1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2/*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
24
25
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
28*/
29
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/errno.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/interrupt.h>
38#include <linux/pci.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/init.h>
43#include <linux/spinlock.h>
44#include <linux/ethtool.h>
45#include <linux/delay.h>
46#include <linux/rtnetlink.h>
47#include <linux/mii.h>
48#include <linux/crc32.h>
49#include <linux/bitops.h>
50#include <linux/prefetch.h>
51#include <asm/processor.h> /* Processor type for cache alignment. */
52#include <asm/io.h>
53#include <asm/irq.h>
54#include <linux/uaccess.h>
55
56#define DRV_NAME "natsemi"
57#define DRV_VERSION "2.1"
58#define DRV_RELDATE "Sept 11, 2006"
59
60#define RX_OFFSET 2
61
62/* Updated to recommendations in pci-skeleton v2.03. */
63
64/* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67#define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72static int debug = -1;
73
74static int mtu;
75
76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78static const int multicast_filter_limit = 100;
79
80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82static int rx_copybreak;
83
84static int dspcfg_workaround = 1;
85
86/* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
90*/
91#define MAX_UNITS 8 /* More are supported, limit only on options */
92static int options[MAX_UNITS];
93static int full_duplex[MAX_UNITS];
94
95/* Operational parameters that are set at compile time. */
96
97/* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102#define TX_RING_SIZE 16
103#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104#define RX_RING_SIZE 32
105
106/* Operational parameters that usually are not changed. */
107/* Time in jiffies before concluding the transmitter is hung. */
108#define TX_TIMEOUT (2*HZ)
109
110#define NATSEMI_HW_TIMEOUT 400
111#define NATSEMI_TIMER_FREQ 5*HZ
112#define NATSEMI_PG0_NREGS 64
113#define NATSEMI_RFDR_NREGS 8
114#define NATSEMI_PG1_NREGS 4
115#define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117#define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118#define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
119
120/* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124#define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125#define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126#define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127#define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
128
129/* These identify the driver base version and may not be removed. */
130static const char version[] =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 " originally by Donald Becker <becker@scyld.com>\n"
134 " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135
136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138MODULE_LICENSE("GPL");
139
140module_param(mtu, int, 0);
141module_param(debug, int, 0);
142module_param(rx_copybreak, int, 0);
143module_param(dspcfg_workaround, int, 0);
144module_param_array(options, int, NULL, 0);
145module_param_array(full_duplex, int, NULL, 0);
146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147MODULE_PARM_DESC(debug, "DP8381x default debug level");
148MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154
155/*
156 Theory of Operation
157
158I. Board Compatibility
159
160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161It also works with other chips in the DP83810 series.
162
163II. Board-specific settings
164
165This driver requires the PCI interrupt line to be valid.
166It honors the EEPROM-set values.
167
168III. Driver operation
169
170IIIa. Ring buffers
171
172This driver uses two statically allocated fixed-size descriptor lists
173formed into rings by a branch from the final descriptor to the beginning of
174the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175The NatSemi design uses a 'next descriptor' pointer that the driver forms
176into a list.
177
178IIIb/c. Transmit/Receive Structure
179
180This driver uses a zero-copy receive and transmit scheme.
181The driver allocates full frame size skbuffs for the Rx ring buffers at
182open() time and passes the skb->data field to the chip as receive data
183buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184a fresh skbuff is allocated and the frame is copied to the new skbuff.
185When the incoming frame is larger, the skbuff is passed directly up the
186protocol stack. Buffers consumed this way are replaced by newly allocated
187skbuffs in a later phase of receives.
188
189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190using a full-sized skbuff for small frames vs. the copying costs of larger
191frames. New boards are typically used in generously configured machines
192and the underfilled buffers have negligible impact compared to the benefit of
193a single allocation size, so the default value of zero results in never
194copying packets. When copying is done, the cost is usually mitigated by using
195a combined copy/checksum routine. Copying also preloads the cache, which is
196most useful with small frames.
197
198A subtle aspect of the operation is that unaligned buffers are not permitted
199by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200longword aligned for further processing. On copies frames are put into the
201skbuff at an offset of "+2", 16-byte aligning the IP header.
202
203IIId. Synchronization
204
205Most operations are synchronized on the np->lock irq spinlock, except the
206receive and transmit paths which are synchronised using a combination of
207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208
209IVb. References
210
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213Datasheet is available from:
214http://www.national.com/pf/DP/DP83815.html
215
216IVc. Errata
217
218None characterised.
219*/
220
221
222
223/*
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227 */
228#define PHYID_AM79C874 0x0022561b
229
230enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
234};
235
236enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
238};
239
240/* array of board data directly indexed by pci_tbl[x].driver_data */
241static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245} natsemi_pci_info[] = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
248};
249
250static const struct pci_device_id natsemi_pci_tbl[] = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { } /* terminate list */
254};
255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256
257/* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
261*/
262enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
296
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
304};
305/* the values for the 'magic' registers above (PGSEL=1) */
306#define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307#define TSTDAT_VAL 0x0
308#define DSPCFG_VAL 0x5040
309#define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310#define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311#define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312#define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
313
314/* misc PCI space registers */
315enum pci_register_offsets {
316 PCIPM = 0x44,
317};
318
319enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
327};
328
329enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
340};
341
342enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
350};
351
352enum PCIBusCfg_bits {
353 EepromReload = 0x4,
354};
355
356/* Bits in the interrupt status/mask registers. */
357enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
379};
380
381/*
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
389 */
390#define DEFAULT_INTR 0x00f1cd65
391
392enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
409};
410
411/*
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
420 *
421 */
422#define TX_FLTH_VAL ((512/32) << 8)
423#define TX_DRTH_VAL_START (64/32)
424#define TX_DRTH_VAL_INC 2
425#define TX_DRTH_VAL_LIMIT (1472/32)
426
427enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
442};
443#define RX_DRTH_VAL (128/8)
444
445enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
448};
449
450enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
474};
475
476enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
484};
485
486enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
491};
492
493enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
495};
496
497enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
499};
500
501#define PHY_ADDR_NONE 32
502#define PHY_ADDR_INTERNAL 1
503
504/* values we might find in the silicon revision register */
505#define SRR_DP83815_C 0x0302
506#define SRR_DP83815_D 0x0403
507#define SRR_DP83816_A4 0x0504
508#define SRR_DP83816_A5 0x0505
509
510/* The Rx and Tx buffer descriptors. */
511/* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513struct netdev_desc {
514 __le32 next_desc;
515 __le32 cmd_status;
516 __le32 addr;
517 __le32 software_use;
518};
519
520/* Bits in network_desc.status */
521enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
525
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
536};
537
538struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 void __iomem *ioaddr;
551 struct napi_struct napi;
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
563 /* Interrupt status */
564 u32 intr_status;
565 /* Do not touch the nic registers */
566 int hands_off;
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
584 int dspcfg_workaround;
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
594 /* EEPROM data */
595 int eeprom_size;
596};
597
598static void move_int_phy(struct net_device *dev, int addr);
599static int eeprom_read(void __iomem *ioaddr, int location);
600static int mdio_read(struct net_device *dev, int reg);
601static void mdio_write(struct net_device *dev, int reg, u16 data);
602static void init_phy_fixup(struct net_device *dev);
603static int miiport_read(struct net_device *dev, int phy_id, int reg);
604static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605static int find_mii(struct net_device *dev);
606static void natsemi_reset(struct net_device *dev);
607static void natsemi_reload_eeprom(struct net_device *dev);
608static void natsemi_stop_rxtx(struct net_device *dev);
609static int netdev_open(struct net_device *dev);
610static void do_cable_magic(struct net_device *dev);
611static void undo_cable_magic(struct net_device *dev);
612static void check_link(struct net_device *dev);
613static void netdev_timer(struct timer_list *t);
614static void dump_ring(struct net_device *dev);
615static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
616static int alloc_ring(struct net_device *dev);
617static void refill_rx(struct net_device *dev);
618static void init_ring(struct net_device *dev);
619static void drain_tx(struct net_device *dev);
620static void drain_ring(struct net_device *dev);
621static void free_ring(struct net_device *dev);
622static void reinit_ring(struct net_device *dev);
623static void init_registers(struct net_device *dev);
624static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625static irqreturn_t intr_handler(int irq, void *dev_instance);
626static void netdev_error(struct net_device *dev, int intr_status);
627static int natsemi_poll(struct napi_struct *napi, int budget);
628static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629static void netdev_tx_done(struct net_device *dev);
630static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631#ifdef CONFIG_NET_POLL_CONTROLLER
632static void natsemi_poll_controller(struct net_device *dev);
633#endif
634static void __set_rx_mode(struct net_device *dev);
635static void set_rx_mode(struct net_device *dev);
636static void __get_stats(struct net_device *dev);
637static struct net_device_stats *get_stats(struct net_device *dev);
638static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639static int netdev_set_wol(struct net_device *dev, u32 newval);
640static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642static int netdev_get_sopass(struct net_device *dev, u8 *data);
643static int netdev_get_ecmd(struct net_device *dev,
644 struct ethtool_link_ksettings *ecmd);
645static int netdev_set_ecmd(struct net_device *dev,
646 const struct ethtool_link_ksettings *ecmd);
647static void enable_wol_mode(struct net_device *dev, int enable_intr);
648static int netdev_close(struct net_device *dev);
649static int netdev_get_regs(struct net_device *dev, u8 *buf);
650static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651static const struct ethtool_ops ethtool_ops;
652
653#define NATSEMI_ATTR(_name) \
654static ssize_t natsemi_show_##_name(struct device *dev, \
655 struct device_attribute *attr, char *buf); \
656 static ssize_t natsemi_set_##_name(struct device *dev, \
657 struct device_attribute *attr, \
658 const char *buf, size_t count); \
659 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660
661#define NATSEMI_CREATE_FILE(_dev, _name) \
662 device_create_file(&_dev->dev, &dev_attr_##_name)
663#define NATSEMI_REMOVE_FILE(_dev, _name) \
664 device_remove_file(&_dev->dev, &dev_attr_##_name)
665
666NATSEMI_ATTR(dspcfg_workaround);
667
668static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669 struct device_attribute *attr,
670 char *buf)
671{
672 struct netdev_private *np = netdev_priv(to_net_dev(dev));
673
674 return sprintf(buf, fmt: "%s\n", np->dspcfg_workaround ? "on" : "off");
675}
676
677static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678 struct device_attribute *attr,
679 const char *buf, size_t count)
680{
681 struct netdev_private *np = netdev_priv(to_net_dev(dev));
682 int new_setting;
683 unsigned long flags;
684
685 /* Find out the new setting */
686 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687 new_setting = 1;
688 else if (!strncmp("off", buf, count - 1) ||
689 !strncmp("0", buf, count - 1))
690 new_setting = 0;
691 else
692 return count;
693
694 spin_lock_irqsave(&np->lock, flags);
695
696 np->dspcfg_workaround = new_setting;
697
698 spin_unlock_irqrestore(lock: &np->lock, flags);
699
700 return count;
701}
702
703static inline void __iomem *ns_ioaddr(struct net_device *dev)
704{
705 struct netdev_private *np = netdev_priv(dev);
706
707 return np->ioaddr;
708}
709
710static inline void natsemi_irq_enable(struct net_device *dev)
711{
712 writel(val: 1, addr: ns_ioaddr(dev) + IntrEnable);
713 readl(addr: ns_ioaddr(dev) + IntrEnable);
714}
715
716static inline void natsemi_irq_disable(struct net_device *dev)
717{
718 writel(val: 0, addr: ns_ioaddr(dev) + IntrEnable);
719 readl(addr: ns_ioaddr(dev) + IntrEnable);
720}
721
722static void move_int_phy(struct net_device *dev, int addr)
723{
724 struct netdev_private *np = netdev_priv(dev);
725 void __iomem *ioaddr = ns_ioaddr(dev);
726 int target = 31;
727
728 /*
729 * The internal phy is visible on the external mii bus. Therefore we must
730 * move it away before we can send commands to an external phy.
731 * There are two addresses we must avoid:
732 * - the address on the external phy that is used for transmission.
733 * - the address that we want to access. User space can access phys
734 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735 * phy that is used for transmission.
