1// SPDX-License-Identifier: GPL-2.0-only
2/* 10G controller driver for Samsung SoCs
3 *
4 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/clk.h>
13#include <linux/crc32.h>
14#include <linux/dma-mapping.h>
15#include <linux/etherdevice.h>
16#include <linux/ethtool.h>
17#include <linux/if.h>
18#include <linux/if_ether.h>
19#include <linux/if_vlan.h>
20#include <linux/init.h>
21#include <linux/interrupt.h>
22#include <linux/ip.h>
23#include <linux/kernel.h>
24#include <linux/mii.h>
25#include <linux/module.h>
26#include <linux/net_tstamp.h>
27#include <linux/netdevice.h>
28#include <linux/phy.h>
29#include <linux/platform_device.h>
30#include <linux/prefetch.h>
31#include <linux/skbuff.h>
32#include <linux/slab.h>
33#include <linux/tcp.h>
34#include <linux/sxgbe_platform.h>
35
36#include "sxgbe_common.h"
37#include "sxgbe_desc.h"
38#include "sxgbe_dma.h"
39#include "sxgbe_mtl.h"
40#include "sxgbe_reg.h"
41
42#define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x)
43#define JUMBO_LEN 9000
44
45/* Module parameters */
46#define TX_TIMEO 5000
47#define DMA_TX_SIZE 512
48#define DMA_RX_SIZE 1024
49#define TC_DEFAULT 64
50#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
51/* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
52#define SXGBE_DEFAULT_LPI_TIMER 1000
53
54static int debug = -1;
55static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
56
57module_param(eee_timer, int, 0644);
58
59module_param(debug, int, 0644);
60static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
63
64static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
65static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
66static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
67
68#define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
69
70#define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
71
72/**
73 * sxgbe_verify_args - verify the driver parameters.
74 * Description: it verifies if some wrong parameter is passed to the driver.
75 * Note that wrong parameters are replaced with the default values.
76 */
77static void sxgbe_verify_args(void)
78{
79 if (unlikely(eee_timer < 0))
80 eee_timer = SXGBE_DEFAULT_LPI_TIMER;
81}
82
83static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
84{
85 /* Check and enter in LPI mode */
86 if (!priv->tx_path_in_lpi_mode)
87 priv->hw->mac->set_eee_mode(priv->ioaddr);
88}
89
90void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
91{
92 /* Exit and disable EEE in case of we are in LPI state. */
93 priv->hw->mac->reset_eee_mode(priv->ioaddr);
94 del_timer_sync(timer: &priv->eee_ctrl_timer);
95 priv->tx_path_in_lpi_mode = false;
96}
97
98/**
99 * sxgbe_eee_ctrl_timer
100 * @t: timer list containing a data
101 * Description:
102 * If there is no data transfer and if we are not in LPI state,
103 * then MAC Transmitter can be moved to LPI state.
104 */
105static void sxgbe_eee_ctrl_timer(struct timer_list *t)
106{
107 struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer);
108
109 sxgbe_enable_eee_mode(priv);
110 mod_timer(timer: &priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
111}
112
113/**
114 * sxgbe_eee_init
115 * @priv: private device pointer
116 * Description:
117 * If the EEE support has been enabled while configuring the driver,
118 * if the GMAC actually supports the EEE (from the HW cap reg) and the
119 * phy can also manage EEE, so enable the LPI state and start the timer
120 * to verify if the tx path can enter in LPI state.
121 */
122bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
123{
124 struct net_device *ndev = priv->dev;
125 bool ret = false;
126
127 /* MAC core supports the EEE feature. */
128 if (priv->hw_cap.eee) {
129 /* Check if the PHY supports EEE */
130 if (phy_init_eee(phydev: ndev->phydev, clk_stop_enable: true))
131 return false;
132
133 priv->eee_active = 1;
134 timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0);
135 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
136 add_timer(timer: &priv->eee_ctrl_timer);
137
138 priv->hw->mac->set_eee_timer(priv->ioaddr,
139 SXGBE_DEFAULT_LPI_TIMER,
140 priv->tx_lpi_timer);
141
142 pr_info("Energy-Efficient Ethernet initialized\n");
143
144 ret = true;
145 }
146
147 return ret;
148}
149
150static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
151{
152 struct net_device *ndev = priv->dev;
153
154 /* When the EEE has been already initialised we have to
155 * modify the PLS bit in the LPI ctrl & status reg according
156 * to the PHY link status. For this reason.
157 */
158 if (priv->eee_enabled)
159 priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link);
160}
161
162/**
163 * sxgbe_clk_csr_set - dynamically set the MDC clock
164 * @priv: driver private structure
165 * Description: this is to dynamically set the MDC clock according to the csr
166 * clock input.
167 */
168static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
169{
170 u32 clk_rate = clk_get_rate(clk: priv->sxgbe_clk);
171
172 /* assign the proper divider, this will be used during
173 * mdio communication
174 */
175 if (clk_rate < SXGBE_CSR_F_150M)
176 priv->clk_csr = SXGBE_CSR_100_150M;
177 else if (clk_rate <= SXGBE_CSR_F_250M)
178 priv->clk_csr = SXGBE_CSR_150_250M;
179 else if (clk_rate <= SXGBE_CSR_F_300M)
180 priv->clk_csr = SXGBE_CSR_250_300M;
181 else if (clk_rate <= SXGBE_CSR_F_350M)
182 priv->clk_csr = SXGBE_CSR_300_350M;
183 else if (clk_rate <= SXGBE_CSR_F_400M)
184 priv->clk_csr = SXGBE_CSR_350_400M;
185 else if (clk_rate <= SXGBE_CSR_F_500M)
186 priv->clk_csr = SXGBE_CSR_400_500M;
187}
188
189/* minimum number of free TX descriptors required to wake up TX process */
190#define SXGBE_TX_THRESH(x) (x->dma_tx_size/4)
191
192static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
193{
194 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
195}
196
197/**
198 * sxgbe_adjust_link
199 * @dev: net device structure
200 * Description: it adjusts the link parameters.
201 */
202static void sxgbe_adjust_link(struct net_device *dev)
203{
204 struct sxgbe_priv_data *priv = netdev_priv(dev);
205 struct phy_device *phydev = dev->phydev;
206 u8 new_state = 0;
207 u8 speed = 0xff;
208
209 if (!phydev)
210 return;
211
212 /* SXGBE is not supporting auto-negotiation and
213 * half duplex mode. so, not handling duplex change
214 * in this function. only handling speed and link status
215 */
216 if (phydev->link) {
217 if (phydev->speed != priv->speed) {
218 new_state = 1;
219 switch (phydev->speed) {
220 case SPEED_10000:
221 speed = SXGBE_SPEED_10G;
222 break;
223 case SPEED_2500:
224 speed = SXGBE_SPEED_2_5G;
225 break;
226 case SPEED_1000:
227 speed = SXGBE_SPEED_1G;
228 break;
229 default:
230 netif_err(priv, link, dev,
231 "Speed (%d) not supported\n",
232 phydev->speed);
233 }
234
235 priv->speed = phydev->speed;
236 priv->hw->mac->set_speed(priv->ioaddr, speed);
237 }
238
239 if (!priv->oldlink) {
240 new_state = 1;
241 priv->oldlink = 1;
242 }
243 } else if (priv->oldlink) {
244 new_state = 1;
245 priv->oldlink = 0;
246 priv->speed = SPEED_UNKNOWN;
247 }
248
249 if (new_state & netif_msg_link(priv))
250 phy_print_status(phydev);
251
252 /* Alter the MAC settings for EEE */
253 sxgbe_eee_adjust(priv);
254}
255
256/**
257 * sxgbe_init_phy - PHY initialization
258 * @ndev: net device structure
259 * Description: it initializes the driver's PHY state, and attaches the PHY
260 * to the mac driver.
261 * Return value:
262 * 0 on success
263 */
264static int sxgbe_init_phy(struct net_device *ndev)
265{
266 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
267 char bus_id[MII_BUS_ID_SIZE];
268 struct phy_device *phydev;
269 struct sxgbe_priv_data *priv = netdev_priv(dev: ndev);
270 int phy_iface = priv->plat->interface;
271
272 /* assign default link status */
273 priv->oldlink = 0;
274 priv->speed = SPEED_UNKNOWN;
275 priv->oldduplex = DUPLEX_UNKNOWN;
276
277 if (priv->plat->phy_bus_name)
278 snprintf(buf: bus_id, MII_BUS_ID_SIZE, fmt: "%s-%x",
279 priv->plat->phy_bus_name, priv->plat->bus_id);
280 else
281 snprintf(buf: bus_id, MII_BUS_ID_SIZE, fmt: "sxgbe-%x",
282 priv->plat->bus_id);
283
284 snprintf(buf: phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
285 priv->plat->phy_addr);
286 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
287
288 phydev = phy_connect(dev: ndev, bus_id: phy_id_fmt, handler: &sxgbe_adjust_link, interface: phy_iface);
289
290 if (IS_ERR(ptr: phydev)) {
291 netdev_err(dev: ndev, format: "Could not attach to PHY\n");
292 return PTR_ERR(ptr: phydev);
293 }
294
295 /* Stop Advertising 1000BASE Capability if interface is not GMII */
296 if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
297 (phy_iface == PHY_INTERFACE_MODE_RMII))
298 phy_set_max_speed(phydev, SPEED_1000);
299
300 if (phydev->phy_id == 0) {
301 phy_disconnect(phydev);
302 return -ENODEV;
303 }
304
305 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
306 __func__, phydev->phy_id, phydev->link);
307
308 return 0;
309}
310
311/**
312 * sxgbe_clear_descriptors: clear descriptors
313 * @priv: driver private structure
314 * Description: this function is called to clear the tx and rx descriptors
315 * in case of both basic and extended descriptors are used.
