(bdp->cbd_bufaddr),
1439 fec16_to_cpu(bdp->cbd_datlen),
1440 DMA_TO_DEVICE);
1441 bdp->cbd_bufaddr = cpu_to_fec32(0);
1442 if (!skb)
1443 goto tx_buf_done;
1444 } else {
1445 /* Tx processing cannot call any XDP (or page pool) APIs if
1446 * the "budget" is 0. Because NAPI is called with budget of
1447 * 0 (such as netpoll) indicates we may be in an IRQ context,
1448 * however, we can't use the page pool from IRQ context.
1449 */
1450 if (unlikely(!budget))
1451 break;
1452
1453 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1454 xdpf = txq->tx_buf[index].buf_p;
1455 if (bdp->cbd_bufaddr)
1456 dma_unmap_single(&fep->pdev->dev,
1457 fec32_to_cpu(bdp->cbd_bufaddr),
1458 fec16_to_cpu(bdp->cbd_datlen),
1459 DMA_TO_DEVICE);
1460 } else {
1461 page = txq->tx_buf[index].buf_p;
1462 }
1463
1464 bdp->cbd_bufaddr = cpu_to_fec32(0);
1465 if (unlikely(!txq->tx_buf[index].buf_p)) {
1466 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1467 goto tx_buf_done;
1468 }
1469
1470 frame_len = fec16_to_cpu(bdp->cbd_datlen);
1471 }
1472
1473 /* Check for errors. */
1474 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1475 BD_ENET_TX_RL | BD_ENET_TX_UN |
1476 BD_ENET_TX_CSL)) {
1477 ndev->stats.tx_errors++;
1478 if (status & BD_ENET_TX_HB) /* No heartbeat */
1479 ndev->stats.tx_heartbeat_errors++;
1480 if (status & BD_ENET_TX_LC) /* Late collision */
1481 ndev->stats.tx_window_errors++;
1482 if (status & BD_ENET_TX_RL) /* Retrans limit */
1483 ndev->stats.tx_aborted_errors++;
1484 if (status & BD_ENET_TX_UN) /* Underrun */
1485 ndev->stats.tx_fifo_errors++;
1486 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1487 ndev->stats.tx_carrier_errors++;
1488 } else {
1489 ndev->stats.tx_packets++;
1490
1491 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1492 ndev->stats.tx_bytes += skb->len;
1493 else
1494 ndev->stats.tx_bytes += frame_len;
1495 }
1496
1497 /* Deferred means some collisions occurred during transmit,
1498 * but we eventually sent the packet OK.
1499 */
1500 if (status & BD_ENET_TX_DEF)
1501 ndev->stats.collisions++;
1502
1503 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1504 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1505 * are to time stamp the packet, so we still need to check time
1506 * stamping enabled flag.
1507 */
1508 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1509 fep->hwts_tx_en) && fep->bufdesc_ex) {
1510 struct skb_shared_hwtstamps shhwtstamps;
1511 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512
1513 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), hwtstamps: &shhwtstamps);
1514 skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps);
1515 }
1516
1517 /* Free the sk buffer associated with this last transmit */
1518 napi_consume_skb(skb, budget);
1519 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520 xdp_return_frame_rx_napi(xdpf);
1521 } else { /* recycle pages of XDP_TX frames */
1522 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1523 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: true);
1524 }
1525
1526 txq->tx_buf[index].buf_p = NULL;
1527 /* restore default tx buffer type: FEC_TXBUF_T_SKB */
1528 txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1529
1530tx_buf_done:
1531 /* Make sure the update to bdp and tx_buf are performed
1532 * before dirty_tx
1533 */
1534 wmb();
1535 txq->dirty_tx = bdp;
1536
1537 /* Update pointer to next buffer descriptor to be transmitted */
1538 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
1539
1540 /* Since we have freed up a buffer, the ring is no longer full
1541 */
1542 if (netif_tx_queue_stopped(dev_queue: nq)) {
1543 entries_free = fec_enet_get_free_txdesc_num(txq);
1544 if (entries_free >= txq->tx_wake_threshold)
1545 netif_tx_wake_queue(dev_queue: nq);
1546 }
1547 }
1548
1549 /* ERR006358: Keep the transmitter going */
1550 if (bdp != txq->bd.cur &&
1551 readl(addr: txq->bd.reg_desc_active) == 0)
1552 writel(val: 0, addr: txq->bd.reg_desc_active);
1553}
1554
1555static void fec_enet_tx(struct net_device *ndev, int budget)
1556{
1557 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1558 int i;
1559
1560 /* Make sure that AVB queues are processed first. */
1561 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1562 fec_enet_tx_queue(ndev, queue_id: i, budget);
1563}
1564
1565static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1566 struct bufdesc *bdp, int index)
1567{
1568 struct page *new_page;
1569 dma_addr_t phys_addr;
1570
1571 new_page = page_pool_dev_alloc_pages(pool: rxq->page_pool);
1572 WARN_ON(!new_page);
1573 rxq->rx_skb_info[index].page = new_page;
1574
1575 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1576 phys_addr = page_pool_get_dma_addr(page: new_page) + FEC_ENET_XDP_HEADROOM;
1577 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1578}
1579
1580static u32
1581fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1582 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1583{
1584 unsigned int sync, len = xdp->data_end - xdp->data;
1585 u32 ret = FEC_ENET_XDP_PASS;
1586 struct page *page;
1587 int err;
1588 u32 act;
1589
1590 act = bpf_prog_run_xdp(prog, xdp);
1591
1592 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1593 * max len CPU touch
1594 */
1595 sync = xdp->data_end - xdp->data;
1596 sync = max(sync, len);
1597
1598 switch (act) {
1599 case XDP_PASS:
1600 rxq->stats[RX_XDP_PASS]++;
1601 ret = FEC_ENET_XDP_PASS;
1602 break;
1603
1604 case XDP_REDIRECT:
1605 rxq->stats[RX_XDP_REDIRECT]++;
1606 err = xdp_do_redirect(dev: fep->netdev, xdp, prog);
1607 if (unlikely(err))
1608 goto xdp_err;
1609
1610 ret = FEC_ENET_XDP_REDIR;
1611 break;
1612
1613 case XDP_TX:
1614 rxq->stats[RX_XDP_TX]++;
1615 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, dma_sync_len: sync);
1616 if (unlikely(err)) {
1617 rxq->stats[RX_XDP_TX_ERRORS]++;
1618 goto xdp_err;
1619 }
1620
1621 ret = FEC_ENET_XDP_TX;
1622 break;
1623
1624 default:
1625 bpf_warn_invalid_xdp_action(dev: fep->netdev, prog, act);
1626 fallthrough;
1627
1628 case XDP_ABORTED:
1629 fallthrough; /* handle aborts by dropping packet */
1630
1631 case XDP_DROP:
1632 rxq->stats[RX_XDP_DROP]++;
1633xdp_err:
1634 ret = FEC_ENET_XDP_CONSUMED;
1635 page = virt_to_head_page(x: xdp->data);
1636 page_pool_put_page(pool: rxq->page_pool, page, dma_sync_size: sync, allow_direct: true);
1637 if (act != XDP_DROP)
1638 trace_xdp_exception(dev: fep->netdev, xdp: prog, act);
1639 break;
1640 }
1641
1642 return ret;
1643}
1644
1645/* During a receive, the bd_rx.cur points to the current incoming buffer.
1646 * When we update through the ring, if the next incoming buffer has
1647 * not been given to the system, we just set the empty indicator,
1648 * effectively tossing the packet.
1649 */
1650static int
1651fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1652{
1653 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1654 struct fec_enet_priv_rx_q *rxq;
1655 struct bufdesc *bdp;
1656 unsigned short status;
1657 struct sk_buff *skb;
1658 ushort pkt_len;
1659 __u8 *data;
1660 int pkt_received = 0;
1661 struct bufdesc_ex *ebdp = NULL;
1662 bool vlan_packet_rcvd = false;
1663 u16 vlan_tag;
1664 int index = 0;
1665 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1666 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1667 u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1668 u32 data_start = FEC_ENET_XDP_HEADROOM;
1669 int cpu = smp_processor_id();
1670 struct xdp_buff xdp;
1671 struct page *page;
1672 u32 sub_len = 4;
1673
1674#if !defined(CONFIG_M5272)
1675 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1676 * FEC_RACC_SHIFT16 is set by default in the probe function.
1677 */
1678 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1679 data_start += 2;
1680 sub_len += 2;
1681 }
1682#endif
1683
1684#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1685 /*
1686 * Hacky flush of all caches instead of using the DMA API for the TSO
1687 * headers.
1688 */
1689 flush_cache_all();
1690#endif
1691 rxq = fep->rx_queue[queue_id];
1692
1693 /* First, grab all of the stats for the incoming packet.
1694 * These get messed up if we get called due to a busy condition.
1695 */
1696 bdp = rxq->bd.cur;
1697 xdp_init_buff(xdp: &xdp, PAGE_SIZE, rxq: &rxq->xdp_rxq);
1698
1699 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1700
1701 if (pkt_received >= budget)
1702 break;
1703 pkt_received++;
1704
1705 writel(FEC_ENET_RXF_GET(queue_id), addr: fep->hwp + FEC_IEVENT);
1706
1707 /* Check for errors. */
1708 status ^= BD_ENET_RX_LAST;
1709 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1710 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1711 BD_ENET_RX_CL)) {
1712 ndev->stats.rx_errors++;
1713 if (status & BD_ENET_RX_OV) {
1714 /* FIFO overrun */
1715 ndev->stats.rx_fifo_errors++;
1716 goto rx_processing_done;
1717 }
1718 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1719 | BD_ENET_RX_LAST)) {
1720 /* Frame too long or too short. */
1721 ndev->stats.rx_length_errors++;
1722 if (status & BD_ENET_RX_LAST)
1723 netdev_err(dev: ndev, format: "rcv is not +last\n");
1724 }
1725 if (status & BD_ENET_RX_CR) /* CRC Error */
1726 ndev->stats.rx_crc_errors++;
1727 /* Report late collisions as a frame error. */
1728 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1729 ndev->stats.rx_frame_errors++;
1730 goto rx_processing_done;
1731 }
1732
1733 /* Process the incoming frame. */
1734 ndev->stats.rx_packets++;
1735 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1736 ndev->stats.rx_bytes += pkt_len;
1737
1738 index = fec_enet_get_bd_index(bdp, bd: &rxq->bd);
1739 page = rxq->rx_skb_info[index].page;
1740 dma_sync_single_for_cpu(dev: &fep->pdev->dev,
1741 fec32_to_cpu(bdp->cbd_bufaddr),
1742 size: pkt_len,
1743 dir: DMA_FROM_DEVICE);
1744 prefetch(page_address(page));
1745 fec_enet_update_cbd(rxq, bdp, index);
1746
1747 if (xdp_prog) {
1748 xdp_buff_clear_frags_flag(xdp: &xdp);
1749 /* subtract 16bit shift and FCS */
1750 xdp_prepare_buff(xdp: &xdp, page_address(page),
1751 headroom: data_start, data_len: pkt_len - sub_len, meta_valid: false);
1752 ret = fec_enet_run_xdp(fep, prog: xdp_prog, xdp: &xdp, rxq, cpu);
1753 xdp_result |= ret;
1754 if (ret != FEC_ENET_XDP_PASS)
1755 goto rx_processing_done;
1756 }
1757
1758 /* The packet length includes FCS, but we don't want to
1759 * include that when passing upstream as it messes up
1760 * bridging applications.
1761 */
1762 skb = build_skb(page_address(page), PAGE_SIZE);
1763 if (unlikely(!skb)) {
1764 page_pool_recycle_direct(pool: rxq->page_pool, page);
1765 ndev->stats.rx_dropped++;
1766
1767 netdev_err_once(ndev, "build_skb failed!\n");
1768 goto rx_processing_done;
1769 }
1770
1771 skb_reserve(skb, len: data_start);
1772 skb_put(skb, len: pkt_len - sub_len);
1773 skb_mark_for_recycle(skb);
1774
1775 if (unlikely(need_swap)) {
1776 data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1777 swap_buffer(bufaddr: data, len: pkt_len);
1778 }
1779 data = skb->data;
1780
1781 /* Extract the enhanced buffer descriptor */
1782 ebdp = NULL;
1783 if (fep->bufdesc_ex)
1784 ebdp = (struct bufdesc_ex *)bdp;
1785
1786 /* If this is a VLAN packet remove the VLAN Tag */
1787 vlan_packet_rcvd = false;
1788 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1789 fep->bufdesc_ex &&
1790 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1791 /* Push and remove the vlan tag */
1792 struct vlan_hdr *vlan_header =
1793 (struct vlan_hdr *) (data + ETH_HLEN);
1794 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1795
1796 vlan_packet_rcvd = true;
1797
1798 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1799 skb_pull(skb, VLAN_HLEN);
1800 }
1801
1802 skb->protocol = eth_type_trans(skb, dev: ndev);
1803
1804 /* Get receive timestamp from the skb */
1805 if (fep->hwts_rx_en && fep->bufdesc_ex)
1806 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1807 hwtstamps: skb_hwtstamps(skb));
1808
1809 if (fep->bufdesc_ex &&
1810 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1811 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1812 /* don't check it */
1813 skb->ip_summed = CHECKSUM_UNNECESSARY;
1814 } else {
1815 skb_checksum_none_assert(skb);
1816 }
1817 }
1818
1819 /* Handle received VLAN packets */
1820 if (vlan_packet_rcvd)
1821 __vlan_hwaccel_put_tag(skb,
1822 htons(ETH_P_8021Q),
1823 vlan_tci: vlan_tag);
1824
1825 skb_record_rx_queue(skb, rx_queue: queue_id);
1826 napi_gro_receive(napi: &fep->napi, skb);
1827
1828rx_processing_done:
1829 /* Clear the status flags for this buffer */
1830 status &= ~BD_ENET_RX_STATS;
1831
1832 /* Mark the buffer empty */
1833 status |= BD_ENET_RX_EMPTY;
1834
1835 if (fep->bufdesc_ex) {
1836 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1837
1838 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1839 ebdp->cbd_prot = 0;
1840 ebdp->cbd_bdu = 0;
1841 }
1842 /* Make sure the updates to rest of the descriptor are
1843 * performed before transferring ownership.