736 */
737
738 if (target == addr)
739 target--;
740 if (target == np->phy_addr_external)
741 target--;
742 writew(val: target, addr: ioaddr + PhyCtrl);
743 readw(addr: ioaddr + PhyCtrl);
744 udelay(1);
745}
746
747static void natsemi_init_media(struct net_device *dev)
748{
749 struct netdev_private *np = netdev_priv(dev);
750 u32 tmp;
751
752 if (np->ignore_phy)
753 netif_carrier_on(dev);
754 else
755 netif_carrier_off(dev);
756
757 /* get the initial settings from hardware */
758 tmp = mdio_read(dev, MII_BMCR);
759 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
760 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
761 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762 np->advertising= mdio_read(dev, MII_ADVERTISE);
763
764 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765 netif_msg_probe(np)) {
766 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767 "10%s %s duplex.\n",
768 pci_name(np->pci_dev),
769 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770 "enabled, advertise" : "disabled, force",
771 (np->advertising &
772 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773 "0" : "",
774 (np->advertising &
775 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776 "full" : "half");
777 }
778 if (netif_msg_probe(np))
779 printk(KERN_INFO
780 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782 np->advertising);
783
784}
785
786static const struct net_device_ops natsemi_netdev_ops = {
787 .ndo_open = netdev_open,
788 .ndo_stop = netdev_close,
789 .ndo_start_xmit = start_tx,
790 .ndo_get_stats = get_stats,
791 .ndo_set_rx_mode = set_rx_mode,
792 .ndo_change_mtu = natsemi_change_mtu,
793 .ndo_eth_ioctl = netdev_ioctl,
794 .ndo_tx_timeout = ns_tx_timeout,
795 .ndo_set_mac_address = eth_mac_addr,
796 .ndo_validate_addr = eth_validate_addr,
797#ifdef CONFIG_NET_POLL_CONTROLLER
798 .ndo_poll_controller = natsemi_poll_controller,
799#endif
800};
801
802static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803{
804 struct net_device *dev;
805 struct netdev_private *np;
806 int i, option, irq, chip_idx = ent->driver_data;
807 static int find_cnt = -1;
808 resource_size_t iostart;
809 unsigned long iosize;
810 void __iomem *ioaddr;
811 const int pcibar = 1; /* PCI base address register */
812 u8 addr[ETH_ALEN];
813 int prev_eedata;
814 u32 tmp;
815
816/* when built into the kernel, we only print version if device is found */
817#ifndef MODULE
818 static int printed_version;
819 if (!printed_version++)
820 printk(version);
821#endif
822
823 i = pcim_enable_device(pdev);
824 if (i) return i;
825
826 /* natsemi has a non-standard PM control register
827 * in PCI config space. Some boards apparently need
828 * to be brought to D0 in this manner.
829 */
830 pci_read_config_dword(dev: pdev, where: PCIPM, val: &tmp);
831 if (tmp & PCI_PM_CTRL_STATE_MASK) {
832 /* D0 state, disable PME assertion */
833 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
834 pci_write_config_dword(dev: pdev, where: PCIPM, val: newtmp);
835 }
836
837 find_cnt++;
838 iostart = pci_resource_start(pdev, pcibar);
839 iosize = pci_resource_len(pdev, pcibar);
840 irq = pdev->irq;
841
842 pci_set_master(dev: pdev);
843
844 dev = alloc_etherdev(sizeof (struct netdev_private));
845 if (!dev)
846 return -ENOMEM;
847 SET_NETDEV_DEV(dev, &pdev->dev);
848
849 i = pci_request_regions(pdev, DRV_NAME);
850 if (i)
851 goto err_pci_request_regions;
852
853 ioaddr = ioremap(offset: iostart, size: iosize);
854 if (!ioaddr) {
855 i = -ENOMEM;
856 goto err_pci_request_regions;
857 }
858
859 /* Work around the dropped serial bit. */
860 prev_eedata = eeprom_read(ioaddr, location: 6);
861 for (i = 0; i < 3; i++) {
862 int eedata = eeprom_read(ioaddr, location: i + 7);
863 addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
864 addr[i*2+1] = eedata >> 7;
865 prev_eedata = eedata;
866 }
867 eth_hw_addr_set(dev, addr);
868
869 np = netdev_priv(dev);
870 np->ioaddr = ioaddr;
871
872 netif_napi_add(dev, napi: &np->napi, poll: natsemi_poll);
873 np->dev = dev;
874
875 np->pci_dev = pdev;
876 pci_set_drvdata(pdev, data: dev);
877 np->iosize = iosize;
878 spin_lock_init(&np->lock);
879 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
880 np->hands_off = 0;
881 np->intr_status = 0;
882 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
883 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
884 np->ignore_phy = 1;
885 else
886 np->ignore_phy = 0;
887 np->dspcfg_workaround = dspcfg_workaround;
888
889 /* Initial port:
890 * - If configured to ignore the PHY set up for external.
891 * - If the nic was configured to use an external phy and if find_mii
892 * finds a phy: use external port, first phy that replies.
893 * - Otherwise: internal port.
894 * Note that the phy address for the internal phy doesn't matter:
895 * The address would be used to access a phy over the mii bus, but
896 * the internal phy is accessed through mapped registers.
897 */
898 if (np->ignore_phy || readl(addr: ioaddr + ChipConfig) & CfgExtPhy)
899 dev->if_port = PORT_MII;
900 else
901 dev->if_port = PORT_TP;
902 /* Reset the chip to erase previous misconfiguration. */
903 natsemi_reload_eeprom(dev);
904 natsemi_reset(dev);
905
906 if (dev->if_port != PORT_TP) {
907 np->phy_addr_external = find_mii(dev);
908 /* If we're ignoring the PHY it doesn't matter if we can't
909 * find one. */
910 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
911 dev->if_port = PORT_TP;
912 np->phy_addr_external = PHY_ADDR_INTERNAL;
913 }
914 } else {
915 np->phy_addr_external = PHY_ADDR_INTERNAL;
916 }
917
918 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
919 /* The lower four bits are the media type. */
920 if (option) {
921 if (option & 0x200)
922 np->full_duplex = 1;
923 if (option & 15)
924 printk(KERN_INFO
925 "natsemi %s: ignoring user supplied media type %d",
926 pci_name(np->pci_dev), option & 15);
927 }
928 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
929 np->full_duplex = 1;
930
931 dev->netdev_ops = &natsemi_netdev_ops;
932 dev->watchdog_timeo = TX_TIMEOUT;
933
934 dev->ethtool_ops = &ethtool_ops;
935
936 /* MTU range: 64 - 2024 */
937 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
938 dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
939
940 if (mtu)
941 dev->mtu = mtu;
942
943 natsemi_init_media(dev);
944
945 /* save the silicon revision for later querying */
946 np->srr = readl(addr: ioaddr + SiliconRev);
947 if (netif_msg_hw(np))
948 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
949 pci_name(np->pci_dev), np->srr);
950
951 i = register_netdev(dev);
952 if (i)
953 goto err_register_netdev;
954 i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
955 if (i)
956 goto err_create_file;
957
958 if (netif_msg_drv(np)) {
959 printk(KERN_INFO "natsemi %s: %s at %#08llx "
960 "(%s), %pM, IRQ %d",
961 dev->name, natsemi_pci_info[chip_idx].name,
962 (unsigned long long)iostart, pci_name(np->pci_dev),
963 dev->dev_addr, irq);
964 if (dev->if_port == PORT_TP)
965 printk(", port TP.\n");
966 else if (np->ignore_phy)
967 printk(", port MII, ignoring PHY\n");
968 else
969 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
970 }
971 return 0;
972
973 err_create_file:
974 unregister_netdev(dev);
975
976 err_register_netdev:
977 iounmap(addr: ioaddr);
978
979 err_pci_request_regions:
980 free_netdev(dev);
981 return i;
982}
983
984
985/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
986 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
987
988/* Delay between EEPROM clock transitions.
989 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
990 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
991 made udelay() unreliable.
992*/
993#define eeprom_delay(ee_addr) readl(ee_addr)
994
995#define EE_Write0 (EE_ChipSelect)
996#define EE_Write1 (EE_ChipSelect | EE_DataIn)
997
998/* The EEPROM commands include the alway-set leading bit. */
999enum EEPROM_Cmds {
1000 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001};
1002
1003static int eeprom_read(void __iomem *addr, int location)
1004{
1005 int i;
1006 int retval = 0;
1007 void __iomem *ee_addr = addr + EECtrl;
1008 int read_cmd = location | EE_ReadCmd;
1009
1010 writel(EE_Write0, addr: ee_addr);
1011
1012 /* Shift the read command bits out. */
1013 for (i = 10; i >= 0; i--) {
1014 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015 writel(val: dataval, addr: ee_addr);
1016 eeprom_delay(ee_addr);
1017 writel(val: dataval | EE_ShiftClk, addr: ee_addr);
1018 eeprom_delay(ee_addr);
1019 }
1020 writel(val: EE_ChipSelect, addr: ee_addr);
1021 eeprom_delay(ee_addr);
1022
1023 for (i = 0; i < 16; i++) {
1024 writel(val: EE_ChipSelect | EE_ShiftClk, addr: ee_addr);
1025 eeprom_delay(ee_addr);
1026 retval |= (readl(addr: ee_addr) & EE_DataOut) ? 1 << i : 0;
1027 writel(val: EE_ChipSelect, addr: ee_addr);
1028 eeprom_delay(ee_addr);
1029 }
1030
1031 /* Terminate the EEPROM access. */
1032 writel(EE_Write0, addr: ee_addr);
1033 writel(val: 0, addr: ee_addr);
1034 return retval;
1035}
1036
1037/* MII transceiver control section.
1038 * The 83815 series has an internal transceiver, and we present the
1039 * internal management registers as if they were MII connected.
1040 * External Phy registers are referenced through the MII interface.
1041 */
1042
1043/* clock transitions >= 20ns (25MHz)
1044 * One readl should be good to PCI @ 100MHz
1045 */
1046#define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1047
1048static int mii_getbit (struct net_device *dev)
1049{
1050 int data;
1051 void __iomem *ioaddr = ns_ioaddr(dev);
1052
1053 writel(val: MII_ShiftClk, addr: ioaddr + EECtrl);
1054 data = readl(addr: ioaddr + EECtrl);
1055 writel(val: 0, addr: ioaddr + EECtrl);
1056 mii_delay(ioaddr);
1057 return (data & MII_Data)? 1 : 0;
1058}
1059
1060static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061{
1062 u32 i;
1063 void __iomem *ioaddr = ns_ioaddr(dev);
1064
1065 for (i = (1 << (len-1)); i; i >>= 1)
1066 {
1067 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068 writel(val: mdio_val, addr: ioaddr + EECtrl);
1069 mii_delay(ioaddr);
1070 writel(val: mdio_val | MII_ShiftClk, addr: ioaddr + EECtrl);
1071 mii_delay(ioaddr);
1072 }
1073 writel(val: 0, addr: ioaddr + EECtrl);
1074 mii_delay(ioaddr);
1075}
1076
1077static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078{
1079 u32 cmd;
1080 int i;
1081 u32 retval = 0;
1082
1083 /* Ensure sync */
1084 mii_send_bits (dev, data: 0xffffffff, len: 32);
1085 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086 /* ST,OP = 0110'b for read operation */
1087 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088 mii_send_bits (dev, data: cmd, len: 14);
1089 /* Turnaround */
1090 if (mii_getbit (dev))
1091 return 0;
1092 /* Read data */
1093 for (i = 0; i < 16; i++) {
1094 retval <<= 1;
1095 retval |= mii_getbit (dev);
1096 }
1097 /* End cycle */
1098 mii_getbit (dev);
1099 return retval;
1100}
1101
1102static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103{
1104 u32 cmd;
1105
1106 /* Ensure sync */
1107 mii_send_bits (dev, data: 0xffffffff, len: 32);
1108 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111 mii_send_bits (dev, data: cmd, len: 32);
1112 /* End cycle */
1113 mii_getbit (dev);
1114}
1115
1116static int mdio_read(struct net_device *dev, int reg)
1117{
1118 struct netdev_private *np = netdev_priv(dev);
1119 void __iomem *ioaddr = ns_ioaddr(dev);
1120
1121 /* The 83815 series has two ports:
1122 * - an internal transceiver
1123 * - an external mii bus
1124 */
1125 if (dev->if_port == PORT_TP)
1126 return readw(addr: ioaddr+BasicControl+(reg<<2));
1127 else
1128 return miiport_read(dev, phy_id: np->phy_addr_external, reg);
1129}
1130
1131static void mdio_write(struct net_device *dev, int reg, u16 data)
1132{
1133 struct netdev_private *np = netdev_priv(dev);
1134 void __iomem *ioaddr = ns_ioaddr(dev);
1135
1136 /* The 83815 series has an internal transceiver; handle separately */
1137 if (dev->if_port == PORT_TP)
1138 writew(val: data, addr: ioaddr+BasicControl+(reg<<2));
1139 else
1140 miiport_write(dev, phy_id: np->phy_addr_external, reg, data);
1141}
1142
1143static void init_phy_fixup(struct net_device *dev)
1144{
1145 struct netdev_private *np = netdev_priv(dev);
1146 void __iomem *ioaddr = ns_ioaddr(dev);
1147 int i;
1148 u32 cfg;
1149 u16 tmp;
1150
1151 /* restore stuff lost when power was out */
1152 tmp = mdio_read(dev, MII_BMCR);
1153 if (np->autoneg == AUTONEG_ENABLE) {
1154 /* renegotiate if something changed */
1155 if ((tmp & BMCR_ANENABLE) == 0 ||
1156 np->advertising != mdio_read(dev, MII_ADVERTISE))
1157 {
1158 /* turn on autonegotiation and force negotiation */
1159 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160 mdio_write(dev, MII_ADVERTISE, data: np->advertising);
1161 }
1162 } else {
1163 /* turn off auto negotiation, set speed and duplexity */
1164 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165 if (np->speed == SPEED_100)
1166 tmp |= BMCR_SPEED100;
1167 if (np->duplex == DUPLEX_FULL)
1168 tmp |= BMCR_FULLDPLX;
1169 /*
1170 * Note: there is no good way to inform the link partner
1171 * that our capabilities changed. The user has to unplug
1172 * and replug the network cable after some changes, e.g.
