1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This code is derived from the VIA reference driver (copyright message
4 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
5 * addition to the Linux kernel.
6 *
7 * The code has been merged into one source file, cleaned up to follow
8 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
9 * for 64bit hardware platforms.
10 *
11 * TODO
12 * rx_copybreak/alignment
13 * More testing
14 *
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
17 *
18 * This source has not been verified for use in safety critical systems.
19 *
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
22 *
23 * Original code:
24 *
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
27 *
28 * Author: Chuang Liang-Shing, AJ Jiang
29 *
30 * Date: Jan 24, 2003
31 *
32 * MODULE_LICENSE("GPL");
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/bitops.h>
40#include <linux/init.h>
41#include <linux/dma-mapping.h>
42#include <linux/mm.h>
43#include <linux/errno.h>
44#include <linux/ioport.h>
45#include <linux/pci.h>
46#include <linux/kernel.h>
47#include <linux/netdevice.h>
48#include <linux/etherdevice.h>
49#include <linux/skbuff.h>
50#include <linux/delay.h>
51#include <linux/timer.h>
52#include <linux/slab.h>
53#include <linux/interrupt.h>
54#include <linux/string.h>
55#include <linux/wait.h>
56#include <linux/io.h>
57#include <linux/if.h>
58#include <linux/uaccess.h>
59#include <linux/proc_fs.h>
60#include <linux/of.h>
61#include <linux/of_address.h>
62#include <linux/of_irq.h>
63#include <linux/inetdevice.h>
64#include <linux/platform_device.h>
65#include <linux/reboot.h>
66#include <linux/ethtool.h>
67#include <linux/mii.h>
68#include <linux/in.h>
69#include <linux/if_arp.h>
70#include <linux/if_vlan.h>
71#include <linux/ip.h>
72#include <linux/tcp.h>
73#include <linux/udp.h>
74#include <linux/crc-ccitt.h>
75#include <linux/crc32.h>
76
77#include "via-velocity.h"
78
79enum velocity_bus_type {
80 BUS_PCI,
81 BUS_PLATFORM,
82};
83
84static int velocity_nics;
85
86static void velocity_set_power_state(struct velocity_info *vptr, char state)
87{
88 void *addr = vptr->mac_regs;
89
90 if (vptr->pdev)
91 pci_set_power_state(dev: vptr->pdev, state);
92 else
93 writeb(val: state, addr: addr + 0x154);
94}
95
96/**
97 * mac_get_cam_mask - Read a CAM mask
98 * @regs: register block for this velocity
99 * @mask: buffer to store mask
100 *
101 * Fetch the mask bits of the selected CAM and store them into the
102 * provided mask buffer.
103 */
104static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
105{
106 int i;
107
108 /* Select CAM mask */
109 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
110
111 writeb(val: 0, addr: &regs->CAMADDR);
112
113 /* read mask */
114 for (i = 0; i < 8; i++)
115 *mask++ = readb(addr: &(regs->MARCAM[i]));
116
117 /* disable CAMEN */
118 writeb(val: 0, addr: &regs->CAMADDR);
119
120 /* Select mar */
121 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
122}
123
124/**
125 * mac_set_cam_mask - Set a CAM mask
126 * @regs: register block for this velocity
127 * @mask: CAM mask to load
128 *
129 * Store a new mask into a CAM
130 */
131static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
132{
133 int i;
134 /* Select CAM mask */
135 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
136
137 writeb(CAMADDR_CAMEN, addr: &regs->CAMADDR);
138
139 for (i = 0; i < 8; i++)
140 writeb(val: *mask++, addr: &(regs->MARCAM[i]));
141
142 /* disable CAMEN */
143 writeb(val: 0, addr: &regs->CAMADDR);
144
145 /* Select mar */
146 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
147}
148
149static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
150{
151 int i;
152 /* Select CAM mask */
153 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
154
155 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, addr: &regs->CAMADDR);
156
157 for (i = 0; i < 8; i++)
158 writeb(val: *mask++, addr: &(regs->MARCAM[i]));
159
160 /* disable CAMEN */
161 writeb(val: 0, addr: &regs->CAMADDR);
162
163 /* Select mar */
164 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
165}
166
167/**
168 * mac_set_cam - set CAM data
169 * @regs: register block of this velocity
170 * @idx: Cam index
171 * @addr: 2 or 6 bytes of CAM data
172 *
173 * Load an address or vlan tag into a CAM
174 */
175static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
176{
177 int i;
178
179 /* Select CAM mask */
180 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
181
182 idx &= (64 - 1);
183
184 writeb(CAMADDR_CAMEN | idx, addr: &regs->CAMADDR);
185
186 for (i = 0; i < 6; i++)
187 writeb(val: *addr++, addr: &(regs->MARCAM[i]));
188
189 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
190
191 udelay(10);
192
193 writeb(val: 0, addr: &regs->CAMADDR);
194
195 /* Select mar */
196 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197}
198
199static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
200 const u8 *addr)
201{
202
203 /* Select CAM mask */
204 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
205
206 idx &= (64 - 1);
207
208 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, addr: &regs->CAMADDR);
209 writew(val: *((u16 *) addr), addr: &regs->MARCAM[0]);
210
211 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
212
213 udelay(10);
214
215 writeb(val: 0, addr: &regs->CAMADDR);
216
217 /* Select mar */
218 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219}
220
221
222/**
