1// SPDX-License-Identifier: GPL-2.0
2/* SuperH Ethernet device driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
10
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/dma-mapping.h>
16#include <linux/etherdevice.h>
17#include <linux/delay.h>
18#include <linux/platform_device.h>
19#include <linux/mdio-bitbang.h>
20#include <linux/netdevice.h>
21#include <linux/of.h>
22#include <linux/of_net.h>
23#include <linux/phy.h>
24#include <linux/cache.h>
25#include <linux/io.h>
26#include <linux/pm_runtime.h>
27#include <linux/slab.h>
28#include <linux/ethtool.h>
29#include <linux/if_vlan.h>
30#include <linux/sh_eth.h>
31#include <linux/of_mdio.h>
32
33#include "sh_eth.h"
34
35#define SH_ETH_DEF_MSG_ENABLE \
36 (NETIF_MSG_LINK | \
37 NETIF_MSG_TIMER | \
38 NETIF_MSG_RX_ERR| \
39 NETIF_MSG_TX_ERR)
40
41#define SH_ETH_OFFSET_INVALID ((u16)~0)
42
43#define SH_ETH_OFFSET_DEFAULTS \
44 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
45
46/* use some intentionally tricky logic here to initialize the whole struct to
47 * 0xffff, but then override certain fields, requiring us to indicate that we
48 * "know" that there are overrides in this structure, and we'll need to disable
49 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
50 * the macros available to do this only define GCC 8.
51 */
52__diag_push();
53__diag_ignore(GCC, 8, "-Woverride-init",
54 "logic to initialize all and then override some is OK");
55static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
56 SH_ETH_OFFSET_DEFAULTS,
57
58 [EDSR] = 0x0000,
59 [EDMR] = 0x0400,
60 [EDTRR] = 0x0408,
61 [EDRRR] = 0x0410,
62 [EESR] = 0x0428,
63 [EESIPR] = 0x0430,
64 [TDLAR] = 0x0010,
65 [TDFAR] = 0x0014,
66 [TDFXR] = 0x0018,
67 [TDFFR] = 0x001c,
68 [RDLAR] = 0x0030,
69 [RDFAR] = 0x0034,
70 [RDFXR] = 0x0038,
71 [RDFFR] = 0x003c,
72 [TRSCER] = 0x0438,
73 [RMFCR] = 0x0440,
74 [TFTR] = 0x0448,
75 [FDR] = 0x0450,
76 [RMCR] = 0x0458,
77 [RPADIR] = 0x0460,
78 [FCFTR] = 0x0468,
79 [CSMR] = 0x04E4,
80
81 [ECMR] = 0x0500,
82 [ECSR] = 0x0510,
83 [ECSIPR] = 0x0518,
84 [PIR] = 0x0520,
85 [PSR] = 0x0528,
86 [PIPR] = 0x052c,
87 [RFLR] = 0x0508,
88 [APR] = 0x0554,
89 [MPR] = 0x0558,
90 [PFTCR] = 0x055c,
91 [PFRCR] = 0x0560,
92 [TPAUSER] = 0x0564,
93 [GECMR] = 0x05b0,
94 [BCULR] = 0x05b4,
95 [MAHR] = 0x05c0,
96 [MALR] = 0x05c8,
97 [TROCR] = 0x0700,
98 [CDCR] = 0x0708,
99 [LCCR] = 0x0710,
100 [CEFCR] = 0x0740,
101 [FRECR] = 0x0748,
102 [TSFRCR] = 0x0750,
103 [TLFRCR] = 0x0758,
104 [RFCR] = 0x0760,
105 [CERCR] = 0x0768,
106 [CEECR] = 0x0770,
107 [MAFCR] = 0x0778,
108 [RMII_MII] = 0x0790,
109
110 [ARSTR] = 0x0000,
111 [TSU_CTRST] = 0x0004,
112 [TSU_FWEN0] = 0x0010,
113 [TSU_FWEN1] = 0x0014,
114 [TSU_FCM] = 0x0018,
115 [TSU_BSYSL0] = 0x0020,
116 [TSU_BSYSL1] = 0x0024,
117 [TSU_PRISL0] = 0x0028,
118 [TSU_PRISL1] = 0x002c,
119 [TSU_FWSL0] = 0x0030,
120 [TSU_FWSL1] = 0x0034,
121 [TSU_FWSLC] = 0x0038,
122 [TSU_QTAGM0] = 0x0040,
123 [TSU_QTAGM1] = 0x0044,
124 [TSU_FWSR] = 0x0050,
125 [TSU_FWINMK] = 0x0054,
126 [TSU_ADQT0] = 0x0048,
127 [TSU_ADQT1] = 0x004c,
128 [TSU_VTAG0] = 0x0058,
129 [TSU_VTAG1] = 0x005c,
130 [TSU_ADSBSY] = 0x0060,
131 [TSU_TEN] = 0x0064,
132 [TSU_POST1] = 0x0070,
133 [TSU_POST2] = 0x0074,
134 [TSU_POST3] = 0x0078,
135 [TSU_POST4] = 0x007c,
136 [TSU_ADRH0] = 0x0100,
137
138 [TXNLCR0] = 0x0080,
139 [TXALCR0] = 0x0084,
140 [RXNLCR0] = 0x0088,
141 [RXALCR0] = 0x008c,
142 [FWNLCR0] = 0x0090,
143 [FWALCR0] = 0x0094,
144 [TXNLCR1] = 0x00a0,
145 [TXALCR1] = 0x00a4,
146 [RXNLCR1] = 0x00a8,
147 [RXALCR1] = 0x00ac,
148 [FWNLCR1] = 0x00b0,
149 [FWALCR1] = 0x00b4,
150};
151
152static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
153 SH_ETH_OFFSET_DEFAULTS,
154
155 [ECMR] = 0x0300,
156 [RFLR] = 0x0308,
157 [ECSR] = 0x0310,
158 [ECSIPR] = 0x0318,
159 [PIR] = 0x0320,
160 [PSR] = 0x0328,
161 [RDMLR] = 0x0340,
162 [IPGR] = 0x0350,
163 [APR] = 0x0354,
164 [MPR] = 0x0358,
165 [RFCF] = 0x0360,
166 [TPAUSER] = 0x0364,
167 [TPAUSECR] = 0x0368,
168 [MAHR] = 0x03c0,
169 [MALR] = 0x03c8,
170 [TROCR] = 0x03d0,
171 [CDCR] = 0x03d4,
172 [LCCR] = 0x03d8,
173 [CNDCR] = 0x03dc,
174 [CEFCR] = 0x03e4,
175 [FRECR] = 0x03e8,
176 [TSFRCR] = 0x03ec,
177 [TLFRCR] = 0x03f0,
178 [RFCR] = 0x03f4,
179 [MAFCR] = 0x03f8,
180
181 [EDMR] = 0x0200,
182 [EDTRR] = 0x0208,
183 [EDRRR] = 0x0210,
184 [TDLAR] = 0x0218,
185 [RDLAR] = 0x0220,
186 [EESR] = 0x0228,
187 [EESIPR] = 0x0230,
188 [TRSCER] = 0x0238,
189 [RMFCR] = 0x0240,
190 [TFTR] = 0x0248,
191 [FDR] = 0x0250,
192 [RMCR] = 0x0258,
193 [TFUCR] = 0x0264,
194 [RFOCR] = 0x0268,
195 [RMIIMODE] = 0x026c,
196 [FCFTR] = 0x0270,
197 [TRIMD] = 0x027c,
198};
199
200static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
201 SH_ETH_OFFSET_DEFAULTS,
202
203 [ECMR] = 0x0100,
204 [RFLR] = 0x0108,
205 [ECSR] = 0x0110,
206 [ECSIPR] = 0x0118,
207 [PIR] = 0x0120,
208 [PSR] = 0x0128,
209 [RDMLR] = 0x0140,
210 [IPGR] = 0x0150,
211 [APR] = 0x0154,
212 [MPR] = 0x0158,
213 [TPAUSER] = 0x0164,
214 [RFCF] = 0x0160,
215 [TPAUSECR] = 0x0168,
216 [BCFRR] = 0x016c,
217 [MAHR] = 0x01c0,
218 [MALR] = 0x01c8,
219 [TROCR] = 0x01d0,
220 [CDCR] = 0x01d4,
221 [LCCR] = 0x01d8,
222 [CNDCR] = 0x01dc,
223 [CEFCR] = 0x01e4,
224 [FRECR] = 0x01e8,
225 [TSFRCR] = 0x01ec,
226 [TLFRCR] = 0x01f0,
227 [RFCR] = 0x01f4,
228 [MAFCR] = 0x01f8,
229 [RTRATE] = 0x01fc,
230
231 [EDMR] = 0x0000,
232 [EDTRR] = 0x0008,
233 [EDRRR] = 0x0010,
234 [TDLAR] = 0x0018,
235 [RDLAR] = 0x0020,
236 [EESR] = 0x0028,
237 [EESIPR] = 0x0030,
238 [TRSCER] = 0x0038,
239 [RMFCR] = 0x0040,
240 [TFTR] = 0x0048,
241 [FDR] = 0x0050,
242 [RMCR] = 0x0058,
243 [TFUCR] = 0x0064,
244 [RFOCR] = 0x0068,
245 [FCFTR] = 0x0070,
246 [RPADIR] = 0x0078,
247 [TRIMD] = 0x007c,
248 [RBWAR] = 0x00c8,
249 [RDFAR] = 0x00cc,
250 [TBRAR] = 0x00d4,
251 [TDFAR] = 0x00d8,
252};
253
254static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
255 SH_ETH_OFFSET_DEFAULTS,
256
257 [EDMR] = 0x0000,
258 [EDTRR] = 0x0004,
259 [EDRRR] = 0x0008,
260 [TDLAR] = 0x000c,
261 [RDLAR] = 0x0010,
262 [EESR] = 0x0014,
263 [EESIPR] = 0x0018,
264 [TRSCER] = 0x001c,
265 [RMFCR] = 0x0020,
266 [TFTR] = 0x0024,
267 [FDR] = 0x0028,
268 [RMCR] = 0x002c,
269 [EDOCR] = 0x0030,
270 [FCFTR] = 0x0034,
271 [RPADIR] = 0x0038,
272 [TRIMD] = 0x003c,
273 [RBWAR] = 0x0040,
274 [RDFAR] = 0x0044,
275 [TBRAR] = 0x004c,
276 [TDFAR] = 0x0050,
277
278 [ECMR] = 0x0160,
279 [ECSR] = 0x0164,
280 [ECSIPR] = 0x0168,
281 [PIR] = 0x016c,
282 [MAHR] = 0x0170,
283 [MALR] = 0x0174,
284 [RFLR] = 0x0178,
285 [PSR] = 0x017c,
286 [TROCR] = 0x0180,
287 [CDCR] = 0x0184,
288 [LCCR] = 0x0188,
289 [CNDCR] = 0x018c,
290 [CEFCR] = 0x0194,
291 [FRECR] = 0x0198,
292 [TSFRCR] = 0x019c,
293 [TLFRCR] = 0x01a0,
294 [RFCR] = 0x01a4,
295 [MAFCR] = 0x01a8,
296 [IPGR] = 0x01b4,
297 [APR] = 0x01b8,
298 [MPR] = 0x01bc,
299 [TPAUSER] = 0x01c4,
300 [BCFR] = 0x01cc,
301
302 [ARSTR] = 0x0000,
303 [TSU_CTRST] = 0x0004,
304 [TSU_FWEN0] = 0x0010,
305 [TSU_FWEN1] = 0x0014,
306 [TSU_FCM] = 0x0018,
307 [TSU_BSYSL0] = 0x0020,
308 [TSU_BSYSL1] = 0x0024,
309 [TSU_PRISL0] = 0x0028,
310 [TSU_PRISL1] = 0x002c,
311 [TSU_FWSL0] = 0x0030,
312 [TSU_FWSL1] = 0x0034,
313 [TSU_FWSLC] = 0x0038,
314 [TSU_QTAGM0] = 0x0040,
315 [TSU_QTAGM1] = 0x0044,
316 [TSU_ADQT0] = 0x0048,
317 [TSU_ADQT1] = 0x004c,
318 [TSU_FWSR] = 0x0050,
319 [TSU_FWINMK] = 0x0054,
320 [TSU_ADSBSY] = 0x0060,
321 [TSU_TEN] = 0x0064,
322 [TSU_POST1] = 0x0070,
323 [TSU_POST2] = 0x0074,
324 [TSU_POST3] = 0x0078,
325 [TSU_POST4] = 0x007c,
326
327 [TXNLCR0] = 0x0080,
328 [TXALCR0] = 0x0084,
329 [RXNLCR0] = 0x0088,
330 [RXALCR0] = 0x008c,
331 [FWNLCR0] = 0x0090,
332 [FWALCR0] = 0x0094,
333 [TXNLCR1] = 0x00a0,
334 [TXALCR1] = 0x00a4,
335 [RXNLCR1] = 0x00a8,
336 [RXALCR1] = 0x00ac,
337 [FWNLCR1] = 0x00b0,
338 [FWALCR1] = 0x00b4,
339
340 [TSU_ADRH0] = 0x0100,
341};
342__diag_pop();
343
344static void sh_eth_rcv_snd_disable(struct net_device *ndev);
345static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
346
347static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
348{
349 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
350 u16 offset = mdp->reg_offset[enum_index];
351
352 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
353 return;
354
355 iowrite32(data, mdp->addr + offset);
356}
357
358static u32 sh_eth_read(struct net_device *ndev, int enum_index)
359{
360 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
361 u16 offset = mdp->reg_offset[enum_index];
362
363 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
364 return ~0U;
365
366 return ioread32(mdp->addr + offset);
367}
368
369static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
370 u32 set)
371{
372 sh_eth_write(ndev, data: (sh_eth_read(ndev, enum_index) & ~clear) | set,
373 enum_index);
374}
375
376static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
377{
378 return mdp->reg_offset[enum_index];
379}
380
381static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
382 int enum_index)
383{
384 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
385
386 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
387 return;
388
389 iowrite32(data, mdp->tsu_addr + offset);
390}
391
392static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
393{
394 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
395
396 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
397 return ~0U;
398
399 return ioread32(mdp->tsu_addr + offset);
400}
401
402static void sh_eth_soft_swap(char *src, int len)
403{
404#ifdef __LITTLE_ENDIAN
405 u32 *p = (u32 *)src;
406 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
407
408 for (; p < maxp; p++)
409 *p = swab32(*p);
410#endif
411}
412
413static void sh_eth_select_mii(struct net_device *ndev)
414{
415 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
416 u32 value;
417
418 switch (mdp->phy_interface) {
419 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
420 value = 0x3;
421 break;
422 case PHY_INTERFACE_MODE_GMII:
423 value = 0x2;
424 break;
425 case PHY_INTERFACE_MODE_MII:
426 value = 0x1;
427 break;
428 case PHY_INTERFACE_MODE_RMII:
429 value = 0x0;
430 break;
431 default:
432 netdev_warn(dev: ndev,
433 format: "PHY interface mode was not setup. Set to MII.\n");
434 value = 0x1;
435 break;
436 }
437
438 sh_eth_write(ndev, data: value, enum_index: RMII_MII);
439}
440
441static void sh_eth_set_duplex(struct net_device *ndev)
442{
443 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
444
445 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_DM, set: mdp->duplex ? ECMR_DM : 0);
446}
447
448static void sh_eth_chip_reset(struct net_device *ndev)
449{
450 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
451
452 /* reset device */
453 sh_eth_tsu_write(mdp, data: ARSTR_ARST, enum_index: ARSTR);
454 mdelay(1);
455}
456
457static int sh_eth_soft_reset(struct net_device *ndev)
458{
459 sh_eth_modify(ndev, enum_index: EDMR, clear: EDMR_SRST_ETHER, set: EDMR_SRST_ETHER);
460 mdelay(3);
461 sh_eth_modify(ndev, enum_index: EDMR, clear: EDMR_SRST_ETHER, set: 0);
462
463 return 0;
464}
465
466static int sh_eth_check_soft_reset(struct net_device *ndev)
467{
468 int cnt;
469
470 for (cnt = 100; cnt > 0; cnt--) {
471 if (!(sh_eth_read(ndev, enum_index: EDMR) & EDMR_SRST_GETHER))
472 return 0;
473 mdelay(1);
474 }
475
476 netdev_err(dev: ndev, format: "Device reset failed\n");
477 return -ETIMEDOUT;
478}
479
480static int sh_eth_soft_reset_gether(struct net_device *ndev)
481{
482 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
483 int ret;
484
485 sh_eth_write(ndev, EDSR_ENALL, enum_index: EDSR);
486 sh_eth_modify(ndev, enum_index: EDMR, clear: EDMR_SRST_GETHER, set: EDMR_SRST_GETHER);
487
488 ret = sh_eth_check_soft_reset(ndev);
489 if (ret)
490 return ret;
491
492 /* Table Init */
493 sh_eth_write(ndev, data: 0, enum_index: TDLAR);
494 sh_eth_write(ndev, data: 0, enum_index: TDFAR);
495 sh_eth_write(ndev, data: 0, enum_index: TDFXR);
496 sh_eth_write(ndev, data: 0, enum_index: TDFFR);
497 sh_eth_write(ndev, data: 0, enum_index: RDLAR);
498 sh_eth_write(ndev, data: 0, enum_index: RDFAR);
499 sh_eth_write(ndev, data: 0, enum_index: RDFXR);
500 sh_eth_write(ndev, data: 0, enum_index: RDFFR);
501
502 /* Reset HW CRC register */
503 if (mdp->cd->csmr)
504 sh_eth_write(ndev, data: 0, enum_index: CSMR);
505
506 /* Select MII mode */
507 if (mdp->cd->select_mii)
508 sh_eth_select_mii(ndev);
509
510 return ret;
511}
512
513static void sh_eth_set_rate_gether(struct net_device *ndev)
514{
515 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
516
517 if (WARN_ON(!mdp->cd->gecmr))
518 return;
519
520 switch (mdp->speed) {
521 case 10: /* 10BASE */
522 sh_eth_write(ndev, data: GECMR_10, enum_index: GECMR);
523 break;
524 case 100:/* 100BASE */
525 sh_eth_write(ndev, data: GECMR_100, enum_index: GECMR);
526 break;
527 case 1000: /* 1000BASE */
528 sh_eth_write(ndev, data: GECMR_1000, enum_index: GECMR);
529 break;
530 }
531}
532