1173 * after switching from 10HD, autoneg off to 100 HD,
1174 * autoneg off.
1175 */
1176 }
1177 mdio_write(dev, MII_BMCR, data: tmp);
1178 readl(addr: ioaddr + ChipConfig);
1179 udelay(1);
1180
1181 /* find out what phy this is */
1182 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183 + mdio_read(dev, MII_PHYSID2);
1184
1185 /* handle external phys here */
1186 switch (np->mii) {
1187 case PHYID_AM79C874:
1188 /* phy specific configuration for fibre/tp operation */
1189 tmp = mdio_read(dev, reg: MII_MCTRL);
1190 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191 if (dev->if_port == PORT_FIBRE)
1192 tmp |= MII_FX_SEL;
1193 else
1194 tmp |= MII_EN_SCRM;
1195 mdio_write(dev, reg: MII_MCTRL, data: tmp);
1196 break;
1197 default:
1198 break;
1199 }
1200 cfg = readl(addr: ioaddr + ChipConfig);
1201 if (cfg & CfgExtPhy)
1202 return;
1203
1204 /* On page 78 of the spec, they recommend some settings for "optimum
1205 performance" to be done in sequence. These settings optimize some
1206 of the 100Mbit autodetection circuitry. They say we only want to
1207 do this for rev C of the chip, but engineers at NSC (Bradley
1208 Kennedy) recommends always setting them. If you don't, you get
1209 errors on some autonegotiations that make the device unusable.
1210
1211 It seems that the DSP needs a few usec to reinitialize after
1212 the start of the phy. Just retry writing these values until they
1213 stick.
1214 */
1215 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216
1217 int dspcfg;
1218 writew(val: 1, addr: ioaddr + PGSEL);
1219 writew(PMDCSR_VAL, addr: ioaddr + PMDCSR);
1220 writew(TSTDAT_VAL, addr: ioaddr + TSTDAT);
1221 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222 DSPCFG_VAL : (DSPCFG_COEF | readw(addr: ioaddr + DSPCFG));
1223 writew(val: np->dspcfg, addr: ioaddr + DSPCFG);
1224 writew(SDCFG_VAL, addr: ioaddr + SDCFG);
1225 writew(val: 0, addr: ioaddr + PGSEL);
1226 readl(addr: ioaddr + ChipConfig);
1227 udelay(10);
1228
1229 writew(val: 1, addr: ioaddr + PGSEL);
1230 dspcfg = readw(addr: ioaddr + DSPCFG);
1231 writew(val: 0, addr: ioaddr + PGSEL);
1232 if (np->dspcfg == dspcfg)
1233 break;
1234 }
1235
1236 if (netif_msg_link(np)) {
1237 if (i==NATSEMI_HW_TIMEOUT) {
1238 printk(KERN_INFO
1239 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1240 dev->name, i*10);
1241 } else {
1242 printk(KERN_INFO
1243 "%s: DSPCFG accepted after %d usec.\n",
1244 dev->name, i*10);
1245 }
1246 }
1247 /*
1248 * Enable PHY Specific event based interrupts. Link state change
1249 * and Auto-Negotiation Completion are among the affected.
1250 * Read the intr status to clear it (needed for wake events).
1251 */
1252 readw(addr: ioaddr + MIntrStatus);
1253 writew(val: MICRIntEn, addr: ioaddr + MIntrCtrl);
1254}
1255
1256static int switch_port_external(struct net_device *dev)
1257{
1258 struct netdev_private *np = netdev_priv(dev);
1259 void __iomem *ioaddr = ns_ioaddr(dev);
1260 u32 cfg;
1261
1262 cfg = readl(addr: ioaddr + ChipConfig);
1263 if (cfg & CfgExtPhy)
1264 return 0;
1265
1266 if (netif_msg_link(np)) {
1267 printk(KERN_INFO "%s: switching to external transceiver.\n",
1268 dev->name);
1269 }
1270
1271 /* 1) switch back to external phy */
1272 writel(val: cfg | (CfgExtPhy | CfgPhyDis), addr: ioaddr + ChipConfig);
1273 readl(addr: ioaddr + ChipConfig);
1274 udelay(1);
1275
1276 /* 2) reset the external phy: */
1277 /* resetting the external PHY has been known to cause a hub supplying
1278 * power over Ethernet to kill the power. We don't want to kill
1279 * power to this computer, so we avoid resetting the phy.
1280 */
1281
1282 /* 3) reinit the phy fixup, it got lost during power down. */
1283 move_int_phy(dev, addr: np->phy_addr_external);
1284 init_phy_fixup(dev);
1285
1286 return 1;
1287}
1288
1289static int switch_port_internal(struct net_device *dev)
1290{
1291 struct netdev_private *np = netdev_priv(dev);
1292 void __iomem *ioaddr = ns_ioaddr(dev);
1293 int i;
1294 u32 cfg;
1295 u16 bmcr;
1296
1297 cfg = readl(addr: ioaddr + ChipConfig);
1298 if (!(cfg &CfgExtPhy))
1299 return 0;
1300
1301 if (netif_msg_link(np)) {
1302 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303 dev->name);
1304 }
1305 /* 1) switch back to internal phy: */
1306 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307 writel(val: cfg, addr: ioaddr + ChipConfig);
1308 readl(addr: ioaddr + ChipConfig);
1309 udelay(1);
1310
1311 /* 2) reset the internal phy: */
1312 bmcr = readw(addr: ioaddr+BasicControl+(MII_BMCR<<2));
1313 writel(val: bmcr | BMCR_RESET, addr: ioaddr+BasicControl+(MII_BMCR<<2));
1314 readl(addr: ioaddr + ChipConfig);
1315 udelay(10);
1316 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317 bmcr = readw(addr: ioaddr+BasicControl+(MII_BMCR<<2));
1318 if (!(bmcr & BMCR_RESET))
1319 break;
1320 udelay(10);
1321 }
1322 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323 printk(KERN_INFO
1324 "%s: phy reset did not complete in %d usec.\n",
1325 dev->name, i*10);
1326 }
1327 /* 3) reinit the phy fixup, it got lost during power down. */
1328 init_phy_fixup(dev);
1329
1330 return 1;
1331}
1332
1333/* Scan for a PHY on the external mii bus.
1334 * There are two tricky points:
1335 * - Do not scan while the internal phy is enabled. The internal phy will
1336 * crash: e.g. reads from the DSPCFG register will return odd values and
1337 * the nasty random phy reset code will reset the nic every few seconds.
1338 * - The internal phy must be moved around, an external phy could
1339 * have the same address as the internal phy.
1340 */
1341static int find_mii(struct net_device *dev)
1342{
1343 struct netdev_private *np = netdev_priv(dev);
1344 int tmp;
1345 int i;
1346 int did_switch;
1347
1348 /* Switch to external phy */
1349 did_switch = switch_port_external(dev);
1350
1351 /* Scan the possible phy addresses:
1352 *
1353 * PHY address 0 means that the phy is in isolate mode. Not yet
1354 * supported due to lack of test hardware. User space should
1355 * handle it through ethtool.
1356 */
1357 for (i = 1; i <= 31; i++) {
1358 move_int_phy(dev, addr: i);
1359 tmp = miiport_read(dev, phy_id: i, MII_BMSR);
1360 if (tmp != 0xffff && tmp != 0x0000) {
1361 /* found something! */
1362 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363 + mdio_read(dev, MII_PHYSID2);
1364 if (netif_msg_probe(np)) {
1365 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366 pci_name(np->pci_dev), np->mii, i);
1367 }
1368 break;
1369 }
1370 }
1371 /* And switch back to internal phy: */
1372 if (did_switch)
1373 switch_port_internal(dev);
1374 return i;
1375}
1376
1377/* CFG bits [13:16] [18:23] */
1378#define CFG_RESET_SAVE 0xfde000
1379/* WCSR bits [0:4] [9:10] */
1380#define WCSR_RESET_SAVE 0x61f
1381/* RFCR bits [20] [22] [27:31] */
1382#define RFCR_RESET_SAVE 0xf8500000
1383
1384static void natsemi_reset(struct net_device *dev)
1385{
1386 int i;
1387 u32 cfg;
1388 u32 wcsr;
1389 u32 rfcr;
1390 u16 pmatch[3];
1391 u16 sopass[3];
1392 struct netdev_private *np = netdev_priv(dev);
1393 void __iomem *ioaddr = ns_ioaddr(dev);
1394
1395 /*
1396 * Resetting the chip causes some registers to be lost.
1397 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398 * we save the state that would have been loaded from EEPROM
1399 * on a normal power-up (see the spec EEPROM map). This assumes
1400 * whoever calls this will follow up with init_registers() eventually.
1401 */
1402
1403 /* CFG */
1404 cfg = readl(addr: ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405 /* WCSR */
1406 wcsr = readl(addr: ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407 /* RFCR */
1408 rfcr = readl(addr: ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409 /* PMATCH */
1410 for (i = 0; i < 3; i++) {
1411 writel(val: i*2, addr: ioaddr + RxFilterAddr);
1412 pmatch[i] = readw(addr: ioaddr + RxFilterData);
1413 }
1414 /* SOPAS */
1415 for (i = 0; i < 3; i++) {
1416 writel(val: 0xa+(i*2), addr: ioaddr + RxFilterAddr);
1417 sopass[i] = readw(addr: ioaddr + RxFilterData);
1418 }
1419
1420 /* now whack the chip */
1421 writel(val: ChipReset, addr: ioaddr + ChipCmd);
1422 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423 if (!(readl(addr: ioaddr + ChipCmd) & ChipReset))
1424 break;
1425 udelay(5);
1426 }
1427 if (i==NATSEMI_HW_TIMEOUT) {
1428 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429 dev->name, i*5);
1430 } else if (netif_msg_hw(np)) {
1431 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432 dev->name, i*5);
1433 }
1434
1435 /* restore CFG */
1436 cfg |= readl(addr: ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437 /* turn on external phy if it was selected */
1438 if (dev->if_port == PORT_TP)
1439 cfg &= ~(CfgExtPhy | CfgPhyDis);
1440 else
1441 cfg |= (CfgExtPhy | CfgPhyDis);
1442 writel(val: cfg, addr: ioaddr + ChipConfig);
1443 /* restore WCSR */
1444 wcsr |= readl(addr: ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445 writel(val: wcsr, addr: ioaddr + WOLCmd);
1446 /* read RFCR */
1447 rfcr |= readl(addr: ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448 /* restore PMATCH */
1449 for (i = 0; i < 3; i++) {
1450 writel(val: i*2, addr: ioaddr + RxFilterAddr);
1451 writew(val: pmatch[i], addr: ioaddr + RxFilterData);
1452 }
1453 for (i = 0; i < 3; i++) {
1454 writel(val: 0xa+(i*2), addr: ioaddr + RxFilterAddr);
1455 writew(val: sopass[i], addr: ioaddr + RxFilterData);
1456 }
1457 /* restore RFCR */
1458 writel(val: rfcr, addr: ioaddr + RxFilterAddr);
1459}
1460
1461static void reset_rx(struct net_device *dev)
1462{
1463 int i;
1464 struct netdev_private *np = netdev_priv(dev);
1465 void __iomem *ioaddr = ns_ioaddr(dev);
1466
1467 np->intr_status &= ~RxResetDone;
1468
1469 writel(val: RxReset, addr: ioaddr + ChipCmd);
1470
1471 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472 np->intr_status |= readl(addr: ioaddr + IntrStatus);
1473 if (np->intr_status & RxResetDone)
1474 break;
1475 udelay(15);
1476 }
1477 if (i==NATSEMI_HW_TIMEOUT) {
1478 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479 dev->name, i*15);
1480 } else if (netif_msg_hw(np)) {
1481 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482 dev->name, i*15);
1483 }
1484}
1485
1486static void natsemi_reload_eeprom(struct net_device *dev)
1487{
1488 struct netdev_private *np = netdev_priv(dev);
1489 void __iomem *ioaddr = ns_ioaddr(dev);
1490 int i;
1491
1492 writel(val: EepromReload, addr: ioaddr + PCIBusCfg);
1493 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494 udelay(50);
1495 if (!(readl(addr: ioaddr + PCIBusCfg) & EepromReload))
1496 break;
1497 }
1498 if (i==NATSEMI_HW_TIMEOUT) {
1499 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500 pci_name(np->pci_dev), i*50);
1501 } else if (netif_msg_hw(np)) {
1502 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503 pci_name(np->pci_dev), i*50);
1504 }
1505}
1506
1507static void natsemi_stop_rxtx(struct net_device *dev)
1508{
1509 void __iomem * ioaddr = ns_ioaddr(dev);
1510 struct netdev_private *np = netdev_priv(dev);
1511 int i;
1512
1513 writel(val: RxOff | TxOff, addr: ioaddr + ChipCmd);
1514 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515 if ((readl(addr: ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516 break;
1517 udelay(5);
1518 }
1519 if (i==NATSEMI_HW_TIMEOUT) {
1520 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521 dev->name, i*5);
1522 } else if (netif_msg_hw(np)) {
1523 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524 dev->name, i*5);
1525 }
1526}
1527
1528static int netdev_open(struct net_device *dev)
1529{
1530 struct netdev_private *np = netdev_priv(dev);
1531 void __iomem * ioaddr = ns_ioaddr(dev);
1532 const int irq = np->pci_dev->irq;
1533 int i;
1534
1535 /* Reset the chip, just in case. */
1536 natsemi_reset(dev);
1537
1538 i = request_irq(irq, handler: intr_handler, IRQF_SHARED, name: dev->name, dev);
1539 if (i) return i;
1540
1541 if (netif_msg_ifup(np))
1542 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543 dev->name, irq);
1544 i = alloc_ring(dev);
1545 if (i < 0) {
1546 free_irq(irq, dev);
1547 return i;
1548 }
1549 napi_enable(n: &np->napi);
1550
1551 init_ring(dev);
1552 spin_lock_irq(lock: &np->lock);
1553 init_registers(dev);
1554 /* now set the MAC address according to dev->dev_addr */
1555 for (i = 0; i < 3; i++) {
1556 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557
1558 writel(val: i*2, addr: ioaddr + RxFilterAddr);
1559 writew(val: mac, addr: ioaddr + RxFilterData);
1560 }
1561 writel(val: np->cur_rx_mode, addr: ioaddr + RxFilterAddr);
1562 spin_unlock_irq(lock: &np->lock);
1563
1564 netif_start_queue(dev);
1565
1566 if (netif_msg_ifup(np))
1567 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568 dev->name, (int)readl(ioaddr + ChipCmd));
1569
1570 /* Set the timer to check for link beat. */
1571 timer_setup(&np->timer, netdev_timer, 0);
1572 np->timer.expires = round_jiffies(j: jiffies + NATSEMI_TIMER_FREQ);
1573 add_timer(timer: &np->timer);
1574
1575 return 0;
1576}
1577
1578static void do_cable_magic(struct net_device *dev)
1579{
1580 struct netdev_private *np = netdev_priv(dev);
1581 void __iomem *ioaddr = ns_ioaddr(dev);
1582
1583 if (dev->if_port != PORT_TP)
1584 return;
1585
1586 if (np->srr >= SRR_DP83816_A5)
1587 return;
1588
1589 /*
1590 * 100 MBit links with short cables can trip an issue with the chip.