223 * mac_wol_reset - reset WOL after exiting low power
224 * @regs: register block of this velocity
225 *
226 * Called after we drop out of wake on lan mode in order to
227 * reset the Wake on lan features. This function doesn't restore
228 * the rest of the logic from the result of sleep/wakeup
229 */
230static void mac_wol_reset(struct mac_regs __iomem *regs)
231{
232
233 /* Turn off SWPTAG right after leaving power mode */
234 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
235 /* clear sticky bits */
236 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
237
238 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
239 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
240 /* disable force PME-enable */
241 writeb(WOLCFG_PMEOVR, addr: &regs->WOLCFGClr);
242 /* disable power-event config bit */
243 writew(val: 0xFFFF, addr: &regs->WOLCRClr);
244 /* clear power status */
245 writew(val: 0xFFFF, addr: &regs->WOLSRClr);
246}
247
248static const struct ethtool_ops velocity_ethtool_ops;
249
250/*
251 Define module options
252*/
253
254MODULE_AUTHOR("VIA Networking Technologies, Inc.");
255MODULE_LICENSE("GPL");
256MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
257
258#define VELOCITY_PARAM(N, D) \
259 static int N[MAX_UNITS] = OPTION_DEFAULT;\
260 module_param_array(N, int, NULL, 0); \
261 MODULE_PARM_DESC(N, D);
262
263#define RX_DESC_MIN 64
264#define RX_DESC_MAX 255
265#define RX_DESC_DEF 64
266VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
267
268#define TX_DESC_MIN 16
269#define TX_DESC_MAX 256
270#define TX_DESC_DEF 64
271VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
272
273#define RX_THRESH_MIN 0
274#define RX_THRESH_MAX 3
275#define RX_THRESH_DEF 0
276/* rx_thresh[] is used for controlling the receive fifo threshold.
277 0: indicate the rxfifo threshold is 128 bytes.
278 1: indicate the rxfifo threshold is 512 bytes.
279 2: indicate the rxfifo threshold is 1024 bytes.
280 3: indicate the rxfifo threshold is store & forward.
281*/
282VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
283
284#define DMA_LENGTH_MIN 0
285#define DMA_LENGTH_MAX 7
286#define DMA_LENGTH_DEF 6
287
288/* DMA_length[] is used for controlling the DMA length
289 0: 8 DWORDs
290 1: 16 DWORDs
291 2: 32 DWORDs
292 3: 64 DWORDs
293 4: 128 DWORDs
294 5: 256 DWORDs
295 6: SF(flush till emply)
296 7: SF(flush till emply)
297*/
298VELOCITY_PARAM(DMA_length, "DMA length");
299
300#define IP_ALIG_DEF 0
301/* IP_byte_align[] is used for IP header DWORD byte aligned
302 0: indicate the IP header won't be DWORD byte aligned.(Default) .
303 1: indicate the IP header will be DWORD byte aligned.
304 In some environment, the IP header should be DWORD byte aligned,
305 or the packet will be droped when we receive it. (eg: IPVS)
306*/
307VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
308
309#define FLOW_CNTL_DEF 1
310#define FLOW_CNTL_MIN 1
311#define FLOW_CNTL_MAX 5
312
313/* flow_control[] is used for setting the flow control ability of NIC.
314 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
315 2: enable TX flow control.
316 3: enable RX flow control.
317 4: enable RX/TX flow control.
318 5: disable
319*/
320VELOCITY_PARAM(flow_control, "Enable flow control ability");
321
322#define MED_LNK_DEF 0
323#define MED_LNK_MIN 0
324#define MED_LNK_MAX 5
325/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
326 0: indicate autonegotiation for both speed and duplex mode
327 1: indicate 100Mbps half duplex mode
328 2: indicate 100Mbps full duplex mode
329 3: indicate 10Mbps half duplex mode
330 4: indicate 10Mbps full duplex mode
331 5: indicate 1000Mbps full duplex mode
332
333 Note:
334 if EEPROM have been set to the force mode, this option is ignored
335 by driver.
336*/
337VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
338
339#define WOL_OPT_DEF 0
340#define WOL_OPT_MIN 0
341#define WOL_OPT_MAX 7
342/* wol_opts[] is used for controlling wake on lan behavior.
343 0: Wake up if recevied a magic packet. (Default)
344 1: Wake up if link status is on/off.
345 2: Wake up if recevied an arp packet.
346 4: Wake up if recevied any unicast packet.
347 Those value can be sumed up to support more than one option.
348*/
349VELOCITY_PARAM(wol_opts, "Wake On Lan options");
350
351static int rx_copybreak = 200;
352module_param(rx_copybreak, int, 0644);
353MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
354
355/*
356 * Internal board variants. At the moment we have only one
357 */
358static struct velocity_info_tbl chip_info_table[] = {
359 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
360 { }
361};
362
363/*
364 * Describe the PCI device identifiers that we support in this
365 * device driver. Used for hotplug autoloading.
366 */
367
368static const struct pci_device_id velocity_pci_id_table[] = {
369 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
370 { }
371};
372
373MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
374
375/*
376 * Describe the OF device identifiers that we support in this
377 * device driver. Used for devicetree nodes.
378 */
379static const struct of_device_id velocity_of_ids[] = {
380 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
381 { /* Sentinel */ },
382};
383MODULE_DEVICE_TABLE(of, velocity_of_ids);
384
385/**
386 * get_chip_name - identifier to name
387 * @chip_id: chip identifier
388 *
389 * Given a chip identifier return a suitable description. Returns
390 * a pointer a static string valid while the driver is loaded.