533#ifdef CONFIG_OF
534/* R7S72100 */
535static struct sh_eth_cpu_data r7s72100_data = {
536 .soft_reset = sh_eth_soft_reset_gether,
537
538 .chip_reset = sh_eth_chip_reset,
539 .set_duplex = sh_eth_set_duplex,
540
541 .register_type = SH_ETH_REG_GIGABIT,
542
543 .edtrr_trns = EDTRR_TRNS_GETHER,
544 .ecsr_value = ECSR_ICD,
545 .ecsipr_value = ECSIPR_ICDIP,
546 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
547 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
548 EESIPR_ECIIP |
549 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
550 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
551 EESIPR_RMAFIP | EESIPR_RRFIP |
552 EESIPR_RTLFIP | EESIPR_RTSFIP |
553 EESIPR_PREIP | EESIPR_CERFIP,
554
555 .tx_check = EESR_TC1 | EESR_FTC,
556 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
557 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
558 EESR_TDE,
559 .fdr_value = 0x0000070f,
560
561 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
562
563 .no_psr = 1,
564 .apr = 1,
565 .mpr = 1,
566 .tpauser = 1,
567 .hw_swap = 1,
568 .rpadir = 1,
569 .no_trimd = 1,
570 .no_ade = 1,
571 .xdfar_rw = 1,
572 .csmr = 1,
573 .rx_csum = 1,
574 .tsu = 1,
575 .no_tx_cntrs = 1,
576};
577
578static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
579{
580 sh_eth_chip_reset(ndev);
581
582 sh_eth_select_mii(ndev);
583}
584
585/* R8A7740 */
586static struct sh_eth_cpu_data r8a7740_data = {
587 .soft_reset = sh_eth_soft_reset_gether,
588
589 .chip_reset = sh_eth_chip_reset_r8a7740,
590 .set_duplex = sh_eth_set_duplex,
591 .set_rate = sh_eth_set_rate_gether,
592
593 .register_type = SH_ETH_REG_GIGABIT,
594
595 .edtrr_trns = EDTRR_TRNS_GETHER,
596 .ecsr_value = ECSR_ICD | ECSR_MPD,
597 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
598 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
599 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
600 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
601 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
602 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
603 EESIPR_CEEFIP | EESIPR_CELFIP |
604 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
605 EESIPR_PREIP | EESIPR_CERFIP,
606
607 .tx_check = EESR_TC1 | EESR_FTC,
608 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 EESR_TDE,
611 .fdr_value = 0x0000070f,
612
613 .apr = 1,
614 .mpr = 1,
615 .tpauser = 1,
616 .gecmr = 1,
617 .bculr = 1,
618 .hw_swap = 1,
619 .rpadir = 1,
620 .no_trimd = 1,
621 .no_ade = 1,
622 .xdfar_rw = 1,
623 .csmr = 1,
624 .rx_csum = 1,
625 .tsu = 1,
626 .select_mii = 1,
627 .magic = 1,
628 .cexcr = 1,
629};
630
631/* There is CPU dependent code */
632static void sh_eth_set_rate_rcar(struct net_device *ndev)
633{
634 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
635
636 switch (mdp->speed) {
637 case 10: /* 10BASE */
638 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_ELB, set: 0);
639 break;
640 case 100:/* 100BASE */
641 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_ELB, set: ECMR_ELB);
642 break;
643 }
644}
645
646/* R-Car Gen1 */
647static struct sh_eth_cpu_data rcar_gen1_data = {
648 .soft_reset = sh_eth_soft_reset,
649
650 .set_duplex = sh_eth_set_duplex,
651 .set_rate = sh_eth_set_rate_rcar,
652
653 .register_type = SH_ETH_REG_FAST_RCAR,
654
655 .edtrr_trns = EDTRR_TRNS_ETHER,
656 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
657 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
658 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
659 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
660 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
661 EESIPR_RMAFIP | EESIPR_RRFIP |
662 EESIPR_RTLFIP | EESIPR_RTSFIP |
663 EESIPR_PREIP | EESIPR_CERFIP,
664
665 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
666 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
667 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
668 .fdr_value = 0x00000f0f,
669
670 .apr = 1,
671 .mpr = 1,
672 .tpauser = 1,
673 .hw_swap = 1,
674 .no_xdfar = 1,
675};
676
677/* R-Car Gen2 and RZ/G1 */
678static struct sh_eth_cpu_data rcar_gen2_data = {
679 .soft_reset = sh_eth_soft_reset,
680
681 .set_duplex = sh_eth_set_duplex,
682 .set_rate = sh_eth_set_rate_rcar,
683
684 .register_type = SH_ETH_REG_FAST_RCAR,
685
686 .edtrr_trns = EDTRR_TRNS_ETHER,
687 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
688 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
689 ECSIPR_MPDIP,
690 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
691 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
692 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
693 EESIPR_RMAFIP | EESIPR_RRFIP |
694 EESIPR_RTLFIP | EESIPR_RTSFIP |
695 EESIPR_PREIP | EESIPR_CERFIP,
696
697 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
698 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
699 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
700 .fdr_value = 0x00000f0f,
701
702 .trscer_err_mask = TRSCER_RMAFCE,
703
704 .apr = 1,
705 .mpr = 1,
706 .tpauser = 1,
707 .hw_swap = 1,
708 .no_xdfar = 1,
709 .rmiimode = 1,
710 .magic = 1,
711};
712
713/* R8A77980 */
714static struct sh_eth_cpu_data r8a77980_data = {
715 .soft_reset = sh_eth_soft_reset_gether,
716
717 .set_duplex = sh_eth_set_duplex,
718 .set_rate = sh_eth_set_rate_gether,
719
720 .register_type = SH_ETH_REG_GIGABIT,
721
722 .edtrr_trns = EDTRR_TRNS_GETHER,
723 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
724 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
725 ECSIPR_MPDIP,
726 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
727 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
728 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
729 EESIPR_RMAFIP | EESIPR_RRFIP |
730 EESIPR_RTLFIP | EESIPR_RTSFIP |
731 EESIPR_PREIP | EESIPR_CERFIP,
732
733 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
734 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
735 EESR_RFE | EESR_RDE | EESR_RFRMER |
736 EESR_TFE | EESR_TDE | EESR_ECI,
737 .fdr_value = 0x0000070f,
738
739 .apr = 1,
740 .mpr = 1,
741 .tpauser = 1,
742 .gecmr = 1,
743 .bculr = 1,
744 .hw_swap = 1,
745 .nbst = 1,
746 .rpadir = 1,
747 .no_trimd = 1,
748 .no_ade = 1,
749 .xdfar_rw = 1,
750 .csmr = 1,
751 .rx_csum = 1,
752 .select_mii = 1,
753 .magic = 1,
754 .cexcr = 1,
755};
756
757/* R7S9210 */
758static struct sh_eth_cpu_data r7s9210_data = {
759 .soft_reset = sh_eth_soft_reset,
760
761 .set_duplex = sh_eth_set_duplex,
762 .set_rate = sh_eth_set_rate_rcar,
763
764 .register_type = SH_ETH_REG_FAST_SH4,
765
766 .edtrr_trns = EDTRR_TRNS_ETHER,
767 .ecsr_value = ECSR_ICD,
768 .ecsipr_value = ECSIPR_ICDIP,
769 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
770 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
771 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
772 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
773 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
774 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
775 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
776
777 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
778 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
779 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
780
781 .fdr_value = 0x0000070f,
782
783 .trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
784
785 .apr = 1,
786 .mpr = 1,
787 .tpauser = 1,
788 .hw_swap = 1,
789 .rpadir = 1,
790 .no_ade = 1,
791 .xdfar_rw = 1,
792};
793#endif /* CONFIG_OF */
794
795static void sh_eth_set_rate_sh7724(struct net_device *ndev)
796{
797 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
798
799 switch (mdp->speed) {
800 case 10: /* 10BASE */
801 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_RTM, set: 0);
802 break;
803 case 100:/* 100BASE */
804 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_RTM, set: ECMR_RTM);
805 break;
806 }
807}
808
809/* SH7724 */
810static struct sh_eth_cpu_data sh7724_data = {
811 .soft_reset = sh_eth_soft_reset,
812
813 .set_duplex = sh_eth_set_duplex,
814 .set_rate = sh_eth_set_rate_sh7724,
815
816 .register_type = SH_ETH_REG_FAST_SH4,
817
818 .edtrr_trns = EDTRR_TRNS_ETHER,
819 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
820 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
821 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
822 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
823 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
824 EESIPR_RMAFIP | EESIPR_RRFIP |
825 EESIPR_RTLFIP | EESIPR_RTSFIP |
826 EESIPR_PREIP | EESIPR_CERFIP,
827
828 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
829 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
830 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
831
832 .apr = 1,
833 .mpr = 1,
834 .tpauser = 1,
835 .hw_swap = 1,
836 .rpadir = 1,
837};
838
839static void sh_eth_set_rate_sh7757(struct net_device *ndev)
840{
841 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
842
843 switch (mdp->speed) {
844 case 10: /* 10BASE */
845 sh_eth_write(ndev, data: 0, enum_index: RTRATE);
846 break;
847 case 100:/* 100BASE */
848 sh_eth_write(ndev, data: 1, enum_index: RTRATE);
849 break;
850 }
851}
852
853/* SH7757 */
854static struct sh_eth_cpu_data sh7757_data = {
855 .soft_reset = sh_eth_soft_reset,
856
857 .set_duplex = sh_eth_set_duplex,
858 .set_rate = sh_eth_set_rate_sh7757,
859
860 .register_type = SH_ETH_REG_FAST_SH4,
861
862 .edtrr_trns = EDTRR_TRNS_ETHER,
863 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
864 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
865 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
866 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
867 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
868 EESIPR_CEEFIP | EESIPR_CELFIP |
869 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
870 EESIPR_PREIP | EESIPR_CERFIP,
871
872 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
873 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
874 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
875
876 .irq_flags = IRQF_SHARED,
877 .apr = 1,
878 .mpr = 1,
879 .tpauser = 1,
880 .hw_swap = 1,
881 .no_ade = 1,
882 .rpadir = 1,
883 .rtrate = 1,
884 .dual_port = 1,
885};
886
887#define SH_GIGA_ETH_BASE 0xfee00000UL
888#define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
889#define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
890static void sh_eth_chip_reset_giga(struct net_device *ndev)
891{
892 u32 mahr[2], malr[2];
893 int i;
894
895 /* save MAHR and MALR */
896 for (i = 0; i < 2; i++) {
897 malr[i] = ioread32((void *)GIGA_MALR(i));
898 mahr[i] = ioread32((void *)GIGA_MAHR(i));
899 }
900
901 sh_eth_chip_reset(ndev);
902
903 /* restore MAHR and MALR */
904 for (i = 0; i < 2; i++) {
905 iowrite32(malr[i], (void *)GIGA_MALR(i));
906 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
907 }
908}
909
910static void sh_eth_set_rate_giga(struct net_device *ndev)
911{
912 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
913
914 if (WARN_ON(!mdp->cd->gecmr))
915 return;
916
917 switch (mdp->speed) {
918 case 10: /* 10BASE */
919 sh_eth_write(ndev, data: 0x00000000, enum_index: GECMR);
920 break;
921 case 100:/* 100BASE */
922 sh_eth_write(ndev, data: 0x00000010, enum_index: GECMR);
923 break;
924 case 1000: /* 1000BASE */
925 sh_eth_write(ndev, data: 0x00000020, enum_index: GECMR);
926 break;
927 }
928}
929
930/* SH7757(GETHERC) */
931static struct sh_eth_cpu_data sh7757_data_giga = {
932 .soft_reset = sh_eth_soft_reset_gether,
933
934 .chip_reset = sh_eth_chip_reset_giga,
935 .set_duplex = sh_eth_set_duplex,
936 .set_rate = sh_eth_set_rate_giga,
937
938 .register_type = SH_ETH_REG_GIGABIT,
939
940 .edtrr_trns = EDTRR_TRNS_GETHER,
941 .ecsr_value = ECSR_ICD | ECSR_MPD,
942 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
943 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
944 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
945 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
946 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
947 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
948 EESIPR_CEEFIP | EESIPR_CELFIP |
949 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
950 EESIPR_PREIP | EESIPR_CERFIP,
951
952 .tx_check = EESR_TC1 | EESR_FTC,
953 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
954 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
955 EESR_TDE,
956 .fdr_value = 0x0000072f,
957
958 .irq_flags = IRQF_SHARED,
959 .apr = 1,
960 .mpr = 1,
961 .tpauser = 1,
962 .gecmr = 1,
963 .bculr = 1,
964 .hw_swap = 1,
965 .rpadir = 1,
966 .no_trimd = 1,
967 .no_ade = 1,
968 .xdfar_rw = 1,
969 .tsu = 1,
970 .cexcr = 1,
971 .dual_port = 1,
972};
973
974/* SH7734 */
975static struct sh_eth_cpu_data sh7734_data = {
976 .soft_reset = sh_eth_soft_reset_gether,
977
978 .chip_reset = sh_eth_chip_reset,