1591 * The problem manifests as lots of CRC errors and/or flickering
1592 * activity LED while idle. This process is based on instructions
1593 * from engineers at National.
1594 */
1595 if (readl(addr: ioaddr + ChipConfig) & CfgSpeed100) {
1596 u16 data;
1597
1598 writew(val: 1, addr: ioaddr + PGSEL);
1599 /*
1600 * coefficient visibility should already be enabled via
1601 * DSPCFG | 0x1000
1602 */
1603 data = readw(addr: ioaddr + TSTDAT) & 0xff;
1604 /*
1605 * the value must be negative, and within certain values
1606 * (these values all come from National)
1607 */
1608 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609 np = netdev_priv(dev);
1610
1611 /* the bug has been triggered - fix the coefficient */
1612 writew(TSTDAT_FIXED, addr: ioaddr + TSTDAT);
1613 /* lock the value */
1614 data = readw(addr: ioaddr + DSPCFG);
1615 np->dspcfg = data | DSPCFG_LOCK;
1616 writew(val: np->dspcfg, addr: ioaddr + DSPCFG);
1617 }
1618 writew(val: 0, addr: ioaddr + PGSEL);
1619 }
1620}
1621
1622static void undo_cable_magic(struct net_device *dev)
1623{
1624 u16 data;
1625 struct netdev_private *np = netdev_priv(dev);
1626 void __iomem * ioaddr = ns_ioaddr(dev);
1627
1628 if (dev->if_port != PORT_TP)
1629 return;
1630
1631 if (np->srr >= SRR_DP83816_A5)
1632 return;
1633
1634 writew(val: 1, addr: ioaddr + PGSEL);
1635 /* make sure the lock bit is clear */
1636 data = readw(addr: ioaddr + DSPCFG);
1637 np->dspcfg = data & ~DSPCFG_LOCK;
1638 writew(val: np->dspcfg, addr: ioaddr + DSPCFG);
1639 writew(val: 0, addr: ioaddr + PGSEL);
1640}
1641
1642static void check_link(struct net_device *dev)
1643{
1644 struct netdev_private *np = netdev_priv(dev);
1645 void __iomem * ioaddr = ns_ioaddr(dev);
1646 int duplex = np->duplex;
1647 u16 bmsr;
1648
1649 /* If we are ignoring the PHY then don't try reading it. */
1650 if (np->ignore_phy)
1651 goto propagate_state;
1652
1653 /* The link status field is latched: it remains low after a temporary
1654 * link failure until it's read. We need the current link status,
1655 * thus read twice.
1656 */
1657 mdio_read(dev, MII_BMSR);
1658 bmsr = mdio_read(dev, MII_BMSR);
1659
1660 if (!(bmsr & BMSR_LSTATUS)) {
1661 if (netif_carrier_ok(dev)) {
1662 if (netif_msg_link(np))
1663 printk(KERN_NOTICE "%s: link down.\n",
1664 dev->name);
1665 netif_carrier_off(dev);
1666 undo_cable_magic(dev);
1667 }
1668 return;
1669 }
1670 if (!netif_carrier_ok(dev)) {
1671 if (netif_msg_link(np))
1672 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673 netif_carrier_on(dev);
1674 do_cable_magic(dev);
1675 }
1676
1677 duplex = np->full_duplex;
1678 if (!duplex) {
1679 if (bmsr & BMSR_ANEGCOMPLETE) {
1680 int tmp = mii_nway_result(
1681 negotiated: np->advertising & mdio_read(dev, MII_LPA));
1682 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683 duplex = 1;
1684 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685 duplex = 1;
1686 }
1687
1688propagate_state:
1689 /* if duplex is set then bit 28 must be set, too */
1690 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691 if (netif_msg_link(np))
1692 printk(KERN_INFO
1693 "%s: Setting %s-duplex based on negotiated "
1694 "link capability.\n", dev->name,
1695 duplex ? "full" : "half");
1696 if (duplex) {
1697 np->rx_config |= RxAcceptTx;
1698 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699 } else {
1700 np->rx_config &= ~RxAcceptTx;
1701 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702 }
1703 writel(val: np->tx_config, addr: ioaddr + TxConfig);
1704 writel(val: np->rx_config, addr: ioaddr + RxConfig);
1705 }
1706}
1707
1708static void init_registers(struct net_device *dev)
1709{
1710 struct netdev_private *np = netdev_priv(dev);
1711 void __iomem * ioaddr = ns_ioaddr(dev);
1712
1713 init_phy_fixup(dev);
1714
1715 /* clear any interrupts that are pending, such as wake events */
1716 readl(addr: ioaddr + IntrStatus);
1717
1718 writel(val: np->ring_dma, addr: ioaddr + RxRingPtr);
1719 writel(val: np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720 addr: ioaddr + TxRingPtr);
1721
1722 /* Initialize other registers.
1723 * Configure the PCI bus bursts and FIFO thresholds.
1724 * Configure for standard, in-spec Ethernet.
1725 * Start with half-duplex. check_link will update
1726 * to the correct settings.
1727 */
1728
1729 /* DRTH: 2: start tx if 64 bytes are in the fifo
1730 * FLTH: 0x10: refill with next packet if 512 bytes are free
1731 * MXDMA: 0: up to 256 byte bursts.
1732 * MXDMA must be <= FLTH
1733 * ECRETRY=1
1734 * ATP=1
1735 */
1736 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737 TX_FLTH_VAL | TX_DRTH_VAL_START;
1738 writel(val: np->tx_config, addr: ioaddr + TxConfig);
1739
1740 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741 * MXDMA 0: up to 256 byte bursts
1742 */
1743 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744 /* if receive ring now has bigger buffers than normal, enable jumbo */
1745 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746 np->rx_config |= RxAcceptLong;
1747
1748 writel(val: np->rx_config, addr: ioaddr + RxConfig);
1749
1750 /* Disable PME:
1751 * The PME bit is initialized from the EEPROM contents.
1752 * PCI cards probably have PME disabled, but motherboard
1753 * implementations may have PME set to enable WakeOnLan.
1754 * With PME set the chip will scan incoming packets but
1755 * nothing will be written to memory. */
1756 np->SavedClkRun = readl(addr: ioaddr + ClkRun);
1757 writel(val: np->SavedClkRun & ~PMEEnable, addr: ioaddr + ClkRun);
1758 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760 dev->name, readl(ioaddr + WOLCmd));
1761 }
1762
1763 check_link(dev);
1764 __set_rx_mode(dev);
1765
1766 /* Enable interrupts by setting the interrupt mask. */
1767 writel(DEFAULT_INTR, addr: ioaddr + IntrMask);
1768 natsemi_irq_enable(dev);
1769
1770 writel(val: RxOn | TxOn, addr: ioaddr + ChipCmd);
1771 writel(val: StatsClear, addr: ioaddr + StatsCtrl); /* Clear Stats */
1772}
1773
1774/*
1775 * netdev_timer:
1776 * Purpose:
1777 * 1) check for link changes. Usually they are handled by the MII interrupt
1778 * but it doesn't hurt to check twice.
1779 * 2) check for sudden death of the NIC:
1780 * It seems that a reference set for this chip went out with incorrect info,
1781 * and there exist boards that aren't quite right. An unexpected voltage
1782 * drop can cause the PHY to get itself in a weird state (basically reset).
1783 * NOTE: this only seems to affect revC chips. The user can disable
1784 * this check via dspcfg_workaround sysfs option.
1785 * 3) check of death of the RX path due to OOM
1786 */
1787static void netdev_timer(struct timer_list *t)
1788{
1789 struct netdev_private *np = from_timer(np, t, timer);
1790 struct net_device *dev = np->dev;
1791 void __iomem * ioaddr = ns_ioaddr(dev);
1792 int next_tick = NATSEMI_TIMER_FREQ;
1793 const int irq = np->pci_dev->irq;
1794
1795 if (netif_msg_timer(np)) {
1796 /* DO NOT read the IntrStatus register,
1797 * a read clears any pending interrupts.