316 */
317static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
318{
319 int i, j;
320 unsigned int txsize = priv->dma_tx_size;
321 unsigned int rxsize = priv->dma_rx_size;
322
323 /* Clear the Rx/Tx descriptors */
324 for (j = 0; j < SXGBE_RX_QUEUES; j++) {
325 for (i = 0; i < rxsize; i++)
326 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
327 priv->use_riwt, priv->mode,
328 (i == rxsize - 1));
329 }
330
331 for (j = 0; j < SXGBE_TX_QUEUES; j++) {
332 for (i = 0; i < txsize; i++)
333 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
334 }
335}
336
337static int sxgbe_init_rx_buffers(struct net_device *dev,
338 struct sxgbe_rx_norm_desc *p, int i,
339 unsigned int dma_buf_sz,
340 struct sxgbe_rx_queue *rx_ring)
341{
342 struct sxgbe_priv_data *priv = netdev_priv(dev);
343 struct sk_buff *skb;
344
345 skb = __netdev_alloc_skb_ip_align(dev, length: dma_buf_sz, GFP_KERNEL);
346 if (!skb)
347 return -ENOMEM;
348
349 rx_ring->rx_skbuff[i] = skb;
350 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
351 dma_buf_sz, DMA_FROM_DEVICE);
352
353 if (dma_mapping_error(dev: priv->device, dma_addr: rx_ring->rx_skbuff_dma[i])) {
354 netdev_err(dev, format: "%s: DMA mapping error\n", __func__);
355 dev_kfree_skb_any(skb);
356 return -EINVAL;
357 }
358
359 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
360
361 return 0;
362}
363
364/**
365 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
366 * @dev: net device structure
367 * @p: dec pointer
368 * @i: index
369 * @dma_buf_sz: size
370 * @rx_ring: ring to be freed
371 *
372 * Description: this function initializes the DMA RX descriptor
373 */
374static void sxgbe_free_rx_buffers(struct net_device *dev,
375 struct sxgbe_rx_norm_desc *p, int i,
376 unsigned int dma_buf_sz,
377 struct sxgbe_rx_queue *rx_ring)
378{
379 struct sxgbe_priv_data *priv = netdev_priv(dev);
380
381 kfree_skb(skb: rx_ring->rx_skbuff[i]);
382 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
383 dma_buf_sz, DMA_FROM_DEVICE);
384}
385
386/**
387 * init_tx_ring - init the TX descriptor ring
388 * @dev: net device structure
389 * @queue_no: queue
390 * @tx_ring: ring to be initialised
391 * @tx_rsize: ring size
392 * Description: this function initializes the DMA TX descriptor
393 */
394static int init_tx_ring(struct device *dev, u8 queue_no,
395 struct sxgbe_tx_queue *tx_ring, int tx_rsize)
396{
397 /* TX ring is not allcoated */
398 if (!tx_ring) {
399 dev_err(dev, "No memory for TX queue of SXGBE\n");
400 return -ENOMEM;
401 }
402
403 /* allocate memory for TX descriptors */
404 tx_ring->dma_tx = dma_alloc_coherent(dev,
405 size: tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
406 dma_handle: &tx_ring->dma_tx_phy, GFP_KERNEL);
407 if (!tx_ring->dma_tx)
408 return -ENOMEM;
409
410 /* allocate memory for TX skbuff array */
411 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, n: tx_rsize,
412 size: sizeof(dma_addr_t), GFP_KERNEL);
413 if (!tx_ring->tx_skbuff_dma)
414 goto dmamem_err;
415
416 tx_ring->tx_skbuff = devm_kcalloc(dev, n: tx_rsize,
417 size: sizeof(struct sk_buff *), GFP_KERNEL);
418
419 if (!tx_ring->tx_skbuff)
420 goto dmamem_err;
421
422 /* assign queue number */
423 tx_ring->queue_no = queue_no;
424
425 /* initialise counters */
426 tx_ring->dirty_tx = 0;
427 tx_ring->cur_tx = 0;
428
429 return 0;
430
431dmamem_err:
432 dma_free_coherent(dev, size: tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
433 cpu_addr: tx_ring->dma_tx, dma_handle: tx_ring->dma_tx_phy);
434 return -ENOMEM;
435}
436
437/**
438 * free_rx_ring - free the RX descriptor ring
439 * @dev: net device structure
440 * @rx_ring: ring to be initialised
441 * @rx_rsize: ring size
442 * Description: this function initializes the DMA RX descriptor
443 */
444static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
445 int rx_rsize)
446{
447 dma_free_coherent(dev, size: rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
448 cpu_addr: rx_ring->dma_rx, dma_handle: rx_ring->dma_rx_phy);
449 kfree(objp: rx_ring->rx_skbuff_dma);
450 kfree(objp: rx_ring->rx_skbuff);
451}
452
453/**
454 * init_rx_ring - init the RX descriptor ring
455 * @dev: net device structure
456 * @queue_no: queue
457 * @rx_ring: ring to be initialised
458 * @rx_rsize: ring size
459 * Description: this function initializes the DMA RX descriptor
460 */
461static int init_rx_ring(struct net_device *dev, u8 queue_no,
462 struct sxgbe_rx_queue *rx_ring, int rx_rsize)
463{
464 struct sxgbe_priv_data *priv = netdev_priv(dev);
465 int desc_index;
466 unsigned int bfsize = 0;
467 unsigned int ret = 0;
468
469 /* Set the max buffer size according to the MTU. */
470 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
471
472 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
473
474 /* RX ring is not allcoated */
475 if (rx_ring == NULL) {
476 netdev_err(dev, format: "No memory for RX queue\n");
477 return -ENOMEM;
478 }
479
480 /* assign queue number */
481 rx_ring->queue_no = queue_no;
482
483 /* allocate memory for RX descriptors */
484 rx_ring->dma_rx = dma_alloc_coherent(dev: priv->device,
485 size: rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
486 dma_handle: &rx_ring->dma_rx_phy, GFP_KERNEL);
487
488 if (rx_ring->dma_rx == NULL)
489 return -ENOMEM;
490
491 /* allocate memory for RX skbuff array */
492 rx_ring->rx_skbuff_dma = kmalloc_array(n: rx_rsize,
493 size: sizeof(dma_addr_t), GFP_KERNEL);
494 if (!rx_ring->rx_skbuff_dma) {
495 ret = -ENOMEM;
496 goto err_free_dma_rx;
497 }
498
499 rx_ring->rx_skbuff = kmalloc_array(n: rx_rsize,
500 size: sizeof(struct sk_buff *), GFP_KERNEL);
501 if (!rx_ring->rx_skbuff) {
502 ret = -ENOMEM;
503 goto err_free_skbuff_dma;
504 }
505
506 /* initialise the buffers */
507 for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
508 struct sxgbe_rx_norm_desc *p;
509 p = rx_ring->dma_rx + desc_index;
510 ret = sxgbe_init_rx_buffers(dev, p, i: desc_index,
511 dma_buf_sz: bfsize, rx_ring);
512 if (ret)
513 goto err_free_rx_buffers;
514 }
515
516 /* initialise counters */
517 rx_ring->cur_rx = 0;
518 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
519 priv->dma_buf_sz = bfsize;
520
521 return 0;
522
523err_free_rx_buffers:
524 while (--desc_index >= 0) {
525 struct sxgbe_rx_norm_desc *p;
526
527 p = rx_ring->dma_rx + desc_index;
528 sxgbe_free_rx_buffers(dev, p, i: desc_index, dma_buf_sz: bfsize, rx_ring);
529 }
530 kfree(objp: rx_ring->rx_skbuff);
531err_free_skbuff_dma:
532 kfree(objp: rx_ring->rx_skbuff_dma);
533err_free_dma_rx:
534 dma_free_coherent(dev: priv->device,
535 size: rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
536 cpu_addr: rx_ring->dma_rx, dma_handle: rx_ring->dma_rx_phy);
537
538 return ret;
539}
540/**
541 * free_tx_ring - free the TX descriptor ring
542 * @dev: net device structure
543 * @tx_ring: ring to be initialised
544 * @tx_rsize: ring size
545 * Description: this function initializes the DMA TX descriptor
546 */
547static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
548 int tx_rsize)
549{
550 dma_free_coherent(dev, size: tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
551 cpu_addr: tx_ring->dma_tx, dma_handle: tx_ring->dma_tx_phy);
552}
553
554/**
555 * init_dma_desc_rings - init the RX/TX descriptor rings
556 * @netd: net device structure
557 * Description: this function initializes the DMA RX/TX descriptors
558 * and allocates the socket buffers. It suppors the chained and ring
559 * modes.