1844 */
1845 wmb();
1846 bdp->cbd_sc = cpu_to_fec16(status);
1847
1848 /* Update BD pointer to next entry */
1849 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
1850
1851 /* Doing this here will keep the FEC running while we process
1852 * incoming frames. On a heavily loaded network, we should be
1853 * able to keep up at the expense of system resources.
1854 */
1855 writel(val: 0, addr: rxq->bd.reg_desc_active);
1856 }
1857 rxq->bd.cur = bdp;
1858
1859 if (xdp_result & FEC_ENET_XDP_REDIR)
1860 xdp_do_flush();
1861
1862 return pkt_received;
1863}
1864
1865static int fec_enet_rx(struct net_device *ndev, int budget)
1866{
1867 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1868 int i, done = 0;
1869
1870 /* Make sure that AVB queues are processed first. */
1871 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1872 done += fec_enet_rx_queue(ndev, budget: budget - done, queue_id: i);
1873
1874 return done;
1875}
1876
1877static bool fec_enet_collect_events(struct fec_enet_private *fep)
1878{
1879 uint int_events;
1880
1881 int_events = readl(addr: fep->hwp + FEC_IEVENT);
1882
1883 /* Don't clear MDIO events, we poll for those */
1884 int_events &= ~FEC_ENET_MII;
1885
1886 writel(val: int_events, addr: fep->hwp + FEC_IEVENT);
1887
1888 return int_events != 0;
1889}
1890
1891static irqreturn_t
1892fec_enet_interrupt(int irq, void *dev_id)
1893{
1894 struct net_device *ndev = dev_id;
1895 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1896 irqreturn_t ret = IRQ_NONE;
1897
1898 if (fec_enet_collect_events(fep) && fep->link) {
1899 ret = IRQ_HANDLED;
1900
1901 if (napi_schedule_prep(n: &fep->napi)) {
1902 /* Disable interrupts */
1903 writel(val: 0, addr: fep->hwp + FEC_IMASK);
1904 __napi_schedule(n: &fep->napi);
1905 }
1906 }
1907
1908 return ret;
1909}
1910
1911static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1912{
1913 struct net_device *ndev = napi->dev;
1914 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1915 int done = 0;
1916
1917 do {
1918 done += fec_enet_rx(ndev, budget: budget - done);
1919 fec_enet_tx(ndev, budget);
1920 } while ((done < budget) && fec_enet_collect_events(fep));
1921
1922 if (done < budget) {
1923 napi_complete_done(n: napi, work_done: done);
1924 writel(FEC_DEFAULT_IMASK, addr: fep->hwp + FEC_IMASK);
1925 }
1926
1927 return done;
1928}
1929
1930/* ------------------------------------------------------------------------- */
1931static int fec_get_mac(struct net_device *ndev)
1932{
1933 struct fec_enet_private *fep = netdev_priv(dev: ndev);
1934 unsigned char *iap, tmpaddr[ETH_ALEN];
1935 int ret;
1936
1937 /*
1938 * try to get mac address in following order:
1939 *
1940 * 1) module parameter via kernel command line in form
1941 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1942 */
1943 iap = macaddr;
1944
1945 /*
1946 * 2) from device tree data
1947 */
1948 if (!is_valid_ether_addr(addr: iap)) {
1949 struct device_node *np = fep->pdev->dev.of_node;
1950 if (np) {
1951 ret = of_get_mac_address(np, mac: tmpaddr);
1952 if (!ret)
1953 iap = tmpaddr;
1954 else if (ret == -EPROBE_DEFER)
1955 return ret;
1956 }
1957 }
1958
1959 /*
1960 * 3) from flash or fuse (via platform data)
1961 */
1962 if (!is_valid_ether_addr(addr: iap)) {
1963#ifdef CONFIG_M5272
1964 if (FEC_FLASHMAC)
1965 iap = (unsigned char *)FEC_FLASHMAC;
1966#else
1967 struct fec_platform_data *pdata = dev_get_platdata(dev: &fep->pdev->dev);
1968
1969 if (pdata)
1970 iap = (unsigned char *)&pdata->mac;
1971#endif
1972 }
1973
1974 /*
1975 * 4) FEC mac registers set by bootloader
1976 */
1977 if (!is_valid_ether_addr(addr: iap)) {
1978 *((__be32 *) &tmpaddr[0]) =
1979 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1980 *((__be16 *) &tmpaddr[4]) =
1981 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1982 iap = &tmpaddr[0];
1983 }
1984
1985 /*
1986 * 5) random mac address
1987 */
1988 if (!is_valid_ether_addr(addr: iap)) {
1989 /* Report it and use a random ethernet address instead */
1990 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1991 eth_hw_addr_random(dev: ndev);
1992 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1993 ndev->dev_addr);
1994 return 0;
1995 }
1996
1997 /* Adjust MAC if using macaddr */
1998 eth_hw_addr_gen(dev: ndev, base_addr: iap, id: iap == macaddr ? fep->dev_id : 0);
1999
2000 return 0;
2001}
2002
2003/* ------------------------------------------------------------------------- */
2004
2005/*
2006 * Phy section
2007 */
2008static void fec_enet_adjust_link(struct net_device *ndev)
2009{
2010 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2011 struct phy_device *phy_dev = ndev->phydev;
2012 int status_change = 0;
2013
2014 /*
2015 * If the netdev is down, or is going down, we're not interested
2016 * in link state events, so just mark our idea of the link as down
2017 * and ignore the event.
2018 */
2019 if (!netif_running(dev: ndev) || !netif_device_present(dev: ndev)) {
2020 fep->link = 0;
2021 } else if (phy_dev->link) {
2022 if (!fep->link) {
2023 fep->link = phy_dev->link;
2024 status_change = 1;
2025 }
2026
2027 if (fep->full_duplex != phy_dev->duplex) {
2028 fep->full_duplex = phy_dev->duplex;
2029 status_change = 1;
2030 }
2031
2032 if (phy_dev->speed != fep->speed) {
2033 fep->speed = phy_dev->speed;
2034 status_change = 1;
2035 }
2036
2037 /* if any of the above changed restart the FEC */
2038 if (status_change) {
2039 napi_disable(n: &fep->napi);
2040 netif_tx_lock_bh(dev: ndev);
2041 fec_restart(ndev);
2042 netif_tx_wake_all_queues(dev: ndev);
2043 netif_tx_unlock_bh(dev: ndev);
2044 napi_enable(n: &fep->napi);
2045 }
2046 } else {
2047 if (fep->link) {
2048 napi_disable(n: &fep->napi);
2049 netif_tx_lock_bh(dev: ndev);
2050 fec_stop(ndev);
2051 netif_tx_unlock_bh(dev: ndev);
2052 napi_enable(n: &fep->napi);
2053 fep->link = phy_dev->link;
2054 status_change = 1;
2055 }
2056 }
2057
2058 if (status_change)
2059 phy_print_status(phydev: phy_dev);
2060}
2061
2062static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2063{
2064 uint ievent;
2065 int ret;
2066
2067 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2068 ievent & FEC_ENET_MII, 2, 30000);
2069
2070 if (!ret)
2071 writel(FEC_ENET_MII, addr: fep->hwp + FEC_IEVENT);
2072
2073 return ret;
2074}
2075
2076static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2077{
2078 struct fec_enet_private *fep = bus->priv;
2079 struct device *dev = &fep->pdev->dev;
2080 int ret = 0, frame_start, frame_addr, frame_op;
2081
2082 ret = pm_runtime_resume_and_get(dev);
2083 if (ret < 0)
2084 return ret;
2085
2086 /* C22 read */
2087 frame_op = FEC_MMFR_OP_READ;
2088 frame_start = FEC_MMFR_ST;
2089 frame_addr = regnum;
2090
2091 /* start a read op */
2092 writel(val: frame_start | frame_op |
2093 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2094 FEC_MMFR_TA, addr: fep->hwp + FEC_MII_DATA);
2095
2096 /* wait for end of transfer */
2097 ret = fec_enet_mdio_wait(fep);
2098 if (ret) {
2099 netdev_err(dev: fep->netdev, format: "MDIO read timeout\n");
2100 goto out;
2101 }
2102
2103 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2104
2105out:
2106 pm_runtime_mark_last_busy(dev);
2107 pm_runtime_put_autosuspend(dev);
2108
2109 return ret;
2110}
2111
2112static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2113 int devad, int regnum)
2114{
2115 struct fec_enet_private *fep = bus->priv;
2116 struct device *dev = &fep->pdev->dev;
2117 int ret = 0, frame_start, frame_op;
2118
2119 ret = pm_runtime_resume_and_get(dev);
2120 if (ret < 0)
2121 return ret;
2122
2123 frame_start = FEC_MMFR_ST_C45;
2124
2125 /* write address */
2126 writel(val: frame_start | FEC_MMFR_OP_ADDR_WRITE |
2127 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2128 FEC_MMFR_TA | (regnum & 0xFFFF),
2129 addr: fep->hwp + FEC_MII_DATA);
2130
2131 /* wait for end of transfer */
2132 ret = fec_enet_mdio_wait(fep);
2133 if (ret) {
2134 netdev_err(dev: fep->netdev, format: "MDIO address write timeout\n");
2135 goto out;
2136 }
2137
2138 frame_op = FEC_MMFR_OP_READ_C45;
2139
2140 /* start a read op */
2141 writel(val: frame_start | frame_op |
2142 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2143 FEC_MMFR_TA, addr: fep->hwp + FEC_MII_DATA);
2144
2145 /* wait for end of transfer */
2146 ret = fec_enet_mdio_wait(fep);
2147 if (ret) {
2148 netdev_err(dev: fep->netdev, format: "MDIO read timeout\n");
2149 goto out;
2150 }
2151
2152 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2153
2154out:
2155 pm_runtime_mark_last_busy(dev);
2156 pm_runtime_put_autosuspend(dev);
2157
2158 return ret;
2159}
2160
2161static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2162 u16 value)
2163{
2164 struct fec_enet_private *fep = bus->priv;
2165 struct device *dev = &fep->pdev->dev;
2166 int ret, frame_start, frame_addr;
2167
2168 ret = pm_runtime_resume_and_get(dev);
2169 if (ret < 0)
2170 return ret;
2171
2172 /* C22 write */
2173 frame_start = FEC_MMFR_ST;
2174 frame_addr = regnum;
2175
2176 /* start a write op */
2177 writel(val: frame_start | FEC_MMFR_OP_WRITE |
2178 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2179 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2180 addr: fep->hwp + FEC_MII_DATA);
2181
2182 /* wait for end of transfer */
2183 ret = fec_enet_mdio_wait(fep);
2184 if (ret)
2185 netdev_err(dev: fep->netdev, format: "MDIO write timeout\n");
2186
2187 pm_runtime_mark_last_busy(dev);
2188 pm_runtime_put_autosuspend(dev);
2189
2190 return ret;
2191}
2192
2193static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2194 int devad, int regnum, u16 value)
2195{
2196 struct fec_enet_private *fep = bus->priv;
2197 struct device *dev = &fep->pdev->dev;
2198 int ret, frame_start;
2199
2200 ret = pm_runtime_resume_and_get(dev);
2201 if (ret < 0)
2202 return ret;
2203
2204 frame_start = FEC_MMFR_ST_C45;
2205
2206 /* write address */
2207 writel(val: frame_start | FEC_MMFR_OP_ADDR_WRITE |
2208 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2209 FEC_MMFR_TA | (regnum & 0xFFFF),
2210 addr: fep->hwp + FEC_MII_DATA);
2211
2212 /* wait for end of transfer */
2213 ret = fec_enet_mdio_wait(fep);
2214 if (ret) {
2215 netdev_err(dev: fep->netdev, format: "MDIO address write timeout\n");
2216 goto out;
2217 }
2218
2219 /* start a write op */
2220 writel(val: frame_start | FEC_MMFR_OP_WRITE |
2221 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2222 FEC_MMFR_TA | FEC_MMFR_DATA(value),
2223 addr: fep->hwp + FEC_MII_DATA);
2224
2225 /* wait for end of transfer */
2226 ret = fec_enet_mdio_wait(fep);
2227 if (ret)
2228 netdev_err(dev: fep->netdev, format: "MDIO write timeout\n");
2229
2230out:
2231 pm_runtime_mark_last_busy(dev);
2232 pm_runtime_put_autosuspend(dev);
2233
2234 return ret;
2235}
2236
2237static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2238{
2239 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2240 struct phy_device *phy_dev = ndev->phydev;
2241
2242 if (phy_dev) {
2243 phy_reset_after_clk_enable(phydev: phy_dev);
2244 } else if (fep->phy_node) {
2245 /*
2246 * If the PHY still is not bound to the MAC, but there is
2247 * OF PHY node and a matching PHY device instance already,
2248 * use the OF PHY node to obtain the PHY device instance,
2249 * and then use that PHY device instance when triggering
2250 * the PHY reset.