979 .set_duplex = sh_eth_set_duplex,
980 .set_rate = sh_eth_set_rate_gether,
981
982 .register_type = SH_ETH_REG_GIGABIT,
983
984 .edtrr_trns = EDTRR_TRNS_GETHER,
985 .ecsr_value = ECSR_ICD | ECSR_MPD,
986 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
987 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
988 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
989 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
990 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
991 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
992 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 EESIPR_PREIP | EESIPR_CERFIP,
994
995 .tx_check = EESR_TC1 | EESR_FTC,
996 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
998 EESR_TDE,
999
1000 .apr = 1,
1001 .mpr = 1,
1002 .tpauser = 1,
1003 .gecmr = 1,
1004 .bculr = 1,
1005 .hw_swap = 1,
1006 .no_trimd = 1,
1007 .no_ade = 1,
1008 .xdfar_rw = 1,
1009 .tsu = 1,
1010 .csmr = 1,
1011 .rx_csum = 1,
1012 .select_mii = 1,
1013 .magic = 1,
1014 .cexcr = 1,
1015};
1016
1017/* SH7763 */
1018static struct sh_eth_cpu_data sh7763_data = {
1019 .soft_reset = sh_eth_soft_reset_gether,
1020
1021 .chip_reset = sh_eth_chip_reset,
1022 .set_duplex = sh_eth_set_duplex,
1023 .set_rate = sh_eth_set_rate_gether,
1024
1025 .register_type = SH_ETH_REG_GIGABIT,
1026
1027 .edtrr_trns = EDTRR_TRNS_GETHER,
1028 .ecsr_value = ECSR_ICD | ECSR_MPD,
1029 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1030 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1031 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1032 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1033 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1034 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1035 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1036 EESIPR_PREIP | EESIPR_CERFIP,
1037
1038 .tx_check = EESR_TC1 | EESR_FTC,
1039 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1040 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1041
1042 .apr = 1,
1043 .mpr = 1,
1044 .tpauser = 1,
1045 .gecmr = 1,
1046 .bculr = 1,
1047 .hw_swap = 1,
1048 .no_trimd = 1,
1049 .no_ade = 1,
1050 .xdfar_rw = 1,
1051 .tsu = 1,
1052 .irq_flags = IRQF_SHARED,
1053 .magic = 1,
1054 .cexcr = 1,
1055 .rx_csum = 1,
1056 .dual_port = 1,
1057};
1058
1059static struct sh_eth_cpu_data sh7619_data = {
1060 .soft_reset = sh_eth_soft_reset,
1061
1062 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1063
1064 .edtrr_trns = EDTRR_TRNS_ETHER,
1065 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1066 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1067 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1068 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1069 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1070 EESIPR_CEEFIP | EESIPR_CELFIP |
1071 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1072 EESIPR_PREIP | EESIPR_CERFIP,
1073
1074 .apr = 1,
1075 .mpr = 1,
1076 .tpauser = 1,
1077 .hw_swap = 1,
1078};
1079
1080static struct sh_eth_cpu_data sh771x_data = {
1081 .soft_reset = sh_eth_soft_reset,
1082
1083 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1084
1085 .edtrr_trns = EDTRR_TRNS_ETHER,
1086 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1087 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1088 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1089 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1090 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1091 EESIPR_CEEFIP | EESIPR_CELFIP |
1092 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1093 EESIPR_PREIP | EESIPR_CERFIP,
1094
1095 .trscer_err_mask = TRSCER_RMAFCE,
1096
1097 .tsu = 1,
1098 .dual_port = 1,
1099};
1100
1101static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1102{
1103 if (!cd->ecsr_value)
1104 cd->ecsr_value = DEFAULT_ECSR_INIT;
1105
1106 if (!cd->ecsipr_value)
1107 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1108
1109 if (!cd->fcftr_value)
1110 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1111 DEFAULT_FIFO_F_D_RFD;
1112
1113 if (!cd->fdr_value)
1114 cd->fdr_value = DEFAULT_FDR_INIT;
1115
1116 if (!cd->tx_check)
1117 cd->tx_check = DEFAULT_TX_CHECK;
1118
1119 if (!cd->eesr_err_check)
1120 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1121
1122 if (!cd->trscer_err_mask)
1123 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1124}
1125
1126static void sh_eth_set_receive_align(struct sk_buff *skb)
1127{
1128 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1129
1130 if (reserve)
1131 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1132}
1133
1134/* Program the hardware MAC address from dev->dev_addr. */
1135static void update_mac_address(struct net_device *ndev)
1136{
1137 sh_eth_write(ndev,
1138 data: (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1139 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), enum_index: MAHR);
1140 sh_eth_write(ndev,
1141 data: (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), enum_index: MALR);
1142}
1143
1144/* Get MAC address from SuperH MAC address register
1145 *
1146 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1147 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1148 * When you want use this device, you must set MAC address in bootloader.
1149 *
1150 */
1151static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1152{
1153 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1154 eth_hw_addr_set(dev: ndev, addr: mac);
1155 } else {
1156 u32 mahr = sh_eth_read(ndev, enum_index: MAHR);
1157 u32 malr = sh_eth_read(ndev, enum_index: MALR);
1158 u8 addr[ETH_ALEN];
1159
1160 addr[0] = (mahr >> 24) & 0xFF;
1161 addr[1] = (mahr >> 16) & 0xFF;
1162 addr[2] = (mahr >> 8) & 0xFF;
1163 addr[3] = (mahr >> 0) & 0xFF;
1164 addr[4] = (malr >> 8) & 0xFF;
1165 addr[5] = (malr >> 0) & 0xFF;
1166 eth_hw_addr_set(dev: ndev, addr);
1167 }
1168}
1169
1170struct bb_info {
1171 void (*set_gate)(void *addr);
1172 struct mdiobb_ctrl ctrl;
1173 void *addr;
1174};
1175
1176static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1177{
1178 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1179 u32 pir;
1180
1181 if (bitbang->set_gate)
1182 bitbang->set_gate(bitbang->addr);
1183
1184 pir = ioread32(bitbang->addr);
1185 if (set)
1186 pir |= mask;
1187 else
1188 pir &= ~mask;
1189 iowrite32(pir, bitbang->addr);
1190}
1191
1192/* Data I/O pin control */
1193static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1194{
1195 sh_mdio_ctrl(ctrl, mask: PIR_MMD, set: bit);
1196}
1197
1198/* Set bit data*/
1199static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1200{
1201 sh_mdio_ctrl(ctrl, mask: PIR_MDO, set: bit);
1202}
1203
1204/* Get bit data*/
1205static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1206{
1207 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1208
1209 if (bitbang->set_gate)
1210 bitbang->set_gate(bitbang->addr);
1211
1212 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1213}
1214
1215/* MDC pin control */
1216static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1217{
1218 sh_mdio_ctrl(ctrl, mask: PIR_MDC, set: bit);
1219}
1220
1221/* mdio bus control struct */
1222static const struct mdiobb_ops bb_ops = {
1223 .owner = THIS_MODULE,
1224 .set_mdc = sh_mdc_ctrl,
1225 .set_mdio_dir = sh_mmd_ctrl,
1226 .set_mdio_data = sh_set_mdio,
1227 .get_mdio_data = sh_get_mdio,
1228};
1229
1230/* free Tx skb function */
1231static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1232{
1233 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1234 struct sh_eth_txdesc *txdesc;
1235 int free_num = 0;
1236 int entry;
1237 bool sent;
1238
1239 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1240 entry = mdp->dirty_tx % mdp->num_tx_ring;
1241 txdesc = &mdp->tx_ring[entry];
1242 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1243 if (sent_only && !sent)
1244 break;
1245 /* TACT bit must be checked before all the following reads */
1246 dma_rmb();
1247 netif_info(mdp, tx_done, ndev,
1248 "tx entry %d status 0x%08x\n",
1249 entry, le32_to_cpu(txdesc->status));
1250 /* Free the original skb. */
1251 if (mdp->tx_skbuff[entry]) {
1252 dma_unmap_single(&mdp->pdev->dev,
1253 le32_to_cpu(txdesc->addr),
1254 le32_to_cpu(txdesc->len) >> 16,
1255 DMA_TO_DEVICE);
1256 dev_kfree_skb_irq(skb: mdp->tx_skbuff[entry]);
1257 mdp->tx_skbuff[entry] = NULL;
1258 free_num++;
1259 }
1260 txdesc->status = cpu_to_le32(TD_TFP);
1261 if (entry >= mdp->num_tx_ring - 1)
1262 txdesc->status |= cpu_to_le32(TD_TDLE);
1263
1264 if (sent) {
1265 ndev->stats.tx_packets++;
1266 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1267 }
1268 }
1269 return free_num;
1270}
1271
1272/* free skb and descriptor buffer */
1273static void sh_eth_ring_free(struct net_device *ndev)
1274{
1275 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1276 int ringsize, i;
1277
1278 if (mdp->rx_ring) {
1279 for (i = 0; i < mdp->num_rx_ring; i++) {
1280 if (mdp->rx_skbuff[i]) {
1281 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1282
1283 dma_unmap_single(&mdp->pdev->dev,
1284 le32_to_cpu(rxdesc->addr),
1285 ALIGN(mdp->rx_buf_sz, 32),
1286 DMA_FROM_DEVICE);
1287 }
1288 }
1289 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1290 dma_free_coherent(dev: &mdp->pdev->dev, size: ringsize, cpu_addr: mdp->rx_ring,
1291 dma_handle: mdp->rx_desc_dma);
1292 mdp->rx_ring = NULL;
1293 }
1294
1295 /* Free Rx skb ringbuffer */
1296 if (mdp->rx_skbuff) {
1297 for (i = 0; i < mdp->num_rx_ring; i++)
1298 dev_kfree_skb(mdp->rx_skbuff[i]);
1299 }
1300 kfree(objp: mdp->rx_skbuff);
1301 mdp->rx_skbuff = NULL;
1302
1303 if (mdp->tx_ring) {
1304 sh_eth_tx_free(ndev, sent_only: false);
1305
1306 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1307 dma_free_coherent(dev: &mdp->pdev->dev, size: ringsize, cpu_addr: mdp->tx_ring,
1308 dma_handle: mdp->tx_desc_dma);
1309 mdp->tx_ring = NULL;
1310 }
1311
1312 /* Free Tx skb ringbuffer */
1313 kfree(objp: mdp->tx_skbuff);
1314 mdp->tx_skbuff = NULL;
1315}
1316
1317/* format skb and descriptor buffer */
1318static void sh_eth_ring_format(struct net_device *ndev)
1319{
1320 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1321 int i;
1322 struct sk_buff *skb;
1323 struct sh_eth_rxdesc *rxdesc = NULL;
1324 struct sh_eth_txdesc *txdesc = NULL;
1325 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1326 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1327 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1328 dma_addr_t dma_addr;
1329 u32 buf_len;
1330
1331 mdp->cur_rx = 0;
1332 mdp->cur_tx = 0;
1333 mdp->dirty_rx = 0;
1334 mdp->dirty_tx = 0;
1335
1336 memset(mdp->rx_ring, 0, rx_ringsize);
1337
1338 /* build Rx ring buffer */
1339 for (i = 0; i < mdp->num_rx_ring; i++) {
1340 /* skb */
1341 mdp->rx_skbuff[i] = NULL;
1342 skb = netdev_alloc_skb(dev: ndev, length: skbuff_size);
1343 if (skb == NULL)
1344 break;
1345 sh_eth_set_receive_align(skb);
1346
1347 /* The size of the buffer is a multiple of 32 bytes. */
1348 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1349 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1350 DMA_FROM_DEVICE);
1351 if (dma_mapping_error(dev: &mdp->pdev->dev, dma_addr)) {
1352 kfree_skb(skb);
1353 break;
1354 }
1355 mdp->rx_skbuff[i] = skb;
1356
1357 /* RX descriptor */
1358 rxdesc = &mdp->rx_ring[i];
1359 rxdesc->len = cpu_to_le32(buf_len << 16);
1360 rxdesc->addr = cpu_to_le32(dma_addr);
1361 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1362
1363 /* Rx descriptor address set */
1364 if (i == 0) {
1365 sh_eth_write(ndev, data: mdp->rx_desc_dma, enum_index: RDLAR);
1366 if (mdp->cd->xdfar_rw)
1367 sh_eth_write(ndev, data: mdp->rx_desc_dma, enum_index: RDFAR);
1368 }
1369 }
1370
1371 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1372
1373 /* Mark the last entry as wrapping the ring. */
1374 if (rxdesc)
1375 rxdesc->status |= cpu_to_le32(RD_RDLE);
1376
1377 memset(mdp->tx_ring, 0, tx_ringsize);
1378
1379 /* build Tx ring buffer */
1380 for (i = 0; i < mdp->num_tx_ring; i++) {
1381 mdp->tx_skbuff[i] = NULL;
1382 txdesc = &mdp->tx_ring[i];
1383 txdesc->status = cpu_to_le32(TD_TFP);
1384 txdesc->len = cpu_to_le32(0);
1385 if (i == 0) {
1386 /* Tx descriptor address set */
1387 sh_eth_write(ndev, data: mdp->tx_desc_dma, enum_index: TDLAR);
1388 if (mdp->cd->xdfar_rw)
1389 sh_eth_write(ndev, data: mdp->tx_desc_dma, enum_index: TDFAR);
1390 }
1391 }
1392
1393 txdesc->status |= cpu_to_le32(TD_TDLE);
1394}
1395
1396/* Get skb and descriptor buffer */
1397static int sh_eth_ring_init(struct net_device *ndev)
1398{
1399 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1400 int rx_ringsize, tx_ringsize;
1401
1402 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1403 * card needs room to do 8 byte alignment, +2 so we can reserve
1404 * the first 2 bytes, and +16 gets room for the status word from the
1405 * card.