391 */
392static const char *get_chip_name(enum chip_type chip_id)
393{
394 int i;
395 for (i = 0; chip_info_table[i].name != NULL; i++)
396 if (chip_info_table[i].chip_id == chip_id)
397 break;
398 return chip_info_table[i].name;
399}
400
401/**
402 * velocity_set_int_opt - parser for integer options
403 * @opt: pointer to option value
404 * @val: value the user requested (or -1 for default)
405 * @min: lowest value allowed
406 * @max: highest value allowed
407 * @def: default value
408 * @name: property name
409 *
410 * Set an integer property in the module options. This function does
411 * all the verification and checking as well as reporting so that
412 * we don't duplicate code for each option.
413 */
414static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
415 char *name)
416{
417 if (val == -1)
418 *opt = def;
419 else if (val < min || val > max) {
420 pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
421 name, min, max);
422 *opt = def;
423 } else {
424 pr_info("set value of parameter %s to %d\n", name, val);
425 *opt = val;
426 }
427}
428
429/**
430 * velocity_set_bool_opt - parser for boolean options
431 * @opt: pointer to option value
432 * @val: value the user requested (or -1 for default)
433 * @def: default value (yes/no)
434 * @flag: numeric value to set for true.
435 * @name: property name
436 *
437 * Set a boolean property in the module options. This function does
438 * all the verification and checking as well as reporting so that
439 * we don't duplicate code for each option.
440 */
441static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
442 char *name)
443{
444 (*opt) &= (~flag);
445 if (val == -1)
446 *opt |= (def ? flag : 0);
447 else if (val < 0 || val > 1) {
448 pr_notice("the value of parameter %s is invalid, the valid range is (%d-%d)\n",
449 name, 0, 1);
450 *opt |= (def ? flag : 0);
451 } else {
452 pr_info("set parameter %s to %s\n",
453 name, val ? "TRUE" : "FALSE");
454 *opt |= (val ? flag : 0);
455 }
456}
457
458/**
459 * velocity_get_options - set options on device
460 * @opts: option structure for the device
461 * @index: index of option to use in module options array
462 *
463 * Turn the module and command options into a single structure
464 * for the current device
465 */
466static void velocity_get_options(struct velocity_opt *opts, int index)
467{
468
469 velocity_set_int_opt(opt: &opts->rx_thresh, val: rx_thresh[index],
470 RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF,
471 name: "rx_thresh");
472 velocity_set_int_opt(opt: &opts->DMA_length, val: DMA_length[index],
473 DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF,
474 name: "DMA_length");
475 velocity_set_int_opt(opt: &opts->numrx, val: RxDescriptors[index],
476 RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF,
477 name: "RxDescriptors");
478 velocity_set_int_opt(opt: &opts->numtx, val: TxDescriptors[index],
479 TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF,
480 name: "TxDescriptors");
481
482 velocity_set_int_opt(opt: &opts->flow_cntl, val: flow_control[index],
483 FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF,
484 name: "flow_control");
485 velocity_set_bool_opt(opt: &opts->flags, val: IP_byte_align[index],
486 IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN,
487 name: "IP_byte_align");
488 velocity_set_int_opt(opt: (int *) &opts->spd_dpx, val: speed_duplex[index],
489 MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF,
490 name: "Media link mode");
491 velocity_set_int_opt(opt: &opts->wol_opts, val: wol_opts[index],
492 WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF,
493 name: "Wake On Lan options");
494 opts->numrx = (opts->numrx & ~3);
495}
496
497/**
498 * velocity_init_cam_filter - initialise CAM
499 * @vptr: velocity to program
500 *
501 * Initialize the content addressable memory used for filters. Load
502 * appropriately according to the presence of VLAN
503 */
504static void velocity_init_cam_filter(struct velocity_info *vptr)
505{
506 struct mac_regs __iomem *regs = vptr->mac_regs;
507 unsigned int vid, i = 0;
508
509 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
510 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
511 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
512
513 /* Disable all CAMs */
514 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
515 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
516 mac_set_vlan_cam_mask(regs, mask: vptr->vCAMmask);
517 mac_set_cam_mask(regs, mask: vptr->mCAMmask);
518
519 /* Enable VCAMs */
520 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
521 mac_set_vlan_cam(regs, idx: i, addr: (u8 *) &vid);
522 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
523 if (++i >= VCAM_SIZE)
524 break;
525 }
526 mac_set_vlan_cam_mask(regs, mask: vptr->vCAMmask);
527}
528
529static int velocity_vlan_rx_add_vid(struct net_device *dev,
530 __be16 proto, u16 vid)
531{
532 struct velocity_info *vptr = netdev_priv(dev);
533
534 spin_lock_irq(lock: &vptr->lock);
535 set_bit(nr: vid, addr: vptr->active_vlans);
536 velocity_init_cam_filter(vptr);
537 spin_unlock_irq(lock: &vptr->lock);
538 return 0;
539}
540
541static int velocity_vlan_rx_kill_vid(struct net_device *dev,
542 __be16 proto, u16 vid)
543{
544 struct velocity_info *vptr = netdev_priv(dev);
545
546 spin_lock_irq(lock: &vptr->lock);
547 clear_bit(nr: vid, addr: vptr->active_vlans);
548 velocity_init_cam_filter(vptr);
549 spin_unlock_irq(lock: &vptr->lock);
550 return 0;
551}
552
553static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
554{
555 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
556}
557
558/**
559 * velocity_rx_reset - handle a receive reset
560 * @vptr: velocity we are resetting
561 *
562 * Reset the ownership and status for the receive ring side.