560 */
561static int init_dma_desc_rings(struct net_device *netd)
562{
563 int queue_num, ret;
564 struct sxgbe_priv_data *priv = netdev_priv(dev: netd);
565 int tx_rsize = priv->dma_tx_size;
566 int rx_rsize = priv->dma_rx_size;
567
568 /* Allocate memory for queue structures and TX descs */
569 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
570 ret = init_tx_ring(dev: priv->device, queue_no: queue_num,
571 tx_ring: priv->txq[queue_num], tx_rsize);
572 if (ret) {
573 dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
574 goto txalloc_err;
575 }
576
577 /* save private pointer in each ring this
578 * pointer is needed during cleaing TX queue
579 */
580 priv->txq[queue_num]->priv_ptr = priv;
581 }
582
583 /* Allocate memory for queue structures and RX descs */
584 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
585 ret = init_rx_ring(dev: netd, queue_no: queue_num,
586 rx_ring: priv->rxq[queue_num], rx_rsize);
587 if (ret) {
588 netdev_err(dev: netd, format: "RX DMA ring allocation failed!!\n");
589 goto rxalloc_err;
590 }
591
592 /* save private pointer in each ring this
593 * pointer is needed during cleaing TX queue
594 */
595 priv->rxq[queue_num]->priv_ptr = priv;
596 }
597
598 sxgbe_clear_descriptors(priv);
599
600 return 0;
601
602txalloc_err:
603 while (queue_num--)
604 free_tx_ring(dev: priv->device, tx_ring: priv->txq[queue_num], tx_rsize);
605 return ret;
606
607rxalloc_err:
608 while (queue_num--)
609 free_rx_ring(dev: priv->device, rx_ring: priv->rxq[queue_num], rx_rsize);
610 return ret;
611}
612
613static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
614{
615 int dma_desc;
616 struct sxgbe_priv_data *priv = txqueue->priv_ptr;
617 int tx_rsize = priv->dma_tx_size;
618
619 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
620 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
621
622 if (txqueue->tx_skbuff_dma[dma_desc])
623 dma_unmap_single(priv->device,
624 txqueue->tx_skbuff_dma[dma_desc],
625 priv->hw->desc->get_tx_len(tdesc),
626 DMA_TO_DEVICE);
627
628 dev_kfree_skb_any(skb: txqueue->tx_skbuff[dma_desc]);
629 txqueue->tx_skbuff[dma_desc] = NULL;
630 txqueue->tx_skbuff_dma[dma_desc] = 0;
631 }
632}
633
634
635static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
636{
637 int queue_num;
638
639 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
640 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
641 tx_free_ring_skbufs(txqueue: tqueue);
642 }
643}
644
645static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
646{
647 int queue_num;
648 int tx_rsize = priv->dma_tx_size;
649 int rx_rsize = priv->dma_rx_size;
650
651 /* Release the DMA TX buffers */
652 dma_free_tx_skbufs(priv);
653
654 /* Release the TX ring memory also */
655 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
656 free_tx_ring(dev: priv->device, tx_ring: priv->txq[queue_num], tx_rsize);
657 }
658
659 /* Release the RX ring memory also */
660 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
661 free_rx_ring(dev: priv->device, rx_ring: priv->rxq[queue_num], rx_rsize);
662 }
663}
664
665static int txring_mem_alloc(struct sxgbe_priv_data *priv)
666{
667 int queue_num;
668
669 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
670 priv->txq[queue_num] = devm_kmalloc(dev: priv->device,
671 size: sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
672 if (!priv->txq[queue_num])
673 return -ENOMEM;
674 }
675
676 return 0;
677}
678
679static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
680{
681 int queue_num;
682
683 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
684 priv->rxq[queue_num] = devm_kmalloc(dev: priv->device,
685 size: sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
686 if (!priv->rxq[queue_num])
687 return -ENOMEM;
688 }
689
690 return 0;
691}
692
693/**
694 * sxgbe_mtl_operation_mode - HW MTL operation mode
695 * @priv: driver private structure
696 * Description: it sets the MTL operation mode: tx/rx MTL thresholds
697 * or Store-And-Forward capability.
698 */
699static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
700{
701 int queue_num;
702
703 /* TX/RX threshold control */
704 if (likely(priv->plat->force_sf_dma_mode)) {
705 /* set TC mode for TX QUEUES */
706 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
707 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
708 SXGBE_MTL_SFMODE);
709 priv->tx_tc = SXGBE_MTL_SFMODE;
710
711 /* set TC mode for RX QUEUES */
712 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
713 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
714 SXGBE_MTL_SFMODE);
715 priv->rx_tc = SXGBE_MTL_SFMODE;
716 } else if (unlikely(priv->plat->force_thresh_dma_mode)) {
717 /* set TC mode for TX QUEUES */
718 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
719 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
720 priv->tx_tc);
721 /* set TC mode for RX QUEUES */
722 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
723 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
724 priv->rx_tc);
725 } else {
726 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
727 }
728}
729
730/**
731 * sxgbe_tx_queue_clean:
732 * @tqueue: queue pointer
733 * Description: it reclaims resources after transmission completes.
734 */
735static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
736{
737 struct sxgbe_priv_data *priv = tqueue->priv_ptr;
738 unsigned int tx_rsize = priv->dma_tx_size;
739 struct netdev_queue *dev_txq;
740 u8 queue_no = tqueue->queue_no;
741
742 dev_txq = netdev_get_tx_queue(dev: priv->dev, index: queue_no);
743
744 __netif_tx_lock(txq: dev_txq, smp_processor_id());
745
746 priv->xstats.tx_clean++;
747 while (tqueue->dirty_tx != tqueue->cur_tx) {
748 unsigned int entry = tqueue->dirty_tx % tx_rsize;
749 struct sk_buff *skb = tqueue->tx_skbuff[entry];
750 struct sxgbe_tx_norm_desc *p;
751
752 p = tqueue->dma_tx + entry;
753
754 /* Check if the descriptor is owned by the DMA. */
755 if (priv->hw->desc->get_tx_owner(p))
756 break;
757
758 if (netif_msg_tx_done(priv))
759 pr_debug("%s: curr %d, dirty %d\n",
760 __func__, tqueue->cur_tx, tqueue->dirty_tx);
761
762 if (likely(tqueue->tx_skbuff_dma[entry])) {
763 dma_unmap_single(priv->device,
764 tqueue->tx_skbuff_dma[entry],
765 priv->hw->desc->get_tx_len(p),
766 DMA_TO_DEVICE);
767 tqueue->tx_skbuff_dma[entry] = 0;
768 }
769
770 if (likely(skb)) {
771 dev_kfree_skb(skb);
772 tqueue->tx_skbuff[entry] = NULL;
773 }
774
775 priv->hw->desc->release_tx_desc(p);
776
777 tqueue->dirty_tx++;
778 }
779
780 /* wake up queue */
781 if (unlikely(netif_tx_queue_stopped(dev_txq) &&
782 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
783 if (netif_msg_tx_done(priv))
784 pr_debug("%s: restart transmit\n", __func__);
785 netif_tx_wake_queue(dev_queue: dev_txq);
786 }
787
788 __netif_tx_unlock(txq: dev_txq);
789}
790
791/**
792 * sxgbe_tx_all_clean:
793 * @priv: driver private structure
794 * Description: it reclaims resources after transmission completes.
795 */
796static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
797{
798 u8 queue_num;
799
800 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
801 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
802
803 sxgbe_tx_queue_clean(tqueue);
804 }
805
806 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
807 sxgbe_enable_eee_mode(priv);
808 mod_timer(timer: &priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
809 }
810}
811
812/**
813 * sxgbe_restart_tx_queue: irq tx error mng function
814 * @priv: driver private structure
815 * @queue_num: queue number
816 * Description: it cleans the descriptors and restarts the transmission
817 * in case of errors.
818 */
819static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
820{
821 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
822 struct netdev_queue *dev_txq = netdev_get_tx_queue(dev: priv->dev,
823 index: queue_num);
824
825 /* stop the queue */
826 netif_tx_stop_queue(dev_queue: dev_txq);
827
828 /* stop the tx dma */
829 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
830
831 /* free the skbuffs of the ring */
832 tx_free_ring_skbufs(txqueue: tx_ring);
833
834 /* initialise counters */
835 tx_ring->cur_tx = 0;
836 tx_ring->dirty_tx = 0;
837
838 /* start the tx dma */
839 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
840
841 priv->dev->stats.tx_errors++;
842
843 /* wakeup the queue */
844 netif_tx_wake_queue(dev_queue: dev_txq);
845}
846
847/**
848 * sxgbe_reset_all_tx_queues: irq tx error mng function
849 * @priv: driver private structure
850 * Description: it cleans all the descriptors and
851 * restarts the transmission on all queues in case of errors.
852 */
853static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
854{
855 int queue_num;
856
857 /* On TX timeout of net device, resetting of all queues
858 * may not be proper way, revisit this later if needed
859 */
860 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
861 sxgbe_restart_tx_queue(priv, queue_num);
862}
863
864/**
865 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
866 * @priv: driver private structure
867 * Description:
868 * new GMAC chip generations have a new register to indicate the
869 * presence of the optional feature/functions.
870 * This can be also used to override the value passed through the
871 * platform and necessary for old MAC10/100 and GMAC chips.