1406 */
1407 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1408 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1409 if (mdp->cd->rpadir)
1410 mdp->rx_buf_sz += NET_IP_ALIGN;
1411
1412 /* Allocate RX and TX skb rings */
1413 mdp->rx_skbuff = kcalloc(n: mdp->num_rx_ring, size: sizeof(*mdp->rx_skbuff),
1414 GFP_KERNEL);
1415 if (!mdp->rx_skbuff)
1416 return -ENOMEM;
1417
1418 mdp->tx_skbuff = kcalloc(n: mdp->num_tx_ring, size: sizeof(*mdp->tx_skbuff),
1419 GFP_KERNEL);
1420 if (!mdp->tx_skbuff)
1421 goto ring_free;
1422
1423 /* Allocate all Rx descriptors. */
1424 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1425 mdp->rx_ring = dma_alloc_coherent(dev: &mdp->pdev->dev, size: rx_ringsize,
1426 dma_handle: &mdp->rx_desc_dma, GFP_KERNEL);
1427 if (!mdp->rx_ring)
1428 goto ring_free;
1429
1430 mdp->dirty_rx = 0;
1431
1432 /* Allocate all Tx descriptors. */
1433 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1434 mdp->tx_ring = dma_alloc_coherent(dev: &mdp->pdev->dev, size: tx_ringsize,
1435 dma_handle: &mdp->tx_desc_dma, GFP_KERNEL);
1436 if (!mdp->tx_ring)
1437 goto ring_free;
1438 return 0;
1439
1440ring_free:
1441 /* Free Rx and Tx skb ring buffer and DMA buffer */
1442 sh_eth_ring_free(ndev);
1443
1444 return -ENOMEM;
1445}
1446
1447static int sh_eth_dev_init(struct net_device *ndev)
1448{
1449 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1450 int ret;
1451
1452 /* Soft Reset */
1453 ret = mdp->cd->soft_reset(ndev);
1454 if (ret)
1455 return ret;
1456
1457 if (mdp->cd->rmiimode)
1458 sh_eth_write(ndev, data: 0x1, enum_index: RMIIMODE);
1459
1460 /* Descriptor format */
1461 sh_eth_ring_format(ndev);
1462 if (mdp->cd->rpadir)
1463 sh_eth_write(ndev, NET_IP_ALIGN << 16, enum_index: RPADIR);
1464
1465 /* all sh_eth int mask */
1466 sh_eth_write(ndev, data: 0, enum_index: EESIPR);
1467
1468#if defined(__LITTLE_ENDIAN)
1469 if (mdp->cd->hw_swap)
1470 sh_eth_write(ndev, data: EDMR_EL, enum_index: EDMR);
1471 else
1472#endif
1473 sh_eth_write(ndev, data: 0, enum_index: EDMR);
1474
1475 /* FIFO size set */
1476 sh_eth_write(ndev, data: mdp->cd->fdr_value, enum_index: FDR);
1477 sh_eth_write(ndev, data: 0, enum_index: TFTR);
1478
1479 /* Frame recv control (enable multiple-packets per rx irq) */
1480 sh_eth_write(ndev, data: RMCR_RNC, enum_index: RMCR);
1481
1482 sh_eth_write(ndev, data: mdp->cd->trscer_err_mask, enum_index: TRSCER);
1483
1484 /* DMA transfer burst mode */
1485 if (mdp->cd->nbst)
1486 sh_eth_modify(ndev, enum_index: EDMR, clear: EDMR_NBST, set: EDMR_NBST);
1487
1488 /* Burst cycle count upper-limit */
1489 if (mdp->cd->bculr)
1490 sh_eth_write(ndev, data: 0x800, enum_index: BCULR);
1491
1492 sh_eth_write(ndev, data: mdp->cd->fcftr_value, enum_index: FCFTR);
1493
1494 if (!mdp->cd->no_trimd)
1495 sh_eth_write(ndev, data: 0, enum_index: TRIMD);
1496
1497 /* Recv frame limit set register */
1498 sh_eth_write(ndev, data: ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1499 enum_index: RFLR);
1500
1501 sh_eth_modify(ndev, enum_index: EESR, clear: 0, set: 0);
1502 mdp->irq_enabled = true;
1503 sh_eth_write(ndev, data: mdp->cd->eesipr_value, enum_index: EESIPR);
1504
1505 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1506 sh_eth_write(ndev, data: ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1507 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1508 ECMR_TE | ECMR_RE, enum_index: ECMR);
1509
1510 if (mdp->cd->set_rate)
1511 mdp->cd->set_rate(ndev);
1512
1513 /* E-MAC Status Register clear */
1514 sh_eth_write(ndev, data: mdp->cd->ecsr_value, enum_index: ECSR);
1515
1516 /* E-MAC Interrupt Enable register */
1517 sh_eth_write(ndev, data: mdp->cd->ecsipr_value, enum_index: ECSIPR);
1518
1519 /* Set MAC address */
1520 update_mac_address(ndev);
1521
1522 /* mask reset */
1523 if (mdp->cd->apr)
1524 sh_eth_write(ndev, data: 1, enum_index: APR);
1525 if (mdp->cd->mpr)
1526 sh_eth_write(ndev, data: 1, enum_index: MPR);
1527 if (mdp->cd->tpauser)
1528 sh_eth_write(ndev, data: TPAUSER_UNLIMITED, enum_index: TPAUSER);
1529
1530 /* Setting the Rx mode will start the Rx process. */
1531 sh_eth_write(ndev, data: EDRRR_R, enum_index: EDRRR);
1532
1533 return ret;
1534}
1535
1536static void sh_eth_dev_exit(struct net_device *ndev)
1537{
1538 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1539 int i;
1540
1541 /* Deactivate all TX descriptors, so DMA should stop at next
1542 * packet boundary if it's currently running
1543 */
1544 for (i = 0; i < mdp->num_tx_ring; i++)
1545 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546
1547 /* Disable TX FIFO egress to MAC */
1548 sh_eth_rcv_snd_disable(ndev);
1549
1550 /* Stop RX DMA at next packet boundary */
1551 sh_eth_write(ndev, data: 0, enum_index: EDRRR);
1552
1553 /* Aside from TX DMA, we can't tell when the hardware is
1554 * really stopped, so we need to reset to make sure.
1555 * Before doing that, wait for long enough to *probably*
1556 * finish transmitting the last packet and poll stats.
1557 */
1558 msleep(msecs: 2); /* max frame time at 10 Mbps < 1250 us */
1559 sh_eth_get_stats(ndev);
1560 mdp->cd->soft_reset(ndev);
1561
1562 /* Set the RMII mode again if required */
1563 if (mdp->cd->rmiimode)
1564 sh_eth_write(ndev, data: 0x1, enum_index: RMIIMODE);
1565
1566 /* Set MAC address again */
1567 update_mac_address(ndev);
1568}
1569
1570static void sh_eth_rx_csum(struct sk_buff *skb)
1571{
1572 u8 *hw_csum;
1573
1574 /* The hardware checksum is 2 bytes appended to packet data */
1575 if (unlikely(skb->len < sizeof(__sum16)))
1576 return;
1577 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1578 skb->csum = csum_unfold(n: (__force __sum16)get_unaligned_le16(p: hw_csum));
1579 skb->ip_summed = CHECKSUM_COMPLETE;
1580 skb_trim(skb, len: skb->len - sizeof(__sum16));
1581}
1582
1583/* Packet receive function */
1584static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1585{
1586 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1587 struct sh_eth_rxdesc *rxdesc;
1588
1589 int entry = mdp->cur_rx % mdp->num_rx_ring;
1590 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1591 int limit;
1592 struct sk_buff *skb;
1593 u32 desc_status;
1594 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1595 dma_addr_t dma_addr;
1596 u16 pkt_len;
1597 u32 buf_len;
1598
1599 boguscnt = min(boguscnt, *quota);
1600 limit = boguscnt;
1601 rxdesc = &mdp->rx_ring[entry];
1602 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1603 /* RACT bit must be checked before all the following reads */
1604 dma_rmb();
1605 desc_status = le32_to_cpu(rxdesc->status);
1606 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1607
1608 if (--boguscnt < 0)
1609 break;
1610
1611 netif_info(mdp, rx_status, ndev,
1612 "rx entry %d status 0x%08x len %d\n",
1613 entry, desc_status, pkt_len);
1614
1615 if (!(desc_status & RDFEND))
1616 ndev->stats.rx_length_errors++;
1617
1618 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1619 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1620 * bit 0. However, in case of the R8A7740 and R7S72100
1621 * the RFS bits are from bit 25 to bit 16. So, the
1622 * driver needs right shifting by 16.
1623 */
1624 if (mdp->cd->csmr)
1625 desc_status >>= 16;
1626
1627 skb = mdp->rx_skbuff[entry];
1628 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1629 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1630 ndev->stats.rx_errors++;
1631 if (desc_status & RD_RFS1)
1632 ndev->stats.rx_crc_errors++;
1633 if (desc_status & RD_RFS2)
1634 ndev->stats.rx_frame_errors++;
1635 if (desc_status & RD_RFS3)
1636 ndev->stats.rx_length_errors++;
1637 if (desc_status & RD_RFS4)
1638 ndev->stats.rx_length_errors++;
1639 if (desc_status & RD_RFS6)
1640 ndev->stats.rx_missed_errors++;
1641 if (desc_status & RD_RFS10)
1642 ndev->stats.rx_over_errors++;
1643 } else if (skb) {
1644 dma_addr = le32_to_cpu(rxdesc->addr);
1645 if (!mdp->cd->hw_swap)
1646 sh_eth_soft_swap(
1647 phys_to_virt(ALIGN(dma_addr, 4)),
1648 len: pkt_len + 2);
1649 mdp->rx_skbuff[entry] = NULL;
1650 if (mdp->cd->rpadir)
1651 skb_reserve(skb, NET_IP_ALIGN);
1652 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1653 ALIGN(mdp->rx_buf_sz, 32),
1654 DMA_FROM_DEVICE);
1655 skb_put(skb, len: pkt_len);
1656 skb->protocol = eth_type_trans(skb, dev: ndev);
1657 if (ndev->features & NETIF_F_RXCSUM)
1658 sh_eth_rx_csum(skb);
1659 netif_receive_skb(skb);
1660 ndev->stats.rx_packets++;
1661 ndev->stats.rx_bytes += pkt_len;
1662 if (desc_status & RD_RFS8)
1663 ndev->stats.multicast++;
1664 }
1665 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1666 rxdesc = &mdp->rx_ring[entry];
1667 }
1668
1669 /* Refill the Rx ring buffers. */
1670 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1671 entry = mdp->dirty_rx % mdp->num_rx_ring;
1672 rxdesc = &mdp->rx_ring[entry];
1673 /* The size of the buffer is 32 byte boundary. */
1674 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1675 rxdesc->len = cpu_to_le32(buf_len << 16);
1676
1677 if (mdp->rx_skbuff[entry] == NULL) {
1678 skb = netdev_alloc_skb(dev: ndev, length: skbuff_size);
1679 if (skb == NULL)
1680 break; /* Better luck next round. */
1681 sh_eth_set_receive_align(skb);
1682 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1683 buf_len, DMA_FROM_DEVICE);
1684 if (dma_mapping_error(dev: &mdp->pdev->dev, dma_addr)) {
1685 kfree_skb(skb);
1686 break;
1687 }
1688 mdp->rx_skbuff[entry] = skb;
1689
1690 skb_checksum_none_assert(skb);
1691 rxdesc->addr = cpu_to_le32(dma_addr);
1692 }
1693 dma_wmb(); /* RACT bit must be set after all the above writes */
1694 if (entry >= mdp->num_rx_ring - 1)
1695 rxdesc->status |=
1696 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1697 else
1698 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1699 }
1700
1701 /* Restart Rx engine if stopped. */
1702 /* If we don't need to check status, don't. -KDU */
1703 if (!(sh_eth_read(ndev, enum_index: EDRRR) & EDRRR_R)) {
1704 /* fix the values for the next receiving if RDE is set */
1705 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1706 u32 count = (sh_eth_read(ndev, enum_index: RDFAR) -
1707 sh_eth_read(ndev, enum_index: RDLAR)) >> 4;
1708
1709 mdp->cur_rx = count;
1710 mdp->dirty_rx = count;
1711 }
1712 sh_eth_write(ndev, data: EDRRR_R, enum_index: EDRRR);
1713 }
1714
1715 *quota -= limit - boguscnt - 1;
1716
1717 return *quota <= 0;
1718}
1719
1720static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1721{
1722 /* disable tx and rx */
1723 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_RE | ECMR_TE, set: 0);
1724}
1725
1726static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1727{
1728 /* enable tx and rx */
1729 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_RE | ECMR_TE, set: ECMR_RE | ECMR_TE);
1730}
1731
1732/* E-MAC interrupt handler */
1733static void sh_eth_emac_interrupt(struct net_device *ndev)
1734{
1735 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1736 u32 felic_stat;
1737 u32 link_stat;
1738
1739 felic_stat = sh_eth_read(ndev, enum_index: ECSR) & sh_eth_read(ndev, enum_index: ECSIPR);
1740 sh_eth_write(ndev, data: felic_stat, enum_index: ECSR); /* clear int */
1741 if (felic_stat & ECSR_ICD)
1742 ndev->stats.tx_carrier_errors++;
1743 if (felic_stat & ECSR_MPD)
1744 pm_wakeup_event(dev: &mdp->pdev->dev, msec: 0);
1745 if (felic_stat & ECSR_LCHNG) {
1746 /* Link Changed */
1747 if (mdp->cd->no_psr || mdp->no_ether_link)
1748 return;
1749 link_stat = sh_eth_read(ndev, enum_index: PSR);
1750 if (mdp->ether_link_active_low)
1751 link_stat = ~link_stat;
1752 if (!(link_stat & PSR_LMON)) {
1753 sh_eth_rcv_snd_disable(ndev);
1754 } else {
1755 /* Link Up */
1756 sh_eth_modify(ndev, enum_index: EESIPR, clear: EESIPR_ECIIP, set: 0);
1757 /* clear int */
1758 sh_eth_modify(ndev, enum_index: ECSR, clear: 0, set: 0);
1759 sh_eth_modify(ndev, enum_index: EESIPR, clear: EESIPR_ECIIP, set: EESIPR_ECIIP);
1760 /* enable tx and rx */
1761 sh_eth_rcv_snd_enable(ndev);
1762 }
1763 }
1764}
1765
1766/* error control function */
1767static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1768{
1769 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1770 u32 mask;
1771
1772 if (intr_status & EESR_TWB) {
1773 /* Unused write back interrupt */
1774 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1775 ndev->stats.tx_aborted_errors++;
1776 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1777 }
1778 }
1779
1780 if (intr_status & EESR_RABT) {
1781 /* Receive Abort int */
1782 if (intr_status & EESR_RFRMER) {
1783 /* Receive Frame Overflow int */
1784 ndev->stats.rx_frame_errors++;
1785 }
1786 }
1787
1788 if (intr_status & EESR_TDE) {
1789 /* Transmit Descriptor Empty int */
1790 ndev->stats.tx_fifo_errors++;
1791 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1792 }
1793
1794 if (intr_status & EESR_TFE) {
1795 /* FIFO under flow */
1796 ndev->stats.tx_fifo_errors++;
1797 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1798 }
1799
1800 if (intr_status & EESR_RDE) {
1801 /* Receive Descriptor Empty int */
1802 ndev->stats.rx_over_errors++;
1803 }
1804
1805 if (intr_status & EESR_RFE) {
1806 /* Receive FIFO Overflow int */
1807 ndev->stats.rx_fifo_errors++;
1808 }
1809
1810 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1811 /* Address Error */
1812 ndev->stats.tx_fifo_errors++;
1813 netif_err(mdp, tx_err, ndev, "Address Error\n");
1814 }
1815
1816 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1817 if (mdp->cd->no_ade)
1818 mask &= ~EESR_ADE;
1819 if (intr_status & mask) {
1820 /* Tx error */
1821 u32 edtrr = sh_eth_read(ndev, enum_index: EDTRR);
1822
1823 /* dmesg */
1824 netdev_err(dev: ndev, format: "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1825 intr_status, mdp->cur_tx, mdp->dirty_tx,
1826 (u32)ndev->state, edtrr);
1827 /* dirty buffer free */
1828 sh_eth_tx_free(ndev, sent_only: true);
1829
1830 /* SH7712 BUG */
1831 if (edtrr ^ mdp->cd->edtrr_trns) {
1832 /* tx dma start */
1833 sh_eth_write(ndev, data: mdp->cd->edtrr_trns, enum_index: EDTRR);
1834 }
1835 /* wakeup */
1836 netif_wake_queue(dev: ndev);
1837 }
1838}
1839
1840static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1841{
1842 struct net_device *ndev = netdev;
1843 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1844 struct sh_eth_cpu_data *cd = mdp->cd;
1845 irqreturn_t ret = IRQ_NONE;
1846 u32 intr_status, intr_enable;
1847
1848 spin_lock(lock: &mdp->lock);
1849
1850 /* Get interrupt status */
1851 intr_status = sh_eth_read(ndev, enum_index: EESR);
1852 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1853 * enabled since it's the one that comes thru regardless of the mask,
1854 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1855 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1856 * bit...