563 * Hand all the receive queue to the NIC.
564 */
565static void velocity_rx_reset(struct velocity_info *vptr)
566{
567
568 struct mac_regs __iomem *regs = vptr->mac_regs;
569 int i;
570
571 velocity_init_rx_ring_indexes(vptr);
572
573 /*
574 * Init state, all RD entries belong to the NIC
575 */
576 for (i = 0; i < vptr->options.numrx; ++i)
577 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
578
579 writew(val: vptr->options.numrx, addr: &regs->RBRDU);
580 writel(val: vptr->rx.pool_dma, addr: &regs->RDBaseLo);
581 writew(val: 0, addr: &regs->RDIdx);
582 writew(val: vptr->options.numrx - 1, addr: &regs->RDCSize);
583}
584
585/**
586 * velocity_get_opt_media_mode - get media selection
587 * @vptr: velocity adapter
588 *
589 * Get the media mode stored in EEPROM or module options and load
590 * mii_status accordingly. The requested link state information
591 * is also returned.
592 */
593static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
594{
595 u32 status = 0;
596
597 switch (vptr->options.spd_dpx) {
598 case SPD_DPX_AUTO:
599 status = VELOCITY_AUTONEG_ENABLE;
600 break;
601 case SPD_DPX_100_FULL:
602 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
603 break;
604 case SPD_DPX_10_FULL:
605 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
606 break;
607 case SPD_DPX_100_HALF:
608 status = VELOCITY_SPEED_100;
609 break;
610 case SPD_DPX_10_HALF:
611 status = VELOCITY_SPEED_10;
612 break;
613 case SPD_DPX_1000_FULL:
614 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
615 break;
616 }
617 vptr->mii_status = status;
618 return status;
619}
620
621/**
622 * safe_disable_mii_autopoll - autopoll off
623 * @regs: velocity registers
624 *
625 * Turn off the autopoll and wait for it to disable on the chip
626 */
627static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
628{
629 u16 ww;
630
631 /* turn off MAUTO */
632 writeb(val: 0, addr: &regs->MIICR);
633 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
634 udelay(1);
635 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
636 break;
637 }
638}
639
640/**
641 * enable_mii_autopoll - turn on autopolling
642 * @regs: velocity registers
643 *
644 * Enable the MII link status autopoll feature on the Velocity
645 * hardware. Wait for it to enable.
646 */
647static void enable_mii_autopoll(struct mac_regs __iomem *regs)
648{
649 int ii;
650
651 writeb(val: 0, addr: &(regs->MIICR));
652 writeb(MIIADR_SWMPL, addr: &regs->MIIADR);
653
654 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
655 udelay(1);
656 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
657 break;
658 }
659
660 writeb(MIICR_MAUTO, addr: &regs->MIICR);
661
662 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
663 udelay(1);
664 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
665 break;
666 }
667
668}
669
670/**
671 * velocity_mii_read - read MII data
672 * @regs: velocity registers
673 * @index: MII register index
674 * @data: buffer for received data
675 *
676 * Perform a single read of an MII 16bit register. Returns zero
677 * on success or -ETIMEDOUT if the PHY did not respond.
678 */
679static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
680{
681 u16 ww;
682
683 /*
684 * Disable MIICR_MAUTO, so that mii addr can be set normally
685 */
686 safe_disable_mii_autopoll(regs);
687
688 writeb(val: index, addr: &regs->MIIADR);
689
690 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
691
692 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
693 if (!(readb(addr: &regs->MIICR) & MIICR_RCMD))
694 break;
695 }
696
697 *data = readw(addr: &regs->MIIDATA);
698
699 enable_mii_autopoll(regs);
700 if (ww == W_MAX_TIMEOUT)
701 return -ETIMEDOUT;
702 return 0;
703}
704
705/**
706 * mii_check_media_mode - check media state
707 * @regs: velocity registers
708 *
709 * Check the current MII status and determine the link status
710 * accordingly
711 */
712static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
713{
714 u32 status = 0;
715 u16 ANAR;
716
717 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
718 status |= VELOCITY_LINK_FAIL;
719
720 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
721 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
722 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
723 status |= (VELOCITY_SPEED_1000);
724 else {
725 velocity_mii_read(regs, MII_ADVERTISE, data: &ANAR);
726 if (ANAR & ADVERTISE_100FULL)
727 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
728 else if (ANAR & ADVERTISE_100HALF)
729 status |= VELOCITY_SPEED_100;
730 else if (ANAR & ADVERTISE_10FULL)
731 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
732 else
733 status |= (VELOCITY_SPEED_10);
734 }
735
736 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
737 velocity_mii_read(regs, MII_ADVERTISE, data: &ANAR);
738 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
739 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
740 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
741 status |= VELOCITY_AUTONEG_ENABLE;
742 }
743 }
744
745 return status;
746}
747
748/**
749 * velocity_mii_write - write MII data
750 * @regs: velocity registers
751 * @mii_addr: MII register index
752 * @data: 16bit data for the MII register
753 *
754 * Perform a single write to an MII 16bit register. Returns zero
755 * on success or -ETIMEDOUT if the PHY did not respond.