1798 */
1799 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800 dev->name);
1801 }
1802
1803 if (dev->if_port == PORT_TP) {
1804 u16 dspcfg;
1805
1806 spin_lock_irq(lock: &np->lock);
1807 /* check for a nasty random phy-reset - use dspcfg as a flag */
1808 writew(val: 1, addr: ioaddr+PGSEL);
1809 dspcfg = readw(addr: ioaddr+DSPCFG);
1810 writew(val: 0, addr: ioaddr+PGSEL);
1811 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812 if (!netif_queue_stopped(dev)) {
1813 spin_unlock_irq(lock: &np->lock);
1814 if (netif_msg_drv(np))
1815 printk(KERN_NOTICE "%s: possible phy reset: "
1816 "re-initializing\n", dev->name);
1817 disable_irq(irq);
1818 spin_lock_irq(lock: &np->lock);
1819 natsemi_stop_rxtx(dev);
1820 dump_ring(dev);
1821 reinit_ring(dev);
1822 init_registers(dev);
1823 spin_unlock_irq(lock: &np->lock);
1824 enable_irq(irq);
1825 } else {
1826 /* hurry back */
1827 next_tick = HZ;
1828 spin_unlock_irq(lock: &np->lock);
1829 }
1830 } else {
1831 /* init_registers() calls check_link() for the above case */
1832 check_link(dev);
1833 spin_unlock_irq(lock: &np->lock);
1834 }
1835 } else {
1836 spin_lock_irq(lock: &np->lock);
1837 check_link(dev);
1838 spin_unlock_irq(lock: &np->lock);
1839 }
1840 if (np->oom) {
1841 disable_irq(irq);
1842 np->oom = 0;
1843 refill_rx(dev);
1844 enable_irq(irq);
1845 if (!np->oom) {
1846 writel(val: RxOn, addr: ioaddr + ChipCmd);
1847 } else {
1848 next_tick = 1;
1849 }
1850 }
1851
1852 if (next_tick > 1)
1853 mod_timer(timer: &np->timer, expires: round_jiffies(j: jiffies + next_tick));
1854 else
1855 mod_timer(timer: &np->timer, expires: jiffies + next_tick);
1856}
1857
1858static void dump_ring(struct net_device *dev)
1859{
1860 struct netdev_private *np = netdev_priv(dev);
1861
1862 if (netif_msg_pktdata(np)) {
1863 int i;
1864 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1865 for (i = 0; i < TX_RING_SIZE; i++) {
1866 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867 i, np->tx_ring[i].next_desc,
1868 np->tx_ring[i].cmd_status,
1869 np->tx_ring[i].addr);
1870 }
1871 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1872 for (i = 0; i < RX_RING_SIZE; i++) {
1873 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874 i, np->rx_ring[i].next_desc,
1875 np->rx_ring[i].cmd_status,
1876 np->rx_ring[i].addr);
1877 }
1878 }
1879}
1880
1881static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882{
1883 struct netdev_private *np = netdev_priv(dev);
1884 void __iomem * ioaddr = ns_ioaddr(dev);
1885 const int irq = np->pci_dev->irq;
1886
1887 disable_irq(irq);
1888 spin_lock_irq(lock: &np->lock);
1889 if (!np->hands_off) {
1890 if (netif_msg_tx_err(np))
1891 printk(KERN_WARNING
1892 "%s: Transmit timed out, status %#08x,"
1893 " resetting...\n",
1894 dev->name, readl(ioaddr + IntrStatus));
1895 dump_ring(dev);
1896
1897 natsemi_reset(dev);
1898 reinit_ring(dev);
1899 init_registers(dev);
1900 } else {
1901 printk(KERN_WARNING
1902 "%s: tx_timeout while in hands_off state?\n",
1903 dev->name);
1904 }
1905 spin_unlock_irq(lock: &np->lock);
1906 enable_irq(irq);
1907
1908 netif_trans_update(dev); /* prevent tx timeout */
1909 dev->stats.tx_errors++;
1910 netif_wake_queue(dev);
1911}
1912
1913static int alloc_ring(struct net_device *dev)
1914{
1915 struct netdev_private *np = netdev_priv(dev);
1916 np->rx_ring = dma_alloc_coherent(dev: &np->pci_dev->dev,
1917 size: sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918 dma_handle: &np->ring_dma, GFP_KERNEL);
1919 if (!np->rx_ring)
1920 return -ENOMEM;
1921 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922 return 0;
1923}
1924
1925static void refill_rx(struct net_device *dev)
1926{
1927 struct netdev_private *np = netdev_priv(dev);
1928
1929 /* Refill the Rx ring buffers. */
1930 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931 struct sk_buff *skb;
1932 int entry = np->dirty_rx % RX_RING_SIZE;
1933 if (np->rx_skbuff[entry] == NULL) {
1934 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935 skb = netdev_alloc_skb(dev, length: buflen);
1936 np->rx_skbuff[entry] = skb;
1937 if (skb == NULL)
1938 break; /* Better luck next round. */
1939 np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940 skb->data, buflen,
1941 DMA_FROM_DEVICE);
1942 if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->rx_dma[entry])) {
1943 dev_kfree_skb_any(skb);
1944 np->rx_skbuff[entry] = NULL;
1945 break; /* Better luck next round. */
1946 }
1947 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948 }
1949 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950 }
1951 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952 if (netif_msg_rx_err(np))
1953 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954 np->oom = 1;
1955 }
1956}
1957
1958static void set_bufsize(struct net_device *dev)
1959{
1960 struct netdev_private *np = netdev_priv(dev);
1961 if (dev->mtu <= ETH_DATA_LEN)
1962 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963 else
1964 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965}
1966
1967/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968static void init_ring(struct net_device *dev)
1969{
1970 struct netdev_private *np = netdev_priv(dev);
1971 int i;
1972
1973 /* 1) TX ring */
1974 np->dirty_tx = np->cur_tx = 0;
1975 for (i = 0; i < TX_RING_SIZE; i++) {
1976 np->tx_skbuff[i] = NULL;
1977 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978 +sizeof(struct netdev_desc)
1979 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980 np->tx_ring[i].cmd_status = 0;
1981 }
1982
1983 /* 2) RX ring */
1984 np->dirty_rx = 0;
1985 np->cur_rx = RX_RING_SIZE;
1986 np->oom = 0;
1987 set_bufsize(dev);
1988
1989 np->rx_head_desc = &np->rx_ring[0];
1990
1991 /* Please be careful before changing this loop - at least gcc-2.95.1
1992 * miscompiles it otherwise.
1993 */
1994 /* Initialize all Rx descriptors. */
1995 for (i = 0; i < RX_RING_SIZE; i++) {
1996 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997 +sizeof(struct netdev_desc)
1998 *((i+1)%RX_RING_SIZE));
1999 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000 np->rx_skbuff[i] = NULL;
2001 }
2002 refill_rx(dev);
2003 dump_ring(dev);
2004}
2005
2006static void drain_tx(struct net_device *dev)
2007{
2008 struct netdev_private *np = netdev_priv(dev);
2009 int i;
2010
2011 for (i = 0; i < TX_RING_SIZE; i++) {
2012 if (np->tx_skbuff[i]) {
2013 dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2015 dev_kfree_skb(np->tx_skbuff[i]);
2016 dev->stats.tx_dropped++;
2017 }
2018 np->tx_skbuff[i] = NULL;
2019 }
2020}
2021
2022static void drain_rx(struct net_device *dev)
2023{
2024 struct netdev_private *np = netdev_priv(dev);
2025 unsigned int buflen = np->rx_buf_sz;
2026 int i;
2027
2028 /* Free all the skbuffs in the Rx queue. */
2029 for (i = 0; i < RX_RING_SIZE; i++) {
2030 np->rx_ring[i].cmd_status = 0;
2031 np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032 if (np->rx_skbuff[i]) {
2033 dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034 buflen + NATSEMI_PADDING,
2035 DMA_FROM_DEVICE);
2036 dev_kfree_skb(np->rx_skbuff[i]);
2037 }
2038 np->rx_skbuff[i] = NULL;
2039 }
2040}
2041
2042static void drain_ring(struct net_device *dev)
2043{
2044 drain_rx(dev);
2045 drain_tx(dev);
2046}
2047
2048static void free_ring(struct net_device *dev)
2049{
2050 struct netdev_private *np = netdev_priv(dev);
2051 dma_free_coherent(dev: &np->pci_dev->dev,
2052 size: sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053 cpu_addr: np->rx_ring, dma_handle: np->ring_dma);
2054}
2055
2056static void reinit_rx(struct net_device *dev)
2057{
2058 struct netdev_private *np = netdev_priv(dev);
2059 int i;
2060
2061 /* RX Ring */
2062 np->dirty_rx = 0;
2063 np->cur_rx = RX_RING_SIZE;
2064 np->rx_head_desc = &np->rx_ring[0];
2065 /* Initialize all Rx descriptors. */
2066 for (i = 0; i < RX_RING_SIZE; i++)
2067 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068
2069 refill_rx(dev);
2070}
2071
2072static void reinit_ring(struct net_device *dev)
2073{
2074 struct netdev_private *np = netdev_priv(dev);
2075 int i;
2076
2077 /* drain TX ring */
2078 drain_tx(dev);
2079 np->dirty_tx = np->cur_tx = 0;
2080 for (i=0;i<TX_RING_SIZE;i++)
2081 np->tx_ring[i].cmd_status = 0;
2082
2083 reinit_rx(dev);
2084}
2085
2086static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087{
2088 struct netdev_private *np = netdev_priv(dev);
2089 void __iomem * ioaddr = ns_ioaddr(dev);
2090 unsigned entry;
2091 unsigned long flags;
2092
2093 /* Note: Ordering is important here, set the field with the
2094 "ownership" bit last, and only then increment cur_tx. */
2095
2096 /* Calculate the next Tx descriptor entry. */
2097 entry = np->cur_tx % TX_RING_SIZE;
2098
2099 np->tx_skbuff[entry] = skb;
2100 np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101 skb->len, DMA_TO_DEVICE);
2102 if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->tx_dma[entry])) {
2103 np->tx_skbuff[entry] = NULL;
2104 dev_kfree_skb_irq(skb);
2105 dev->stats.tx_dropped++;
2106 return NETDEV_TX_OK;
2107 }
2108
2109 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110
2111 spin_lock_irqsave(&np->lock, flags);
2112
2113 if (!np->hands_off) {
2114 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115 /* StrongARM: Explicitly cache flush np->tx_ring and
2116 * skb->data,skb->len. */
2117 wmb();
2118 np->cur_tx++;
2119 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120 netdev_tx_done(dev);
2121 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122 netif_stop_queue(dev);
2123 }
2124 /* Wake the potentially-idle transmit channel. */
2125 writel(val: TxOn, addr: ioaddr + ChipCmd);
2126 } else {
2127 dev_kfree_skb_irq(skb);
2128 dev->stats.tx_dropped++;
2129 }
2130 spin_unlock_irqrestore(lock: &np->lock, flags);
2131
2132 if (netif_msg_tx_queued(np)) {
2133 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134 dev->name, np->cur_tx, entry);
2135 }
2136 return NETDEV_TX_OK;
2137}
2138
2139static void netdev_tx_done(struct net_device *dev)
2140{
2141 struct netdev_private *np = netdev_priv(dev);
2142
2143 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144 int entry = np->dirty_tx % TX_RING_SIZE;
2145 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146 break;
2147 if (netif_msg_tx_done(np))
2148 printk(KERN_DEBUG
2149 "%s: tx frame #%d finished, status %#08x.\n",
2150 dev->name, np->dirty_tx,
2151 le32_to_cpu(np->tx_ring[entry].cmd_status));
2152 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153 dev->stats.tx_packets++;
2154 dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155 } else { /* Various Tx errors */
2156 int tx_status =
2157 le32_to_cpu(np->tx_ring[entry].cmd_status);
2158 if (tx_status & (DescTxAbort|DescTxExcColl))
2159 dev->stats.tx_aborted_errors++;
2160 if (tx_status & DescTxFIFO)
2161 dev->stats.tx_fifo_errors++;
2162 if (tx_status & DescTxCarrier)
2163 dev->stats.tx_carrier_errors++;
2164 if (tx_status & DescTxOOWCol)
2165 dev->stats.tx_window_errors++;
2166 dev->stats.tx_errors++;
2167 }
2168 dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2170 /* Free the original skb. */
2171 dev_consume_skb_irq(skb: np->tx_skbuff[entry]);
2172 np->tx_skbuff[entry] = NULL;
2173 }
2174 if (netif_queue_stopped(dev) &&
2175 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176 /* The ring is no longer full, wake queue. */
2177 netif_wake_queue(dev);
2178 }
2179}
2180
2181/* The interrupt handler doesn't actually handle interrupts itself, it
2182 * schedules a NAPI poll if there is anything to do. */
2183static irqreturn_t intr_handler(int irq, void *dev_instance)
2184{
2185 struct net_device *dev = dev_instance;
2186 struct netdev_private *np = netdev_priv(dev);
2187 void __iomem * ioaddr = ns_ioaddr(dev);
2188
2189 /* Reading IntrStatus automatically acknowledges so don't do
2190 * that while interrupts are disabled, (for example, while a
2191 * poll is scheduled). */
2192 if (np->hands_off || !readl(addr: ioaddr + IntrEnable))
2193 return IRQ_NONE;
2194
2195 np->intr_status = readl(addr: ioaddr + IntrStatus);
2196
2197 if (!np->intr_status)
2198 return IRQ_NONE;
2199
2200 if (netif_msg_intr(np))
2201 printk(KERN_DEBUG
2202 "%s: Interrupt, status %#08x, mask %#08x.\n",
2203 dev->name, np->intr_status,
2204 readl(ioaddr + IntrMask));
2205
2206 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207
2208 if (napi_schedule_prep(n: &np->napi)) {
2209 /* Disable interrupts and register for poll */
2210 natsemi_irq_disable(dev);
2211 __napi_schedule(n: &np->napi);
2212 } else
2213 printk(KERN_WARNING
2214 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215 dev->name, np->intr_status,
2216 readl(ioaddr + IntrMask));
2217
2218 return IRQ_HANDLED;
2219}
2220
2221/* This is the NAPI poll routine. As well as the standard RX handling
2222 * it also handles all other interrupts that the chip might raise.