2251 */
2252 phy_dev = of_phy_find_device(phy_np: fep->phy_node);
2253 phy_reset_after_clk_enable(phydev: phy_dev);
2254 put_device(dev: &phy_dev->mdio.dev);
2255 }
2256}
2257
2258static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2259{
2260 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2261 int ret;
2262
2263 if (enable) {
2264 ret = clk_prepare_enable(clk: fep->clk_enet_out);
2265 if (ret)
2266 return ret;
2267
2268 if (fep->clk_ptp) {
2269 mutex_lock(&fep->ptp_clk_mutex);
2270 ret = clk_prepare_enable(clk: fep->clk_ptp);
2271 if (ret) {
2272 mutex_unlock(lock: &fep->ptp_clk_mutex);
2273 goto failed_clk_ptp;
2274 } else {
2275 fep->ptp_clk_on = true;
2276 }
2277 mutex_unlock(lock: &fep->ptp_clk_mutex);
2278 }
2279
2280 ret = clk_prepare_enable(clk: fep->clk_ref);
2281 if (ret)
2282 goto failed_clk_ref;
2283
2284 ret = clk_prepare_enable(clk: fep->clk_2x_txclk);
2285 if (ret)
2286 goto failed_clk_2x_txclk;
2287
2288 fec_enet_phy_reset_after_clk_enable(ndev);
2289 } else {
2290 clk_disable_unprepare(clk: fep->clk_enet_out);
2291 if (fep->clk_ptp) {
2292 mutex_lock(&fep->ptp_clk_mutex);
2293 clk_disable_unprepare(clk: fep->clk_ptp);
2294 fep->ptp_clk_on = false;
2295 mutex_unlock(lock: &fep->ptp_clk_mutex);
2296 }
2297 clk_disable_unprepare(clk: fep->clk_ref);
2298 clk_disable_unprepare(clk: fep->clk_2x_txclk);
2299 }
2300
2301 return 0;
2302
2303failed_clk_2x_txclk:
2304 if (fep->clk_ref)
2305 clk_disable_unprepare(clk: fep->clk_ref);
2306failed_clk_ref:
2307 if (fep->clk_ptp) {
2308 mutex_lock(&fep->ptp_clk_mutex);
2309 clk_disable_unprepare(clk: fep->clk_ptp);
2310 fep->ptp_clk_on = false;
2311 mutex_unlock(lock: &fep->ptp_clk_mutex);
2312 }
2313failed_clk_ptp:
2314 clk_disable_unprepare(clk: fep->clk_enet_out);
2315
2316 return ret;
2317}
2318
2319static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2320 struct device_node *np)
2321{
2322 u32 rgmii_tx_delay, rgmii_rx_delay;
2323
2324 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2325 if (!of_property_read_u32(np, propname: "tx-internal-delay-ps", out_value: &rgmii_tx_delay)) {
2326 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2327 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2328 return -EINVAL;
2329 } else if (rgmii_tx_delay == 2000) {
2330 fep->rgmii_txc_dly = true;
2331 }
2332 }
2333
2334 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2335 if (!of_property_read_u32(np, propname: "rx-internal-delay-ps", out_value: &rgmii_rx_delay)) {
2336 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2337 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2338 return -EINVAL;
2339 } else if (rgmii_rx_delay == 2000) {
2340 fep->rgmii_rxc_dly = true;
2341 }
2342 }
2343
2344 return 0;
2345}
2346
2347static int fec_enet_mii_probe(struct net_device *ndev)
2348{
2349 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2350 struct phy_device *phy_dev = NULL;
2351 char mdio_bus_id[MII_BUS_ID_SIZE];
2352 char phy_name[MII_BUS_ID_SIZE + 3];
2353 int phy_id;
2354 int dev_id = fep->dev_id;
2355
2356 if (fep->phy_node) {
2357 phy_dev = of_phy_connect(dev: ndev, phy_np: fep->phy_node,
2358 hndlr: &fec_enet_adjust_link, flags: 0,
2359 iface: fep->phy_interface);
2360 if (!phy_dev) {
2361 netdev_err(dev: ndev, format: "Unable to connect to phy\n");
2362 return -ENODEV;
2363 }
2364 } else {
2365 /* check for attached phy */
2366 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2367 if (!mdiobus_is_registered_device(bus: fep->mii_bus, addr: phy_id))
2368 continue;
2369 if (dev_id--)
2370 continue;
2371 strscpy(p: mdio_bus_id, q: fep->mii_bus->id, MII_BUS_ID_SIZE);
2372 break;
2373 }
2374
2375 if (phy_id >= PHY_MAX_ADDR) {
2376 netdev_info(dev: ndev, format: "no PHY, assuming direct connection to switch\n");
2377 strscpy(p: mdio_bus_id, q: "fixed-0", MII_BUS_ID_SIZE);
2378 phy_id = 0;
2379 }
2380
2381 snprintf(buf: phy_name, size: sizeof(phy_name),
2382 PHY_ID_FMT, mdio_bus_id, phy_id);
2383 phy_dev = phy_connect(dev: ndev, bus_id: phy_name, handler: &fec_enet_adjust_link,
2384 interface: fep->phy_interface);
2385 }
2386
2387 if (IS_ERR(ptr: phy_dev)) {
2388 netdev_err(dev: ndev, format: "could not attach to PHY\n");
2389 return PTR_ERR(ptr: phy_dev);
2390 }
2391
2392 /* mask with MAC supported features */
2393 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2394 phy_set_max_speed(phydev: phy_dev, max_speed: 1000);
2395 phy_remove_link_mode(phydev: phy_dev,
2396 link_mode: ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2397#if !defined(CONFIG_M5272)
2398 phy_support_sym_pause(phydev: phy_dev);
2399#endif
2400 }
2401 else
2402 phy_set_max_speed(phydev: phy_dev, max_speed: 100);
2403
2404 fep->link = 0;
2405 fep->full_duplex = 0;
2406
2407 phy_dev->mac_managed_pm = true;
2408
2409 phy_attached_info(phydev: phy_dev);
2410
2411 return 0;
2412}
2413
2414static int fec_enet_mii_init(struct platform_device *pdev)
2415{
2416 static struct mii_bus *fec0_mii_bus;
2417 struct net_device *ndev = platform_get_drvdata(pdev);
2418 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2419 bool suppress_preamble = false;
2420 struct device_node *node;
2421 int err = -ENXIO;
2422 u32 mii_speed, holdtime;
2423 u32 bus_freq;
2424
2425 /*
2426 * The i.MX28 dual fec interfaces are not equal.
2427 * Here are the differences:
2428 *
2429 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2430 * - fec0 acts as the 1588 time master while fec1 is slave
2431 * - external phys can only be configured by fec0
2432 *
2433 * That is to say fec1 can not work independently. It only works
2434 * when fec0 is working. The reason behind this design is that the
2435 * second interface is added primarily for Switch mode.
2436 *
2437 * Because of the last point above, both phys are attached on fec0
2438 * mdio interface in board design, and need to be configured by
2439 * fec0 mii_bus.
2440 */
2441 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2442 /* fec1 uses fec0 mii_bus */
2443 if (mii_cnt && fec0_mii_bus) {
2444 fep->mii_bus = fec0_mii_bus;
2445 mii_cnt++;
2446 return 0;
2447 }
2448 return -ENOENT;
2449 }
2450
2451 bus_freq = 2500000; /* 2.5MHz by default */
2452 node = of_get_child_by_name(node: pdev->dev.of_node, name: "mdio");
2453 if (node) {
2454 of_property_read_u32(np: node, propname: "clock-frequency", out_value: &bus_freq);
2455 suppress_preamble = of_property_read_bool(np: node,
2456 propname: "suppress-preamble");
2457 }
2458
2459 /*
2460 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2461 *
2462 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2463 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2464 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2465 * document.
2466 */
2467 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2468 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2469 mii_speed--;
2470 if (mii_speed > 63) {
2471 dev_err(&pdev->dev,
2472 "fec clock (%lu) too fast to get right mii speed\n",
2473 clk_get_rate(fep->clk_ipg));
2474 err = -EINVAL;
2475 goto err_out;
2476 }
2477
2478 /*
2479 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2480 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2481 * versions are RAZ there, so just ignore the difference and write the
2482 * register always.
2483 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2484 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2485 * output.
2486 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2487 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2488 * holdtime cannot result in a value greater than 3.
2489 */
2490 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2491
2492 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2493
2494 if (suppress_preamble)
2495 fep->phy_speed |= BIT(7);
2496
2497 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2498 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2499 * MII event generation condition:
2500 * - writing MSCR:
2501 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2502 * mscr_reg_data_in[7:0] != 0
2503 * - writing MMFR:
2504 * - mscr[7:0]_not_zero
2505 */
2506 writel(val: 0, addr: fep->hwp + FEC_MII_DATA);
2507 }
2508
2509 writel(val: fep->phy_speed, addr: fep->hwp + FEC_MII_SPEED);
2510
2511 /* Clear any pending transaction complete indication */
2512 writel(FEC_ENET_MII, addr: fep->hwp + FEC_IEVENT);
2513
2514 fep->mii_bus = mdiobus_alloc();
2515 if (fep->mii_bus == NULL) {
2516 err = -ENOMEM;
2517 goto err_out;
2518 }
2519
2520 fep->mii_bus->name = "fec_enet_mii_bus";
2521 fep->mii_bus->read = fec_enet_mdio_read_c22;
2522 fep->mii_bus->write = fec_enet_mdio_write_c22;
2523 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2524 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2525 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2526 }
2527 snprintf(buf: fep->mii_bus->id, MII_BUS_ID_SIZE, fmt: "%s-%x",
2528 pdev->name, fep->dev_id + 1);
2529 fep->mii_bus->priv = fep;
2530 fep->mii_bus->parent = &pdev->dev;
2531
2532 err = of_mdiobus_register(mdio: fep->mii_bus, np: node);
2533 if (err)
2534 goto err_out_free_mdiobus;
2535 of_node_put(node);
2536
2537 mii_cnt++;
2538
2539 /* save fec0 mii_bus */
2540 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2541 fec0_mii_bus = fep->mii_bus;
2542
2543 return 0;
2544
2545err_out_free_mdiobus:
2546 mdiobus_free(bus: fep->mii_bus);
2547err_out:
2548 of_node_put(node);
2549 return err;
2550}
2551
2552static void fec_enet_mii_remove(struct fec_enet_private *fep)
2553{
2554 if (--mii_cnt == 0) {
2555 mdiobus_unregister(bus: fep->mii_bus);
2556 mdiobus_free(bus: fep->mii_bus);
2557 }
2558}
2559
2560static void fec_enet_get_drvinfo(struct net_device *ndev,
2561 struct ethtool_drvinfo *info)
2562{
2563 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2564
2565 strscpy(p: info->driver, q: fep->pdev->dev.driver->name,
2566 size: sizeof(info->driver));
2567 strscpy(p: info->bus_info, q: dev_name(dev: &ndev->dev), size: sizeof(info->bus_info));
2568}
2569
2570static int fec_enet_get_regs_len(struct net_device *ndev)
2571{
2572 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2573 struct resource *r;
2574 int s = 0;
2575
2576 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2577 if (r)
2578 s = resource_size(res: r);
2579
2580 return s;
2581}
2582
2583/* List of registers that can be safety be read to dump them with ethtool */
2584#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2585 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2586 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2587static __u32 fec_enet_register_version = 2;
2588static u32 fec_enet_register_offset[] = {
2589 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2590 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2591 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2592 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2593 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2594 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2595 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2596 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2597 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2598 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2599 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2600 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2601 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2602 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2603 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2604 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2605 RMON_T_P_GTE2048, RMON_T_OCTETS,
2606 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2607 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2608 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2609 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2610 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2611 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2612 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2613 RMON_R_P_GTE2048, RMON_R_OCTETS,
2614 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2615 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2616};
2617/* for i.MX6ul */
2618static u32 fec_enet_register_offset_6ul[] = {
2619 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2620 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2621 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2622 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2623 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2624 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2625 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2626 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2627 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2628 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2629 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2630 RMON_T_P_GTE2048, RMON_T_OCTETS,
2631 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2632 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2633 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2634 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2635 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2636 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2637 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2638 RMON_R_P_GTE2048, RMON_R_OCTETS,
2639 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2640 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2641};
2642#else
2643static __u32 fec_enet_register_version = 1;
2644static u32 fec_enet_register_offset[] = {
2645 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2646 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2647 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2648 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2649 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2650 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2651 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2652 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2653 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2654};
2655#endif
2656
2657static void fec_enet_get_regs(struct net_device *ndev,