756 */
757static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
758{
759 u16 ww;
760
761 /*
762 * Disable MIICR_MAUTO, so that mii addr can be set normally
763 */
764 safe_disable_mii_autopoll(regs);
765
766 /* MII reg offset */
767 writeb(val: mii_addr, addr: &regs->MIIADR);
768 /* set MII data */
769 writew(val: data, addr: &regs->MIIDATA);
770
771 /* turn on MIICR_WCMD */
772 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
773
774 /* W_MAX_TIMEOUT is the timeout period */
775 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
776 udelay(5);
777 if (!(readb(addr: &regs->MIICR) & MIICR_WCMD))
778 break;
779 }
780 enable_mii_autopoll(regs);
781
782 if (ww == W_MAX_TIMEOUT)
783 return -ETIMEDOUT;
784 return 0;
785}
786
787/**
788 * set_mii_flow_control - flow control setup
789 * @vptr: velocity interface
790 *
791 * Set up the flow control on this interface according to
792 * the supplied user/eeprom options.
793 */
794static void set_mii_flow_control(struct velocity_info *vptr)
795{
796 /*Enable or Disable PAUSE in ANAR */
797 switch (vptr->options.flow_cntl) {
798 case FLOW_CNTL_TX:
799 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
800 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
801 break;
802
803 case FLOW_CNTL_RX:
804 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
805 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
806 break;
807
808 case FLOW_CNTL_TX_RX:
809 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
810 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
811 break;
812
813 case FLOW_CNTL_DISABLE:
814 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
815 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
816 break;
817 default:
818 break;
819 }
820}
821
822/**
823 * mii_set_auto_on - autonegotiate on
824 * @vptr: velocity
825 *
826 * Enable autonegotation on this interface
827 */
828static void mii_set_auto_on(struct velocity_info *vptr)
829{
830 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
831 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
832 else
833 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
834}
835
836static u32 check_connection_type(struct mac_regs __iomem *regs)
837{
838 u32 status = 0;
839 u8 PHYSR0;
840 u16 ANAR;
841 PHYSR0 = readb(addr: &regs->PHYSR0);
842
843 /*
844 if (!(PHYSR0 & PHYSR0_LINKGD))
845 status|=VELOCITY_LINK_FAIL;
846 */
847
848 if (PHYSR0 & PHYSR0_FDPX)
849 status |= VELOCITY_DUPLEX_FULL;
850
851 if (PHYSR0 & PHYSR0_SPDG)
852 status |= VELOCITY_SPEED_1000;
853 else if (PHYSR0 & PHYSR0_SPD10)
854 status |= VELOCITY_SPEED_10;
855 else
856 status |= VELOCITY_SPEED_100;
857
858 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
859 velocity_mii_read(regs, MII_ADVERTISE, data: &ANAR);
860 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
861 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
862 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
863 status |= VELOCITY_AUTONEG_ENABLE;
864 }
865 }
866
867 return status;
868}
869
870/**
871 * velocity_set_media_mode - set media mode
872 * @vptr: velocity adapter
873 * @mii_status: old MII link state
874 *
875 * Check the media link state and configure the flow control
876 * PHY and also velocity hardware setup accordingly. In particular
877 * we need to set up CD polling and frame bursting.
878 */
879static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
880{
881 struct mac_regs __iomem *regs = vptr->mac_regs;
882
883 vptr->mii_status = mii_check_media_mode(regs: vptr->mac_regs);
884
885 /* Set mii link status */
886 set_mii_flow_control(vptr);
887
888 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
889 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
890
891 /*
892 * If connection type is AUTO
893 */
894 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
895 netdev_info(dev: vptr->netdev, format: "Velocity is in AUTO mode\n");
896 /* clear force MAC mode bit */
897 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
898 /* set duplex mode of MAC according to duplex mode of MII */
899 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
900 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
901 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
902
903 /* enable AUTO-NEGO mode */
904 mii_set_auto_on(vptr);
905 } else {
906 u16 CTRL1000;
907 u16 ANAR;
908 u8 CHIPGCR;
909
910 /*
911 * 1. if it's 3119, disable frame bursting in halfduplex mode
912 * and enable it in fullduplex mode
913 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
914 * 3. only enable CD heart beat counter in 10HD mode
915 */
916
917 /* set force MAC mode bit */
918 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
919
920 CHIPGCR = readb(addr: &regs->CHIPGCR);
921
922 if (mii_status & VELOCITY_SPEED_1000)
923 CHIPGCR |= CHIPGCR_FCGMII;
924 else
925 CHIPGCR &= ~CHIPGCR_FCGMII;
926
927 if (mii_status & VELOCITY_DUPLEX_FULL) {
928 CHIPGCR |= CHIPGCR_FCFDX;
929 writeb(val: CHIPGCR, addr: &regs->CHIPGCR);
930 netdev_info(dev: vptr->netdev,
931 format: "set Velocity to forced full mode\n");
932 if (vptr->rev_id < REV_ID_VT3216_A0)
933 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
934 } else {
935 CHIPGCR &= ~CHIPGCR_FCFDX;
936 netdev_info(dev: vptr->netdev,
937 format: "set Velocity to forced half mode\n");
938 writeb(val: CHIPGCR, addr: &regs->CHIPGCR);
939 if (vptr->rev_id < REV_ID_VT3216_A0)
940 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