1857 */
1858 intr_enable = sh_eth_read(ndev, enum_index: EESIPR);
1859 intr_status &= intr_enable | EESIPR_ECIIP;
1860 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1861 cd->eesr_err_check))
1862 ret = IRQ_HANDLED;
1863 else
1864 goto out;
1865
1866 if (unlikely(!mdp->irq_enabled)) {
1867 sh_eth_write(ndev, data: 0, enum_index: EESIPR);
1868 goto out;
1869 }
1870
1871 if (intr_status & EESR_RX_CHECK) {
1872 if (napi_schedule_prep(n: &mdp->napi)) {
1873 /* Mask Rx interrupts */
1874 sh_eth_write(ndev, data: intr_enable & ~EESR_RX_CHECK,
1875 enum_index: EESIPR);
1876 __napi_schedule(n: &mdp->napi);
1877 } else {
1878 netdev_warn(dev: ndev,
1879 format: "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1880 intr_status, intr_enable);
1881 }
1882 }
1883
1884 /* Tx Check */
1885 if (intr_status & cd->tx_check) {
1886 /* Clear Tx interrupts */
1887 sh_eth_write(ndev, data: intr_status & cd->tx_check, enum_index: EESR);
1888
1889 sh_eth_tx_free(ndev, sent_only: true);
1890 netif_wake_queue(dev: ndev);
1891 }
1892
1893 /* E-MAC interrupt */
1894 if (intr_status & EESR_ECI)
1895 sh_eth_emac_interrupt(ndev);
1896
1897 if (intr_status & cd->eesr_err_check) {
1898 /* Clear error interrupts */
1899 sh_eth_write(ndev, data: intr_status & cd->eesr_err_check, enum_index: EESR);
1900
1901 sh_eth_error(ndev, intr_status);
1902 }
1903
1904out:
1905 spin_unlock(lock: &mdp->lock);
1906
1907 return ret;
1908}
1909
1910static int sh_eth_poll(struct napi_struct *napi, int budget)
1911{
1912 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1913 napi);
1914 struct net_device *ndev = napi->dev;
1915 int quota = budget;
1916 u32 intr_status;
1917
1918 for (;;) {
1919 intr_status = sh_eth_read(ndev, enum_index: EESR);
1920 if (!(intr_status & EESR_RX_CHECK))
1921 break;
1922 /* Clear Rx interrupts */
1923 sh_eth_write(ndev, data: intr_status & EESR_RX_CHECK, enum_index: EESR);
1924
1925 if (sh_eth_rx(ndev, intr_status, quota: &quota))
1926 goto out;
1927 }
1928
1929 napi_complete(n: napi);
1930
1931 /* Reenable Rx interrupts */
1932 if (mdp->irq_enabled)
1933 sh_eth_write(ndev, data: mdp->cd->eesipr_value, enum_index: EESIPR);
1934out:
1935 return budget - quota;
1936}
1937
1938/* PHY state control function */
1939static void sh_eth_adjust_link(struct net_device *ndev)
1940{
1941 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1942 struct phy_device *phydev = ndev->phydev;
1943 unsigned long flags;
1944 int new_state = 0;
1945
1946 spin_lock_irqsave(&mdp->lock, flags);
1947
1948 /* Disable TX and RX right over here, if E-MAC change is ignored */
1949 if (mdp->cd->no_psr || mdp->no_ether_link)
1950 sh_eth_rcv_snd_disable(ndev);
1951
1952 if (phydev->link) {
1953 if (phydev->duplex != mdp->duplex) {
1954 new_state = 1;
1955 mdp->duplex = phydev->duplex;
1956 if (mdp->cd->set_duplex)
1957 mdp->cd->set_duplex(ndev);
1958 }
1959
1960 if (phydev->speed != mdp->speed) {
1961 new_state = 1;
1962 mdp->speed = phydev->speed;
1963 if (mdp->cd->set_rate)
1964 mdp->cd->set_rate(ndev);
1965 }
1966 if (!mdp->link) {
1967 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_TXF, set: 0);
1968 new_state = 1;
1969 mdp->link = phydev->link;
1970 }
1971 } else if (mdp->link) {
1972 new_state = 1;
1973 mdp->link = 0;
1974 mdp->speed = 0;
1975 mdp->duplex = -1;
1976 }
1977
1978 /* Enable TX and RX right over here, if E-MAC change is ignored */
1979 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1980 sh_eth_rcv_snd_enable(ndev);
1981
1982 spin_unlock_irqrestore(lock: &mdp->lock, flags);
1983
1984 if (new_state && netif_msg_link(mdp))
1985 phy_print_status(phydev);
1986}
1987
1988/* PHY init function */
1989static int sh_eth_phy_init(struct net_device *ndev)
1990{
1991 struct device_node *np = ndev->dev.parent->of_node;
1992 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
1993 struct phy_device *phydev;
1994
1995 mdp->link = 0;
1996 mdp->speed = 0;
1997 mdp->duplex = -1;
1998
1999 /* Try connect to PHY */
2000 if (np) {
2001 struct device_node *pn;
2002
2003 pn = of_parse_phandle(np, phandle_name: "phy-handle", index: 0);
2004 phydev = of_phy_connect(dev: ndev, phy_np: pn,
2005 hndlr: sh_eth_adjust_link, flags: 0,
2006 iface: mdp->phy_interface);
2007
2008 of_node_put(node: pn);
2009 if (!phydev)
2010 phydev = ERR_PTR(error: -ENOENT);
2011 } else {
2012 char phy_id[MII_BUS_ID_SIZE + 3];
2013
2014 snprintf(buf: phy_id, size: sizeof(phy_id), PHY_ID_FMT,
2015 mdp->mii_bus->id, mdp->phy_id);
2016
2017 phydev = phy_connect(dev: ndev, bus_id: phy_id, handler: sh_eth_adjust_link,
2018 interface: mdp->phy_interface);
2019 }
2020
2021 if (IS_ERR(ptr: phydev)) {
2022 netdev_err(dev: ndev, format: "failed to connect PHY\n");
2023 return PTR_ERR(ptr: phydev);
2024 }
2025
2026 /* mask with MAC supported features */
2027 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT)
2028 phy_set_max_speed(phydev, SPEED_100);
2029
2030 phy_attached_info(phydev);
2031
2032 return 0;
2033}
2034
2035/* PHY control start function */
2036static int sh_eth_phy_start(struct net_device *ndev)
2037{
2038 int ret;
2039
2040 ret = sh_eth_phy_init(ndev);
2041 if (ret)
2042 return ret;
2043
2044 phy_start(phydev: ndev->phydev);
2045
2046 return 0;
2047}
2048
2049/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2050 * version must be bumped as well. Just adding registers up to that
2051 * limit is fine, as long as the existing register indices don't
2052 * change.
2053 */
2054#define SH_ETH_REG_DUMP_VERSION 1
2055#define SH_ETH_REG_DUMP_MAX_REGS 256
2056
2057static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2058{
2059 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2060 struct sh_eth_cpu_data *cd = mdp->cd;
2061 u32 *valid_map;
2062 size_t len;
2063
2064 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2065
2066 /* Dump starts with a bitmap that tells ethtool which
2067 * registers are defined for this chip.
2068 */
2069 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2070 if (buf) {
2071 valid_map = buf;
2072 buf += len;
2073 } else {
2074 valid_map = NULL;
2075 }
2076
2077 /* Add a register to the dump, if it has a defined offset.
2078 * This automatically skips most undefined registers, but for
2079 * some it is also necessary to check a capability flag in
2080 * struct sh_eth_cpu_data.
2081 */
2082#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2083#define add_reg_from(reg, read_expr) do { \
2084 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2085 if (buf) { \
2086 mark_reg_valid(reg); \
2087 *buf++ = read_expr; \
2088 } \
2089 ++len; \
2090 } \
2091 } while (0)
2092#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2093#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2094
2095 add_reg(EDSR);
2096 add_reg(EDMR);
2097 add_reg(EDTRR);
2098 add_reg(EDRRR);
2099 add_reg(EESR);
2100 add_reg(EESIPR);
2101 add_reg(TDLAR);
2102 if (!cd->no_xdfar)
2103 add_reg(TDFAR);
2104 add_reg(TDFXR);
2105 add_reg(TDFFR);
2106 add_reg(RDLAR);
2107 if (!cd->no_xdfar)
2108 add_reg(RDFAR);
2109 add_reg(RDFXR);
2110 add_reg(RDFFR);
2111 add_reg(TRSCER);
2112 add_reg(RMFCR);
2113 add_reg(TFTR);
2114 add_reg(FDR);
2115 add_reg(RMCR);
2116 add_reg(TFUCR);
2117 add_reg(RFOCR);
2118 if (cd->rmiimode)
2119 add_reg(RMIIMODE);
2120 add_reg(FCFTR);
2121 if (cd->rpadir)
2122 add_reg(RPADIR);
2123 if (!cd->no_trimd)
2124 add_reg(TRIMD);
2125 add_reg(ECMR);
2126 add_reg(ECSR);
2127 add_reg(ECSIPR);
2128 add_reg(PIR);
2129 if (!cd->no_psr)
2130 add_reg(PSR);
2131 add_reg(RDMLR);
2132 add_reg(RFLR);
2133 add_reg(IPGR);
2134 if (cd->apr)
2135 add_reg(APR);
2136 if (cd->mpr)
2137 add_reg(MPR);
2138 add_reg(RFCR);
2139 add_reg(RFCF);
2140 if (cd->tpauser)
2141 add_reg(TPAUSER);
2142 add_reg(TPAUSECR);
2143 if (cd->gecmr)
2144 add_reg(GECMR);
2145 if (cd->bculr)
2146 add_reg(BCULR);
2147 add_reg(MAHR);
2148 add_reg(MALR);
2149 if (!cd->no_tx_cntrs) {
2150 add_reg(TROCR);
2151 add_reg(CDCR);
2152 add_reg(LCCR);
2153 add_reg(CNDCR);
2154 }
2155 add_reg(CEFCR);
2156 add_reg(FRECR);
2157 add_reg(TSFRCR);
2158 add_reg(TLFRCR);
2159 if (cd->cexcr) {
2160 add_reg(CERCR);
2161 add_reg(CEECR);
2162 }
2163 add_reg(MAFCR);
2164 if (cd->rtrate)
2165 add_reg(RTRATE);
2166 if (cd->csmr)
2167 add_reg(CSMR);
2168 if (cd->select_mii)
2169 add_reg(RMII_MII);
2170 if (cd->tsu) {
2171 add_tsu_reg(ARSTR);
2172 add_tsu_reg(TSU_CTRST);
2173 if (cd->dual_port) {
2174 add_tsu_reg(TSU_FWEN0);
2175 add_tsu_reg(TSU_FWEN1);
2176 add_tsu_reg(TSU_FCM);
2177 add_tsu_reg(TSU_BSYSL0);
2178 add_tsu_reg(TSU_BSYSL1);
2179 add_tsu_reg(TSU_PRISL0);
2180 add_tsu_reg(TSU_PRISL1);
2181 add_tsu_reg(TSU_FWSL0);
2182 add_tsu_reg(TSU_FWSL1);
2183 }
2184 add_tsu_reg(TSU_FWSLC);
2185 if (cd->dual_port) {
2186 add_tsu_reg(TSU_QTAGM0);
2187 add_tsu_reg(TSU_QTAGM1);
2188 add_tsu_reg(TSU_FWSR);
2189 add_tsu_reg(TSU_FWINMK);
2190 add_tsu_reg(TSU_ADQT0);
2191 add_tsu_reg(TSU_ADQT1);
2192 add_tsu_reg(TSU_VTAG0);
2193 add_tsu_reg(TSU_VTAG1);
2194 }
2195 add_tsu_reg(TSU_ADSBSY);
2196 add_tsu_reg(TSU_TEN);
2197 add_tsu_reg(TSU_POST1);
2198 add_tsu_reg(TSU_POST2);
2199 add_tsu_reg(TSU_POST3);
2200 add_tsu_reg(TSU_POST4);
2201 /* This is the start of a table, not just a single register. */
2202 if (buf) {
2203 unsigned int i;
2204
2205 mark_reg_valid(TSU_ADRH0);
2206 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2207 *buf++ = ioread32(mdp->tsu_addr +
2208 mdp->reg_offset[TSU_ADRH0] +
2209 i * 4);
2210 }
2211 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2212 }
2213
2214#undef mark_reg_valid
2215#undef add_reg_from
2216#undef add_reg
2217#undef add_tsu_reg
2218
2219 return len * 4;
2220}
2221
2222static int sh_eth_get_regs_len(struct net_device *ndev)
2223{
2224 return __sh_eth_get_regs(ndev, NULL);
2225}
2226
2227static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2228 void *buf)
2229{
2230 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2231
2232 regs->version = SH_ETH_REG_DUMP_VERSION;
2233
2234 pm_runtime_get_sync(dev: &mdp->pdev->dev);
2235 __sh_eth_get_regs(ndev, buf);
2236 pm_runtime_put_sync(dev: &mdp->pdev->dev);
2237}
2238
2239static u32 sh_eth_get_msglevel(struct net_device *ndev)
2240{
2241 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2242 return mdp->msg_enable;
2243}
2244
2245static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2246{
2247 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2248 mdp->msg_enable = value;
2249}
2250
2251static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2252 "rx_current", "tx_current",
2253 "rx_dirty", "tx_dirty",
2254};
2255#define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2256
2257static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2258{
2259 switch (sset) {
2260 case ETH_SS_STATS:
2261 return SH_ETH_STATS_LEN;
2262 default:
2263 return -EOPNOTSUPP;
2264 }
2265}
2266
2267static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2268 struct ethtool_stats *stats, u64 *data)
2269{
2270 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2271 int i = 0;
2272
2273 /* device-specific stats */
2274 data[i++] = mdp->cur_rx;
2275 data[i++] = mdp->cur_tx;
2276 data[i++] = mdp->dirty_rx;
2277 data[i++] = mdp->dirty_tx;
2278}
2279
2280static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2281{
2282 switch (stringset) {
2283 case ETH_SS_STATS:
2284 memcpy(data, sh_eth_gstrings_stats,
2285 sizeof(sh_eth_gstrings_stats));
2286 break;
2287 }
2288}
2289
2290static void sh_eth_get_ringparam(struct net_device *ndev,
2291 struct ethtool_ringparam *ring,
2292 struct kernel_ethtool_ringparam *kernel_ring,
2293 struct netlink_ext_ack *extack)
2294{
2295 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2296
2297 ring->rx_max_pending = RX_RING_MAX;
2298 ring->tx_max_pending = TX_RING_MAX;
2299 ring->rx_pending = mdp->num_rx_ring;
2300 ring->tx_pending = mdp->num_tx_ring;
2301}
2302
2303static int sh_eth_set_ringparam(struct net_device *ndev,
2304 struct ethtool_ringparam *ring,
2305 struct kernel_ethtool_ringparam *kernel_ring,
2306 struct netlink_ext_ack *extack)
2307{
2308 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2309 int ret;
2310
2311 if (ring->tx_pending > TX_RING_MAX ||
2312 ring->rx_pending > RX_RING_MAX ||
2313 ring->tx_pending < TX_RING_MIN ||
2314 ring->rx_pending < RX_RING_MIN)
2315 return -EINVAL;
2316 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2317 return -EINVAL;
2318
2319 if (netif_running(dev: ndev)) {
2320 netif_device_detach(dev: ndev);
2321 netif_tx_disable(dev: ndev);
2322
2323 /* Serialise with the interrupt handler and NAPI, then
2324 * disable interrupts. We have to clear the
2325 * irq_enabled flag first to ensure that interrupts
2326 * won't be re-enabled.