2658 struct ethtool_regs *regs, void *regbuf)
2659{
2660 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2661 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2662 struct device *dev = &fep->pdev->dev;
2663 u32 *buf = (u32 *)regbuf;
2664 u32 i, off;
2665 int ret;
2666#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2667 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2668 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2669 u32 *reg_list;
2670 u32 reg_cnt;
2671
2672 if (!of_machine_is_compatible(compat: "fsl,imx6ul")) {
2673 reg_list = fec_enet_register_offset;
2674 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2675 } else {
2676 reg_list = fec_enet_register_offset_6ul;
2677 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2678 }
2679#else
2680 /* coldfire */
2681 static u32 *reg_list = fec_enet_register_offset;
2682 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2683#endif
2684 ret = pm_runtime_resume_and_get(dev);
2685 if (ret < 0)
2686 return;
2687
2688 regs->version = fec_enet_register_version;
2689
2690 memset(buf, 0, regs->len);
2691
2692 for (i = 0; i < reg_cnt; i++) {
2693 off = reg_list[i];
2694
2695 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2696 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2697 continue;
2698
2699 off >>= 2;
2700 buf[off] = readl(addr: &theregs[off]);
2701 }
2702
2703 pm_runtime_mark_last_busy(dev);
2704 pm_runtime_put_autosuspend(dev);
2705}
2706
2707static int fec_enet_get_ts_info(struct net_device *ndev,
2708 struct ethtool_ts_info *info)
2709{
2710 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2711
2712 if (fep->bufdesc_ex) {
2713
2714 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2715 SOF_TIMESTAMPING_RX_SOFTWARE |
2716 SOF_TIMESTAMPING_SOFTWARE |
2717 SOF_TIMESTAMPING_TX_HARDWARE |
2718 SOF_TIMESTAMPING_RX_HARDWARE |
2719 SOF_TIMESTAMPING_RAW_HARDWARE;
2720 if (fep->ptp_clock)
2721 info->phc_index = ptp_clock_index(ptp: fep->ptp_clock);
2722 else
2723 info->phc_index = -1;
2724
2725 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2726 (1 << HWTSTAMP_TX_ON);
2727
2728 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2729 (1 << HWTSTAMP_FILTER_ALL);
2730 return 0;
2731 } else {
2732 return ethtool_op_get_ts_info(dev: ndev, eti: info);
2733 }
2734}
2735
2736#if !defined(CONFIG_M5272)
2737
2738static void fec_enet_get_pauseparam(struct net_device *ndev,
2739 struct ethtool_pauseparam *pause)
2740{
2741 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2742
2743 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2744 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2745 pause->rx_pause = pause->tx_pause;
2746}
2747
2748static int fec_enet_set_pauseparam(struct net_device *ndev,
2749 struct ethtool_pauseparam *pause)
2750{
2751 struct fec_enet_private *fep = netdev_priv(dev: ndev);
2752
2753 if (!ndev->phydev)
2754 return -ENODEV;
2755
2756 if (pause->tx_pause != pause->rx_pause) {
2757 netdev_info(dev: ndev,
2758 format: "hardware only support enable/disable both tx and rx");
2759 return -EINVAL;
2760 }
2761
2762 fep->pause_flag = 0;
2763
2764 /* tx pause must be same as rx pause */
2765 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2766 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2767
2768 phy_set_sym_pause(phydev: ndev->phydev, rx: pause->rx_pause, tx: pause->tx_pause,
2769 autoneg: pause->autoneg);
2770
2771 if (pause->autoneg) {
2772 if (netif_running(dev: ndev))
2773 fec_stop(ndev);
2774 phy_start_aneg(phydev: ndev->phydev);
2775 }
2776 if (netif_running(dev: ndev)) {
2777 napi_disable(n: &fep->napi);
2778 netif_tx_lock_bh(dev: ndev);
2779 fec_restart(ndev);
2780 netif_tx_wake_all_queues(dev: ndev);
2781 netif_tx_unlock_bh(dev: ndev);
2782 napi_enable(n: &fep->napi);
2783 }
2784
2785 return 0;
2786}
2787
2788static const struct fec_stat {
2789 char name[ETH_GSTRING_LEN];
2790 u16 offset;
2791} fec_stats[] = {
2792 /* RMON TX */
2793 { "tx_dropped", RMON_T_DROP },
2794 { "tx_packets", RMON_T_PACKETS },
2795 { "tx_broadcast", RMON_T_BC_PKT },
2796 { "tx_multicast", RMON_T_MC_PKT },
2797 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2798 { "tx_undersize", RMON_T_UNDERSIZE },
2799 { "tx_oversize", RMON_T_OVERSIZE },
2800 { "tx_fragment", RMON_T_FRAG },
2801 { "tx_jabber", RMON_T_JAB },
2802 { "tx_collision", RMON_T_COL },
2803 { "tx_64byte", RMON_T_P64 },
2804 { "tx_65to127byte", RMON_T_P65TO127 },
2805 { "tx_128to255byte", RMON_T_P128TO255 },
2806 { "tx_256to511byte", RMON_T_P256TO511 },
2807 { "tx_512to1023byte", RMON_T_P512TO1023 },
2808 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2809 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2810 { "tx_octets", RMON_T_OCTETS },
2811
2812 /* IEEE TX */
2813 { "IEEE_tx_drop", IEEE_T_DROP },
2814 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2815 { "IEEE_tx_1col", IEEE_T_1COL },
2816 { "IEEE_tx_mcol", IEEE_T_MCOL },
2817 { "IEEE_tx_def", IEEE_T_DEF },
2818 { "IEEE_tx_lcol", IEEE_T_LCOL },
2819 { "IEEE_tx_excol", IEEE_T_EXCOL },
2820 { "IEEE_tx_macerr", IEEE_T_MACERR },
2821 { "IEEE_tx_cserr", IEEE_T_CSERR },
2822 { "IEEE_tx_sqe", IEEE_T_SQE },
2823 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2824 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2825
2826 /* RMON RX */
2827 { "rx_packets", RMON_R_PACKETS },
2828 { "rx_broadcast", RMON_R_BC_PKT },
2829 { "rx_multicast", RMON_R_MC_PKT },
2830 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2831 { "rx_undersize", RMON_R_UNDERSIZE },
2832 { "rx_oversize", RMON_R_OVERSIZE },
2833 { "rx_fragment", RMON_R_FRAG },
2834 { "rx_jabber", RMON_R_JAB },
2835 { "rx_64byte", RMON_R_P64 },
2836 { "rx_65to127byte", RMON_R_P65TO127 },
2837 { "rx_128to255byte", RMON_R_P128TO255 },
2838 { "rx_256to511byte", RMON_R_P256TO511 },
2839 { "rx_512to1023byte", RMON_R_P512TO1023 },
2840 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2841 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2842 { "rx_octets", RMON_R_OCTETS },
2843
2844 /* IEEE RX */
2845 { "IEEE_rx_drop", IEEE_R_DROP },
2846 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2847 { "IEEE_rx_crc", IEEE_R_CRC },
2848 { "IEEE_rx_align", IEEE_R_ALIGN },
2849 { "IEEE_rx_macerr", IEEE_R_MACERR },
2850 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2851 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2852};
2853
2854#define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2855
2856static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2857 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */
2858 "rx_xdp_pass", /* RX_XDP_PASS, */
2859 "rx_xdp_drop", /* RX_XDP_DROP, */
2860 "rx_xdp_tx", /* RX_XDP_TX, */
2861 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */
2862 "tx_xdp_xmit", /* TX_XDP_XMIT, */
2863 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */
2864};
2865
2866static void fec_enet_update_ethtool_stats(struct net_device *dev)
2867{
2868 struct fec_enet_private *fep = netdev_priv(dev);
2869 int i;
2870
2871 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2872 fep->ethtool_stats[i] = readl(addr: fep->hwp + fec_stats[i].offset);
2873}
2874
2875static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2876{
2877 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2878 struct fec_enet_priv_rx_q *rxq;
2879 int i, j;
2880
2881 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2882 rxq = fep->rx_queue[i];
2883
2884 for (j = 0; j < XDP_STATS_TOTAL; j++)
2885 xdp_stats[j] += rxq->stats[j];
2886 }
2887
2888 memcpy(data, xdp_stats, sizeof(xdp_stats));
2889}
2890
2891static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2892{
2893#ifdef CONFIG_PAGE_POOL_STATS
2894 struct page_pool_stats stats = {};
2895 struct fec_enet_priv_rx_q *rxq;
2896 int i;
2897
2898 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2899 rxq = fep->rx_queue[i];
2900
2901 if (!rxq->page_pool)
2902 continue;
2903
2904 page_pool_get_stats(pool: rxq->page_pool, stats: &stats);
2905 }
2906
2907 page_pool_ethtool_stats_get(data, stats: &stats);
2908#endif
2909}
2910
2911static void fec_enet_get_ethtool_stats(struct net_device *dev,
2912 struct ethtool_stats *stats, u64 *data)
2913{
2914 struct fec_enet_private *fep = netdev_priv(dev);
2915
2916 if (netif_running(dev))
2917 fec_enet_update_ethtool_stats(dev);
2918
2919 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2920 data += FEC_STATS_SIZE / sizeof(u64);
2921
2922 fec_enet_get_xdp_stats(fep, data);
2923 data += XDP_STATS_TOTAL;
2924
2925 fec_enet_page_pool_stats(fep, data);
2926}
2927
2928static void fec_enet_get_strings(struct net_device *netdev,
2929 u32 stringset, u8 *data)
2930{
2931 int i;
2932 switch (stringset) {
2933 case ETH_SS_STATS:
2934 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2935 ethtool_sprintf(data: &data, fmt: "%s", fec_stats[i].name);
2936 }
2937 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2938 ethtool_sprintf(data: &data, fmt: "%s", fec_xdp_stat_strs[i]);
2939 }
2940 page_pool_ethtool_stats_get_strings(data);
2941
2942 break;
2943 case ETH_SS_TEST:
2944 net_selftest_get_strings(data);
2945 break;
2946 }
2947}
2948
2949static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2950{
2951 int count;
2952
2953 switch (sset) {
2954 case ETH_SS_STATS:
2955 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2956 count += page_pool_ethtool_stats_get_count();
2957 return count;
2958
2959 case ETH_SS_TEST:
2960 return net_selftest_get_count();
2961 default:
2962 return -EOPNOTSUPP;
2963 }
2964}
2965
2966static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2967{
2968 struct fec_enet_private *fep = netdev_priv(dev);
2969 struct fec_enet_priv_rx_q *rxq;
2970 int i, j;
2971
2972 /* Disable MIB statistics counters */
2973 writel(FEC_MIB_CTRLSTAT_DISABLE, addr: fep->hwp + FEC_MIB_CTRLSTAT);
2974
2975 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2976 writel(val: 0, addr: fep->hwp + fec_stats[i].offset);
2977
2978 for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2979 rxq = fep->rx_queue[i];
2980 for (j = 0; j < XDP_STATS_TOTAL; j++)
2981 rxq->stats[j] = 0;
2982 }
2983
2984 /* Don't disable MIB statistics counters */
2985 writel(val: 0, addr: fep->hwp + FEC_MIB_CTRLSTAT);
2986}
2987
2988#else /* !defined(CONFIG_M5272) */
2989#define FEC_STATS_SIZE 0
2990static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2991{
2992}
2993
2994static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2995{
2996}
2997#endif /* !defined(CONFIG_M5272) */
2998
2999/* ITR clock source is enet system clock (clk_ahb).
3000 * TCTT unit is cycle_ns * 64 cycle
3001 * So, the ICTT value = X us / (cycle_ns * 64)
3002 */
3003static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3004{
3005 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3006
3007 return us * (fep->itr_clk_rate / 64000) / 1000;
3008}
3009
3010/* Set threshold for interrupt coalescing */
3011static void fec_enet_itr_coal_set(struct net_device *ndev)
3012{
3013 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3014 int rx_itr, tx_itr;
3015
3016 /* Must be greater than zero to avoid unpredictable behavior */
3017 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3018 !fep->tx_time_itr || !fep->tx_pkts_itr)
3019 return;
3020
3021 /* Select enet system clock as Interrupt Coalescing
3022 * timer Clock Source
3023 */
3024 rx_itr = FEC_ITR_CLK_SEL;
3025 tx_itr = FEC_ITR_CLK_SEL;
3026
3027 /* set ICFT and ICTT */
3028 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3029 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3030 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3031 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3032
3033 rx_itr |= FEC_ITR_EN;
3034 tx_itr |= FEC_ITR_EN;
3035
3036 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC0);
3037 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC0);
3038 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3039 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC1);
3040 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC1);
3041 writel(val: tx_itr, addr: fep->hwp + FEC_TXIC2);
3042 writel(val: rx_itr, addr: fep->hwp + FEC_RXIC2);
3043 }
3044}
3045
3046static int fec_enet_get_coalesce(struct net_device *ndev,
3047 struct ethtool_coalesce *ec,
3048 struct kernel_ethtool_coalesce *kernel_coal,
3049 struct netlink_ext_ack *extack)
3050{
3051 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3052
3053 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3054 return -EOPNOTSUPP;
3055
3056 ec->rx_coalesce_usecs = fep->rx_time_itr;
3057 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3058
3059 ec->tx_coalesce_usecs = fep->tx_time_itr;
3060 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3061
3062 return 0;
3063}
3064
3065static int fec_enet_set_coalesce(struct net_device *ndev,
3066 struct ethtool_coalesce *ec,
3067 struct kernel_ethtool_coalesce *kernel_coal,
3068 struct netlink_ext_ack *extack)
3069{
3070 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3071 struct device *dev = &fep->pdev->dev;
3072 unsigned int cycle;
3073
3074 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3075 return -EOPNOTSUPP;
3076
3077 if (ec->rx_max_coalesced_frames > 255) {
3078 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3079 return -EINVAL;
3080 }
3081
3082 if (ec->tx_max_coalesced_frames > 255) {
3083 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3084 return -EINVAL;
3085 }
3086
3087 cycle = fec_enet_us_to_itr_clock(ndev, us: ec->rx_coalesce_usecs);
3088 if (cycle > 0xFFFF) {
3089 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3090 return -EINVAL;
3091 }
3092
3093 cycle = fec_enet_us_to_itr_clock(ndev, us: ec->tx_coalesce_usecs);
3094 if (cycle > 0xFFFF) {
3095 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3096 return -EINVAL;
3097 }
3098
3099 fep->rx_time_itr = ec->rx_coalesce_usecs;
3100 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3101
3102 fep->tx_time_itr = ec->tx_coalesce_usecs;
3103 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3104
3105 fec_enet_itr_coal_set(ndev);
3106
3107 return 0;
3108}
3109
3110/* LPI Sleep Ts count base on tx clk (clk_ref).
3111 * The lpi sleep cnt value = X us / (cycle_ns).