2223 */
2224static int natsemi_poll(struct napi_struct *napi, int budget)
2225{
2226 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227 struct net_device *dev = np->dev;
2228 void __iomem * ioaddr = ns_ioaddr(dev);
2229 int work_done = 0;
2230
2231 do {
2232 if (netif_msg_intr(np))
2233 printk(KERN_DEBUG
2234 "%s: Poll, status %#08x, mask %#08x.\n",
2235 dev->name, np->intr_status,
2236 readl(ioaddr + IntrMask));
2237
2238 /* netdev_rx() may read IntrStatus again if the RX state
2239 * machine falls over so do it first. */
2240 if (np->intr_status &
2241 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242 IntrRxErr | IntrRxOverrun)) {
2243 netdev_rx(dev, work_done: &work_done, work_to_do: budget);
2244 }
2245
2246 if (np->intr_status &
2247 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248 spin_lock(lock: &np->lock);
2249 netdev_tx_done(dev);
2250 spin_unlock(lock: &np->lock);
2251 }
2252
2253 /* Abnormal error summary/uncommon events handlers. */
2254 if (np->intr_status & IntrAbnormalSummary)
2255 netdev_error(dev, intr_status: np->intr_status);
2256
2257 if (work_done >= budget)
2258 return work_done;
2259
2260 np->intr_status = readl(addr: ioaddr + IntrStatus);
2261 } while (np->intr_status);
2262
2263 napi_complete_done(n: napi, work_done);
2264
2265 /* Reenable interrupts providing nothing is trying to shut
2266 * the chip down. */
2267 spin_lock(lock: &np->lock);
2268 if (!np->hands_off)
2269 natsemi_irq_enable(dev);
2270 spin_unlock(lock: &np->lock);
2271
2272 return work_done;
2273}
2274
2275/* This routine is logically part of the interrupt handler, but separated
2276 for clarity and better register allocation. */
2277static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278{
2279 struct netdev_private *np = netdev_priv(dev);
2280 int entry = np->cur_rx % RX_RING_SIZE;
2281 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283 unsigned int buflen = np->rx_buf_sz;
2284 void __iomem * ioaddr = ns_ioaddr(dev);
2285
2286 /* If the driver owns the next entry it's a new packet. Send it up. */
2287 while (desc_status < 0) { /* e.g. & DescOwn */
2288 int pkt_len;
2289 if (netif_msg_rx_status(np))
2290 printk(KERN_DEBUG
2291 " netdev_rx() entry %d status was %#08x.\n",
2292 entry, desc_status);
2293 if (--boguscnt < 0)
2294 break;
2295
2296 if (*work_done >= work_to_do)
2297 break;
2298
2299 (*work_done)++;
2300
2301 pkt_len = (desc_status & DescSizeMask) - 4;
2302 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303 if (desc_status & DescMore) {
2304 unsigned long flags;
2305
2306 if (netif_msg_rx_err(np))
2307 printk(KERN_WARNING
2308 "%s: Oversized(?) Ethernet "
2309 "frame spanned multiple "
2310 "buffers, entry %#08x "
2311 "status %#08x.\n", dev->name,
2312 np->cur_rx, desc_status);
2313 dev->stats.rx_length_errors++;
2314
2315 /* The RX state machine has probably
2316 * locked up beneath us. Follow the
2317 * reset procedure documented in
2318 * AN-1287. */
2319
2320 spin_lock_irqsave(&np->lock, flags);
2321 reset_rx(dev);
2322 reinit_rx(dev);
2323 writel(val: np->ring_dma, addr: ioaddr + RxRingPtr);
2324 check_link(dev);
2325 spin_unlock_irqrestore(lock: &np->lock, flags);
2326
2327 /* We'll enable RX on exit from this
2328 * function. */
2329 break;
2330
2331 } else {
2332 /* There was an error. */
2333 dev->stats.rx_errors++;
2334 if (desc_status & (DescRxAbort|DescRxOver))
2335 dev->stats.rx_over_errors++;
2336 if (desc_status & (DescRxLong|DescRxRunt))
2337 dev->stats.rx_length_errors++;
2338 if (desc_status & (DescRxInvalid|DescRxAlign))
2339 dev->stats.rx_frame_errors++;
2340 if (desc_status & DescRxCRC)
2341 dev->stats.rx_crc_errors++;
2342 }
2343 } else if (pkt_len > np->rx_buf_sz) {
2344 /* if this is the tail of a double buffer
2345 * packet, we've already counted the error
2346 * on the first part. Ignore the second half.
2347 */
2348 } else {
2349 struct sk_buff *skb;
2350 /* Omit CRC size. */
2351 /* Check if the packet is long enough to accept
2352 * without copying to a minimally-sized skbuff. */
2353 if (pkt_len < rx_copybreak &&
2354 (skb = netdev_alloc_skb(dev, length: pkt_len + RX_OFFSET)) != NULL) {
2355 /* 16 byte align the IP header */
2356 skb_reserve(skb, RX_OFFSET);
2357 dma_sync_single_for_cpu(dev: &np->pci_dev->dev,
2358 addr: np->rx_dma[entry],
2359 size: buflen,
2360 dir: DMA_FROM_DEVICE);
2361 skb_copy_to_linear_data(skb,
2362 from: np->rx_skbuff[entry]->data, len: pkt_len);
2363 skb_put(skb, len: pkt_len);
2364 dma_sync_single_for_device(dev: &np->pci_dev->dev,
2365 addr: np->rx_dma[entry],
2366 size: buflen,
2367 dir: DMA_FROM_DEVICE);
2368 } else {
2369 dma_unmap_single(&np->pci_dev->dev,
2370 np->rx_dma[entry],
2371 buflen + NATSEMI_PADDING,
2372 DMA_FROM_DEVICE);
2373 skb_put(skb: skb = np->rx_skbuff[entry], len: pkt_len);
2374 np->rx_skbuff[entry] = NULL;
2375 }
2376 skb->protocol = eth_type_trans(skb, dev);
2377 netif_receive_skb(skb);
2378 dev->stats.rx_packets++;
2379 dev->stats.rx_bytes += pkt_len;
2380 }
2381 entry = (++np->cur_rx) % RX_RING_SIZE;
2382 np->rx_head_desc = &np->rx_ring[entry];
2383 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384 }
2385 refill_rx(dev);
2386
2387 /* Restart Rx engine if stopped. */
2388 if (np->oom)
2389 mod_timer(timer: &np->timer, expires: jiffies + 1);
2390 else
2391 writel(val: RxOn, addr: ioaddr + ChipCmd);
2392}
2393
2394static void netdev_error(struct net_device *dev, int intr_status)
2395{
2396 struct netdev_private *np = netdev_priv(dev);
2397 void __iomem * ioaddr = ns_ioaddr(dev);
2398
2399 spin_lock(lock: &np->lock);
2400 if (intr_status & LinkChange) {
2401 u16 lpa = mdio_read(dev, MII_LPA);
2402 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403 netif_msg_link(np)) {
2404 printk(KERN_INFO
2405 "%s: Autonegotiation advertising"
2406 " %#04x partner %#04x.\n", dev->name,
2407 np->advertising, lpa);
2408 }
2409
2410 /* read MII int status to clear the flag */
2411 readw(addr: ioaddr + MIntrStatus);
2412 check_link(dev);
2413 }
2414 if (intr_status & StatsMax) {
2415 __get_stats(dev);
2416 }
2417 if (intr_status & IntrTxUnderrun) {
2418 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419 np->tx_config += TX_DRTH_VAL_INC;
2420 if (netif_msg_tx_err(np))
2421 printk(KERN_NOTICE
2422 "%s: increased tx threshold, txcfg %#08x.\n",
2423 dev->name, np->tx_config);
2424 } else {
2425 if (netif_msg_tx_err(np))
2426 printk(KERN_NOTICE
2427 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428 dev->name, np->tx_config);
2429 }
2430 writel(val: np->tx_config, addr: ioaddr + TxConfig);
2431 }
2432 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433 int wol_status = readl(addr: ioaddr + WOLCmd);
2434 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435 dev->name, wol_status);
2436 }
2437 if (intr_status & RxStatusFIFOOver) {
2438 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440 dev->name);
2441 }
2442 dev->stats.rx_fifo_errors++;
2443 dev->stats.rx_errors++;
2444 }
2445 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2446 if (intr_status & IntrPCIErr) {
2447 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448 intr_status & IntrPCIErr);
2449 dev->stats.tx_fifo_errors++;
2450 dev->stats.tx_errors++;
2451 dev->stats.rx_fifo_errors++;
2452 dev->stats.rx_errors++;
2453 }
2454 spin_unlock(lock: &np->lock);
2455}
2456
2457static void __get_stats(struct net_device *dev)
2458{
2459 void __iomem * ioaddr = ns_ioaddr(dev);
2460
2461 /* The chip only need report frame silently dropped. */
2462 dev->stats.rx_crc_errors += readl(addr: ioaddr + RxCRCErrs);
2463 dev->stats.rx_missed_errors += readl(addr: ioaddr + RxMissed);
2464}
2465
2466static struct net_device_stats *get_stats(struct net_device *dev)
2467{
2468 struct netdev_private *np = netdev_priv(dev);
2469
2470 /* The chip only need report frame silently dropped. */
2471 spin_lock_irq(lock: &np->lock);
2472 if (netif_running(dev) && !np->hands_off)
2473 __get_stats(dev);
2474 spin_unlock_irq(lock: &np->lock);
2475
2476 return &dev->stats;
2477}
2478
2479#ifdef CONFIG_NET_POLL_CONTROLLER
2480static void natsemi_poll_controller(struct net_device *dev)
2481{
2482 struct netdev_private *np = netdev_priv(dev);
2483 const int irq = np->pci_dev->irq;
2484
2485 disable_irq(irq);
2486 intr_handler(irq, dev_instance: dev);
2487 enable_irq(irq);
2488}
2489#endif
2490
2491#define HASH_TABLE 0x200
2492static void __set_rx_mode(struct net_device *dev)
2493{
2494 void __iomem * ioaddr = ns_ioaddr(dev);
2495 struct netdev_private *np = netdev_priv(dev);
2496 u8 mc_filter[64]; /* Multicast hash filter */
2497 u32 rx_mode;
2498
2499 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500 rx_mode = RxFilterEnable | AcceptBroadcast
2501 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503 (dev->flags & IFF_ALLMULTI)) {
2504 rx_mode = RxFilterEnable | AcceptBroadcast
2505 | AcceptAllMulticast | AcceptMyPhys;
2506 } else {
2507 struct netdev_hw_addr *ha;
2508 int i;
2509
2510 memset(mc_filter, 0, sizeof(mc_filter));
2511 netdev_for_each_mc_addr(ha, dev) {
2512 int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513 mc_filter[b/8] |= (1 << (b & 0x07));
2514 }
2515 rx_mode = RxFilterEnable | AcceptBroadcast
2516 | AcceptMulticast | AcceptMyPhys;
2517 for (i = 0; i < 64; i += 2) {
2518 writel(HASH_TABLE + i, addr: ioaddr + RxFilterAddr);
2519 writel(val: (mc_filter[i + 1] << 8) + mc_filter[i],
2520 addr: ioaddr + RxFilterData);
2521 }
2522 }
2523 writel(val: rx_mode, addr: ioaddr + RxFilterAddr);
2524 np->cur_rx_mode = rx_mode;
2525}
2526
2527static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528{
2529 dev->mtu = new_mtu;
2530
2531 /* synchronized against open : rtnl_lock() held by caller */
2532 if (netif_running(dev)) {
2533 struct netdev_private *np = netdev_priv(dev);
2534 void __iomem * ioaddr = ns_ioaddr(dev);
2535 const int irq = np->pci_dev->irq;
2536
2537 disable_irq(irq);
2538 spin_lock(lock: &np->lock);
2539 /* stop engines */
2540 natsemi_stop_rxtx(dev);
2541 /* drain rx queue */
2542 drain_rx(dev);
2543 /* change buffers */
2544 set_bufsize(dev);
2545 reinit_rx(dev);
2546 writel(val: np->ring_dma, addr: ioaddr + RxRingPtr);
2547 /* restart engines */
2548 writel(val: RxOn | TxOn, addr: ioaddr + ChipCmd);
2549 spin_unlock(lock: &np->lock);
2550 enable_irq(irq);
2551 }
2552 return 0;
2553}
2554
2555static void set_rx_mode(struct net_device *dev)
2556{
2557 struct netdev_private *np = netdev_priv(dev);
2558 spin_lock_irq(lock: &np->lock);
2559 if (!np->hands_off)
2560 __set_rx_mode(dev);
2561 spin_unlock_irq(lock: &np->lock);
2562}
2563
2564static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565{
2566 struct netdev_private *np = netdev_priv(dev);
2567 strscpy(p: info->driver, DRV_NAME, size: sizeof(info->driver));
2568 strscpy(p: info->version, DRV_VERSION, size: sizeof(info->version));
2569 strscpy(p: info->bus_info, q: pci_name(pdev: np->pci_dev), size: sizeof(info->bus_info));
2570}
2571
2572static int get_regs_len(struct net_device *dev)
2573{
2574 return NATSEMI_REGS_SIZE;
2575}
2576
2577static int get_eeprom_len(struct net_device *dev)
2578{
2579 struct netdev_private *np = netdev_priv(dev);
2580 return np->eeprom_size;
2581}
2582
2583static int get_link_ksettings(struct net_device *dev,
2584 struct ethtool_link_ksettings *ecmd)
2585{
2586 struct netdev_private *np = netdev_priv(dev);
2587 spin_lock_irq(lock: &np->lock);
2588 netdev_get_ecmd(dev, ecmd);
2589 spin_unlock_irq(lock: &np->lock);