941 }
942
943 velocity_mii_read(regs: vptr->mac_regs, MII_CTRL1000, data: &CTRL1000);
944 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
945 if ((mii_status & VELOCITY_SPEED_1000) &&
946 (mii_status & VELOCITY_DUPLEX_FULL)) {
947 CTRL1000 |= ADVERTISE_1000FULL;
948 }
949 velocity_mii_write(regs: vptr->mac_regs, MII_CTRL1000, data: CTRL1000);
950
951 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
952 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
953 else
954 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
955
956 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
957 velocity_mii_read(regs: vptr->mac_regs, MII_ADVERTISE, data: &ANAR);
958 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
959 if (mii_status & VELOCITY_SPEED_100) {
960 if (mii_status & VELOCITY_DUPLEX_FULL)
961 ANAR |= ADVERTISE_100FULL;
962 else
963 ANAR |= ADVERTISE_100HALF;
964 } else if (mii_status & VELOCITY_SPEED_10) {
965 if (mii_status & VELOCITY_DUPLEX_FULL)
966 ANAR |= ADVERTISE_10FULL;
967 else
968 ANAR |= ADVERTISE_10HALF;
969 }
970 velocity_mii_write(regs: vptr->mac_regs, MII_ADVERTISE, data: ANAR);
971 /* enable AUTO-NEGO mode */
972 mii_set_auto_on(vptr);
973 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
974 }
975 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
976 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
977 return VELOCITY_LINK_CHANGE;
978}
979
980/**
981 * velocity_print_link_status - link status reporting
982 * @vptr: velocity to report on
983 *
984 * Turn the link status of the velocity card into a kernel log
985 * description of the new link state, detailing speed and duplex
986 * status
987 */
988static void velocity_print_link_status(struct velocity_info *vptr)
989{
990 const char *link;
991 const char *speed;
992 const char *duplex;
993
994 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
995 netdev_notice(dev: vptr->netdev, format: "failed to detect cable link\n");
996 return;
997 }
998
999 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000 link = "auto-negotiation";
1001
1002 if (vptr->mii_status & VELOCITY_SPEED_1000)
1003 speed = "1000";
1004 else if (vptr->mii_status & VELOCITY_SPEED_100)
1005 speed = "100";
1006 else
1007 speed = "10";
1008
1009 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010 duplex = "full";
1011 else
1012 duplex = "half";
1013 } else {
1014 link = "forced";
1015
1016 switch (vptr->options.spd_dpx) {
1017 case SPD_DPX_1000_FULL:
1018 speed = "1000";
1019 duplex = "full";
1020 break;
1021 case SPD_DPX_100_HALF:
1022 speed = "100";
1023 duplex = "half";
1024 break;
1025 case SPD_DPX_100_FULL:
1026 speed = "100";
1027 duplex = "full";
1028 break;
1029 case SPD_DPX_10_HALF:
1030 speed = "10";
1031 duplex = "half";
1032 break;
1033 case SPD_DPX_10_FULL:
1034 speed = "10";
1035 duplex = "full";
1036 break;
1037 default:
1038 speed = "unknown";
1039 duplex = "unknown";
1040 break;
1041 }
1042 }
1043 netdev_notice(dev: vptr->netdev, format: "Link %s speed %sM bps %s duplex\n",
1044 link, speed, duplex);
1045}
1046
1047/**
1048 * enable_flow_control_ability - flow control
1049 * @vptr: veloity to configure
1050 *
1051 * Set up flow control according to the flow control options
1052 * determined by the eeprom/configuration.
1053 */
1054static void enable_flow_control_ability(struct velocity_info *vptr)
1055{
1056
1057 struct mac_regs __iomem *regs = vptr->mac_regs;
1058
1059 switch (vptr->options.flow_cntl) {
1060
1061 case FLOW_CNTL_DEFAULT:
1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063 writel(CR0_FDXRFCEN, addr: &regs->CR0Set);
1064 else
1065 writel(CR0_FDXRFCEN, addr: &regs->CR0Clr);
1066
1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068 writel(CR0_FDXTFCEN, addr: &regs->CR0Set);
1069 else
1070 writel(CR0_FDXTFCEN, addr: &regs->CR0Clr);
1071 break;
1072
1073 case FLOW_CNTL_TX:
1074 writel(CR0_FDXTFCEN, addr: &regs->CR0Set);
1075 writel(CR0_FDXRFCEN, addr: &regs->CR0Clr);
1076 break;
1077
1078 case FLOW_CNTL_RX:
1079 writel(CR0_FDXRFCEN, addr: &regs->CR0Set);
1080 writel(CR0_FDXTFCEN, addr: &regs->CR0Clr);
1081 break;
1082
1083 case FLOW_CNTL_TX_RX:
1084 writel(CR0_FDXTFCEN, addr: &regs->CR0Set);
1085 writel(CR0_FDXRFCEN, addr: &regs->CR0Set);
1086 break;
1087
1088 case FLOW_CNTL_DISABLE:
1089 writel(CR0_FDXRFCEN, addr: &regs->CR0Clr);
1090 writel(CR0_FDXTFCEN, addr: &regs->CR0Clr);
1091 break;
1092
1093 default:
1094 break;
1095 }
1096
1097}
1098
1099/**
1100 * velocity_soft_reset - soft reset
1101 * @vptr: velocity to reset
1102 *
1103 * Kick off a soft reset of the velocity adapter and then poll
1104 * until the reset sequence has completed before returning.
1105 */
1106static int velocity_soft_reset(struct velocity_info *vptr)
1107{
1108 struct mac_regs __iomem *regs = vptr->mac_regs;
1109 int i = 0;
1110
1111 writel(CR0_SFRST, addr: &regs->CR0Set);
1112
1113 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114 udelay(5);
1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116 break;
1117 }
1118
1119 if (i == W_MAX_TIMEOUT) {
1120 writel(CR0_FORSRST, addr: &regs->CR0Set);
1121 /* FIXME: PCI POSTING */
1122 /* delay 2ms */
1123 mdelay(2);
1124 }
1125 return 0;
1126}
1127
1128/**
1129 * velocity_set_multi - filter list change callback
1130 * @dev: network device
1131 *
1132 * Called by the network layer when the filter lists need to change
1133 * for a velocity adapter. Reload the CAMs with the new address
1134 * filter ruleset.