2327 */
2328 mdp->irq_enabled = false;
2329 synchronize_irq(irq: ndev->irq);
2330 napi_synchronize(n: &mdp->napi);
2331 sh_eth_write(ndev, data: 0x0000, enum_index: EESIPR);
2332
2333 sh_eth_dev_exit(ndev);
2334
2335 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2336 sh_eth_ring_free(ndev);
2337 }
2338
2339 /* Set new parameters */
2340 mdp->num_rx_ring = ring->rx_pending;
2341 mdp->num_tx_ring = ring->tx_pending;
2342
2343 if (netif_running(dev: ndev)) {
2344 ret = sh_eth_ring_init(ndev);
2345 if (ret < 0) {
2346 netdev_err(dev: ndev, format: "%s: sh_eth_ring_init failed.\n",
2347 __func__);
2348 return ret;
2349 }
2350 ret = sh_eth_dev_init(ndev);
2351 if (ret < 0) {
2352 netdev_err(dev: ndev, format: "%s: sh_eth_dev_init failed.\n",
2353 __func__);
2354 return ret;
2355 }
2356
2357 netif_device_attach(dev: ndev);
2358 }
2359
2360 return 0;
2361}
2362
2363static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2364{
2365 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2366
2367 wol->supported = 0;
2368 wol->wolopts = 0;
2369
2370 if (mdp->cd->magic) {
2371 wol->supported = WAKE_MAGIC;
2372 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2373 }
2374}
2375
2376static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2377{
2378 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2379
2380 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2381 return -EOPNOTSUPP;
2382
2383 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2384
2385 device_set_wakeup_enable(dev: &mdp->pdev->dev, enable: mdp->wol_enabled);
2386
2387 return 0;
2388}
2389
2390static const struct ethtool_ops sh_eth_ethtool_ops = {
2391 .get_regs_len = sh_eth_get_regs_len,
2392 .get_regs = sh_eth_get_regs,
2393 .nway_reset = phy_ethtool_nway_reset,
2394 .get_msglevel = sh_eth_get_msglevel,
2395 .set_msglevel = sh_eth_set_msglevel,
2396 .get_link = ethtool_op_get_link,
2397 .get_strings = sh_eth_get_strings,
2398 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2399 .get_sset_count = sh_eth_get_sset_count,
2400 .get_ringparam = sh_eth_get_ringparam,
2401 .set_ringparam = sh_eth_set_ringparam,
2402 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2403 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2404 .get_wol = sh_eth_get_wol,
2405 .set_wol = sh_eth_set_wol,
2406};
2407
2408/* network device open function */
2409static int sh_eth_open(struct net_device *ndev)
2410{
2411 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2412 int ret;
2413
2414 pm_runtime_get_sync(dev: &mdp->pdev->dev);
2415
2416 napi_enable(n: &mdp->napi);
2417
2418 ret = request_irq(irq: ndev->irq, handler: sh_eth_interrupt,
2419 flags: mdp->cd->irq_flags, name: ndev->name, dev: ndev);
2420 if (ret) {
2421 netdev_err(dev: ndev, format: "Can not assign IRQ number\n");
2422 goto out_napi_off;
2423 }
2424
2425 /* Descriptor set */
2426 ret = sh_eth_ring_init(ndev);
2427 if (ret)
2428 goto out_free_irq;
2429
2430 /* device init */
2431 ret = sh_eth_dev_init(ndev);
2432 if (ret)
2433 goto out_free_irq;
2434
2435 /* PHY control start*/
2436 ret = sh_eth_phy_start(ndev);
2437 if (ret)
2438 goto out_free_irq;
2439
2440 netif_start_queue(dev: ndev);
2441
2442 mdp->is_opened = 1;
2443
2444 return ret;
2445
2446out_free_irq:
2447 free_irq(ndev->irq, ndev);
2448out_napi_off:
2449 napi_disable(n: &mdp->napi);
2450 pm_runtime_put_sync(dev: &mdp->pdev->dev);
2451 return ret;
2452}
2453
2454/* Timeout function */
2455static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2456{
2457 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2458 struct sh_eth_rxdesc *rxdesc;
2459 int i;
2460
2461 netif_stop_queue(dev: ndev);
2462
2463 netif_err(mdp, timer, ndev,
2464 "transmit timed out, status %8.8x, resetting...\n",
2465 sh_eth_read(ndev, EESR));
2466
2467 /* tx_errors count up */
2468 ndev->stats.tx_errors++;
2469
2470 /* Free all the skbuffs in the Rx queue. */
2471 for (i = 0; i < mdp->num_rx_ring; i++) {
2472 rxdesc = &mdp->rx_ring[i];
2473 rxdesc->status = cpu_to_le32(0);
2474 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2475 dev_kfree_skb(mdp->rx_skbuff[i]);
2476 mdp->rx_skbuff[i] = NULL;
2477 }
2478 for (i = 0; i < mdp->num_tx_ring; i++) {
2479 dev_kfree_skb(mdp->tx_skbuff[i]);
2480 mdp->tx_skbuff[i] = NULL;
2481 }
2482
2483 /* device init */
2484 sh_eth_dev_init(ndev);
2485
2486 netif_start_queue(dev: ndev);
2487}
2488
2489/* Packet transmit function */
2490static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2491 struct net_device *ndev)
2492{
2493 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2494 struct sh_eth_txdesc *txdesc;
2495 dma_addr_t dma_addr;
2496 u32 entry;
2497 unsigned long flags;
2498
2499 spin_lock_irqsave(&mdp->lock, flags);
2500 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2501 if (!sh_eth_tx_free(ndev, sent_only: true)) {
2502 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2503 netif_stop_queue(dev: ndev);
2504 spin_unlock_irqrestore(lock: &mdp->lock, flags);
2505 return NETDEV_TX_BUSY;
2506 }
2507 }
2508 spin_unlock_irqrestore(lock: &mdp->lock, flags);
2509
2510 if (skb_put_padto(skb, ETH_ZLEN))
2511 return NETDEV_TX_OK;
2512
2513 entry = mdp->cur_tx % mdp->num_tx_ring;
2514 mdp->tx_skbuff[entry] = skb;
2515 txdesc = &mdp->tx_ring[entry];
2516 /* soft swap. */
2517 if (!mdp->cd->hw_swap)
2518 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), len: skb->len + 2);
2519 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2520 DMA_TO_DEVICE);
2521 if (dma_mapping_error(dev: &mdp->pdev->dev, dma_addr)) {
2522 kfree_skb(skb);
2523 return NETDEV_TX_OK;
2524 }
2525 txdesc->addr = cpu_to_le32(dma_addr);
2526 txdesc->len = cpu_to_le32(skb->len << 16);
2527
2528 dma_wmb(); /* TACT bit must be set after all the above writes */
2529 if (entry >= mdp->num_tx_ring - 1)
2530 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2531 else
2532 txdesc->status |= cpu_to_le32(TD_TACT);
2533
2534 wmb(); /* cur_tx must be incremented after TACT bit was set */
2535 mdp->cur_tx++;
2536
2537 if (!(sh_eth_read(ndev, enum_index: EDTRR) & mdp->cd->edtrr_trns))
2538 sh_eth_write(ndev, data: mdp->cd->edtrr_trns, enum_index: EDTRR);
2539
2540 return NETDEV_TX_OK;
2541}
2542
2543/* The statistics registers have write-clear behaviour, which means we
2544 * will lose any increment between the read and write. We mitigate
2545 * this by only clearing when we read a non-zero value, so we will
2546 * never falsely report a total of zero.
2547 */
2548static void
2549sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2550{
2551 u32 delta = sh_eth_read(ndev, enum_index: reg);
2552
2553 if (delta) {
2554 *stat += delta;
2555 sh_eth_write(ndev, data: 0, enum_index: reg);
2556 }
2557}
2558
2559static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2560{
2561 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2562
2563 if (mdp->cd->no_tx_cntrs)
2564 return &ndev->stats;
2565
2566 if (!mdp->is_opened)
2567 return &ndev->stats;
2568
2569 sh_eth_update_stat(ndev, stat: &ndev->stats.tx_dropped, reg: TROCR);
2570 sh_eth_update_stat(ndev, stat: &ndev->stats.collisions, reg: CDCR);
2571 sh_eth_update_stat(ndev, stat: &ndev->stats.tx_carrier_errors, reg: LCCR);
2572
2573 if (mdp->cd->cexcr) {
2574 sh_eth_update_stat(ndev, stat: &ndev->stats.tx_carrier_errors,
2575 reg: CERCR);
2576 sh_eth_update_stat(ndev, stat: &ndev->stats.tx_carrier_errors,
2577 reg: CEECR);
2578 } else {
2579 sh_eth_update_stat(ndev, stat: &ndev->stats.tx_carrier_errors,
2580 reg: CNDCR);
2581 }
2582
2583 return &ndev->stats;
2584}
2585
2586/* device close function */
2587static int sh_eth_close(struct net_device *ndev)
2588{
2589 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2590
2591 netif_stop_queue(dev: ndev);
2592
2593 /* Serialise with the interrupt handler and NAPI, then disable
2594 * interrupts. We have to clear the irq_enabled flag first to
2595 * ensure that interrupts won't be re-enabled.