2590 return 0;
2591}
2592
2593static int set_link_ksettings(struct net_device *dev,
2594 const struct ethtool_link_ksettings *ecmd)
2595{
2596 struct netdev_private *np = netdev_priv(dev);
2597 int res;
2598 spin_lock_irq(lock: &np->lock);
2599 res = netdev_set_ecmd(dev, ecmd);
2600 spin_unlock_irq(lock: &np->lock);
2601 return res;
2602}
2603
2604static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605{
2606 struct netdev_private *np = netdev_priv(dev);
2607 spin_lock_irq(lock: &np->lock);
2608 netdev_get_wol(dev, supported: &wol->supported, cur: &wol->wolopts);
2609 netdev_get_sopass(dev, data: wol->sopass);
2610 spin_unlock_irq(lock: &np->lock);
2611}
2612
2613static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614{
2615 struct netdev_private *np = netdev_priv(dev);
2616 int res;
2617 spin_lock_irq(lock: &np->lock);
2618 netdev_set_wol(dev, newval: wol->wolopts);
2619 res = netdev_set_sopass(dev, newval: wol->sopass);
2620 spin_unlock_irq(lock: &np->lock);
2621 return res;
2622}
2623
2624static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625{
2626 struct netdev_private *np = netdev_priv(dev);
2627 regs->version = NATSEMI_REGS_VER;
2628 spin_lock_irq(lock: &np->lock);
2629 netdev_get_regs(dev, buf);
2630 spin_unlock_irq(lock: &np->lock);
2631}
2632
2633static u32 get_msglevel(struct net_device *dev)
2634{
2635 struct netdev_private *np = netdev_priv(dev);
2636 return np->msg_enable;
2637}
2638
2639static void set_msglevel(struct net_device *dev, u32 val)
2640{
2641 struct netdev_private *np = netdev_priv(dev);
2642 np->msg_enable = val;
2643}
2644
2645static int nway_reset(struct net_device *dev)
2646{
2647 int tmp;
2648 int r = -EINVAL;
2649 /* if autoneg is off, it's an error */
2650 tmp = mdio_read(dev, MII_BMCR);
2651 if (tmp & BMCR_ANENABLE) {
2652 tmp |= (BMCR_ANRESTART);
2653 mdio_write(dev, MII_BMCR, data: tmp);
2654 r = 0;
2655 }
2656 return r;
2657}
2658
2659static u32 get_link(struct net_device *dev)
2660{
2661 /* LSTATUS is latched low until a read - so read twice */
2662 mdio_read(dev, MII_BMSR);
2663 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664}
2665
2666static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667{
2668 struct netdev_private *np = netdev_priv(dev);
2669 u8 *eebuf;
2670 int res;
2671
2672 eebuf = kmalloc(size: np->eeprom_size, GFP_KERNEL);
2673 if (!eebuf)
2674 return -ENOMEM;
2675
2676 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677 spin_lock_irq(lock: &np->lock);
2678 res = netdev_get_eeprom(dev, buf: eebuf);
2679 spin_unlock_irq(lock: &np->lock);
2680 if (!res)
2681 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682 kfree(objp: eebuf);
2683 return res;
2684}
2685
2686static const struct ethtool_ops ethtool_ops = {
2687 .get_drvinfo = get_drvinfo,
2688 .get_regs_len = get_regs_len,
2689 .get_eeprom_len = get_eeprom_len,
2690 .get_wol = get_wol,
2691 .set_wol = set_wol,
2692 .get_regs = get_regs,
2693 .get_msglevel = get_msglevel,
2694 .set_msglevel = set_msglevel,
2695 .nway_reset = nway_reset,
2696 .get_link = get_link,
2697 .get_eeprom = get_eeprom,
2698 .get_link_ksettings = get_link_ksettings,
2699 .set_link_ksettings = set_link_ksettings,
2700};
2701
2702static int netdev_set_wol(struct net_device *dev, u32 newval)
2703{
2704 struct netdev_private *np = netdev_priv(dev);
2705 void __iomem * ioaddr = ns_ioaddr(dev);
2706 u32 data = readl(addr: ioaddr + WOLCmd) & ~WakeOptsSummary;
2707
2708 /* translate to bitmasks this chip understands */
2709 if (newval & WAKE_PHY)
2710 data |= WakePhy;
2711 if (newval & WAKE_UCAST)
2712 data |= WakeUnicast;
2713 if (newval & WAKE_MCAST)
2714 data |= WakeMulticast;
2715 if (newval & WAKE_BCAST)
2716 data |= WakeBroadcast;
2717 if (newval & WAKE_ARP)
2718 data |= WakeArp;
2719 if (newval & WAKE_MAGIC)
2720 data |= WakeMagic;
2721 if (np->srr >= SRR_DP83815_D) {
2722 if (newval & WAKE_MAGICSECURE) {
2723 data |= WakeMagicSecure;
2724 }
2725 }
2726
2727 writel(val: data, addr: ioaddr + WOLCmd);
2728
2729 return 0;
2730}
2731
2732static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733{
2734 struct netdev_private *np = netdev_priv(dev);
2735 void __iomem * ioaddr = ns_ioaddr(dev);
2736 u32 regval = readl(addr: ioaddr + WOLCmd);
2737
2738 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739 | WAKE_ARP | WAKE_MAGIC);
2740
2741 if (np->srr >= SRR_DP83815_D) {
2742 /* SOPASS works on revD and higher */
2743 *supported |= WAKE_MAGICSECURE;
2744 }
2745 *cur = 0;
2746
2747 /* translate from chip bitmasks */
2748 if (regval & WakePhy)
2749 *cur |= WAKE_PHY;
2750 if (regval & WakeUnicast)
2751 *cur |= WAKE_UCAST;
2752 if (regval & WakeMulticast)
2753 *cur |= WAKE_MCAST;
2754 if (regval & WakeBroadcast)
2755 *cur |= WAKE_BCAST;
2756 if (regval & WakeArp)
2757 *cur |= WAKE_ARP;
2758 if (regval & WakeMagic)
2759 *cur |= WAKE_MAGIC;
2760 if (regval & WakeMagicSecure) {
2761 /* this can be on in revC, but it's broken */
2762 *cur |= WAKE_MAGICSECURE;
2763 }
2764
2765 return 0;
2766}
2767
2768static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769{
2770 struct netdev_private *np = netdev_priv(dev);
2771 void __iomem * ioaddr = ns_ioaddr(dev);
2772 u16 *sval = (u16 *)newval;
2773 u32 addr;
2774
2775 if (np->srr < SRR_DP83815_D) {
2776 return 0;
2777 }
2778
2779 /* enable writing to these registers by disabling the RX filter */
2780 addr = readl(addr: ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781 addr &= ~RxFilterEnable;
2782 writel(val: addr, addr: ioaddr + RxFilterAddr);
2783
2784 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785 writel(val: addr | 0xa, addr: ioaddr + RxFilterAddr);
2786 writew(val: sval[0], addr: ioaddr + RxFilterData);
2787
2788 writel(val: addr | 0xc, addr: ioaddr + RxFilterAddr);
2789 writew(val: sval[1], addr: ioaddr + RxFilterData);
2790
2791 writel(val: addr | 0xe, addr: ioaddr + RxFilterAddr);
2792 writew(val: sval[2], addr: ioaddr + RxFilterData);
2793
2794 /* re-enable the RX filter */
2795 writel(val: addr | RxFilterEnable, addr: ioaddr + RxFilterAddr);
2796
2797 return 0;
2798}
2799
2800static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801{
2802 struct netdev_private *np = netdev_priv(dev);
2803 void __iomem * ioaddr = ns_ioaddr(dev);
2804 u16 *sval = (u16 *)data;
2805 u32 addr;
2806
2807 if (np->srr < SRR_DP83815_D) {
2808 sval[0] = sval[1] = sval[2] = 0;
2809 return 0;
2810 }
2811
2812 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813 addr = readl(addr: ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814
2815 writel(val: addr | 0xa, addr: ioaddr + RxFilterAddr);
2816 sval[0] = readw(addr: ioaddr + RxFilterData);
2817
2818 writel(val: addr | 0xc, addr: ioaddr + RxFilterAddr);
2819 sval[1] = readw(addr: ioaddr + RxFilterData);
2820
2821 writel(val: addr | 0xe, addr: ioaddr + RxFilterAddr);
2822 sval[2] = readw(addr: ioaddr + RxFilterData);
2823
2824 writel(val: addr, addr: ioaddr + RxFilterAddr);
2825
2826 return 0;
2827}
2828
2829static int netdev_get_ecmd(struct net_device *dev,
2830 struct ethtool_link_ksettings *ecmd)
2831{
2832 struct netdev_private *np = netdev_priv(dev);
2833 u32 supported, advertising;
2834 u32 tmp;
2835
2836 ecmd->base.port = dev->if_port;
2837 ecmd->base.speed = np->speed;
2838 ecmd->base.duplex = np->duplex;
2839 ecmd->base.autoneg = np->autoneg;
2840 advertising = 0;
2841
2842 if (np->advertising & ADVERTISE_10HALF)
2843 advertising |= ADVERTISED_10baseT_Half;
2844 if (np->advertising & ADVERTISE_10FULL)
2845 advertising |= ADVERTISED_10baseT_Full;
2846 if (np->advertising & ADVERTISE_100HALF)
2847 advertising |= ADVERTISED_100baseT_Half;
2848 if (np->advertising & ADVERTISE_100FULL)
2849 advertising |= ADVERTISED_100baseT_Full;
2850 supported = (SUPPORTED_Autoneg |
2851 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2852 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854 ecmd->base.phy_address = np->phy_addr_external;
2855 /*
2856 * We intentionally report the phy address of the external
2857 * phy, even if the internal phy is used. This is necessary
2858 * to work around a deficiency of the ethtool interface:
2859 * It's only possible to query the settings of the active
2860 * port. Therefore
2861 * # ethtool -s ethX port mii
2862 * actually sends an ioctl to switch to port mii with the
2863 * settings that are used for the current active port.
2864 * If we would report a different phy address in this
2865 * command, then
2866 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867 * would unintentionally change the phy address.
2868 *
2869 * Fortunately the phy address doesn't matter with the
2870 * internal phy...
2871 */
2872
2873 /* set information based on active port type */
2874 switch (ecmd->base.port) {
2875 default:
2876 case PORT_TP:
2877 advertising |= ADVERTISED_TP;
2878 break;
2879 case PORT_MII:
2880 advertising |= ADVERTISED_MII;
2881 break;
2882 case PORT_FIBRE:
2883 advertising |= ADVERTISED_FIBRE;
2884 break;
2885 }
2886
2887 /* if autonegotiation is on, try to return the active speed/duplex */
2888 if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889 advertising |= ADVERTISED_Autoneg;
2890 tmp = mii_nway_result(
2891 negotiated: np->advertising & mdio_read(dev, MII_LPA));
2892 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893 ecmd->base.speed = SPEED_100;
2894 else
2895 ecmd->base.speed = SPEED_10;
2896 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897 ecmd->base.duplex = DUPLEX_FULL;
2898 else
2899 ecmd->base.duplex = DUPLEX_HALF;
2900 }
2901
2902 /* ignore maxtxpkt, maxrxpkt for now */
2903
2904 ethtool_convert_legacy_u32_to_link_mode(dst: ecmd->link_modes.supported,
2905 legacy_u32: supported);
2906 ethtool_convert_legacy_u32_to_link_mode(dst: ecmd->link_modes.advertising,
2907 legacy_u32: advertising);
2908
2909 return 0;
2910}
2911
2912static int netdev_set_ecmd(struct net_device *dev,
2913 const struct ethtool_link_ksettings *ecmd)
2914{
2915 struct netdev_private *np = netdev_priv(dev);
2916 u32 advertising;
2917
2918 ethtool_convert_link_mode_to_legacy_u32(legacy_u32: &advertising,
2919 src: ecmd->link_modes.advertising);
2920
2921 if (ecmd->base.port != PORT_TP &&
2922 ecmd->base.port != PORT_MII &&
2923 ecmd->base.port != PORT_FIBRE)
2924 return -EINVAL;
2925 if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926 if ((advertising & (ADVERTISED_10baseT_Half |
2927 ADVERTISED_10baseT_Full |
2928 ADVERTISED_100baseT_Half |
2929 ADVERTISED_100baseT_Full)) == 0) {
2930 return -EINVAL;
2931 }
2932 } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933 u32 speed = ecmd->base.speed;
2934 if (speed != SPEED_10 && speed != SPEED_100)
2935 return -EINVAL;
2936 if (ecmd->base.duplex != DUPLEX_HALF &&
2937 ecmd->base.duplex != DUPLEX_FULL)
2938 return -EINVAL;
2939 } else {
2940 return -EINVAL;
2941 }
2942
2943 /*
2944 * If we're ignoring the PHY then autoneg and the internal
2945 * transceiver are really not going to work so don't let the
2946 * user select them.
2947 */
2948 if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949 ecmd->base.port == PORT_TP))
2950 return -EINVAL;
2951
2952 /*
2953 * maxtxpkt, maxrxpkt: ignored for now.
2954 *
2955 * transceiver:
2956 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958 * selects based on ecmd->port.
2959 *
2960 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961 * phys that are connected to the mii bus. It's used to apply fibre
2962 * specific updates.