3112 */
3113static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3114{
3115 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3116
3117 return us * (fep->clk_ref_rate / 1000) / 1000;
3118}
3119
3120static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3121{
3122 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3123 struct ethtool_eee *p = &fep->eee;
3124 unsigned int sleep_cycle, wake_cycle;
3125 int ret = 0;
3126
3127 if (enable) {
3128 ret = phy_init_eee(phydev: ndev->phydev, clk_stop_enable: false);
3129 if (ret)
3130 return ret;
3131
3132 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, us: p->tx_lpi_timer);
3133 wake_cycle = sleep_cycle;
3134 } else {
3135 sleep_cycle = 0;
3136 wake_cycle = 0;
3137 }
3138
3139 p->tx_lpi_enabled = enable;
3140 p->eee_enabled = enable;
3141 p->eee_active = enable;
3142
3143 writel(val: sleep_cycle, addr: fep->hwp + FEC_LPI_SLEEP);
3144 writel(val: wake_cycle, addr: fep->hwp + FEC_LPI_WAKE);
3145
3146 return 0;
3147}
3148
3149static int
3150fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3151{
3152 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3153 struct ethtool_eee *p = &fep->eee;
3154
3155 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3156 return -EOPNOTSUPP;
3157
3158 if (!netif_running(dev: ndev))
3159 return -ENETDOWN;
3160
3161 edata->eee_enabled = p->eee_enabled;
3162 edata->eee_active = p->eee_active;
3163 edata->tx_lpi_timer = p->tx_lpi_timer;
3164 edata->tx_lpi_enabled = p->tx_lpi_enabled;
3165
3166 return phy_ethtool_get_eee(phydev: ndev->phydev, data: edata);
3167}
3168
3169static int
3170fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3171{
3172 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3173 struct ethtool_eee *p = &fep->eee;
3174 int ret = 0;
3175
3176 if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3177 return -EOPNOTSUPP;
3178
3179 if (!netif_running(dev: ndev))
3180 return -ENETDOWN;
3181
3182 p->tx_lpi_timer = edata->tx_lpi_timer;
3183
3184 if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3185 !edata->tx_lpi_timer)
3186 ret = fec_enet_eee_mode_set(ndev, enable: false);
3187 else
3188 ret = fec_enet_eee_mode_set(ndev, enable: true);
3189
3190 if (ret)
3191 return ret;
3192
3193 return phy_ethtool_set_eee(phydev: ndev->phydev, data: edata);
3194}
3195
3196static void
3197fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3198{
3199 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3200
3201 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3202 wol->supported = WAKE_MAGIC;
3203 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3204 } else {
3205 wol->supported = wol->wolopts = 0;
3206 }
3207}
3208
3209static int
3210fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3211{
3212 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3213
3214 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3215 return -EINVAL;
3216
3217 if (wol->wolopts & ~WAKE_MAGIC)
3218 return -EINVAL;
3219
3220 device_set_wakeup_enable(dev: &ndev->dev, enable: wol->wolopts & WAKE_MAGIC);
3221 if (device_may_wakeup(dev: &ndev->dev))
3222 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3223 else
3224 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3225
3226 return 0;
3227}
3228
3229static const struct ethtool_ops fec_enet_ethtool_ops = {
3230 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3231 ETHTOOL_COALESCE_MAX_FRAMES,
3232 .get_drvinfo = fec_enet_get_drvinfo,
3233 .get_regs_len = fec_enet_get_regs_len,
3234 .get_regs = fec_enet_get_regs,
3235 .nway_reset = phy_ethtool_nway_reset,
3236 .get_link = ethtool_op_get_link,
3237 .get_coalesce = fec_enet_get_coalesce,
3238 .set_coalesce = fec_enet_set_coalesce,
3239#ifndef CONFIG_M5272
3240 .get_pauseparam = fec_enet_get_pauseparam,
3241 .set_pauseparam = fec_enet_set_pauseparam,
3242 .get_strings = fec_enet_get_strings,
3243 .get_ethtool_stats = fec_enet_get_ethtool_stats,
3244 .get_sset_count = fec_enet_get_sset_count,
3245#endif
3246 .get_ts_info = fec_enet_get_ts_info,
3247 .get_wol = fec_enet_get_wol,
3248 .set_wol = fec_enet_set_wol,
3249 .get_eee = fec_enet_get_eee,
3250 .set_eee = fec_enet_set_eee,
3251 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3252 .set_link_ksettings = phy_ethtool_set_link_ksettings,
3253 .self_test = net_selftest,
3254};
3255
3256static void fec_enet_free_buffers(struct net_device *ndev)
3257{
3258 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3259 unsigned int i;
3260 struct fec_enet_priv_tx_q *txq;
3261 struct fec_enet_priv_rx_q *rxq;
3262 unsigned int q;
3263
3264 for (q = 0; q < fep->num_rx_queues; q++) {
3265 rxq = fep->rx_queue[q];
3266 for (i = 0; i < rxq->bd.ring_size; i++)
3267 page_pool_put_full_page(pool: rxq->page_pool, page: rxq->rx_skb_info[i].page, allow_direct: false);
3268
3269 for (i = 0; i < XDP_STATS_TOTAL; i++)
3270 rxq->stats[i] = 0;
3271
3272 if (xdp_rxq_info_is_reg(xdp_rxq: &rxq->xdp_rxq))
3273 xdp_rxq_info_unreg(xdp_rxq: &rxq->xdp_rxq);
3274 page_pool_destroy(pool: rxq->page_pool);
3275 rxq->page_pool = NULL;
3276 }
3277
3278 for (q = 0; q < fep->num_tx_queues; q++) {
3279 txq = fep->tx_queue[q];
3280 for (i = 0; i < txq->bd.ring_size; i++) {
3281 kfree(objp: txq->tx_bounce[i]);
3282 txq->tx_bounce[i] = NULL;
3283
3284 if (!txq->tx_buf[i].buf_p) {
3285 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3286 continue;
3287 }
3288
3289 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3290 dev_kfree_skb(txq->tx_buf[i].buf_p);
3291 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3292 xdp_return_frame(xdpf: txq->tx_buf[i].buf_p);
3293 } else {
3294 struct page *page = txq->tx_buf[i].buf_p;
3295
3296 page_pool_put_page(pool: page->pp, page, dma_sync_size: 0, allow_direct: false);
3297 }
3298
3299 txq->tx_buf[i].buf_p = NULL;
3300 txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3301 }
3302 }
3303}
3304
3305static void fec_enet_free_queue(struct net_device *ndev)
3306{
3307 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3308 int i;
3309 struct fec_enet_priv_tx_q *txq;
3310
3311 for (i = 0; i < fep->num_tx_queues; i++)
3312 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3313 txq = fep->tx_queue[i];
3314 fec_dma_free(dev: &fep->pdev->dev,
3315 size: txq->bd.ring_size * TSO_HEADER_SIZE,
3316 cpu_addr: txq->tso_hdrs, handle: txq->tso_hdrs_dma);
3317 }
3318
3319 for (i = 0; i < fep->num_rx_queues; i++)
3320 kfree(objp: fep->rx_queue[i]);
3321 for (i = 0; i < fep->num_tx_queues; i++)
3322 kfree(objp: fep->tx_queue[i]);
3323}
3324
3325static int fec_enet_alloc_queue(struct net_device *ndev)
3326{
3327 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3328 int i;
3329 int ret = 0;
3330 struct fec_enet_priv_tx_q *txq;
3331
3332 for (i = 0; i < fep->num_tx_queues; i++) {
3333 txq = kzalloc(size: sizeof(*txq), GFP_KERNEL);
3334 if (!txq) {
3335 ret = -ENOMEM;
3336 goto alloc_failed;
3337 }
3338
3339 fep->tx_queue[i] = txq;
3340 txq->bd.ring_size = TX_RING_SIZE;
3341 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3342
3343 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3344 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3345
3346 txq->tso_hdrs = fec_dma_alloc(dev: &fep->pdev->dev,
3347 size: txq->bd.ring_size * TSO_HEADER_SIZE,
3348 handle: &txq->tso_hdrs_dma, GFP_KERNEL);
3349 if (!txq->tso_hdrs) {
3350 ret = -ENOMEM;
3351 goto alloc_failed;
3352 }
3353 }
3354
3355 for (i = 0; i < fep->num_rx_queues; i++) {
3356 fep->rx_queue[i] = kzalloc(size: sizeof(*fep->rx_queue[i]),
3357 GFP_KERNEL);
3358 if (!fep->rx_queue[i]) {
3359 ret = -ENOMEM;
3360 goto alloc_failed;
3361 }
3362
3363 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3364 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3365 }
3366 return ret;
3367
3368alloc_failed:
3369 fec_enet_free_queue(ndev);
3370 return ret;
3371}
3372
3373static int
3374fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3375{
3376 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3377 struct fec_enet_priv_rx_q *rxq;
3378 dma_addr_t phys_addr;
3379 struct bufdesc *bdp;
3380 struct page *page;
3381 int i, err;
3382
3383 rxq = fep->rx_queue[queue];
3384 bdp = rxq->bd.base;
3385
3386 err = fec_enet_create_page_pool(fep, rxq, size: rxq->bd.ring_size);
3387 if (err < 0) {
3388 netdev_err(dev: ndev, format: "%s failed queue %d (%d)\n", __func__, queue, err);
3389 return err;
3390 }
3391
3392 for (i = 0; i < rxq->bd.ring_size; i++) {
3393 page = page_pool_dev_alloc_pages(pool: rxq->page_pool);
3394 if (!page)
3395 goto err_alloc;
3396
3397 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3398 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3399
3400 rxq->rx_skb_info[i].page = page;
3401 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3402 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3403
3404 if (fep->bufdesc_ex) {
3405 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3406 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3407 }
3408
3409 bdp = fec_enet_get_nextdesc(bdp, bd: &rxq->bd);
3410 }
3411
3412 /* Set the last buffer to wrap. */
3413 bdp = fec_enet_get_prevdesc(bdp, bd: &rxq->bd);
3414 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3415 return 0;
3416
3417 err_alloc:
3418 fec_enet_free_buffers(ndev);
3419 return -ENOMEM;
3420}
3421
3422static int
3423fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3424{
3425 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3426 unsigned int i;
3427 struct bufdesc *bdp;
3428 struct fec_enet_priv_tx_q *txq;
3429
3430 txq = fep->tx_queue[queue];
3431 bdp = txq->bd.base;
3432 for (i = 0; i < txq->bd.ring_size; i++) {
3433 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3434 if (!txq->tx_bounce[i])
3435 goto err_alloc;
3436
3437 bdp->cbd_sc = cpu_to_fec16(0);
3438 bdp->cbd_bufaddr = cpu_to_fec32(0);
3439
3440 if (fep->bufdesc_ex) {
3441 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3442 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3443 }
3444
3445 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
3446 }
3447
3448 /* Set the last buffer to wrap. */
3449 bdp = fec_enet_get_prevdesc(bdp, bd: &txq->bd);
3450 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3451
3452 return 0;
3453
3454 err_alloc:
3455 fec_enet_free_buffers(ndev);
3456 return -ENOMEM;
3457}
3458
3459static int fec_enet_alloc_buffers(struct net_device *ndev)
3460{
3461 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3462 unsigned int i;
3463
3464 for (i = 0; i < fep->num_rx_queues; i++)
3465 if (fec_enet_alloc_rxq_buffers(ndev, queue: i))
3466 return -ENOMEM;
3467
3468 for (i = 0; i < fep->num_tx_queues; i++)
3469 if (fec_enet_alloc_txq_buffers(ndev, queue: i))
3470 return -ENOMEM;
3471 return 0;
3472}
3473
3474static int
3475fec_enet_open(struct net_device *ndev)
3476{
3477 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3478 int ret;
3479 bool reset_again;
3480
3481 ret = pm_runtime_resume_and_get(dev: &fep->pdev->dev);
3482 if (ret < 0)
3483 return ret;
3484
3485 pinctrl_pm_select_default_state(dev: &fep->pdev->dev);
3486 ret = fec_enet_clk_enable(ndev, enable: true);
3487 if (ret)
3488 goto clk_enable;
3489
3490 /* During the first fec_enet_open call the PHY isn't probed at this
3491 * point. Therefore the phy_reset_after_clk_enable() call within
3492 * fec_enet_clk_enable() fails. As we need this reset in order to be
3493 * sure the PHY is working correctly we check if we need to reset again
3494 * later when the PHY is probed
3495 */
3496 if (ndev->phydev && ndev->phydev->drv)
3497 reset_again = false;
3498 else
3499 reset_again = true;
3500
3501 /* I should reset the ring buffers here, but I don't yet know
3502 * a simple way to do that.
3503 */
3504
3505 ret = fec_enet_alloc_buffers(ndev);
3506 if (ret)
3507 goto err_enet_alloc;
3508
3509 /* Init MAC prior to mii bus probe */
3510 fec_restart(ndev);
3511
3512 /* Call phy_reset_after_clk_enable() again if it failed during
3513 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3514 */
3515 if (reset_again)
3516 fec_enet_phy_reset_after_clk_enable(ndev);
3517
3518 /* Probe and connect to PHY when open the interface */
3519 ret = fec_enet_mii_probe(ndev);
3520 if (ret)
3521 goto err_enet_mii_probe;
3522
3523 if (fep->quirks & FEC_QUIRK_ERR006687)
3524 imx6q_cpuidle_fec_irqs_used();
3525
3526 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3527 cpu_latency_qos_add_request(req: &fep->pm_qos_req, value: 0);
3528
3529 napi_enable(n: &fep->napi);
3530 phy_start(phydev: ndev->phydev);
3531 netif_tx_start_all_queues(dev: ndev);
3532
3533 device_set_wakeup_enable(dev: &ndev->dev, enable: fep->wol_flag &
3534 FEC_WOL_FLAG_ENABLE);
3535
3536 return 0;
3537
3538err_enet_mii_probe:
3539 fec_enet_free_buffers(ndev);
3540err_enet_alloc:
3541 fec_enet_clk_enable(ndev, enable: false);
3542clk_enable:
3543 pm_runtime_mark_last_busy(dev: &fep->pdev->dev);
3544 pm_runtime_put_autosuspend(dev: &fep->pdev->dev);
3545 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
3546 return ret;
3547}
3548
3549static int
3550fec_enet_close(struct net_device *ndev)
3551{
3552 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3553
3554 phy_stop(phydev: ndev->phydev);
3555
3556 if (netif_device_present(dev: ndev)) {
3557 napi_disable(n: &fep->napi);
3558 netif_tx_disable(dev: ndev);
3559 fec_stop(ndev);
3560 }
3561
3562 phy_disconnect(phydev: ndev->phydev);
3563
3564 if (fep->quirks & FEC_QUIRK_ERR006687)
3565 imx6q_cpuidle_fec_irqs_unused();
3566
3567 fec_enet_update_ethtool_stats(dev: ndev);
3568
3569 fec_enet_clk_enable(ndev, enable: false);
3570 if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3571 cpu_latency_qos_remove_request(req: &fep->pm_qos_req);
3572
3573 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
3574 pm_runtime_mark_last_busy(dev: &fep->pdev->dev);
3575 pm_runtime_put_autosuspend(dev: &fep->pdev->dev);
3576
3577 fec_enet_free_buffers(ndev);
3578
3579 return 0;
3580}
3581
3582/* Set or clear the multicast filter for this adaptor.