872 */
873static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
874{
875 int rval = 0;
876 struct sxgbe_hw_features *features = &priv->hw_cap;
877
878 /* Read First Capability Register CAP[0] */
879 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
880 if (rval) {
881 features->pmt_remote_wake_up =
882 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
883 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
884 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
885 features->tx_csum_offload =
886 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
887 features->rx_csum_offload =
888 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
889 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
890 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
891 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
892 features->eee = SXGBE_HW_FEAT_EEE(rval);
893 }
894
895 /* Read First Capability Register CAP[1] */
896 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
897 if (rval) {
898 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
899 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
900 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
901 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
902 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
903 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
904 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
905 features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
906 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
907 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
908 }
909
910 /* Read First Capability Register CAP[2] */
911 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
912 if (rval) {
913 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
914 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
915 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
916 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
917 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
918 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
919 }
920
921 return rval;
922}
923
924/**
925 * sxgbe_check_ether_addr: check if the MAC addr is valid
926 * @priv: driver private structure
927 * Description:
928 * it is to verify if the MAC address is valid, in case of failures it
929 * generates a random MAC address
930 */
931static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
932{
933 if (!is_valid_ether_addr(addr: priv->dev->dev_addr)) {
934 u8 addr[ETH_ALEN];
935
936 priv->hw->mac->get_umac_addr((void __iomem *)
937 priv->ioaddr, addr, 0);
938 if (is_valid_ether_addr(addr))
939 eth_hw_addr_set(dev: priv->dev, addr);
940 else
941 eth_hw_addr_random(dev: priv->dev);
942 }
943 dev_info(priv->device, "device MAC address %pM\n",
944 priv->dev->dev_addr);
945}
946
947/**
948 * sxgbe_init_dma_engine: DMA init.
949 * @priv: driver private structure
950 * Description:
951 * It inits the DMA invoking the specific SXGBE callback.
952 * Some DMA parameters can be passed from the platform;
953 * in case of these are not passed a default is kept for the MAC or GMAC.
954 */
955static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
956{
957 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
958 int queue_num;
959
960 if (priv->plat->dma_cfg) {
961 pbl = priv->plat->dma_cfg->pbl;
962 fixed_burst = priv->plat->dma_cfg->fixed_burst;
963 burst_map = priv->plat->dma_cfg->burst_map;
964 }
965
966 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
967 priv->hw->dma->cha_init(priv->ioaddr, queue_num,
968 fixed_burst, pbl,
969 (priv->txq[queue_num])->dma_tx_phy,
970 (priv->rxq[queue_num])->dma_rx_phy,
971 priv->dma_tx_size, priv->dma_rx_size);
972
973 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
974}
975
976/**
977 * sxgbe_init_mtl_engine: MTL init.
978 * @priv: driver private structure
979 * Description:
980 * It inits the MTL invoking the specific SXGBE callback.
981 */
982static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
983{
984 int queue_num;
985
986 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
987 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
988 priv->hw_cap.tx_mtl_qsize);
989 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
990 }
991}
992
993/**
994 * sxgbe_disable_mtl_engine: MTL disable.
995 * @priv: driver private structure
996 * Description:
997 * It disables the MTL queues by invoking the specific SXGBE callback.
998 */
999static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
1000{
1001 int queue_num;
1002
1003 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
1004 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
1005}
1006
1007
1008/**
1009 * sxgbe_tx_timer: mitigation sw timer for tx.
1010 * @t: timer pointer
1011 * Description:
1012 * This is the timer handler to directly invoke the sxgbe_tx_clean.
1013 */
1014static void sxgbe_tx_timer(struct timer_list *t)
1015{
1016 struct sxgbe_tx_queue *p = from_timer(p, t, txtimer);
1017 sxgbe_tx_queue_clean(tqueue: p);
1018}
1019
1020/**
1021 * sxgbe_tx_init_coalesce: init tx mitigation options.
1022 * @priv: driver private structure
1023 * Description:
1024 * This inits the transmit coalesce parameters: i.e. timer rate,
1025 * timer handler and default threshold used for enabling the
1026 * interrupt on completion bit.
1027 */
1028static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1029{
1030 u8 queue_num;
1031
1032 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1033 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1034 p->tx_coal_frames = SXGBE_TX_FRAMES;
1035 p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1036 timer_setup(&p->txtimer, sxgbe_tx_timer, 0);
1037 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1038 add_timer(timer: &p->txtimer);
1039 }
1040}
1041
1042static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1043{
1044 u8 queue_num;
1045
1046 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1047 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1048 del_timer_sync(timer: &p->txtimer);
1049 }
1050}
1051
1052/**
1053 * sxgbe_open - open entry point of the driver
1054 * @dev : pointer to the device structure.
1055 * Description:
1056 * This function is the open entry point of the driver.
1057 * Return value:
1058 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1059 * file on failure.
1060 */
1061static int sxgbe_open(struct net_device *dev)
1062{
1063 struct sxgbe_priv_data *priv = netdev_priv(dev);
1064 int ret, queue_num;
1065
1066 clk_prepare_enable(clk: priv->sxgbe_clk);
1067
1068 sxgbe_check_ether_addr(priv);
1069
1070 /* Init the phy */
1071 ret = sxgbe_init_phy(ndev: dev);
1072 if (ret) {
1073 netdev_err(dev, format: "%s: Cannot attach to PHY (error: %d)\n",
1074 __func__, ret);
1075 goto phy_error;
1076 }
1077
1078 /* Create and initialize the TX/RX descriptors chains. */
1079 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1080 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1081 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1082 priv->tx_tc = TC_DEFAULT;
1083 priv->rx_tc = TC_DEFAULT;
1084 init_dma_desc_rings(netd: dev);
1085
1086 /* DMA initialization and SW reset */
1087 ret = sxgbe_init_dma_engine(priv);
1088 if (ret < 0) {
1089 netdev_err(dev, format: "%s: DMA initialization failed\n", __func__);
1090 goto init_error;
1091 }
1092
1093 /* MTL initialization */
1094 sxgbe_init_mtl_engine(priv);
1095
1096 /* Copy the MAC addr into the HW */
1097 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1098
1099 /* Initialize the MAC Core */
1100 priv->hw->mac->core_init(priv->ioaddr);
1101 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1102 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1103 }
1104
1105 /* Request the IRQ lines */
1106 ret = devm_request_irq(dev: priv->device, irq: priv->irq, handler: sxgbe_common_interrupt,
1107 IRQF_SHARED, devname: dev->name, dev_id: dev);
1108 if (unlikely(ret < 0)) {
1109 netdev_err(dev, format: "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1110 __func__, priv->irq, ret);
1111 goto init_error;
1112 }
1113
1114 /* If the LPI irq is different from the mac irq
1115 * register a dedicated handler
1116 */
1117 if (priv->lpi_irq != dev->irq) {
1118 ret = devm_request_irq(dev: priv->device, irq: priv->lpi_irq,
1119 handler: sxgbe_common_interrupt,
1120 IRQF_SHARED, devname: dev->name, dev_id: dev);
1121 if (unlikely(ret < 0)) {
1122 netdev_err(dev, format: "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1123 __func__, priv->lpi_irq, ret);
1124 goto init_error;
1125 }
1126 }
1127
1128 /* Request TX DMA irq lines */
1129 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1130 ret = devm_request_irq(dev: priv->device,
1131 irq: (priv->txq[queue_num])->irq_no,
1132 handler: sxgbe_tx_interrupt, irqflags: 0,
1133 devname: dev->name, dev_id: priv->txq[queue_num]);
1134 if (unlikely(ret < 0)) {
1135 netdev_err(dev, format: "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1136 __func__, priv->irq, ret);
1137 goto init_error;
1138 }
1139 }
1140
1141 /* Request RX DMA irq lines */
1142 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1143 ret = devm_request_irq(dev: priv->device,
1144 irq: (priv->rxq[queue_num])->irq_no,
1145 handler: sxgbe_rx_interrupt, irqflags: 0,
1146 devname: dev->name, dev_id: priv->rxq[queue_num]);
1147 if (unlikely(ret < 0)) {
1148 netdev_err(dev, format: "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1149 __func__, priv->irq, ret);
1150 goto init_error;
1151 }
1152 }
1153
1154 /* Enable the MAC Rx/Tx */
1155 priv->hw->mac->enable_tx(priv->ioaddr, true);
1156 priv->hw->mac->enable_rx(priv->ioaddr, true);
1157
1158 /* Set the HW DMA mode and the COE */
1159 sxgbe_mtl_operation_mode(priv);
1160
1161 /* Extra statistics */
1162 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1163
1164 priv->xstats.tx_threshold = priv->tx_tc;
1165 priv->xstats.rx_threshold = priv->rx_tc;
1166
1167 /* Start the ball rolling... */
1168 netdev_dbg(dev, "DMA RX/TX processes started...\n");
1169 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1170 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1171
1172 if (dev->phydev)
1173 phy_start(phydev: dev->phydev);
1174
1175 /* initialise TX coalesce parameters */
1176 sxgbe_tx_init_coalesce(priv);
1177
1178 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1179 priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1180 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1181 }
1182
1183 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1184 priv->eee_enabled = sxgbe_eee_init(priv);
1185
1186 napi_enable(n: &priv->napi);
1187 netif_start_queue(dev);
1188
1189 return 0;
1190
1191init_error:
1192 free_dma_desc_resources(priv);
1193 if (dev->phydev)
1194 phy_disconnect(phydev: dev->phydev);
1195phy_error:
1196 clk_disable_unprepare(clk: priv->sxgbe_clk);
1197
1198 return ret;
1199}
1200
1201/**
1202 * sxgbe_release - close entry point of the driver
1203 * @dev : device pointer.