1135 */
1136static void velocity_set_multi(struct net_device *dev)
1137{
1138 struct velocity_info *vptr = netdev_priv(dev);
1139 struct mac_regs __iomem *regs = vptr->mac_regs;
1140 u8 rx_mode;
1141 int i;
1142 struct netdev_hw_addr *ha;
1143
1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1145 writel(val: 0xffffffff, addr: &regs->MARCAM[0]);
1146 writel(val: 0xffffffff, addr: &regs->MARCAM[4]);
1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149 (dev->flags & IFF_ALLMULTI)) {
1150 writel(val: 0xffffffff, addr: &regs->MARCAM[0]);
1151 writel(val: 0xffffffff, addr: &regs->MARCAM[4]);
1152 rx_mode = (RCR_AM | RCR_AB);
1153 } else {
1154 int offset = MCAM_SIZE - vptr->multicast_limit;
1155 mac_get_cam_mask(regs, mask: vptr->mCAMmask);
1156
1157 i = 0;
1158 netdev_for_each_mc_addr(ha, dev) {
1159 mac_set_cam(regs, idx: i + offset, addr: ha->addr);
1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161 i++;
1162 }
1163
1164 mac_set_cam_mask(regs, mask: vptr->mCAMmask);
1165 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166 }
1167 if (dev->mtu > 1500)
1168 rx_mode |= RCR_AL;
1169
1170 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171
1172}
1173
1174/*
1175 * MII access , media link mode setting functions
1176 */
1177
1178/**
1179 * mii_init - set up MII
1180 * @vptr: velocity adapter
1181 * @mii_status: links tatus
1182 *
1183 * Set up the PHY for the current link state.
1184 */
1185static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186{
1187 u16 BMCR;
1188
1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190 case PHYID_ICPLUS_IP101A:
1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192 MII_ADVERTISE, vptr->mac_regs);
1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195 vptr->mac_regs);
1196 else
1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198 vptr->mac_regs);
1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200 break;
1201 case PHYID_CICADA_CS8201:
1202 /*
1203 * Reset to hardware default
1204 */
1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 /*
1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 * off it in NWay-forced half mode for NWay-forced v.s.
1209 * legacy-forced issue.
1210 */
1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 else
1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 /*
1216 * Turn on Link/Activity LED enable bit for CIS8201
1217 */
1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219 break;
1220 case PHYID_VT3216_32BIT:
1221 case PHYID_VT3216_64BIT:
1222 /*
1223 * Reset to hardware default
1224 */
1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 /*
1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1228 * off it in NWay-forced half mode for NWay-forced v.s.
1229 * legacy-forced issue
1230 */
1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233 else
1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235 break;
1236
1237 case PHYID_MARVELL_1000:
1238 case PHYID_MARVELL_1000S:
1239 /*
1240 * Assert CRS on Transmit
1241 */
1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243 /*
1244 * Reset to hardware default
1245 */
1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247 break;
1248 default:
1249 ;
1250 }
1251 velocity_mii_read(regs: vptr->mac_regs, MII_BMCR, data: &BMCR);
1252 if (BMCR & BMCR_ISOLATE) {
1253 BMCR &= ~BMCR_ISOLATE;
1254 velocity_mii_write(regs: vptr->mac_regs, MII_BMCR, data: BMCR);
1255 }
1256}
1257
1258/**
1259 * setup_queue_timers - Setup interrupt timers
1260 * @vptr: velocity adapter
1261 *
1262 * Setup interrupt frequency during suppression (timeout if the frame
1263 * count isn't filled).
1264 */
1265static void setup_queue_timers(struct velocity_info *vptr)
1266{
1267 /* Only for newer revisions */
1268 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1269 u8 txqueue_timer = 0;
1270 u8 rxqueue_timer = 0;
1271
1272 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1273 VELOCITY_SPEED_100)) {
1274 txqueue_timer = vptr->options.txqueue_timer;
1275 rxqueue_timer = vptr->options.rxqueue_timer;
1276 }
1277
1278 writeb(val: txqueue_timer, addr: &vptr->mac_regs->TQETMR);
1279 writeb(val: rxqueue_timer, addr: &vptr->mac_regs->RQETMR);
1280 }
1281}
1282
1283/**
1284 * setup_adaptive_interrupts - Setup interrupt suppression
1285 * @vptr: velocity adapter
1286 *
1287 * The velocity is able to suppress interrupt during high interrupt load.
1288 * This function turns on that feature.
1289 */
1290static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291{
1292 struct mac_regs __iomem *regs = vptr->mac_regs;
1293 u16 tx_intsup = vptr->options.tx_intsup;
1294 u16 rx_intsup = vptr->options.rx_intsup;
1295
1296 /* Setup default interrupt mask (will be changed below) */
1297 vptr->int_mask = INT_MASK_DEF;
1298
1299 /* Set Tx Interrupt Suppression Threshold */
1300 writeb(CAMCR_PS0, addr: &regs->CAMCR);
1301 if (tx_intsup != 0) {
1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303 ISR_PTX2I | ISR_PTX3I);
1304 writew(val: tx_intsup, addr: &regs->ISRCTL);
1305 } else
1306 writew(ISRCTL_TSUPDIS, addr: &regs->ISRCTL);
1307
1308 /* Set Rx Interrupt Suppression Threshold */
1309 writeb(CAMCR_PS1, addr: &regs->CAMCR);
1310 if (rx_intsup != 0) {
1311 vptr->int_mask &= ~ISR_PRXI;
1312 writew(val: rx_intsup, addr: &regs->ISRCTL);
1313 } else
1314 writew(ISRCTL_RSUPDIS, addr: &regs->ISRCTL);
1315
1316 /* Select page to interrupt hold timer */
1317 writeb(val: 0, addr: &regs->CAMCR);
1318}
1319
1320/**
1321 * velocity_init_registers - initialise MAC registers
1322 * @vptr: velocity to init
1323 * @type: type of initialisation (hot or cold)
1324 *
1325 * Initialise the MAC on a reset or on first set up on the
1326 * hardware.