2963 */
2964
2965 /* WHEW! now lets bang some bits */
2966
2967 /* save the parms */
2968 dev->if_port = ecmd->base.port;
2969 np->autoneg = ecmd->base.autoneg;
2970 np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971 if (np->autoneg == AUTONEG_ENABLE) {
2972 /* advertise only what has been requested */
2973 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974 if (advertising & ADVERTISED_10baseT_Half)
2975 np->advertising |= ADVERTISE_10HALF;
2976 if (advertising & ADVERTISED_10baseT_Full)
2977 np->advertising |= ADVERTISE_10FULL;
2978 if (advertising & ADVERTISED_100baseT_Half)
2979 np->advertising |= ADVERTISE_100HALF;
2980 if (advertising & ADVERTISED_100baseT_Full)
2981 np->advertising |= ADVERTISE_100FULL;
2982 } else {
2983 np->speed = ecmd->base.speed;
2984 np->duplex = ecmd->base.duplex;
2985 /* user overriding the initial full duplex parm? */
2986 if (np->duplex == DUPLEX_HALF)
2987 np->full_duplex = 0;
2988 }
2989
2990 /* get the right phy enabled */
2991 if (ecmd->base.port == PORT_TP)
2992 switch_port_internal(dev);
2993 else
2994 switch_port_external(dev);
2995
2996 /* set parms and see how this affected our link status */
2997 init_phy_fixup(dev);
2998 check_link(dev);
2999 return 0;
3000}
3001
3002static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003{
3004 int i;
3005 int j;
3006 u32 rfcr;
3007 u32 *rbuf = (u32 *)buf;
3008 void __iomem * ioaddr = ns_ioaddr(dev);
3009
3010 /* read non-mii page 0 of registers */
3011 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012 rbuf[i] = readl(addr: ioaddr + i*4);
3013 }
3014
3015 /* read current mii registers */
3016 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017 rbuf[i] = mdio_read(dev, reg: i & 0x1f);
3018
3019 /* read only the 'magic' registers from page 1 */
3020 writew(val: 1, addr: ioaddr + PGSEL);
3021 rbuf[i++] = readw(addr: ioaddr + PMDCSR);
3022 rbuf[i++] = readw(addr: ioaddr + TSTDAT);
3023 rbuf[i++] = readw(addr: ioaddr + DSPCFG);
3024 rbuf[i++] = readw(addr: ioaddr + SDCFG);
3025 writew(val: 0, addr: ioaddr + PGSEL);
3026
3027 /* read RFCR indexed registers */
3028 rfcr = readl(addr: ioaddr + RxFilterAddr);
3029 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030 writel(val: j*2, addr: ioaddr + RxFilterAddr);
3031 rbuf[i++] = readw(addr: ioaddr + RxFilterData);
3032 }
3033 writel(val: rfcr, addr: ioaddr + RxFilterAddr);
3034
3035 /* the interrupt status is clear-on-read - see if we missed any */
3036 if (rbuf[4] & rbuf[5]) {
3037 printk(KERN_WARNING
3038 "%s: shoot, we dropped an interrupt (%#08x)\n",
3039 dev->name, rbuf[4] & rbuf[5]);
3040 }
3041
3042 return 0;
3043}
3044
3045#define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3047 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3048 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3049 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3050 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3051 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3052 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053
3054static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055{
3056 int i;
3057 u16 *ebuf = (u16 *)buf;
3058 void __iomem * ioaddr = ns_ioaddr(dev);
3059 struct netdev_private *np = netdev_priv(dev);
3060
3061 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3062 for (i = 0; i < np->eeprom_size/2; i++) {
3063 ebuf[i] = eeprom_read(addr: ioaddr, location: i);
3064 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3065 * reads it back "sanely". So we swap it back here in order to
3066 * present it to userland as it is stored. */
3067 ebuf[i] = SWAP_BITS(ebuf[i]);
3068 }
3069 return 0;
3070}
3071
3072static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073{
3074 struct mii_ioctl_data *data = if_mii(rq);
3075 struct netdev_private *np = netdev_priv(dev);
3076
3077 switch(cmd) {
3078 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3079 data->phy_id = np->phy_addr_external;
3080 fallthrough;
3081
3082 case SIOCGMIIREG: /* Read MII PHY register. */
3083 /* The phy_id is not enough to uniquely identify
3084 * the intended target. Therefore the command is sent to
3085 * the given mii on the current port.
3086 */
3087 if (dev->if_port == PORT_TP) {
3088 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089 data->val_out = mdio_read(dev,
3090 reg: data->reg_num & 0x1f);
3091 else
3092 data->val_out = 0;
3093 } else {
3094 move_int_phy(dev, addr: data->phy_id & 0x1f);
3095 data->val_out = miiport_read(dev, phy_id: data->phy_id & 0x1f,
3096 reg: data->reg_num & 0x1f);
3097 }
3098 return 0;
3099
3100 case SIOCSMIIREG: /* Write MII PHY register. */
3101 if (dev->if_port == PORT_TP) {
3102 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104 np->advertising = data->val_in;
3105 mdio_write(dev, reg: data->reg_num & 0x1f,
3106 data: data->val_in);
3107 }
3108 } else {
3109 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111 np->advertising = data->val_in;
3112 }
3113 move_int_phy(dev, addr: data->phy_id & 0x1f);
3114 miiport_write(dev, phy_id: data->phy_id & 0x1f,
3115 reg: data->reg_num & 0x1f,
3116 data: data->val_in);
3117 }
3118 return 0;
3119 default:
3120 return -EOPNOTSUPP;
3121 }
3122}
3123
3124static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125{
3126 void __iomem * ioaddr = ns_ioaddr(dev);
3127 struct netdev_private *np = netdev_priv(dev);
3128
3129 if (netif_msg_wol(np))
3130 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131 dev->name);
3132
3133 /* For WOL we must restart the rx process in silent mode.
3134 * Write NULL to the RxRingPtr. Only possible if
3135 * rx process is stopped
3136 */
3137 writel(val: 0, addr: ioaddr + RxRingPtr);
3138
3139 /* read WoL status to clear */
3140 readl(addr: ioaddr + WOLCmd);
3141
3142 /* PME on, clear status */
3143 writel(val: np->SavedClkRun | PMEEnable | PMEStatus, addr: ioaddr + ClkRun);
3144
3145 /* and restart the rx process */
3146 writel(val: RxOn, addr: ioaddr + ChipCmd);
3147
3148 if (enable_intr) {
3149 /* enable the WOL interrupt.
3150 * Could be used to send a netlink message.
3151 */
3152 writel(val: WOLPkt | LinkChange, addr: ioaddr + IntrMask);
3153 natsemi_irq_enable(dev);
3154 }
3155}
3156
3157static int netdev_close(struct net_device *dev)
3158{
3159 void __iomem * ioaddr = ns_ioaddr(dev);
3160 struct netdev_private *np = netdev_priv(dev);
3161 const int irq = np->pci_dev->irq;
3162
3163 if (netif_msg_ifdown(np))
3164 printk(KERN_DEBUG
3165 "%s: Shutting down ethercard, status was %#04x.\n",
3166 dev->name, (int)readl(ioaddr + ChipCmd));
3167 if (netif_msg_pktdata(np))
3168 printk(KERN_DEBUG
3169 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3170 dev->name, np->cur_tx, np->dirty_tx,
3171 np->cur_rx, np->dirty_rx);
3172
3173 napi_disable(n: &np->napi);
3174
3175 /*
3176 * FIXME: what if someone tries to close a device
3177 * that is suspended?
3178 * Should we reenable the nic to switch to
3179 * the final WOL settings?
3180 */
3181
3182 del_timer_sync(timer: &np->timer);
3183 disable_irq(irq);
3184 spin_lock_irq(lock: &np->lock);
3185 natsemi_irq_disable(dev);
3186 np->hands_off = 1;
3187 spin_unlock_irq(lock: &np->lock);
3188 enable_irq(irq);
3189
3190 free_irq(irq, dev);
3191
3192 /* Interrupt disabled, interrupt handler released,
3193 * queue stopped, timer deleted, rtnl_lock held
3194 * All async codepaths that access the driver are disabled.
3195 */
3196 spin_lock_irq(lock: &np->lock);
3197 np->hands_off = 0;
3198 readl(addr: ioaddr + IntrMask);
3199 readw(addr: ioaddr + MIntrStatus);
3200
3201 /* Freeze Stats */
3202 writel(val: StatsFreeze, addr: ioaddr + StatsCtrl);
3203
3204 /* Stop the chip's Tx and Rx processes. */
3205 natsemi_stop_rxtx(dev);
3206
3207 __get_stats(dev);
3208 spin_unlock_irq(lock: &np->lock);
3209
3210 /* clear the carrier last - an interrupt could reenable it otherwise */
3211 netif_carrier_off(dev);
3212 netif_stop_queue(dev);
3213
3214 dump_ring(dev);
3215 drain_ring(dev);
3216 free_ring(dev);
3217
3218 {
3219 u32 wol = readl(addr: ioaddr + WOLCmd) & WakeOptsSummary;
3220 if (wol) {
3221 /* restart the NIC in WOL mode.
3222 * The nic must be stopped for this.
3223 */
3224 enable_wol_mode(dev, enable_intr: 0);
3225 } else {
3226 /* Restore PME enable bit unmolested */
3227 writel(val: np->SavedClkRun, addr: ioaddr + ClkRun);
3228 }
3229 }
3230 return 0;
3231}
3232
3233
3234static void natsemi_remove1(struct pci_dev *pdev)
3235{
3236 struct net_device *dev = pci_get_drvdata(pdev);
3237 void __iomem * ioaddr = ns_ioaddr(dev);
3238
3239 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240 unregister_netdev (dev);
3241 iounmap(addr: ioaddr);
3242 free_netdev (dev);
3243}
3244
3245/*
3246 * The ns83815 chip doesn't have explicit RxStop bits.
3247 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248 * of the nic, thus this function must be very careful:
3249 *
3250 * suspend/resume synchronization:
3251 * entry points:
3252 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253 * start_tx, ns_tx_timeout
3254 *
3255 * No function accesses the hardware without checking np->hands_off.
3256 * the check occurs under spin_lock_irq(&np->lock);
3257 * exceptions:
3258 * * netdev_ioctl: noncritical access.
3259 * * netdev_open: cannot happen due to the device_detach
3260 * * netdev_close: doesn't hurt.
3261 * * netdev_timer: timer stopped by natsemi_suspend.
3262 * * intr_handler: doesn't acquire the spinlock. suspend calls
3263 * disable_irq() to enforce synchronization.
3264 * * natsemi_poll: checks before reenabling interrupts. suspend
3265 * sets hands_off, disables interrupts and then waits with
3266 * napi_disable().
3267 *
3268 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269 */
3270
3271static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272{
3273 struct net_device *dev = dev_get_drvdata(dev: dev_d);
3274 struct netdev_private *np = netdev_priv(dev);
3275 void __iomem * ioaddr = ns_ioaddr(dev);
3276
3277 rtnl_lock();
3278 if (netif_running (dev)) {
3279 const int irq = np->pci_dev->irq;
3280
3281 del_timer_sync(timer: &np->timer);
3282
3283 disable_irq(irq);
3284 spin_lock_irq(lock: &np->lock);
3285
3286 natsemi_irq_disable(dev);
3287 np->hands_off = 1;
3288 natsemi_stop_rxtx(dev);
3289 netif_stop_queue(dev);
3290
3291 spin_unlock_irq(lock: &np->lock);
3292 enable_irq(irq);
3293
3294 napi_disable(n: &np->napi);
3295
3296 /* Update the error counts. */
3297 __get_stats(dev);
3298
3299 /* pci_power_off(pdev, -1); */
3300 drain_ring(dev);
3301 {
3302 u32 wol = readl(addr: ioaddr + WOLCmd) & WakeOptsSummary;
3303 /* Restore PME enable bit */
3304 if (wol) {
3305 /* restart the NIC in WOL mode.
3306 * The nic must be stopped for this.
3307 * FIXME: use the WOL interrupt
3308 */
3309 enable_wol_mode(dev, enable_intr: 0);
3310 } else {
3311 /* Restore PME enable bit unmolested */
3312 writel(val: np->SavedClkRun, addr: ioaddr + ClkRun);
3313 }
3314 }
3315 }
3316 netif_device_detach(dev);
3317 rtnl_unlock();
3318 return 0;
3319}
3320
3321
3322static int __maybe_unused natsemi_resume(struct device *dev_d)
3323{
3324 struct net_device *dev = dev_get_drvdata(dev: dev_d);
3325 struct netdev_private *np = netdev_priv(dev);
3326
3327 rtnl_lock();
3328 if (netif_device_present(dev))
3329 goto out;
3330 if (netif_running(dev)) {
3331 const int irq = np->pci_dev->irq;
3332
3333 BUG_ON(!np->hands_off);
3334 /* pci_power_on(pdev); */
3335
3336 napi_enable(n: &np->napi);
3337
3338 natsemi_reset(dev);
3339 init_ring(dev);
3340 disable_irq(irq);
3341 spin_lock_irq(lock: &np->lock);
3342 np->hands_off = 0;
3343 init_registers(dev);
3344 netif_device_attach(dev);
3345 spin_unlock_irq(lock: &np->lock);
3346 enable_irq(irq);
3347
3348 mod_timer(timer: &np->timer, expires: round_jiffies(j: jiffies + 1*HZ));
3349 }
3350 netif_device_attach(dev);
3351out:
3352 rtnl_unlock();
3353 return 0;
3354}
3355
3356static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357
3358static struct pci_driver natsemi_driver = {
3359 .name = DRV_NAME,
3360 .id_table = natsemi_pci_tbl,
3361 .probe = natsemi_probe1,
3362 .remove = natsemi_remove1,
3363 .driver.pm = &natsemi_pm_ops,
3364};
3365
3366static int __init natsemi_init_mod (void)
3367{
3368/* when a module, this is printed whether or not devices are found in probe */
3369#ifdef MODULE
3370 printk(version);
3371#endif
3372
3373 return pci_register_driver(&natsemi_driver);
3374}
3375
3376static void __exit natsemi_exit_mod (void)
3377{
3378 pci_unregister_driver (dev: &natsemi_driver);
3379}
3380
3381module_init(natsemi_init_mod);
3382module_exit(natsemi_exit_mod);
3383
3384

source code of linux/drivers/net/ethernet/natsemi/natsemi.c