1204 * Description:
1205 * This is the stop entry point of the driver.
1206 */
1207static int sxgbe_release(struct net_device *dev)
1208{
1209 struct sxgbe_priv_data *priv = netdev_priv(dev);
1210
1211 if (priv->eee_enabled)
1212 del_timer_sync(timer: &priv->eee_ctrl_timer);
1213
1214 /* Stop and disconnect the PHY */
1215 if (dev->phydev) {
1216 phy_stop(phydev: dev->phydev);
1217 phy_disconnect(phydev: dev->phydev);
1218 }
1219
1220 netif_tx_stop_all_queues(dev);
1221
1222 napi_disable(n: &priv->napi);
1223
1224 /* delete TX timers */
1225 sxgbe_tx_del_timer(priv);
1226
1227 /* Stop TX/RX DMA and clear the descriptors */
1228 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1229 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1230
1231 /* disable MTL queue */
1232 sxgbe_disable_mtl_engine(priv);
1233
1234 /* Release and free the Rx/Tx resources */
1235 free_dma_desc_resources(priv);
1236
1237 /* Disable the MAC Rx/Tx */
1238 priv->hw->mac->enable_tx(priv->ioaddr, false);
1239 priv->hw->mac->enable_rx(priv->ioaddr, false);
1240
1241 clk_disable_unprepare(clk: priv->sxgbe_clk);
1242
1243 return 0;
1244}
1245/* Prepare first Tx descriptor for doing TSO operation */
1246static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1247 struct sxgbe_tx_norm_desc *first_desc,
1248 struct sk_buff *skb)
1249{
1250 unsigned int total_hdr_len, tcp_hdr_len;
1251
1252 /* Write first Tx descriptor with appropriate value */
1253 tcp_hdr_len = tcp_hdrlen(skb);
1254 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1255
1256 first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1257 total_hdr_len, DMA_TO_DEVICE);
1258 if (dma_mapping_error(dev: priv->device, dma_addr: first_desc->tdes01))
1259 pr_err("%s: TX dma mapping failed!!\n", __func__);
1260
1261 first_desc->tdes23.tx_rd_des23.first_desc = 1;
1262 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1263 tcp_hdr_len,
1264 skb->len - total_hdr_len);
1265}
1266
1267/**
1268 * sxgbe_xmit: Tx entry point of the driver
1269 * @skb : the socket buffer
1270 * @dev : device pointer
1271 * Description : this is the tx entry point of the driver.
1272 * It programs the chain or the ring and supports oversized frames
1273 * and SG feature.
1274 */
1275static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1276{
1277 unsigned int entry, frag_num;
1278 int cksum_flag = 0;
1279 struct netdev_queue *dev_txq;
1280 unsigned txq_index = skb_get_queue_mapping(skb);
1281 struct sxgbe_priv_data *priv = netdev_priv(dev);
1282 unsigned int tx_rsize = priv->dma_tx_size;
1283 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1284 struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1285 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1286 int nr_frags = skb_shinfo(skb)->nr_frags;
1287 int no_pagedlen = skb_headlen(skb);
1288 int is_jumbo = 0;
1289 u16 cur_mss = skb_shinfo(skb)->gso_size;
1290 u32 ctxt_desc_req = 0;
1291
1292 /* get the TX queue handle */
1293 dev_txq = netdev_get_tx_queue(dev, index: txq_index);
1294
1295 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1296 ctxt_desc_req = 1;
1297
1298 if (unlikely(skb_vlan_tag_present(skb) ||
1299 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1300 tqueue->hwts_tx_en)))
1301 ctxt_desc_req = 1;
1302
1303 if (priv->tx_path_in_lpi_mode)
1304 sxgbe_disable_eee_mode(priv);
1305
1306 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1307 if (!netif_tx_queue_stopped(dev_queue: dev_txq)) {
1308 netif_tx_stop_queue(dev_queue: dev_txq);
1309 netdev_err(dev, format: "%s: Tx Ring is full when %d queue is awake\n",
1310 __func__, txq_index);
1311 }
1312 return NETDEV_TX_BUSY;
1313 }
1314
1315 entry = tqueue->cur_tx % tx_rsize;
1316 tx_desc = tqueue->dma_tx + entry;
1317
1318 first_desc = tx_desc;
1319 if (ctxt_desc_req)
1320 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1321
1322 /* save the skb address */
1323 tqueue->tx_skbuff[entry] = skb;
1324
1325 if (!is_jumbo) {
1326 if (likely(skb_is_gso(skb))) {
1327 /* TSO support */
1328 if (unlikely(tqueue->prev_mss != cur_mss)) {
1329 priv->hw->desc->tx_ctxt_desc_set_mss(
1330 ctxt_desc, cur_mss);
1331 priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1332 ctxt_desc);
1333 priv->hw->desc->tx_ctxt_desc_reset_ostc(
1334 ctxt_desc);
1335 priv->hw->desc->tx_ctxt_desc_set_ctxt(
1336 ctxt_desc);
1337 priv->hw->desc->tx_ctxt_desc_set_owner(
1338 ctxt_desc);
1339
1340 entry = (++tqueue->cur_tx) % tx_rsize;
1341 first_desc = tqueue->dma_tx + entry;
1342
1343 tqueue->prev_mss = cur_mss;
1344 }
1345 sxgbe_tso_prepare(priv, first_desc, skb);
1346 } else {
1347 tx_desc->tdes01 = dma_map_single(priv->device,
1348 skb->data, no_pagedlen, DMA_TO_DEVICE);
1349 if (dma_mapping_error(dev: priv->device, dma_addr: tx_desc->tdes01))
1350 netdev_err(dev, format: "%s: TX dma mapping failed!!\n",
1351 __func__);
1352
1353 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1354 no_pagedlen, cksum_flag);
1355 }
1356 }
1357
1358 for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1359 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1360 int len = skb_frag_size(frag);
1361
1362 entry = (++tqueue->cur_tx) % tx_rsize;
1363 tx_desc = tqueue->dma_tx + entry;
1364 tx_desc->tdes01 = skb_frag_dma_map(dev: priv->device, frag, offset: 0, size: len,
1365 dir: DMA_TO_DEVICE);
1366
1367 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1368 tqueue->tx_skbuff[entry] = NULL;
1369
1370 /* prepare the descriptor */
1371 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1372 len, cksum_flag);
1373 /* memory barrier to flush descriptor */
1374 wmb();
1375
1376 /* set the owner */
1377 priv->hw->desc->set_tx_owner(tx_desc);
1378 }
1379
1380 /* close the descriptors */
1381 priv->hw->desc->close_tx_desc(tx_desc);
1382
1383 /* memory barrier to flush descriptor */
1384 wmb();
1385
1386 tqueue->tx_count_frames += nr_frags + 1;
1387 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1388 priv->hw->desc->clear_tx_ic(tx_desc);
1389 priv->xstats.tx_reset_ic_bit++;
1390 mod_timer(timer: &tqueue->txtimer,
1391 SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1392 } else {
1393 tqueue->tx_count_frames = 0;
1394 }
1395
1396 /* set owner for first desc */
1397 priv->hw->desc->set_tx_owner(first_desc);
1398
1399 /* memory barrier to flush descriptor */
1400 wmb();
1401
1402 tqueue->cur_tx++;
1403
1404 /* display current ring */
1405 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1406 __func__, tqueue->cur_tx % tx_rsize,
1407 tqueue->dirty_tx % tx_rsize, entry,
1408 first_desc, nr_frags);
1409
1410 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1411 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1412 __func__);
1413 netif_tx_stop_queue(dev_queue: dev_txq);
1414 }
1415
1416 dev->stats.tx_bytes += skb->len;
1417
1418 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1419 tqueue->hwts_tx_en)) {
1420 /* declare that device is doing timestamping */
1421 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1422 priv->hw->desc->tx_enable_tstamp(first_desc);
1423 }
1424
1425 skb_tx_timestamp(skb);
1426
1427 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1428
1429 return NETDEV_TX_OK;
1430}
1431
1432/**
1433 * sxgbe_rx_refill: refill used skb preallocated buffers
1434 * @priv: driver private structure
1435 * Description : this is to reallocate the skb for the reception process
1436 * that is based on zero-copy.
1437 */
1438static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1439{
1440 unsigned int rxsize = priv->dma_rx_size;
1441 int bfsize = priv->dma_buf_sz;
1442 u8 qnum = priv->cur_rx_qnum;
1443
1444 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1445 priv->rxq[qnum]->dirty_rx++) {
1446 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1447 struct sxgbe_rx_norm_desc *p;
1448
1449 p = priv->rxq[qnum]->dma_rx + entry;
1450
1451 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1452 struct sk_buff *skb;
1453
1454 skb = netdev_alloc_skb_ip_align(dev: priv->dev, length: bfsize);
1455
1456 if (unlikely(skb == NULL))
1457 break;
1458
1459 priv->rxq[qnum]->rx_skbuff[entry] = skb;
1460 priv->rxq[qnum]->rx_skbuff_dma[entry] =
1461 dma_map_single(priv->device, skb->data, bfsize,
1462 DMA_FROM_DEVICE);
1463
1464 p->rdes23.rx_rd_des23.buf2_addr =
1465 priv->rxq[qnum]->rx_skbuff_dma[entry];
1466 }
1467
1468 /* Added memory barrier for RX descriptor modification */
1469 wmb();
1470 priv->hw->desc->set_rx_owner(p);
1471 priv->hw->desc->set_rx_int_on_com(p);
1472 /* Added memory barrier for RX descriptor modification */
1473 wmb();
1474 }
1475}
1476
1477/**
1478 * sxgbe_rx: receive the frames from the remote host
1479 * @priv: driver private structure
1480 * @limit: napi bugget.