3583 * Skeleton taken from sunlance driver.
3584 * The CPM Ethernet implementation allows Multicast as well as individual
3585 * MAC address filtering. Some of the drivers check to make sure it is
3586 * a group multicast address, and discard those that are not. I guess I
3587 * will do the same for now, but just remove the test if you want
3588 * individual filtering as well (do the upper net layers want or support
3589 * this kind of feature?).
3590 */
3591
3592#define FEC_HASH_BITS 6 /* #bits in hash */
3593
3594static void set_multicast_list(struct net_device *ndev)
3595{
3596 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3597 struct netdev_hw_addr *ha;
3598 unsigned int crc, tmp;
3599 unsigned char hash;
3600 unsigned int hash_high = 0, hash_low = 0;
3601
3602 if (ndev->flags & IFF_PROMISC) {
3603 tmp = readl(addr: fep->hwp + FEC_R_CNTRL);
3604 tmp |= 0x8;
3605 writel(val: tmp, addr: fep->hwp + FEC_R_CNTRL);
3606 return;
3607 }
3608
3609 tmp = readl(addr: fep->hwp + FEC_R_CNTRL);
3610 tmp &= ~0x8;
3611 writel(val: tmp, addr: fep->hwp + FEC_R_CNTRL);
3612
3613 if (ndev->flags & IFF_ALLMULTI) {
3614 /* Catch all multicast addresses, so set the
3615 * filter to all 1's
3616 */
3617 writel(val: 0xffffffff, addr: fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3618 writel(val: 0xffffffff, addr: fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3619
3620 return;
3621 }
3622
3623 /* Add the addresses in hash register */
3624 netdev_for_each_mc_addr(ha, ndev) {
3625 /* calculate crc32 value of mac address */
3626 crc = ether_crc_le(ndev->addr_len, ha->addr);
3627
3628 /* only upper 6 bits (FEC_HASH_BITS) are used
3629 * which point to specific bit in the hash registers
3630 */
3631 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3632
3633 if (hash > 31)
3634 hash_high |= 1 << (hash - 32);
3635 else
3636 hash_low |= 1 << hash;
3637 }
3638
3639 writel(val: hash_high, addr: fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3640 writel(val: hash_low, addr: fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3641}
3642
3643/* Set a MAC change in hardware. */
3644static int
3645fec_set_mac_address(struct net_device *ndev, void *p)
3646{
3647 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3648 struct sockaddr *addr = p;
3649
3650 if (addr) {
3651 if (!is_valid_ether_addr(addr: addr->sa_data))
3652 return -EADDRNOTAVAIL;
3653 eth_hw_addr_set(dev: ndev, addr: addr->sa_data);
3654 }
3655
3656 /* Add netif status check here to avoid system hang in below case:
3657 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3658 * After ethx down, fec all clocks are gated off and then register
3659 * access causes system hang.
3660 */
3661 if (!netif_running(dev: ndev))
3662 return 0;
3663
3664 writel(val: ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3665 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3666 addr: fep->hwp + FEC_ADDR_LOW);
3667 writel(val: (ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3668 addr: fep->hwp + FEC_ADDR_HIGH);
3669 return 0;
3670}
3671
3672#ifdef CONFIG_NET_POLL_CONTROLLER
3673/**
3674 * fec_poll_controller - FEC Poll controller function
3675 * @dev: The FEC network adapter
3676 *
3677 * Polled functionality used by netconsole and others in non interrupt mode
3678 *
3679 */
3680static void fec_poll_controller(struct net_device *dev)
3681{
3682 int i;
3683 struct fec_enet_private *fep = netdev_priv(dev);
3684
3685 for (i = 0; i < FEC_IRQ_NUM; i++) {
3686 if (fep->irq[i] > 0) {
3687 disable_irq(irq: fep->irq[i]);
3688 fec_enet_interrupt(irq: fep->irq[i], dev_id: dev);
3689 enable_irq(irq: fep->irq[i]);
3690 }
3691 }
3692}
3693#endif
3694
3695static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3696 netdev_features_t features)
3697{
3698 struct fec_enet_private *fep = netdev_priv(dev: netdev);
3699 netdev_features_t changed = features ^ netdev->features;
3700
3701 netdev->features = features;
3702
3703 /* Receive checksum has been changed */
3704 if (changed & NETIF_F_RXCSUM) {
3705 if (features & NETIF_F_RXCSUM)
3706 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3707 else
3708 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3709 }
3710}
3711
3712static int fec_set_features(struct net_device *netdev,
3713 netdev_features_t features)
3714{
3715 struct fec_enet_private *fep = netdev_priv(dev: netdev);
3716 netdev_features_t changed = features ^ netdev->features;
3717
3718 if (netif_running(dev: netdev) && changed & NETIF_F_RXCSUM) {
3719 napi_disable(n: &fep->napi);
3720 netif_tx_lock_bh(dev: netdev);
3721 fec_stop(ndev: netdev);
3722 fec_enet_set_netdev_features(netdev, features);
3723 fec_restart(ndev: netdev);
3724 netif_tx_wake_all_queues(dev: netdev);
3725 netif_tx_unlock_bh(dev: netdev);
3726 napi_enable(n: &fep->napi);
3727 } else {
3728 fec_enet_set_netdev_features(netdev, features);
3729 }
3730
3731 return 0;
3732}
3733
3734static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3735{
3736 struct vlan_ethhdr *vhdr;
3737 unsigned short vlan_TCI = 0;
3738
3739 if (skb->protocol == htons(ETH_P_ALL)) {
3740 vhdr = (struct vlan_ethhdr *)(skb->data);
3741 vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3742 }
3743
3744 return vlan_TCI;
3745}
3746
3747static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3748 struct net_device *sb_dev)
3749{
3750 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3751 u16 vlan_tag;
3752
3753 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3754 return netdev_pick_tx(dev: ndev, skb, NULL);
3755
3756 vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3757 if (!vlan_tag)
3758 return vlan_tag;
3759
3760 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3761}
3762
3763static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3764{
3765 struct fec_enet_private *fep = netdev_priv(dev);
3766 bool is_run = netif_running(dev);
3767 struct bpf_prog *old_prog;
3768
3769 switch (bpf->command) {
3770 case XDP_SETUP_PROG:
3771 /* No need to support the SoCs that require to
3772 * do the frame swap because the performance wouldn't be
3773 * better than the skb mode.
3774 */
3775 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3776 return -EOPNOTSUPP;
3777
3778 if (!bpf->prog)
3779 xdp_features_clear_redirect_target(dev);
3780
3781 if (is_run) {
3782 napi_disable(n: &fep->napi);
3783 netif_tx_disable(dev);
3784 }
3785
3786 old_prog = xchg(&fep->xdp_prog, bpf->prog);
3787 if (old_prog)
3788 bpf_prog_put(prog: old_prog);
3789
3790 fec_restart(ndev: dev);
3791
3792 if (is_run) {
3793 napi_enable(n: &fep->napi);
3794 netif_tx_start_all_queues(dev);
3795 }
3796
3797 if (bpf->prog)
3798 xdp_features_set_redirect_target(dev, support_sg: false);
3799
3800 return 0;
3801
3802 case XDP_SETUP_XSK_POOL:
3803 return -EOPNOTSUPP;
3804
3805 default:
3806 return -EOPNOTSUPP;
3807 }
3808}
3809
3810static int
3811fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3812{
3813 if (unlikely(index < 0))
3814 return 0;
3815
3816 return (index % fep->num_tx_queues);
3817}
3818
3819static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3820 struct fec_enet_priv_tx_q *txq,
3821 void *frame, u32 dma_sync_len,
3822 bool ndo_xmit)
3823{
3824 unsigned int index, status, estatus;
3825 struct bufdesc *bdp;
3826 dma_addr_t dma_addr;
3827 int entries_free;
3828 u16 frame_len;
3829
3830 entries_free = fec_enet_get_free_txdesc_num(txq);
3831 if (entries_free < MAX_SKB_FRAGS + 1) {
3832 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3833 return -EBUSY;
3834 }
3835
3836 /* Fill in a Tx ring entry */
3837 bdp = txq->bd.cur;
3838 status = fec16_to_cpu(bdp->cbd_sc);
3839 status &= ~BD_ENET_TX_STATS;
3840
3841 index = fec_enet_get_bd_index(bdp, bd: &txq->bd);
3842
3843 if (ndo_xmit) {
3844 struct xdp_frame *xdpf = frame;
3845
3846 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3847 xdpf->len, DMA_TO_DEVICE);
3848 if (dma_mapping_error(dev: &fep->pdev->dev, dma_addr))
3849 return -ENOMEM;
3850
3851 frame_len = xdpf->len;
3852 txq->tx_buf[index].buf_p = xdpf;
3853 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3854 } else {
3855 struct xdp_buff *xdpb = frame;
3856 struct page *page;
3857
3858 page = virt_to_page(xdpb->data);
3859 dma_addr = page_pool_get_dma_addr(page) +
3860 (xdpb->data - xdpb->data_hard_start);
3861 dma_sync_single_for_device(dev: &fep->pdev->dev, addr: dma_addr,
3862 size: dma_sync_len, dir: DMA_BIDIRECTIONAL);
3863 frame_len = xdpb->data_end - xdpb->data;
3864 txq->tx_buf[index].buf_p = page;
3865 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3866 }
3867
3868 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3869 if (fep->bufdesc_ex)
3870 estatus = BD_ENET_TX_INT;
3871
3872 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3873 bdp->cbd_datlen = cpu_to_fec16(frame_len);
3874
3875 if (fep->bufdesc_ex) {
3876 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3877
3878 if (fep->quirks & FEC_QUIRK_HAS_AVB)
3879 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3880
3881 ebdp->cbd_bdu = 0;
3882 ebdp->cbd_esc = cpu_to_fec32(estatus);
3883 }
3884
3885 /* Make sure the updates to rest of the descriptor are performed before
3886 * transferring ownership.
3887 */
3888 dma_wmb();
3889
3890 /* Send it on its way. Tell FEC it's ready, interrupt when done,
3891 * it's the last BD of the frame, and to put the CRC on the end.
3892 */
3893 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3894 bdp->cbd_sc = cpu_to_fec16(status);
3895
3896 /* If this was the last BD in the ring, start at the beginning again. */
3897 bdp = fec_enet_get_nextdesc(bdp, bd: &txq->bd);
3898
3899 /* Make sure the update to bdp are performed before txq->bd.cur. */
3900 dma_wmb();
3901
3902 txq->bd.cur = bdp;
3903
3904 /* Trigger transmission start */
3905 writel(val: 0, addr: txq->bd.reg_desc_active);
3906
3907 return 0;
3908}
3909
3910static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3911 int cpu, struct xdp_buff *xdp,
3912 u32 dma_sync_len)
3913{
3914 struct fec_enet_priv_tx_q *txq;
3915 struct netdev_queue *nq;
3916 int queue, ret;
3917
3918 queue = fec_enet_xdp_get_tx_queue(fep, index: cpu);
3919 txq = fep->tx_queue[queue];
3920 nq = netdev_get_tx_queue(dev: fep->netdev, index: queue);
3921
3922 __netif_tx_lock(txq: nq, cpu);
3923
3924 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3925 txq_trans_cond_update(txq: nq);
3926 ret = fec_enet_txq_xmit_frame(fep, txq, frame: xdp, dma_sync_len, ndo_xmit: false);
3927
3928 __netif_tx_unlock(txq: nq);
3929
3930 return ret;
3931}
3932
3933static int fec_enet_xdp_xmit(struct net_device *dev,
3934 int num_frames,
3935 struct xdp_frame **frames,
3936 u32 flags)
3937{
3938 struct fec_enet_private *fep = netdev_priv(dev);
3939 struct fec_enet_priv_tx_q *txq;
3940 int cpu = smp_processor_id();
3941 unsigned int sent_frames = 0;
3942 struct netdev_queue *nq;
3943 unsigned int queue;
3944 int i;
3945
3946 queue = fec_enet_xdp_get_tx_queue(fep, index: cpu);
3947 txq = fep->tx_queue[queue];
3948 nq = netdev_get_tx_queue(dev: fep->netdev, index: queue);
3949
3950 __netif_tx_lock(txq: nq, cpu);
3951
3952 /* Avoid tx timeout as XDP shares the queue with kernel stack */
3953 txq_trans_cond_update(txq: nq);
3954 for (i = 0; i < num_frames; i++) {
3955 if (fec_enet_txq_xmit_frame(fep, txq, frame: frames[i], dma_sync_len: 0, ndo_xmit: true) < 0)
3956 break;
3957 sent_frames++;
3958 }
3959
3960 __netif_tx_unlock(txq: nq);
3961
3962 return sent_frames;
3963}
3964
3965static int fec_hwtstamp_get(struct net_device *ndev,
3966 struct kernel_hwtstamp_config *config)
3967{
3968 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3969
3970 if (!netif_running(dev: ndev))
3971 return -EINVAL;
3972
3973 if (!fep->bufdesc_ex)
3974 return -EOPNOTSUPP;
3975
3976 fec_ptp_get(ndev, config);
3977
3978 return 0;
3979}
3980
3981static int fec_hwtstamp_set(struct net_device *ndev,
3982 struct kernel_hwtstamp_config *config,
3983 struct netlink_ext_ack *extack)
3984{
3985 struct fec_enet_private *fep = netdev_priv(dev: ndev);
3986
3987 if (!netif_running(dev: ndev))
3988 return -EINVAL;
3989
3990 if (!fep->bufdesc_ex)
3991 return -EOPNOTSUPP;
3992
3993 return fec_ptp_set(ndev, config, extack);
3994}
3995
3996static const struct net_device_ops fec_netdev_ops = {
3997 .ndo_open = fec_enet_open,
3998 .ndo_stop = fec_enet_close,
3999 .ndo_start_xmit = fec_enet_start_xmit,
4000 .ndo_select_queue = fec_enet_select_queue,
4001 .ndo_set_rx_mode = set_multicast_list,
4002 .ndo_validate_addr = eth_validate_addr,
4003 .ndo_tx_timeout = fec_timeout,
4004 .ndo_set_mac_address = fec_set_mac_address,
4005 .ndo_eth_ioctl = phy_do_ioctl_running,
4006#ifdef CONFIG_NET_POLL_CONTROLLER
4007 .ndo_poll_controller = fec_poll_controller,
4008#endif
4009 .ndo_set_features = fec_set_features,
4010 .ndo_bpf = fec_enet_bpf,
4011 .ndo_xdp_xmit = fec_enet_xdp_xmit,
4012 .ndo_hwtstamp_get = fec_hwtstamp_get,
4013 .ndo_hwtstamp_set = fec_hwtstamp_set,
4014};
4015
4016static const unsigned short offset_des_active_rxq[] = {
4017 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4018};
4019
4020static const unsigned short offset_des_active_txq[] = {
4021 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4022};
4023
4024 /*
4025 * XXX: We need to clean up on failure exits here.