2596 */
2597 mdp->irq_enabled = false;
2598 synchronize_irq(irq: ndev->irq);
2599 napi_disable(n: &mdp->napi);
2600 sh_eth_write(ndev, data: 0x0000, enum_index: EESIPR);
2601
2602 sh_eth_dev_exit(ndev);
2603
2604 /* PHY Disconnect */
2605 if (ndev->phydev) {
2606 phy_stop(phydev: ndev->phydev);
2607 phy_disconnect(phydev: ndev->phydev);
2608 }
2609
2610 free_irq(ndev->irq, ndev);
2611
2612 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613 sh_eth_ring_free(ndev);
2614
2615 mdp->is_opened = 0;
2616
2617 pm_runtime_put(dev: &mdp->pdev->dev);
2618
2619 return 0;
2620}
2621
2622static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2623{
2624 if (netif_running(dev: ndev))
2625 return -EBUSY;
2626
2627 ndev->mtu = new_mtu;
2628 netdev_update_features(dev: ndev);
2629
2630 return 0;
2631}
2632
2633/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2634static u32 sh_eth_tsu_get_post_mask(int entry)
2635{
2636 return 0x0f << (28 - ((entry % 8) * 4));
2637}
2638
2639static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2640{
2641 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2642}
2643
2644static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2645 int entry)
2646{
2647 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2648 int reg = TSU_POST1 + entry / 8;
2649 u32 tmp;
2650
2651 tmp = sh_eth_tsu_read(mdp, enum_index: reg);
2652 sh_eth_tsu_write(mdp, data: tmp | sh_eth_tsu_get_post_bit(mdp, entry), enum_index: reg);
2653}
2654
2655static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2656 int entry)
2657{
2658 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2659 int reg = TSU_POST1 + entry / 8;
2660 u32 post_mask, ref_mask, tmp;
2661
2662 post_mask = sh_eth_tsu_get_post_mask(entry);
2663 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2664
2665 tmp = sh_eth_tsu_read(mdp, enum_index: reg);
2666 sh_eth_tsu_write(mdp, data: tmp & ~post_mask, enum_index: reg);
2667
2668 /* If other port enables, the function returns "true" */
2669 return tmp & ref_mask;
2670}
2671
2672static int sh_eth_tsu_busy(struct net_device *ndev)
2673{
2674 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2675 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2676
2677 while ((sh_eth_tsu_read(mdp, enum_index: TSU_ADSBSY) & TSU_ADSBSY_0)) {
2678 udelay(10);
2679 timeout--;
2680 if (timeout <= 0) {
2681 netdev_err(dev: ndev, format: "%s: timeout\n", __func__);
2682 return -ETIMEDOUT;
2683 }
2684 }
2685
2686 return 0;
2687}
2688
2689static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2690 const u8 *addr)
2691{
2692 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2693 u32 val;
2694
2695 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2696 iowrite32(val, mdp->tsu_addr + offset);
2697 if (sh_eth_tsu_busy(ndev) < 0)
2698 return -EBUSY;
2699
2700 val = addr[4] << 8 | addr[5];
2701 iowrite32(val, mdp->tsu_addr + offset + 4);
2702 if (sh_eth_tsu_busy(ndev) < 0)
2703 return -EBUSY;
2704
2705 return 0;
2706}
2707
2708static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2709{
2710 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2711 u32 val;
2712
2713 val = ioread32(mdp->tsu_addr + offset);
2714 addr[0] = (val >> 24) & 0xff;
2715 addr[1] = (val >> 16) & 0xff;
2716 addr[2] = (val >> 8) & 0xff;
2717 addr[3] = val & 0xff;
2718 val = ioread32(mdp->tsu_addr + offset + 4);
2719 addr[4] = (val >> 8) & 0xff;
2720 addr[5] = val & 0xff;
2721}
2722
2723
2724static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2725{
2726 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2727 u16 reg_offset = sh_eth_tsu_get_offset(mdp, enum_index: TSU_ADRH0);
2728 int i;
2729 u8 c_addr[ETH_ALEN];
2730
2731 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2732 sh_eth_tsu_read_entry(ndev, offset: reg_offset, addr: c_addr);
2733 if (ether_addr_equal(addr1: addr, addr2: c_addr))
2734 return i;
2735 }
2736
2737 return -ENOENT;
2738}
2739
2740static int sh_eth_tsu_find_empty(struct net_device *ndev)
2741{
2742 u8 blank[ETH_ALEN];
2743 int entry;
2744
2745 memset(blank, 0, sizeof(blank));
2746 entry = sh_eth_tsu_find_entry(ndev, addr: blank);
2747 return (entry < 0) ? -ENOMEM : entry;
2748}
2749
2750static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2751 int entry)
2752{
2753 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2754 u16 reg_offset = sh_eth_tsu_get_offset(mdp, enum_index: TSU_ADRH0);
2755 int ret;
2756 u8 blank[ETH_ALEN];
2757
2758 sh_eth_tsu_write(mdp, data: sh_eth_tsu_read(mdp, enum_index: TSU_TEN) &
2759 ~(1 << (31 - entry)), enum_index: TSU_TEN);
2760
2761 memset(blank, 0, sizeof(blank));
2762 ret = sh_eth_tsu_write_entry(ndev, offset: reg_offset + entry * 8, addr: blank);
2763 if (ret < 0)
2764 return ret;
2765 return 0;
2766}
2767
2768static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2769{
2770 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2771 u16 reg_offset = sh_eth_tsu_get_offset(mdp, enum_index: TSU_ADRH0);
2772 int i, ret;
2773
2774 if (!mdp->cd->tsu)
2775 return 0;
2776
2777 i = sh_eth_tsu_find_entry(ndev, addr);
2778 if (i < 0) {
2779 /* No entry found, create one */
2780 i = sh_eth_tsu_find_empty(ndev);
2781 if (i < 0)
2782 return -ENOMEM;
2783 ret = sh_eth_tsu_write_entry(ndev, offset: reg_offset + i * 8, addr);
2784 if (ret < 0)
2785 return ret;
2786
2787 /* Enable the entry */
2788 sh_eth_tsu_write(mdp, data: sh_eth_tsu_read(mdp, enum_index: TSU_TEN) |
2789 (1 << (31 - i)), enum_index: TSU_TEN);
2790 }
2791
2792 /* Entry found or created, enable POST */
2793 sh_eth_tsu_enable_cam_entry_post(ndev, entry: i);
2794
2795 return 0;
2796}
2797
2798static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2799{
2800 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2801 int i, ret;
2802
2803 if (!mdp->cd->tsu)
2804 return 0;
2805
2806 i = sh_eth_tsu_find_entry(ndev, addr);
2807 if (i) {
2808 /* Entry found */
2809 if (sh_eth_tsu_disable_cam_entry_post(ndev, entry: i))
2810 goto done;
2811
2812 /* Disable the entry if both ports was disabled */
2813 ret = sh_eth_tsu_disable_cam_entry_table(ndev, entry: i);
2814 if (ret < 0)
2815 return ret;
2816 }
2817done:
2818 return 0;
2819}
2820
2821static int sh_eth_tsu_purge_all(struct net_device *ndev)
2822{
2823 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2824 int i, ret;
2825
2826 if (!mdp->cd->tsu)
2827 return 0;
2828
2829 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2830 if (sh_eth_tsu_disable_cam_entry_post(ndev, entry: i))
2831 continue;
2832
2833 /* Disable the entry if both ports was disabled */
2834 ret = sh_eth_tsu_disable_cam_entry_table(ndev, entry: i);
2835 if (ret < 0)
2836 return ret;
2837 }
2838
2839 return 0;
2840}
2841
2842static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2843{
2844 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2845 u16 reg_offset = sh_eth_tsu_get_offset(mdp, enum_index: TSU_ADRH0);
2846 u8 addr[ETH_ALEN];
2847 int i;
2848
2849 if (!mdp->cd->tsu)
2850 return;
2851
2852 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2853 sh_eth_tsu_read_entry(ndev, offset: reg_offset, addr);
2854 if (is_multicast_ether_addr(addr))
2855 sh_eth_tsu_del_entry(ndev, addr);
2856 }
2857}
2858
2859/* Update promiscuous flag and multicast filter */
2860static void sh_eth_set_rx_mode(struct net_device *ndev)
2861{
2862 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2863 u32 ecmr_bits;
2864 int mcast_all = 0;
2865 unsigned long flags;
2866
2867 spin_lock_irqsave(&mdp->lock, flags);
2868 /* Initial condition is MCT = 1, PRM = 0.
2869 * Depending on ndev->flags, set PRM or clear MCT
2870 */
2871 ecmr_bits = sh_eth_read(ndev, enum_index: ECMR) & ~ECMR_PRM;
2872 if (mdp->cd->tsu)
2873 ecmr_bits |= ECMR_MCT;
2874
2875 if (!(ndev->flags & IFF_MULTICAST)) {
2876 sh_eth_tsu_purge_mcast(ndev);
2877 mcast_all = 1;
2878 }
2879 if (ndev->flags & IFF_ALLMULTI) {
2880 sh_eth_tsu_purge_mcast(ndev);
2881 ecmr_bits &= ~ECMR_MCT;
2882 mcast_all = 1;
2883 }
2884
2885 if (ndev->flags & IFF_PROMISC) {
2886 sh_eth_tsu_purge_all(ndev);
2887 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2888 } else if (mdp->cd->tsu) {
2889 struct netdev_hw_addr *ha;
2890 netdev_for_each_mc_addr(ha, ndev) {
2891 if (mcast_all && is_multicast_ether_addr(addr: ha->addr))
2892 continue;
2893
2894 if (sh_eth_tsu_add_entry(ndev, addr: ha->addr) < 0) {
2895 if (!mcast_all) {
2896 sh_eth_tsu_purge_mcast(ndev);
2897 ecmr_bits &= ~ECMR_MCT;
2898 mcast_all = 1;
2899 }
2900 }
2901 }
2902 }
2903
2904 /* update the ethernet mode */
2905 sh_eth_write(ndev, data: ecmr_bits, enum_index: ECMR);
2906
2907 spin_unlock_irqrestore(lock: &mdp->lock, flags);
2908}
2909
2910static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2911{
2912 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2913 unsigned long flags;
2914
2915 spin_lock_irqsave(&mdp->lock, flags);
2916
2917 /* Disable TX and RX */
2918 sh_eth_rcv_snd_disable(ndev);
2919
2920 /* Modify RX Checksum setting */
2921 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_RCSC, set: enable ? ECMR_RCSC : 0);
2922
2923 /* Enable TX and RX */
2924 sh_eth_rcv_snd_enable(ndev);
2925
2926 spin_unlock_irqrestore(lock: &mdp->lock, flags);
2927}
2928
2929static int sh_eth_set_features(struct net_device *ndev,
2930 netdev_features_t features)
2931{
2932 netdev_features_t changed = ndev->features ^ features;
2933 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2934
2935 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2936 sh_eth_set_rx_csum(ndev, enable: features & NETIF_F_RXCSUM);
2937
2938 ndev->features = features;
2939
2940 return 0;
2941}
2942
2943static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2944{
2945 if (!mdp->port)
2946 return TSU_VTAG0;
2947 else
2948 return TSU_VTAG1;
2949}
2950
2951static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2952 __be16 proto, u16 vid)
2953{
2954 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2955 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2956
2957 if (unlikely(!mdp->cd->tsu))
2958 return -EPERM;
2959
2960 /* No filtering if vid = 0 */
2961 if (!vid)
2962 return 0;
2963
2964 mdp->vlan_num_ids++;
2965
2966 /* The controller has one VLAN tag HW filter. So, if the filter is
2967 * already enabled, the driver disables it and the filte
2968 */
2969 if (mdp->vlan_num_ids > 1) {
2970 /* disable VLAN filter */
2971 sh_eth_tsu_write(mdp, data: 0, enum_index: vtag_reg_index);
2972 return 0;
2973 }
2974
2975 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2976 enum_index: vtag_reg_index);
2977
2978 return 0;
2979}
2980
2981static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2982 __be16 proto, u16 vid)
2983{
2984 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
2985 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2986
2987 if (unlikely(!mdp->cd->tsu))
2988 return -EPERM;
2989
2990 /* No filtering if vid = 0 */
2991 if (!vid)
2992 return 0;
2993
2994 mdp->vlan_num_ids--;
2995 sh_eth_tsu_write(mdp, data: 0, enum_index: vtag_reg_index);
2996
2997 return 0;
2998}
2999
3000/* SuperH's TSU register init function */
3001static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3002{
3003 if (!mdp->cd->dual_port) {
3004 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_TEN); /* Disable all CAM entry */
3005 sh_eth_tsu_write(mdp, data: TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3006 enum_index: TSU_FWSLC); /* Enable POST registers */
3007 return;
3008 }
3009
3010 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWEN0); /* Disable forward(0->1) */
3011 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWEN1); /* Disable forward(1->0) */
3012 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FCM); /* forward fifo 3k-3k */
3013 sh_eth_tsu_write(mdp, data: 0xc, enum_index: TSU_BSYSL0);
3014 sh_eth_tsu_write(mdp, data: 0xc, enum_index: TSU_BSYSL1);
3015 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_PRISL0);
3016 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_PRISL1);
3017 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWSL0);
3018 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWSL1);
3019 sh_eth_tsu_write(mdp, data: TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, enum_index: TSU_FWSLC);
3020 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_QTAGM0); /* Disable QTAG(0->1) */
3021 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_QTAGM1); /* Disable QTAG(1->0) */
3022 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWSR); /* all interrupt status clear */
3023 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_FWINMK); /* Disable all interrupt */
3024 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_TEN); /* Disable all CAM entry */
3025 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_POST1); /* Disable CAM entry [ 0- 7] */
3026 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_POST2); /* Disable CAM entry [ 8-15] */
3027 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_POST3); /* Disable CAM entry [16-23] */
3028 sh_eth_tsu_write(mdp, data: 0, enum_index: TSU_POST4); /* Disable CAM entry [24-31] */
3029}
3030
3031/* MDIO bus release function */
3032static int sh_mdio_release(struct sh_eth_private *mdp)
3033{
3034 /* unregister mdio bus */
3035 mdiobus_unregister(bus: mdp->mii_bus);
3036
3037 /* free bitbang info */
3038 free_mdio_bitbang(bus: mdp->mii_bus);
3039
3040 return 0;
3041}
3042
3043static int sh_mdiobb_read_c22(struct mii_bus *bus, int phy, int reg)
3044{
3045 int res;
3046
3047 pm_runtime_get_sync(dev: bus->parent);
3048 res = mdiobb_read_c22(bus, phy, reg);
3049 pm_runtime_put(dev: bus->parent);
3050
3051 return res;
3052}
3053
3054static int sh_mdiobb_write_c22(struct mii_bus *bus, int phy, int reg, u16 val)
3055{
3056 int res;
3057
3058 pm_runtime_get_sync(dev: bus->parent);
3059 res = mdiobb_write_c22(bus, phy, reg, val);
3060 pm_runtime_put(dev: bus->parent);
3061
3062 return res;
3063}
3064
3065static int sh_mdiobb_read_c45(struct mii_bus *bus, int phy, int devad, int reg)
3066{
3067 int res;
3068
3069 pm_runtime_get_sync(dev: bus->parent);
3070 res = mdiobb_read_c45(bus, devad: phy, phy: devad, reg);
3071 pm_runtime_put(dev: bus->parent);
3072
3073 return res;
3074}
3075
3076static int sh_mdiobb_write_c45(struct mii_bus *bus, int phy, int devad,
3077 int reg, u16 val)
3078{
3079 int res;
3080
3081 pm_runtime_get_sync(dev: bus->parent);
3082 res = mdiobb_write_c45(bus, devad: phy, phy: devad, reg, val);
3083 pm_runtime_put(dev: bus->parent);
3084
3085 return res;
3086}
3087
3088/* MDIO bus init function */
3089static int sh_mdio_init(struct sh_eth_private *mdp,
3090 struct sh_eth_plat_data *pd)
3091{
3092 int ret;
3093 struct bb_info *bitbang;
3094 struct platform_device *pdev = mdp->pdev;
3095 struct device *dev = &mdp->pdev->dev;
3096 struct phy_device *phydev;