1481 * Description : this the function called by the napi poll method.
1482 * It gets all the frames inside the ring.
1483 */
1484static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1485{
1486 u8 qnum = priv->cur_rx_qnum;
1487 unsigned int rxsize = priv->dma_rx_size;
1488 unsigned int entry = priv->rxq[qnum]->cur_rx;
1489 unsigned int next_entry = 0;
1490 unsigned int count = 0;
1491 int checksum;
1492 int status;
1493
1494 while (count < limit) {
1495 struct sxgbe_rx_norm_desc *p;
1496 struct sk_buff *skb;
1497 int frame_len;
1498
1499 p = priv->rxq[qnum]->dma_rx + entry;
1500
1501 if (priv->hw->desc->get_rx_owner(p))
1502 break;
1503
1504 count++;
1505
1506 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1507 prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1508
1509 /* Read the status of the incoming frame and also get checksum
1510 * value based on whether it is enabled in SXGBE hardware or
1511 * not.
1512 */
1513 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1514 &checksum);
1515 if (unlikely(status < 0)) {
1516 entry = next_entry;
1517 continue;
1518 }
1519 if (unlikely(!priv->rxcsum_insertion))
1520 checksum = CHECKSUM_NONE;
1521
1522 skb = priv->rxq[qnum]->rx_skbuff[entry];
1523
1524 if (unlikely(!skb))
1525 netdev_err(dev: priv->dev, format: "rx descriptor is not consistent\n");
1526
1527 prefetch(skb->data - NET_IP_ALIGN);
1528 priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1529
1530 frame_len = priv->hw->desc->get_rx_frame_len(p);
1531
1532 skb_put(skb, len: frame_len);
1533
1534 skb->ip_summed = checksum;
1535 if (checksum == CHECKSUM_NONE)
1536 netif_receive_skb(skb);
1537 else
1538 napi_gro_receive(napi: &priv->napi, skb);
1539
1540 entry = next_entry;
1541 }
1542
1543 sxgbe_rx_refill(priv);
1544
1545 return count;
1546}
1547
1548/**
1549 * sxgbe_poll - sxgbe poll method (NAPI)
1550 * @napi : pointer to the napi structure.
1551 * @budget : maximum number of packets that the current CPU can receive from
1552 * all interfaces.
1553 * Description :
1554 * To look at the incoming frames and clear the tx resources.
1555 */
1556static int sxgbe_poll(struct napi_struct *napi, int budget)
1557{
1558 struct sxgbe_priv_data *priv = container_of(napi,
1559 struct sxgbe_priv_data, napi);
1560 int work_done = 0;
1561 u8 qnum = priv->cur_rx_qnum;
1562
1563 priv->xstats.napi_poll++;
1564 /* first, clean the tx queues */
1565 sxgbe_tx_all_clean(priv);
1566
1567 work_done = sxgbe_rx(priv, limit: budget);
1568 if (work_done < budget) {
1569 napi_complete_done(n: napi, work_done);
1570 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1571 }
1572
1573 return work_done;
1574}
1575
1576/**
1577 * sxgbe_tx_timeout
1578 * @dev : Pointer to net device structure
1579 * @txqueue: index of the hanging queue
1580 * Description: this function is called when a packet transmission fails to
1581 * complete within a reasonable time. The driver will mark the error in the
1582 * netdev structure and arrange for the device to be reset to a sane state
1583 * in order to transmit a new packet.
1584 */
1585static void sxgbe_tx_timeout(struct net_device *dev, unsigned int txqueue)
1586{
1587 struct sxgbe_priv_data *priv = netdev_priv(dev);
1588
1589 sxgbe_reset_all_tx_queues(priv);
1590}
1591
1592/**
1593 * sxgbe_common_interrupt - main ISR
1594 * @irq: interrupt number.
1595 * @dev_id: to pass the net device pointer.
1596 * Description: this is the main driver interrupt service routine.
1597 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1598 * interrupts.
1599 */
1600static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1601{
1602 struct net_device *netdev = (struct net_device *)dev_id;
1603 struct sxgbe_priv_data *priv = netdev_priv(dev: netdev);
1604 int status;
1605
1606 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1607 /* For LPI we need to save the tx status */
1608 if (status & TX_ENTRY_LPI_MODE) {
1609 priv->xstats.tx_lpi_entry_n++;
1610 priv->tx_path_in_lpi_mode = true;
1611 }
1612 if (status & TX_EXIT_LPI_MODE) {
1613 priv->xstats.tx_lpi_exit_n++;
1614 priv->tx_path_in_lpi_mode = false;
1615 }
1616 if (status & RX_ENTRY_LPI_MODE)
1617 priv->xstats.rx_lpi_entry_n++;
1618 if (status & RX_EXIT_LPI_MODE)
1619 priv->xstats.rx_lpi_exit_n++;
1620
1621 return IRQ_HANDLED;
1622}
1623
1624/**
1625 * sxgbe_tx_interrupt - TX DMA ISR
1626 * @irq: interrupt number.
1627 * @dev_id: to pass the net device pointer.
1628 * Description: this is the tx dma interrupt service routine.
1629 */
1630static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1631{
1632 int status;
1633 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1634 struct sxgbe_priv_data *priv = txq->priv_ptr;
1635
1636 /* get the channel status */
1637 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1638 &priv->xstats);
1639 /* check for normal path */
1640 if (likely((status & handle_tx)))
1641 napi_schedule(n: &priv->napi);
1642
1643 /* check for unrecoverable error */
1644 if (unlikely((status & tx_hard_error)))
1645 sxgbe_restart_tx_queue(priv, queue_num: txq->queue_no);
1646
1647 /* check for TC configuration change */
1648 if (unlikely((status & tx_bump_tc) &&
1649 (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1650 (priv->tx_tc < 512))) {
1651 /* step of TX TC is 32 till 128, otherwise 64 */
1652 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1653 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1654 txq->queue_no, priv->tx_tc);
1655 priv->xstats.tx_threshold = priv->tx_tc;
1656 }
1657
1658 return IRQ_HANDLED;
1659}
1660
1661/**
1662 * sxgbe_rx_interrupt - RX DMA ISR
1663 * @irq: interrupt number.
1664 * @dev_id: to pass the net device pointer.
1665 * Description: this is the rx dma interrupt service routine.
1666 */
1667static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1668{
1669 int status;
1670 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1671 struct sxgbe_priv_data *priv = rxq->priv_ptr;
1672
1673 /* get the channel status */
1674 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1675 &priv->xstats);
1676
1677 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1678 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1679 __napi_schedule(n: &priv->napi);
1680 }
1681
1682 /* check for TC configuration change */
1683 if (unlikely((status & rx_bump_tc) &&
1684 (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1685 (priv->rx_tc < 128))) {
1686 /* step of TC is 32 */
1687 priv->rx_tc += 32;
1688 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1689 rxq->queue_no, priv->rx_tc);
1690 priv->xstats.rx_threshold = priv->rx_tc;
1691 }
1692
1693 return IRQ_HANDLED;
1694}
1695
1696static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1697{
1698 u64 val = readl(addr: ioaddr + reg_lo);
1699
1700 val |= ((u64)readl(addr: ioaddr + reg_hi)) << 32;
1701
1702 return val;
1703}
1704
1705
1706/* sxgbe_get_stats64 - entry point to see statistical information of device
1707 * @dev : device pointer.
1708 * @stats : pointer to hold all the statistical information of device.
1709 * Description:
1710 * This function is a driver entry point whenever ifconfig command gets
1711 * executed to see device statistics. Statistics are number of
1712 * bytes sent or received, errors occurred etc.
1713 */
1714static void sxgbe_get_stats64(struct net_device *dev,
1715 struct rtnl_link_stats64 *stats)
1716{
1717 struct sxgbe_priv_data *priv = netdev_priv(dev);
1718 void __iomem *ioaddr = priv->ioaddr;
1719 u64 count;
1720
1721 spin_lock(lock: &priv->stats_lock);
1722 /* Freeze the counter registers before reading value otherwise it may
1723 * get updated by hardware while we are reading them
1724 */
1725 writel(SXGBE_MMC_CTRL_CNT_FRZ, addr: ioaddr + SXGBE_MMC_CTL_REG);
1726
1727 stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1728 SXGBE_MMC_RXOCTETLO_GCNT_REG,
1729 SXGBE_MMC_RXOCTETHI_GCNT_REG);
1730
1731 stats->rx_packets = sxgbe_get_stat64(ioaddr,
1732 SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1733 SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1734
1735 stats->multicast = sxgbe_get_stat64(ioaddr,
1736 SXGBE_MMC_RXMULTILO_GCNT_REG,
1737 SXGBE_MMC_RXMULTIHI_GCNT_REG);
1738
1739 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1740 SXGBE_MMC_RXCRCERRLO_REG,
1741 SXGBE_MMC_RXCRCERRHI_REG);
1742
1743 stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1744 SXGBE_MMC_RXLENERRLO_REG,
1745 SXGBE_MMC_RXLENERRHI_REG);
1746
1747 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1748 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1749 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1750
1751 stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1752 SXGBE_MMC_TXOCTETLO_GCNT_REG,
1753 SXGBE_MMC_TXOCTETHI_GCNT_REG);
1754
1755 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1756 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1757
1758 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1759 SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1760 stats->tx_errors = count - stats->tx_errors;
1761 stats->tx_packets = count;
1762 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1763 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1764 writel(val: 0, addr: ioaddr + SXGBE_MMC_CTL_REG);
1765 spin_unlock(lock: &priv->stats_lock);
1766}
1767
1768/* sxgbe_set_features - entry point to set offload features of the device.