4026 *
4027 */
4028static int fec_enet_init(struct net_device *ndev)
4029{
4030 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4031 struct bufdesc *cbd_base;
4032 dma_addr_t bd_dma;
4033 int bd_size;
4034 unsigned int i;
4035 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4036 sizeof(struct bufdesc);
4037 unsigned dsize_log2 = __fls(word: dsize);
4038 int ret;
4039
4040 WARN_ON(dsize != (1 << dsize_log2));
4041#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4042 fep->rx_align = 0xf;
4043 fep->tx_align = 0xf;
4044#else
4045 fep->rx_align = 0x3;
4046 fep->tx_align = 0x3;
4047#endif
4048 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4049 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4050 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4051 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4052
4053 /* Check mask of the streaming and coherent API */
4054 ret = dma_set_mask_and_coherent(dev: &fep->pdev->dev, DMA_BIT_MASK(32));
4055 if (ret < 0) {
4056 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4057 return ret;
4058 }
4059
4060 ret = fec_enet_alloc_queue(ndev);
4061 if (ret)
4062 return ret;
4063
4064 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4065
4066 /* Allocate memory for buffer descriptors. */
4067 cbd_base = fec_dmam_alloc(dev: &fep->pdev->dev, size: bd_size, handle: &bd_dma,
4068 GFP_KERNEL);
4069 if (!cbd_base) {
4070 ret = -ENOMEM;
4071 goto free_queue_mem;
4072 }
4073
4074 /* Get the Ethernet address */
4075 ret = fec_get_mac(ndev);
4076 if (ret)
4077 goto free_queue_mem;
4078
4079 /* Set receive and transmit descriptor base. */
4080 for (i = 0; i < fep->num_rx_queues; i++) {
4081 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4082 unsigned size = dsize * rxq->bd.ring_size;
4083
4084 rxq->bd.qid = i;
4085 rxq->bd.base = cbd_base;
4086 rxq->bd.cur = cbd_base;
4087 rxq->bd.dma = bd_dma;
4088 rxq->bd.dsize = dsize;
4089 rxq->bd.dsize_log2 = dsize_log2;
4090 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4091 bd_dma += size;
4092 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4093 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4094 }
4095
4096 for (i = 0; i < fep->num_tx_queues; i++) {
4097 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4098 unsigned size = dsize * txq->bd.ring_size;
4099
4100 txq->bd.qid = i;
4101 txq->bd.base = cbd_base;
4102 txq->bd.cur = cbd_base;
4103 txq->bd.dma = bd_dma;
4104 txq->bd.dsize = dsize;
4105 txq->bd.dsize_log2 = dsize_log2;
4106 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4107 bd_dma += size;
4108 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4109 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4110 }
4111
4112
4113 /* The FEC Ethernet specific entries in the device structure */
4114 ndev->watchdog_timeo = TX_TIMEOUT;
4115 ndev->netdev_ops = &fec_netdev_ops;
4116 ndev->ethtool_ops = &fec_enet_ethtool_ops;
4117
4118 writel(FEC_RX_DISABLED_IMASK, addr: fep->hwp + FEC_IMASK);
4119 netif_napi_add(dev: ndev, napi: &fep->napi, poll: fec_enet_rx_napi);
4120
4121 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4122 /* enable hw VLAN support */
4123 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4124
4125 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4126 netif_set_tso_max_segs(dev: ndev, FEC_MAX_TSO_SEGS);
4127
4128 /* enable hw accelerator */
4129 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4130 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4131 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4132 }
4133
4134 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4135 fep->tx_align = 0;
4136 fep->rx_align = 0x3f;
4137 }
4138
4139 ndev->hw_features = ndev->features;
4140
4141 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4142 ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4143 NETDEV_XDP_ACT_REDIRECT;
4144
4145 fec_restart(ndev);
4146
4147 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4148 fec_enet_clear_ethtool_stats(dev: ndev);
4149 else
4150 fec_enet_update_ethtool_stats(dev: ndev);
4151
4152 return 0;
4153
4154free_queue_mem:
4155 fec_enet_free_queue(ndev);
4156 return ret;
4157}
4158
4159#ifdef CONFIG_OF
4160static int fec_reset_phy(struct platform_device *pdev)
4161{
4162 struct gpio_desc *phy_reset;
4163 int msec = 1, phy_post_delay = 0;
4164 struct device_node *np = pdev->dev.of_node;
4165 int err;
4166
4167 if (!np)
4168 return 0;
4169
4170 err = of_property_read_u32(np, propname: "phy-reset-duration", out_value: &msec);
4171 /* A sane reset duration should not be longer than 1s */
4172 if (!err && msec > 1000)
4173 msec = 1;
4174
4175 err = of_property_read_u32(np, propname: "phy-reset-post-delay", out_value: &phy_post_delay);
4176 /* valid reset duration should be less than 1s */
4177 if (!err && phy_post_delay > 1000)
4178 return -EINVAL;
4179
4180 phy_reset = devm_gpiod_get_optional(dev: &pdev->dev, con_id: "phy-reset",
4181 flags: GPIOD_OUT_HIGH);
4182 if (IS_ERR(ptr: phy_reset))
4183 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: phy_reset),
4184 fmt: "failed to get phy-reset-gpios\n");
4185
4186 if (!phy_reset)
4187 return 0;
4188
4189 if (msec > 20)
4190 msleep(msecs: msec);
4191 else
4192 usleep_range(min: msec * 1000, max: msec * 1000 + 1000);
4193
4194 gpiod_set_value_cansleep(desc: phy_reset, value: 0);
4195
4196 if (!phy_post_delay)
4197 return 0;
4198
4199 if (phy_post_delay > 20)
4200 msleep(msecs: phy_post_delay);
4201 else
4202 usleep_range(min: phy_post_delay * 1000,
4203 max: phy_post_delay * 1000 + 1000);
4204
4205 return 0;
4206}
4207#else /* CONFIG_OF */
4208static int fec_reset_phy(struct platform_device *pdev)
4209{
4210 /*
4211 * In case of platform probe, the reset has been done
4212 * by machine code.
4213 */
4214 return 0;
4215}
4216#endif /* CONFIG_OF */
4217
4218static void
4219fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4220{
4221 struct device_node *np = pdev->dev.of_node;
4222
4223 *num_tx = *num_rx = 1;
4224
4225 if (!np || !of_device_is_available(device: np))
4226 return;
4227
4228 /* parse the num of tx and rx queues */
4229 of_property_read_u32(np, propname: "fsl,num-tx-queues", out_value: num_tx);
4230
4231 of_property_read_u32(np, propname: "fsl,num-rx-queues", out_value: num_rx);
4232
4233 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4234 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4235 *num_tx);
4236 *num_tx = 1;
4237 return;
4238 }
4239
4240 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4241 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4242 *num_rx);
4243 *num_rx = 1;
4244 return;
4245 }
4246
4247}
4248
4249static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4250{
4251 int irq_cnt = platform_irq_count(pdev);
4252
4253 if (irq_cnt > FEC_IRQ_NUM)
4254 irq_cnt = FEC_IRQ_NUM; /* last for pps */
4255 else if (irq_cnt == 2)
4256 irq_cnt = 1; /* last for pps */
4257 else if (irq_cnt <= 0)
4258 irq_cnt = 1; /* At least 1 irq is needed */
4259 return irq_cnt;
4260}
4261
4262static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4263{
4264 struct net_device *ndev = platform_get_drvdata(pdev);
4265 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4266
4267 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4268 fep->wake_irq = fep->irq[2];
4269 else
4270 fep->wake_irq = fep->irq[0];
4271}
4272
4273static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4274 struct device_node *np)
4275{
4276 struct device_node *gpr_np;
4277 u32 out_val[3];
4278 int ret = 0;
4279
4280 gpr_np = of_parse_phandle(np, phandle_name: "fsl,stop-mode", index: 0);
4281 if (!gpr_np)
4282 return 0;
4283
4284 ret = of_property_read_u32_array(np, propname: "fsl,stop-mode", out_values: out_val,
4285 ARRAY_SIZE(out_val));
4286 if (ret) {
4287 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4288 goto out;
4289 }
4290
4291 fep->stop_gpr.gpr = syscon_node_to_regmap(np: gpr_np);
4292 if (IS_ERR(ptr: fep->stop_gpr.gpr)) {
4293 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4294 ret = PTR_ERR(ptr: fep->stop_gpr.gpr);
4295 fep->stop_gpr.gpr = NULL;
4296 goto out;
4297 }
4298
4299 fep->stop_gpr.reg = out_val[1];
4300 fep->stop_gpr.bit = out_val[2];
4301
4302out:
4303 of_node_put(node: gpr_np);
4304
4305 return ret;
4306}
4307
4308static int
4309fec_probe(struct platform_device *pdev)
4310{
4311 struct fec_enet_private *fep;
4312 struct fec_platform_data *pdata;
4313 phy_interface_t interface;
4314 struct net_device *ndev;
4315 int i, irq, ret = 0;
4316 static int dev_id;
4317 struct device_node *np = pdev->dev.of_node, *phy_node;
4318 int num_tx_qs;
4319 int num_rx_qs;
4320 char irq_name[8];
4321 int irq_cnt;
4322 const struct fec_devinfo *dev_info;
4323
4324 fec_enet_get_queue_num(pdev, num_tx: &num_tx_qs, num_rx: &num_rx_qs);
4325
4326 /* Init network device */
4327 ndev = alloc_etherdev_mqs(sizeof_priv: sizeof(struct fec_enet_private) +
4328 FEC_STATS_SIZE, txqs: num_tx_qs, rxqs: num_rx_qs);
4329 if (!ndev)
4330 return -ENOMEM;
4331
4332 SET_NETDEV_DEV(ndev, &pdev->dev);
4333
4334 /* setup board info structure */
4335 fep = netdev_priv(dev: ndev);
4336
4337 dev_info = device_get_match_data(dev: &pdev->dev);
4338 if (!dev_info)
4339 dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4340 if (dev_info)
4341 fep->quirks = dev_info->quirks;
4342
4343 fep->netdev = ndev;
4344 fep->num_rx_queues = num_rx_qs;
4345 fep->num_tx_queues = num_tx_qs;
4346
4347#if !defined(CONFIG_M5272)
4348 /* default enable pause frame auto negotiation */
4349 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4350 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4351#endif
4352
4353 /* Select default pin state */
4354 pinctrl_pm_select_default_state(dev: &pdev->dev);
4355
4356 fep->hwp = devm_platform_ioremap_resource(pdev, index: 0);
4357 if (IS_ERR(ptr: fep->hwp)) {
4358 ret = PTR_ERR(ptr: fep->hwp);
4359 goto failed_ioremap;
4360 }
4361
4362 fep->pdev = pdev;
4363 fep->dev_id = dev_id++;
4364
4365 platform_set_drvdata(pdev, data: ndev);
4366
4367 if ((of_machine_is_compatible(compat: "fsl,imx6q") ||
4368 of_machine_is_compatible(compat: "fsl,imx6dl")) &&
4369 !of_property_read_bool(np, propname: "fsl,err006687-workaround-present"))
4370 fep->quirks |= FEC_QUIRK_ERR006687;
4371
4372 ret = fec_enet_ipc_handle_init(fep);
4373 if (ret)
4374 goto failed_ipc_init;
4375
4376 if (of_property_read_bool(np, propname: "fsl,magic-packet"))
4377 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4378
4379 ret = fec_enet_init_stop_mode(fep, np);
4380 if (ret)
4381 goto failed_stop_mode;
4382
4383 phy_node = of_parse_phandle(np, phandle_name: "phy-handle", index: 0);
4384 if (!phy_node && of_phy_is_fixed_link(np)) {
4385 ret = of_phy_register_fixed_link(np);
4386 if (ret < 0) {
4387 dev_err(&pdev->dev,
4388 "broken fixed-link specification\n");
4389 goto failed_phy;
4390 }
4391 phy_node = of_node_get(node: np);
4392 }
4393 fep->phy_node = phy_node;
4394
4395 ret = of_get_phy_mode(np: pdev->dev.of_node, interface: &interface);
4396 if (ret) {
4397 pdata = dev_get_platdata(dev: &pdev->dev);
4398 if (pdata)