3097 struct device_node *pn;
3098
3099 /* create bit control struct for PHY */
3100 bitbang = devm_kzalloc(dev, size: sizeof(struct bb_info), GFP_KERNEL);
3101 if (!bitbang)
3102 return -ENOMEM;
3103
3104 /* bitbang init */
3105 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3106 bitbang->set_gate = pd->set_mdio_gate;
3107 bitbang->ctrl.ops = &bb_ops;
3108
3109 /* MII controller setting */
3110 mdp->mii_bus = alloc_mdio_bitbang(ctrl: &bitbang->ctrl);
3111 if (!mdp->mii_bus)
3112 return -ENOMEM;
3113
3114 /* Wrap accessors with Runtime PM-aware ops */
3115 mdp->mii_bus->read = sh_mdiobb_read_c22;
3116 mdp->mii_bus->write = sh_mdiobb_write_c22;
3117 mdp->mii_bus->read_c45 = sh_mdiobb_read_c45;
3118 mdp->mii_bus->write_c45 = sh_mdiobb_write_c45;
3119
3120 /* Hook up MII support for ethtool */
3121 mdp->mii_bus->name = "sh_mii";
3122 mdp->mii_bus->parent = dev;
3123 snprintf(buf: mdp->mii_bus->id, MII_BUS_ID_SIZE, fmt: "%s-%x",
3124 pdev->name, pdev->id);
3125
3126 /* register MDIO bus */
3127 if (pd->phy_irq > 0)
3128 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3129
3130 ret = of_mdiobus_register(mdio: mdp->mii_bus, np: dev->of_node);
3131 if (ret)
3132 goto out_free_bus;
3133
3134 pn = of_parse_phandle(np: dev->of_node, phandle_name: "phy-handle", index: 0);
3135 phydev = of_phy_find_device(phy_np: pn);
3136 if (phydev) {
3137 phydev->mac_managed_pm = true;
3138 put_device(dev: &phydev->mdio.dev);
3139 }
3140 of_node_put(node: pn);
3141
3142 return 0;
3143
3144out_free_bus:
3145 free_mdio_bitbang(bus: mdp->mii_bus);
3146 return ret;
3147}
3148
3149static const u16 *sh_eth_get_register_offset(int register_type)
3150{
3151 const u16 *reg_offset = NULL;
3152
3153 switch (register_type) {
3154 case SH_ETH_REG_GIGABIT:
3155 reg_offset = sh_eth_offset_gigabit;
3156 break;
3157 case SH_ETH_REG_FAST_RCAR:
3158 reg_offset = sh_eth_offset_fast_rcar;
3159 break;
3160 case SH_ETH_REG_FAST_SH4:
3161 reg_offset = sh_eth_offset_fast_sh4;
3162 break;
3163 case SH_ETH_REG_FAST_SH3_SH2:
3164 reg_offset = sh_eth_offset_fast_sh3_sh2;
3165 break;
3166 }
3167
3168 return reg_offset;
3169}
3170
3171static const struct net_device_ops sh_eth_netdev_ops = {
3172 .ndo_open = sh_eth_open,
3173 .ndo_stop = sh_eth_close,
3174 .ndo_start_xmit = sh_eth_start_xmit,
3175 .ndo_get_stats = sh_eth_get_stats,
3176 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3177 .ndo_tx_timeout = sh_eth_tx_timeout,
3178 .ndo_eth_ioctl = phy_do_ioctl_running,
3179 .ndo_change_mtu = sh_eth_change_mtu,
3180 .ndo_validate_addr = eth_validate_addr,
3181 .ndo_set_mac_address = eth_mac_addr,
3182 .ndo_set_features = sh_eth_set_features,
3183};
3184
3185static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3186 .ndo_open = sh_eth_open,
3187 .ndo_stop = sh_eth_close,
3188 .ndo_start_xmit = sh_eth_start_xmit,
3189 .ndo_get_stats = sh_eth_get_stats,
3190 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3191 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3192 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3193 .ndo_tx_timeout = sh_eth_tx_timeout,
3194 .ndo_eth_ioctl = phy_do_ioctl_running,
3195 .ndo_change_mtu = sh_eth_change_mtu,
3196 .ndo_validate_addr = eth_validate_addr,
3197 .ndo_set_mac_address = eth_mac_addr,
3198 .ndo_set_features = sh_eth_set_features,
3199};
3200
3201#ifdef CONFIG_OF
3202static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3203{
3204 struct device_node *np = dev->of_node;
3205 struct sh_eth_plat_data *pdata;
3206 phy_interface_t interface;
3207 int ret;
3208
3209 pdata = devm_kzalloc(dev, size: sizeof(*pdata), GFP_KERNEL);
3210 if (!pdata)
3211 return NULL;
3212
3213 ret = of_get_phy_mode(np, interface: &interface);
3214 if (ret)
3215 return NULL;
3216 pdata->phy_interface = interface;
3217
3218 of_get_mac_address(np, mac: pdata->mac_addr);
3219
3220 pdata->no_ether_link =
3221 of_property_read_bool(np, propname: "renesas,no-ether-link");
3222 pdata->ether_link_active_low =
3223 of_property_read_bool(np, propname: "renesas,ether-link-active-low");
3224
3225 return pdata;
3226}
3227
3228static const struct of_device_id sh_eth_match_table[] = {
3229 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3230 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3231 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3232 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3233 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3234 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3235 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3236 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3237 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3238 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3239 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3240 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3241 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3242 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3243 { }
3244};
3245MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3246#else
3247static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3248{
3249 return NULL;
3250}
3251#endif
3252
3253static int sh_eth_drv_probe(struct platform_device *pdev)
3254{
3255 struct resource *res;
3256 struct sh_eth_plat_data *pd = dev_get_platdata(dev: &pdev->dev);
3257 const struct platform_device_id *id = platform_get_device_id(pdev);
3258 struct sh_eth_private *mdp;
3259 struct net_device *ndev;
3260 int ret;
3261
3262 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3263 if (!ndev)
3264 return -ENOMEM;
3265
3266 pm_runtime_enable(dev: &pdev->dev);
3267 pm_runtime_get_sync(dev: &pdev->dev);
3268
3269 ret = platform_get_irq(pdev, 0);
3270 if (ret < 0)
3271 goto out_release;
3272 ndev->irq = ret;
3273
3274 SET_NETDEV_DEV(ndev, &pdev->dev);
3275
3276 mdp = netdev_priv(dev: ndev);
3277 mdp->num_tx_ring = TX_RING_SIZE;
3278 mdp->num_rx_ring = RX_RING_SIZE;
3279 mdp->addr = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
3280 if (IS_ERR(ptr: mdp->addr)) {
3281 ret = PTR_ERR(ptr: mdp->addr);
3282 goto out_release;
3283 }
3284
3285 ndev->base_addr = res->start;
3286
3287 spin_lock_init(&mdp->lock);
3288 mdp->pdev = pdev;
3289
3290 if (pdev->dev.of_node)
3291 pd = sh_eth_parse_dt(dev: &pdev->dev);
3292 if (!pd) {
3293 dev_err(&pdev->dev, "no platform data\n");
3294 ret = -EINVAL;
3295 goto out_release;
3296 }
3297
3298 /* get PHY ID */
3299 mdp->phy_id = pd->phy;
3300 mdp->phy_interface = pd->phy_interface;
3301 mdp->no_ether_link = pd->no_ether_link;
3302 mdp->ether_link_active_low = pd->ether_link_active_low;
3303
3304 /* set cpu data */
3305 if (id)
3306 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3307 else
3308 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(dev: &pdev->dev);
3309
3310 mdp->reg_offset = sh_eth_get_register_offset(register_type: mdp->cd->register_type);
3311 if (!mdp->reg_offset) {
3312 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3313 mdp->cd->register_type);
3314 ret = -EINVAL;
3315 goto out_release;
3316 }
3317 sh_eth_set_default_cpu_data(cd: mdp->cd);
3318
3319 /* User's manual states max MTU should be 2048 but due to the
3320 * alignment calculations in sh_eth_ring_init() the practical
3321 * MTU is a bit less. Maybe this can be optimized some more.
3322 */
3323 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3324 ndev->min_mtu = ETH_MIN_MTU;
3325
3326 if (mdp->cd->rx_csum) {
3327 ndev->features = NETIF_F_RXCSUM;
3328 ndev->hw_features = NETIF_F_RXCSUM;
3329 }
3330
3331 /* set function */
3332 if (mdp->cd->tsu)
3333 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3334 else
3335 ndev->netdev_ops = &sh_eth_netdev_ops;
3336 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3337 ndev->watchdog_timeo = TX_TIMEOUT;
3338
3339 /* debug message level */
3340 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3341
3342 /* read and set MAC address */
3343 read_mac_address(ndev, mac: pd->mac_addr);
3344 if (!is_valid_ether_addr(addr: ndev->dev_addr)) {
3345 dev_warn(&pdev->dev,
3346 "no valid MAC address supplied, using a random one.\n");
3347 eth_hw_addr_random(dev: ndev);
3348 }
3349
3350 if (mdp->cd->tsu) {
3351 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3352 struct resource *rtsu;
3353
3354 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3355 if (!rtsu) {
3356 dev_err(&pdev->dev, "no TSU resource\n");
3357 ret = -ENODEV;
3358 goto out_release;
3359 }
3360 /* We can only request the TSU region for the first port
3361 * of the two sharing this TSU for the probe to succeed...
3362 */
3363 if (port == 0 &&
3364 !devm_request_mem_region(&pdev->dev, rtsu->start,
3365 resource_size(rtsu),
3366 dev_name(&pdev->dev))) {
3367 dev_err(&pdev->dev, "can't request TSU resource.\n");
3368 ret = -EBUSY;
3369 goto out_release;
3370 }
3371 /* ioremap the TSU registers */
3372 mdp->tsu_addr = devm_ioremap(dev: &pdev->dev, offset: rtsu->start,
3373 size: resource_size(res: rtsu));
3374 if (!mdp->tsu_addr) {
3375 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3376 ret = -ENOMEM;
3377 goto out_release;
3378 }
3379 mdp->port = port;
3380 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3381
3382 /* Need to init only the first port of the two sharing a TSU */
3383 if (port == 0) {
3384 if (mdp->cd->chip_reset)
3385 mdp->cd->chip_reset(ndev);
3386
3387 /* TSU init (Init only)*/
3388 sh_eth_tsu_init(mdp);
3389 }
3390 }
3391
3392 if (mdp->cd->rmiimode)
3393 sh_eth_write(ndev, data: 0x1, enum_index: RMIIMODE);
3394
3395 /* MDIO bus init */
3396 ret = sh_mdio_init(mdp, pd);
3397 if (ret) {
3398 dev_err_probe(dev: &pdev->dev, err: ret, fmt: "MDIO init failed\n");
3399 goto out_release;
3400 }
3401
3402 netif_napi_add(dev: ndev, napi: &mdp->napi, poll: sh_eth_poll);
3403
3404 /* network device register */
3405 ret = register_netdev(dev: ndev);
3406 if (ret)
3407 goto out_napi_del;
3408
3409 if (mdp->cd->magic)
3410 device_set_wakeup_capable(dev: &pdev->dev, capable: 1);
3411
3412 /* print device information */
3413 netdev_info(dev: ndev, format: "Base address at 0x%x, %pM, IRQ %d.\n",
3414 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3415
3416 pm_runtime_put(dev: &pdev->dev);
3417 platform_set_drvdata(pdev, data: ndev);
3418
3419 return ret;
3420
3421out_napi_del:
3422 netif_napi_del(napi: &mdp->napi);
3423 sh_mdio_release(mdp);
3424
3425out_release:
3426 /* net_dev free */
3427 free_netdev(dev: ndev);
3428
3429 pm_runtime_put(dev: &pdev->dev);
3430 pm_runtime_disable(dev: &pdev->dev);
3431 return ret;
3432}
3433
3434static void sh_eth_drv_remove(struct platform_device *pdev)
3435{
3436 struct net_device *ndev = platform_get_drvdata(pdev);
3437 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
3438
3439 unregister_netdev(dev: ndev);
3440 netif_napi_del(napi: &mdp->napi);
3441 sh_mdio_release(mdp);
3442 pm_runtime_disable(dev: &pdev->dev);
3443 free_netdev(dev: ndev);
3444}
3445
3446#ifdef CONFIG_PM
3447#ifdef CONFIG_PM_SLEEP
3448static int sh_eth_wol_setup(struct net_device *ndev)
3449{
3450 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
3451
3452 /* Only allow ECI interrupts */
3453 synchronize_irq(irq: ndev->irq);
3454 napi_disable(n: &mdp->napi);
3455 sh_eth_write(ndev, data: EESIPR_ECIIP, enum_index: EESIPR);
3456
3457 /* Enable MagicPacket */
3458 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_MPDE, set: ECMR_MPDE);
3459
3460 return enable_irq_wake(irq: ndev->irq);
3461}
3462
3463static int sh_eth_wol_restore(struct net_device *ndev)
3464{
3465 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
3466 int ret;
3467
3468 napi_enable(n: &mdp->napi);
3469
3470 /* Disable MagicPacket */
3471 sh_eth_modify(ndev, enum_index: ECMR, clear: ECMR_MPDE, set: 0);
3472
3473 /* The device needs to be reset to restore MagicPacket logic
3474 * for next wakeup. If we close and open the device it will
3475 * both be reset and all registers restored. This is what
3476 * happens during suspend and resume without WoL enabled.
3477 */
3478 sh_eth_close(ndev);
3479 ret = sh_eth_open(ndev);
3480 if (ret < 0)
3481 return ret;
3482
3483 return disable_irq_wake(irq: ndev->irq);
3484}
3485
3486static int sh_eth_suspend(struct device *dev)
3487{
3488 struct net_device *ndev = dev_get_drvdata(dev);
3489 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
3490 int ret;
3491
3492 if (!netif_running(dev: ndev))
3493 return 0;
3494
3495 netif_device_detach(dev: ndev);
3496
3497 if (mdp->wol_enabled)
3498 ret = sh_eth_wol_setup(ndev);
3499 else
3500 ret = sh_eth_close(ndev);
3501
3502 return ret;
3503}
3504
3505static int sh_eth_resume(struct device *dev)
3506{
3507 struct net_device *ndev = dev_get_drvdata(dev);
3508 struct sh_eth_private *mdp = netdev_priv(dev: ndev);
3509 int ret;
3510
3511 if (!netif_running(dev: ndev))
3512 return 0;
3513
3514 if (mdp->wol_enabled)
3515 ret = sh_eth_wol_restore(ndev);
3516 else
3517 ret = sh_eth_open(ndev);
3518
3519 if (ret < 0)
3520 return ret;
3521
3522 netif_device_attach(dev: ndev);
3523
3524 return ret;
3525}
3526#endif
3527
3528static int sh_eth_runtime_nop(struct device *dev)
3529{
3530 /* Runtime PM callback shared between ->runtime_suspend()
3531 * and ->runtime_resume(). Simply returns success.
3532 *
3533 * This driver re-initializes all registers after
3534 * pm_runtime_get_sync() anyway so there is no need
3535 * to save and restore registers here.
3536 */
3537 return 0;
3538}
3539
3540static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3541 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3542 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3543};
3544#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3545#else
3546#define SH_ETH_PM_OPS NULL
3547#endif
3548
3549static const struct platform_device_id sh_eth_id_table[] = {
3550 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3551 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3552 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3553 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3554 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3555 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3556 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3557 { }
3558};
3559MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3560
3561static struct platform_driver sh_eth_driver = {
3562 .probe = sh_eth_drv_probe,
3563 .remove_new = sh_eth_drv_remove,
3564 .id_table = sh_eth_id_table,
3565 .driver = {
3566 .name = CARDNAME,
3567 .pm = SH_ETH_PM_OPS,
3568 .of_match_table = of_match_ptr(sh_eth_match_table),
3569 },
3570};
3571
3572module_platform_driver(sh_eth_driver);
3573
3574MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3575MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3576MODULE_LICENSE("GPL v2");
3577

source code of linux/drivers/net/ethernet/renesas/sh_eth.c