1769 * @dev : device pointer.
1770 * @features : features which are required to be set.
1771 * Description:
1772 * This function is a driver entry point and called by Linux kernel whenever
1773 * any device features are set or reset by user.
1774 * Return value:
1775 * This function returns 0 after setting or resetting device features.
1776 */
1777static int sxgbe_set_features(struct net_device *dev,
1778 netdev_features_t features)
1779{
1780 struct sxgbe_priv_data *priv = netdev_priv(dev);
1781 netdev_features_t changed = dev->features ^ features;
1782
1783 if (changed & NETIF_F_RXCSUM) {
1784 if (features & NETIF_F_RXCSUM) {
1785 priv->hw->mac->enable_rx_csum(priv->ioaddr);
1786 priv->rxcsum_insertion = true;
1787 } else {
1788 priv->hw->mac->disable_rx_csum(priv->ioaddr);
1789 priv->rxcsum_insertion = false;
1790 }
1791 }
1792
1793 return 0;
1794}
1795
1796/* sxgbe_change_mtu - entry point to change MTU size for the device.
1797 * @dev : device pointer.
1798 * @new_mtu : the new MTU size for the device.
1799 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1800 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1801 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1802 * Return value:
1803 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1804 * file on failure.
1805 */
1806static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1807{
1808 dev->mtu = new_mtu;
1809
1810 if (!netif_running(dev))
1811 return 0;
1812
1813 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1814 * changed then reinitilisation of the receive ring buffers need to be
1815 * done. Hence bring interface down and bring interface back up
1816 */
1817 sxgbe_release(dev);
1818 return sxgbe_open(dev);
1819}
1820
1821static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1822 unsigned int reg_n)
1823{
1824 unsigned long data;
1825
1826 data = (addr[5] << 8) | addr[4];
1827 /* For MAC Addr registers se have to set the Address Enable (AE)
1828 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1829 * is RO.
1830 */
1831 writel(val: data | SXGBE_HI_REG_AE, addr: ioaddr + SXGBE_ADDR_HIGH(reg_n));
1832 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1833 writel(val: data, addr: ioaddr + SXGBE_ADDR_LOW(reg_n));
1834}
1835
1836/**
1837 * sxgbe_set_rx_mode - entry point for setting different receive mode of
1838 * a device. unicast, multicast addressing
1839 * @dev : pointer to the device structure
1840 * Description:
1841 * This function is a driver entry point which gets called by the kernel
1842 * whenever different receive mode like unicast, multicast and promiscuous
1843 * must be enabled/disabled.
1844 * Return value:
1845 * void.
1846 */
1847static void sxgbe_set_rx_mode(struct net_device *dev)
1848{
1849 struct sxgbe_priv_data *priv = netdev_priv(dev);
1850 void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1851 unsigned int value = 0;
1852 u32 mc_filter[2];
1853 struct netdev_hw_addr *ha;
1854 int reg = 1;
1855
1856 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1857 __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1858
1859 if (dev->flags & IFF_PROMISC) {
1860 value = SXGBE_FRAME_FILTER_PR;
1861
1862 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1863 (dev->flags & IFF_ALLMULTI)) {
1864 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */
1865 writel(val: 0xffffffff, addr: ioaddr + SXGBE_HASH_HIGH);
1866 writel(val: 0xffffffff, addr: ioaddr + SXGBE_HASH_LOW);
1867
1868 } else if (!netdev_mc_empty(dev)) {
1869 /* Hash filter for multicast */
1870 value = SXGBE_FRAME_FILTER_HMC;
1871
1872 memset(mc_filter, 0, sizeof(mc_filter));
1873 netdev_for_each_mc_addr(ha, dev) {
1874 /* The upper 6 bits of the calculated CRC are used to
1875 * index the contens of the hash table
1876 */
1877 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1878
1879 /* The most significant bit determines the register to
1880 * use (H/L) while the other 5 bits determine the bit
1881 * within the register.
1882 */
1883 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1884 }
1885 writel(val: mc_filter[0], addr: ioaddr + SXGBE_HASH_LOW);
1886 writel(val: mc_filter[1], addr: ioaddr + SXGBE_HASH_HIGH);
1887 }
1888
1889 /* Handle multiple unicast addresses (perfect filtering) */
1890 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1891 /* Switch to promiscuous mode if more than 16 addrs
1892 * are required
1893 */
1894 value |= SXGBE_FRAME_FILTER_PR;
1895 else {
1896 netdev_for_each_uc_addr(ha, dev) {
1897 sxgbe_set_umac_addr(ioaddr, addr: ha->addr, reg_n: reg);
1898 reg++;
1899 }
1900 }
1901#ifdef FRAME_FILTER_DEBUG
1902 /* Enable Receive all mode (to debug filtering_fail errors) */
1903 value |= SXGBE_FRAME_FILTER_RA;
1904#endif
1905 writel(val: value, addr: ioaddr + SXGBE_FRAME_FILTER);
1906
1907 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1908 readl(ioaddr + SXGBE_FRAME_FILTER),
1909 readl(ioaddr + SXGBE_HASH_HIGH),
1910 readl(ioaddr + SXGBE_HASH_LOW));
1911}
1912
1913#ifdef CONFIG_NET_POLL_CONTROLLER
1914/**
1915 * sxgbe_poll_controller - entry point for polling receive by device
1916 * @dev : pointer to the device structure
1917 * Description:
1918 * This function is used by NETCONSOLE and other diagnostic tools
1919 * to allow network I/O with interrupts disabled.
1920 * Return value:
1921 * Void.
1922 */
1923static void sxgbe_poll_controller(struct net_device *dev)
1924{
1925 struct sxgbe_priv_data *priv = netdev_priv(dev);
1926
1927 disable_irq(irq: priv->irq);
1928 sxgbe_rx_interrupt(irq: priv->irq, dev_id: dev);
1929 enable_irq(irq: priv->irq);
1930}
1931#endif
1932
1933/* sxgbe_ioctl - Entry point for the Ioctl
1934 * @dev: Device pointer.
1935 * @rq: An IOCTL specefic structure, that can contain a pointer to
1936 * a proprietary structure used to pass information to the driver.
1937 * @cmd: IOCTL command
1938 * Description:
1939 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1940 */
1941static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1942{
1943 int ret = -EOPNOTSUPP;
1944
1945 if (!netif_running(dev))
1946 return -EINVAL;
1947
1948 switch (cmd) {
1949 case SIOCGMIIPHY:
1950 case SIOCGMIIREG:
1951 case SIOCSMIIREG:
1952 ret = phy_do_ioctl(dev, ifr: rq, cmd);
1953 break;
1954 default:
1955 break;
1956 }
1957
1958 return ret;
1959}
1960
1961static const struct net_device_ops sxgbe_netdev_ops = {
1962 .ndo_open = sxgbe_open,
1963 .ndo_start_xmit = sxgbe_xmit,
1964 .ndo_stop = sxgbe_release,
1965 .ndo_get_stats64 = sxgbe_get_stats64,
1966 .ndo_change_mtu = sxgbe_change_mtu,
1967 .ndo_set_features = sxgbe_set_features,
1968 .ndo_set_rx_mode = sxgbe_set_rx_mode,
1969 .ndo_tx_timeout = sxgbe_tx_timeout,
1970 .ndo_eth_ioctl = sxgbe_ioctl,
1971#ifdef CONFIG_NET_POLL_CONTROLLER
1972 .ndo_poll_controller = sxgbe_poll_controller,
1973#endif
1974 .ndo_set_mac_address = eth_mac_addr,
1975};
1976
1977/* Get the hardware ops */
1978static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1979{
1980 ops_ptr->mac = sxgbe_get_core_ops();
1981 ops_ptr->desc = sxgbe_get_desc_ops();
1982 ops_ptr->dma = sxgbe_get_dma_ops();
1983 ops_ptr->mtl = sxgbe_get_mtl_ops();
1984
1985 /* set the MDIO communication Address/Data regisers */
1986 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG;
1987 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG;
1988
1989 /* Assigning the default link settings
1990 * no SXGBE defined default values to be set in registers,
1991 * so assigning as 0 for port and duplex
1992 */
1993 ops_ptr->link.port = 0;
1994 ops_ptr->link.duplex = 0;
1995 ops_ptr->link.speed = SXGBE_SPEED_10G;
1996}
1997
1998/**
1999 * sxgbe_hw_init - Init the GMAC device
2000 * @priv: driver private structure
2001 * Description: this function checks the HW capability
2002 * (if supported) and sets the driver's features.