4399 fep->phy_interface = pdata->phy;
4400 else
4401 fep->phy_interface = PHY_INTERFACE_MODE_MII;
4402 } else {
4403 fep->phy_interface = interface;
4404 }
4405
4406 ret = fec_enet_parse_rgmii_delay(fep, np);
4407 if (ret)
4408 goto failed_rgmii_delay;
4409
4410 fep->clk_ipg = devm_clk_get(dev: &pdev->dev, id: "ipg");
4411 if (IS_ERR(ptr: fep->clk_ipg)) {
4412 ret = PTR_ERR(ptr: fep->clk_ipg);
4413 goto failed_clk;
4414 }
4415
4416 fep->clk_ahb = devm_clk_get(dev: &pdev->dev, id: "ahb");
4417 if (IS_ERR(ptr: fep->clk_ahb)) {
4418 ret = PTR_ERR(ptr: fep->clk_ahb);
4419 goto failed_clk;
4420 }
4421
4422 fep->itr_clk_rate = clk_get_rate(clk: fep->clk_ahb);
4423
4424 /* enet_out is optional, depends on board */
4425 fep->clk_enet_out = devm_clk_get_optional(dev: &pdev->dev, id: "enet_out");
4426 if (IS_ERR(ptr: fep->clk_enet_out)) {
4427 ret = PTR_ERR(ptr: fep->clk_enet_out);
4428 goto failed_clk;
4429 }
4430
4431 fep->ptp_clk_on = false;
4432 mutex_init(&fep->ptp_clk_mutex);
4433
4434 /* clk_ref is optional, depends on board */
4435 fep->clk_ref = devm_clk_get_optional(dev: &pdev->dev, id: "enet_clk_ref");
4436 if (IS_ERR(ptr: fep->clk_ref)) {
4437 ret = PTR_ERR(ptr: fep->clk_ref);
4438 goto failed_clk;
4439 }
4440 fep->clk_ref_rate = clk_get_rate(clk: fep->clk_ref);
4441
4442 /* clk_2x_txclk is optional, depends on board */
4443 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4444 fep->clk_2x_txclk = devm_clk_get(dev: &pdev->dev, id: "enet_2x_txclk");
4445 if (IS_ERR(ptr: fep->clk_2x_txclk))
4446 fep->clk_2x_txclk = NULL;
4447 }
4448
4449 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4450 fep->clk_ptp = devm_clk_get(dev: &pdev->dev, id: "ptp");
4451 if (IS_ERR(ptr: fep->clk_ptp)) {
4452 fep->clk_ptp = NULL;
4453 fep->bufdesc_ex = false;
4454 }
4455
4456 ret = fec_enet_clk_enable(ndev, enable: true);
4457 if (ret)
4458 goto failed_clk;
4459
4460 ret = clk_prepare_enable(clk: fep->clk_ipg);
4461 if (ret)
4462 goto failed_clk_ipg;
4463 ret = clk_prepare_enable(clk: fep->clk_ahb);
4464 if (ret)
4465 goto failed_clk_ahb;
4466
4467 fep->reg_phy = devm_regulator_get_optional(dev: &pdev->dev, id: "phy");
4468 if (!IS_ERR(ptr: fep->reg_phy)) {
4469 ret = regulator_enable(regulator: fep->reg_phy);
4470 if (ret) {
4471 dev_err(&pdev->dev,
4472 "Failed to enable phy regulator: %d\n", ret);
4473 goto failed_regulator;
4474 }
4475 } else {
4476 if (PTR_ERR(ptr: fep->reg_phy) == -EPROBE_DEFER) {
4477 ret = -EPROBE_DEFER;
4478 goto failed_regulator;
4479 }
4480 fep->reg_phy = NULL;
4481 }
4482
4483 pm_runtime_set_autosuspend_delay(dev: &pdev->dev, FEC_MDIO_PM_TIMEOUT);
4484 pm_runtime_use_autosuspend(dev: &pdev->dev);
4485 pm_runtime_get_noresume(dev: &pdev->dev);
4486 pm_runtime_set_active(dev: &pdev->dev);
4487 pm_runtime_enable(dev: &pdev->dev);
4488
4489 ret = fec_reset_phy(pdev);
4490 if (ret)
4491 goto failed_reset;
4492
4493 irq_cnt = fec_enet_get_irq_cnt(pdev);
4494 if (fep->bufdesc_ex)
4495 fec_ptp_init(pdev, irq_idx: irq_cnt);
4496
4497 ret = fec_enet_init(ndev);
4498 if (ret)
4499 goto failed_init;
4500
4501 for (i = 0; i < irq_cnt; i++) {
4502 snprintf(buf: irq_name, size: sizeof(irq_name), fmt: "int%d", i);
4503 irq = platform_get_irq_byname_optional(dev: pdev, name: irq_name);
4504 if (irq < 0)
4505 irq = platform_get_irq(pdev, i);
4506 if (irq < 0) {
4507 ret = irq;
4508 goto failed_irq;
4509 }
4510 ret = devm_request_irq(dev: &pdev->dev, irq, handler: fec_enet_interrupt,
4511 irqflags: 0, devname: pdev->name, dev_id: ndev);
4512 if (ret)
4513 goto failed_irq;
4514
4515 fep->irq[i] = irq;
4516 }
4517
4518 /* Decide which interrupt line is wakeup capable */
4519 fec_enet_get_wakeup_irq(pdev);
4520
4521 ret = fec_enet_mii_init(pdev);
4522 if (ret)
4523 goto failed_mii_init;
4524
4525 /* Carrier starts down, phylib will bring it up */
4526 netif_carrier_off(dev: ndev);
4527 fec_enet_clk_enable(ndev, enable: false);
4528 pinctrl_pm_select_sleep_state(dev: &pdev->dev);
4529
4530 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4531
4532 ret = register_netdev(dev: ndev);
4533 if (ret)
4534 goto failed_register;
4535
4536 device_init_wakeup(dev: &ndev->dev, enable: fep->wol_flag &
4537 FEC_WOL_HAS_MAGIC_PACKET);
4538
4539 if (fep->bufdesc_ex && fep->ptp_clock)
4540 netdev_info(dev: ndev, format: "registered PHC device %d\n", fep->dev_id);
4541
4542 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4543
4544 pm_runtime_mark_last_busy(dev: &pdev->dev);
4545 pm_runtime_put_autosuspend(dev: &pdev->dev);
4546
4547 return 0;
4548
4549failed_register:
4550 fec_enet_mii_remove(fep);
4551failed_mii_init:
4552failed_irq:
4553failed_init:
4554 fec_ptp_stop(pdev);
4555failed_reset:
4556 pm_runtime_put_noidle(dev: &pdev->dev);
4557 pm_runtime_disable(dev: &pdev->dev);
4558 if (fep->reg_phy)
4559 regulator_disable(regulator: fep->reg_phy);
4560failed_regulator:
4561 clk_disable_unprepare(clk: fep->clk_ahb);
4562failed_clk_ahb:
4563 clk_disable_unprepare(clk: fep->clk_ipg);
4564failed_clk_ipg:
4565 fec_enet_clk_enable(ndev, enable: false);
4566failed_clk:
4567failed_rgmii_delay:
4568 if (of_phy_is_fixed_link(np))
4569 of_phy_deregister_fixed_link(np);
4570 of_node_put(node: phy_node);
4571failed_stop_mode:
4572failed_ipc_init:
4573failed_phy:
4574 dev_id--;
4575failed_ioremap:
4576 free_netdev(dev: ndev);
4577
4578 return ret;
4579}
4580
4581static void
4582fec_drv_remove(struct platform_device *pdev)
4583{
4584 struct net_device *ndev = platform_get_drvdata(pdev);
4585 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4586 struct device_node *np = pdev->dev.of_node;
4587 int ret;
4588
4589 ret = pm_runtime_get_sync(dev: &pdev->dev);
4590 if (ret < 0)
4591 dev_err(&pdev->dev,
4592 "Failed to resume device in remove callback (%pe)\n",
4593 ERR_PTR(ret));
4594
4595 cancel_work_sync(work: &fep->tx_timeout_work);
4596 fec_ptp_stop(pdev);
4597 unregister_netdev(dev: ndev);
4598 fec_enet_mii_remove(fep);
4599 if (fep->reg_phy)
4600 regulator_disable(regulator: fep->reg_phy);
4601
4602 if (of_phy_is_fixed_link(np))
4603 of_phy_deregister_fixed_link(np);
4604 of_node_put(node: fep->phy_node);
4605
4606 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
4607 * disabling them again.
4608 */
4609 if (ret >= 0) {
4610 clk_disable_unprepare(clk: fep->clk_ahb);
4611 clk_disable_unprepare(clk: fep->clk_ipg);
4612 }
4613 pm_runtime_put_noidle(dev: &pdev->dev);
4614 pm_runtime_disable(dev: &pdev->dev);
4615
4616 free_netdev(dev: ndev);
4617}
4618
4619static int __maybe_unused fec_suspend(struct device *dev)
4620{
4621 struct net_device *ndev = dev_get_drvdata(dev);
4622 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4623 int ret;
4624
4625 rtnl_lock();
4626 if (netif_running(dev: ndev)) {
4627 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4628 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4629 phy_stop(phydev: ndev->phydev);
4630 napi_disable(n: &fep->napi);
4631 netif_tx_lock_bh(dev: ndev);
4632 netif_device_detach(dev: ndev);
4633 netif_tx_unlock_bh(dev: ndev);
4634 fec_stop(ndev);
4635 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4636 fec_irqs_disable(ndev);
4637 pinctrl_pm_select_sleep_state(dev: &fep->pdev->dev);
4638 } else {
4639 fec_irqs_disable_except_wakeup(ndev);
4640 if (fep->wake_irq > 0) {
4641 disable_irq(irq: fep->wake_irq);
4642 enable_irq_wake(irq: fep->wake_irq);
4643 }
4644 fec_enet_stop_mode(fep, enabled: true);
4645 }
4646 /* It's safe to disable clocks since interrupts are masked */
4647 fec_enet_clk_enable(ndev, enable: false);
4648
4649 fep->rpm_active = !pm_runtime_status_suspended(dev);
4650 if (fep->rpm_active) {
4651 ret = pm_runtime_force_suspend(dev);
4652 if (ret < 0) {
4653 rtnl_unlock();
4654 return ret;
4655 }
4656 }
4657 }
4658 rtnl_unlock();
4659
4660 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4661 regulator_disable(regulator: fep->reg_phy);
4662
4663 /* SOC supply clock to phy, when clock is disabled, phy link down
4664 * SOC control phy regulator, when regulator is disabled, phy link down
4665 */
4666 if (fep->clk_enet_out || fep->reg_phy)
4667 fep->link = 0;
4668
4669 return 0;
4670}
4671
4672static int __maybe_unused fec_resume(struct device *dev)
4673{
4674 struct net_device *ndev = dev_get_drvdata(dev);
4675 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4676 int ret;
4677 int val;
4678
4679 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4680 ret = regulator_enable(regulator: fep->reg_phy);
4681 if (ret)
4682 return ret;
4683 }
4684
4685 rtnl_lock();
4686 if (netif_running(dev: ndev)) {
4687 if (fep->rpm_active)
4688 pm_runtime_force_resume(dev);
4689
4690 ret = fec_enet_clk_enable(ndev, enable: true);
4691 if (ret) {
4692 rtnl_unlock();
4693 goto failed_clk;
4694 }
4695 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4696 fec_enet_stop_mode(fep, enabled: false);
4697 if (fep->wake_irq) {
4698 disable_irq_wake(irq: fep->wake_irq);
4699 enable_irq(irq: fep->wake_irq);
4700 }
4701
4702 val = readl(addr: fep->hwp + FEC_ECNTRL);
4703 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4704 writel(val, addr: fep->hwp + FEC_ECNTRL);
4705 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4706 } else {
4707 pinctrl_pm_select_default_state(dev: &fep->pdev->dev);
4708 }
4709 fec_restart(ndev);
4710 netif_tx_lock_bh(dev: ndev);
4711 netif_device_attach(dev: ndev);
4712 netif_tx_unlock_bh(dev: ndev);
4713 napi_enable(n: &fep->napi);
4714 phy_init_hw(phydev: ndev->phydev);
4715 phy_start(phydev: ndev->phydev);
4716 }
4717 rtnl_unlock();
4718
4719 return 0;
4720
4721failed_clk:
4722 if (fep->reg_phy)
4723 regulator_disable(regulator: fep->reg_phy);
4724 return ret;
4725}
4726
4727static int __maybe_unused fec_runtime_suspend(struct device *dev)
4728{
4729 struct net_device *ndev = dev_get_drvdata(dev);
4730 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4731
4732 clk_disable_unprepare(clk: fep->clk_ahb);
4733 clk_disable_unprepare(clk: fep->clk_ipg);
4734
4735 return 0;
4736}
4737
4738static int __maybe_unused fec_runtime_resume(struct device *dev)
4739{
4740 struct net_device *ndev = dev_get_drvdata(dev);
4741 struct fec_enet_private *fep = netdev_priv(dev: ndev);
4742 int ret;
4743
4744 ret = clk_prepare_enable(clk: fep->clk_ahb);
4745 if (ret)
4746 return ret;
4747 ret = clk_prepare_enable(clk: fep->clk_ipg);
4748 if (ret)
4749 goto failed_clk_ipg;
4750
4751 return 0;
4752
4753failed_clk_ipg:
4754 clk_disable_unprepare(clk: fep->clk_ahb);
4755 return ret;
4756}
4757
4758static const struct dev_pm_ops fec_pm_ops = {
4759 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4760 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4761};
4762
4763static struct platform_driver fec_driver = {
4764 .driver = {
4765 .name = DRIVER_NAME,
4766 .pm = &fec_pm_ops,
4767 .of_match_table = fec_dt_ids,
4768 .suppress_bind_attrs = true,
4769 },
4770 .id_table = fec_devtype,
4771 .probe = fec_probe,
4772 .remove_new = fec_drv_remove,
4773};
4774
4775module_platform_driver(fec_driver);
4776
4777MODULE_LICENSE("GPL");
4778

source code of linux/drivers/net/ethernet/freescale/fec_main.c