2003 */
2004static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
2005{
2006 u32 ctrl_ids;
2007
2008 priv->hw = kmalloc(size: sizeof(*priv->hw), GFP_KERNEL);
2009 if(!priv->hw)
2010 return -ENOMEM;
2011
2012 /* get the hardware ops */
2013 sxgbe_get_ops(ops_ptr: priv->hw);
2014
2015 /* get the controller id */
2016 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2017 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2018 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2019 pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2020 priv->hw->ctrl_uid, priv->hw->ctrl_id);
2021
2022 /* get the H/W features */
2023 if (!sxgbe_get_hw_features(priv))
2024 pr_info("Hardware features not found\n");
2025
2026 if (priv->hw_cap.tx_csum_offload)
2027 pr_info("TX Checksum offload supported\n");
2028
2029 if (priv->hw_cap.rx_csum_offload)
2030 pr_info("RX Checksum offload supported\n");
2031
2032 return 0;
2033}
2034
2035static int sxgbe_sw_reset(void __iomem *addr)
2036{
2037 int retry_count = 10;
2038
2039 writel(SXGBE_DMA_SOFT_RESET, addr: addr + SXGBE_DMA_MODE_REG);
2040 while (retry_count--) {
2041 if (!(readl(addr: addr + SXGBE_DMA_MODE_REG) &
2042 SXGBE_DMA_SOFT_RESET))
2043 break;
2044 mdelay(10);
2045 }
2046
2047 if (retry_count < 0)
2048 return -EBUSY;
2049
2050 return 0;
2051}
2052
2053/**
2054 * sxgbe_drv_probe
2055 * @device: device pointer
2056 * @plat_dat: platform data pointer
2057 * @addr: iobase memory address
2058 * Description: this is the main probe function used to
2059 * call the alloc_etherdev, allocate the priv structure.
2060 */
2061struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2062 struct sxgbe_plat_data *plat_dat,
2063 void __iomem *addr)
2064{
2065 struct sxgbe_priv_data *priv;
2066 struct net_device *ndev;
2067 int ret;
2068 u8 queue_num;
2069
2070 ndev = alloc_etherdev_mqs(sizeof_priv: sizeof(struct sxgbe_priv_data),
2071 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2072 if (!ndev)
2073 return NULL;
2074
2075 SET_NETDEV_DEV(ndev, device);
2076
2077 priv = netdev_priv(dev: ndev);
2078 priv->device = device;
2079 priv->dev = ndev;
2080
2081 sxgbe_set_ethtool_ops(netdev: ndev);
2082 priv->plat = plat_dat;
2083 priv->ioaddr = addr;
2084
2085 ret = sxgbe_sw_reset(addr: priv->ioaddr);
2086 if (ret)
2087 goto error_free_netdev;
2088
2089 /* Verify driver arguments */
2090 sxgbe_verify_args();
2091
2092 /* Init MAC and get the capabilities */
2093 ret = sxgbe_hw_init(priv);
2094 if (ret)
2095 goto error_free_netdev;
2096
2097 /* allocate memory resources for Descriptor rings */
2098 ret = txring_mem_alloc(priv);
2099 if (ret)
2100 goto error_free_hw;
2101
2102 ret = rxring_mem_alloc(priv);
2103 if (ret)
2104 goto error_free_hw;
2105
2106 ndev->netdev_ops = &sxgbe_netdev_ops;
2107
2108 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2109 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2110 NETIF_F_GRO;
2111 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2112 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2113
2114 /* assign filtering support */
2115 ndev->priv_flags |= IFF_UNICAST_FLT;
2116
2117 /* MTU range: 68 - 9000 */
2118 ndev->min_mtu = MIN_MTU;
2119 ndev->max_mtu = MAX_MTU;
2120
2121 priv->msg_enable = netif_msg_init(debug_value: debug, default_msg_enable_bits: default_msg_level);
2122
2123 /* Enable TCP segmentation offload for all DMA channels */
2124 if (priv->hw_cap.tcpseg_offload) {
2125 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2126 priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2127 }
2128 }
2129
2130 /* Enable Rx checksum offload */
2131 if (priv->hw_cap.rx_csum_offload) {
2132 priv->hw->mac->enable_rx_csum(priv->ioaddr);
2133 priv->rxcsum_insertion = true;
2134 }
2135
2136 /* Initialise pause frame settings */
2137 priv->rx_pause = 1;
2138 priv->tx_pause = 1;
2139
2140 /* Rx Watchdog is available, enable depend on platform data */
2141 if (!priv->plat->riwt_off) {
2142 priv->use_riwt = 1;
2143 pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2144 }
2145
2146 netif_napi_add(dev: ndev, napi: &priv->napi, poll: sxgbe_poll);
2147
2148 spin_lock_init(&priv->stats_lock);
2149
2150 priv->sxgbe_clk = clk_get(dev: priv->device, SXGBE_RESOURCE_NAME);
2151 if (IS_ERR(ptr: priv->sxgbe_clk)) {
2152 netdev_warn(dev: ndev, format: "%s: warning: cannot get CSR clock\n",
2153 __func__);
2154 goto error_napi_del;
2155 }
2156
2157 /* If a specific clk_csr value is passed from the platform
2158 * this means that the CSR Clock Range selection cannot be
2159 * changed at run-time and it is fixed. Viceversa the driver'll try to
2160 * set the MDC clock dynamically according to the csr actual
2161 * clock input.
2162 */
2163 if (!priv->plat->clk_csr)
2164 sxgbe_clk_csr_set(priv);
2165 else
2166 priv->clk_csr = priv->plat->clk_csr;
2167
2168 /* MDIO bus Registration */
2169 ret = sxgbe_mdio_register(ndev);
2170 if (ret < 0) {
2171 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2172 __func__, priv->plat->bus_id);
2173 goto error_clk_put;
2174 }
2175
2176 ret = register_netdev(dev: ndev);
2177 if (ret) {
2178 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2179 goto error_mdio_unregister;
2180 }
2181
2182 sxgbe_check_ether_addr(priv);
2183
2184 return priv;
2185
2186error_mdio_unregister:
2187 sxgbe_mdio_unregister(ndev);
2188error_clk_put:
2189 clk_put(clk: priv->sxgbe_clk);
2190error_napi_del:
2191 netif_napi_del(napi: &priv->napi);
2192error_free_hw:
2193 kfree(objp: priv->hw);
2194error_free_netdev:
2195 free_netdev(dev: ndev);
2196
2197 return NULL;
2198}
2199
2200/**
2201 * sxgbe_drv_remove
2202 * @ndev: net device pointer
2203 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2204 * changes the link status, releases the DMA descriptor rings.
2205 */
2206void sxgbe_drv_remove(struct net_device *ndev)
2207{
2208 struct sxgbe_priv_data *priv = netdev_priv(dev: ndev);
2209 u8 queue_num;
2210
2211 netdev_info(dev: ndev, format: "%s: removing driver\n", __func__);
2212
2213 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2214 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2215 }
2216
2217 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2218 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2219
2220 priv->hw->mac->enable_tx(priv->ioaddr, false);
2221 priv->hw->mac->enable_rx(priv->ioaddr, false);
2222
2223 unregister_netdev(dev: ndev);
2224
2225 sxgbe_mdio_unregister(ndev);
2226
2227 clk_put(clk: priv->sxgbe_clk);
2228
2229 netif_napi_del(napi: &priv->napi);
2230
2231 kfree(objp: priv->hw);
2232
2233 free_netdev(dev: ndev);
2234}
2235
2236#ifdef CONFIG_PM
2237int sxgbe_suspend(struct net_device *ndev)
2238{
2239 return 0;
2240}
2241
2242int sxgbe_resume(struct net_device *ndev)
2243{
2244 return 0;
2245}
2246
2247int sxgbe_freeze(struct net_device *ndev)
2248{
2249 return -ENOSYS;
2250}
2251
2252int sxgbe_restore(struct net_device *ndev)
2253{
2254 return -ENOSYS;
2255}
2256#endif /* CONFIG_PM */
2257
2258/* Driver is configured as Platform driver */
2259static int __init sxgbe_init(void)
2260{
2261 int ret;
2262
2263 ret = sxgbe_register_platform();
2264 if (ret)
2265 goto err;
2266 return 0;
2267err:
2268 pr_err("driver registration failed\n");
2269 return ret;
2270}
2271
2272static void __exit sxgbe_exit(void)
2273{
2274 sxgbe_unregister_platform();
2275}
2276
2277module_init(sxgbe_init);
2278module_exit(sxgbe_exit);
2279
2280#ifndef MODULE
2281static int __init sxgbe_cmdline_opt(char *str)
2282{
2283 char *opt;
2284
2285 if (!str || !*str)
2286 return 1;
2287 while ((opt = strsep(&str, ",")) != NULL) {
2288 if (!strncmp(opt, "eee_timer:", 10)) {
2289 if (kstrtoint(s: opt + 10, base: 0, res: &eee_timer))
2290 goto err;
2291 }
2292 }
2293 return 1;
2294
2295err:
2296 pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2297 return 1;
2298}
2299
2300__setup("sxgbeeth=", sxgbe_cmdline_opt);
2301#endif /* MODULE */
2302
2303
2304
2305MODULE_DESCRIPTION("Samsung 10G/2.5G/1G Ethernet PLATFORM driver");
2306
2307MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2308MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2309
2310MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2311MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2312MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2313MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2314
2315MODULE_LICENSE("GPL");
2316

source code of linux/drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c