1327 */
1328static void velocity_init_registers(struct velocity_info *vptr,
1329 enum velocity_init_type type)
1330{
1331 struct mac_regs __iomem *regs = vptr->mac_regs;
1332 struct net_device *netdev = vptr->netdev;
1333 int i, mii_status;
1334
1335 mac_wol_reset(regs);
1336
1337 switch (type) {
1338 case VELOCITY_INIT_RESET:
1339 case VELOCITY_INIT_WOL:
1340
1341 netif_stop_queue(dev: netdev);
1342
1343 /*
1344 * Reset RX to prevent RX pointer not on the 4X location
1345 */
1346 velocity_rx_reset(vptr);
1347 mac_rx_queue_run(regs);
1348 mac_rx_queue_wake(regs);
1349
1350 mii_status = velocity_get_opt_media_mode(vptr);
1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352 velocity_print_link_status(vptr);
1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354 netif_wake_queue(dev: netdev);
1355 }
1356
1357 enable_flow_control_ability(vptr);
1358
1359 mac_clear_isr(regs);
1360 writel(CR0_STOP, addr: &regs->CR0Clr);
1361 writel(val: (CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362 addr: &regs->CR0Set);
1363
1364 break;
1365
1366 case VELOCITY_INIT_COLD:
1367 default:
1368 /*
1369 * Do reset
1370 */
1371 velocity_soft_reset(vptr);
1372 mdelay(5);
1373
1374 if (!vptr->no_eeprom) {
1375 mac_eeprom_reload(regs);
1376 for (i = 0; i < 6; i++)
1377 writeb(val: netdev->dev_addr[i], addr: regs->PAR + i);
1378 }
1379
1380 /*
1381 * clear Pre_ACPI bit.
1382 */
1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385 mac_set_dma_length(regs, vptr->options.DMA_length);
1386
1387 writeb(WOLCFG_SAM | WOLCFG_SAB, addr: &regs->WOLCFGSet);
1388 /*
1389 * Back off algorithm use original IEEE standard
1390 */
1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392
1393 /*
1394 * Init CAM filter
1395 */
1396 velocity_init_cam_filter(vptr);
1397
1398 /*
1399 * Set packet filter: Receive directed and broadcast address
1400 */
1401 velocity_set_multi(dev: netdev);
1402
1403 /*
1404 * Enable MII auto-polling
1405 */
1406 enable_mii_autopoll(regs);
1407
1408 setup_adaptive_interrupts(vptr);
1409
1410 writel(val: vptr->rx.pool_dma, addr: &regs->RDBaseLo);
1411 writew(val: vptr->options.numrx - 1, addr: &regs->RDCSize);
1412 mac_rx_queue_run(regs);
1413 mac_rx_queue_wake(regs);
1414
1415 writew(val: vptr->options.numtx - 1, addr: &regs->TDCSize);
1416
1417 for (i = 0; i < vptr->tx.numq; i++) {
1418 writel(val: vptr->tx.pool_dma[i], addr: &regs->TDBaseLo[i]);
1419 mac_tx_queue_run(regs, i);
1420 }
1421
1422 init_flow_control_register(vptr);
1423
1424 writel(CR0_STOP, addr: &regs->CR0Clr);
1425 writel(val: (CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), addr: &regs->CR0Set);
1426
1427 mii_status = velocity_get_opt_media_mode(vptr);
1428 netif_stop_queue(dev: netdev);
1429
1430 mii_init(vptr, mii_status);
1431
1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433 velocity_print_link_status(vptr);
1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435 netif_wake_queue(dev: netdev);
1436 }
1437
1438 enable_flow_control_ability(vptr);
1439 mac_hw_mibs_init(regs);
1440 mac_write_int_mask(vptr->int_mask, regs);
1441 mac_clear_isr(regs);
1442
1443 }
1444}
1445
1446static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447{
1448 struct mac_regs __iomem *regs = vptr->mac_regs;
1449 int avail, dirty, unusable;
1450
1451 /*
1452 * RD number must be equal to 4X per hardware spec
1453 * (programming guide rev 1.20, p.13)
1454 */
1455 if (vptr->rx.filled < 4)
1456 return;
1457
1458 wmb();
1459
1460 unusable = vptr->rx.filled & 0x0003;
1461 dirty = vptr->rx.dirty - unusable;
1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465 }
1466
1467 writew(val: vptr->rx.filled & 0xfffc, addr: &regs->RBRDU);
1468 vptr->rx.filled = unusable;
1469}
1470
1471/**
1472 * velocity_init_dma_rings - set up DMA rings
1473 * @vptr: Velocity to set up
1474 *
1475 * Allocate PCI mapped DMA rings for the receive and transmit layer
1476 * to use.
1477 */
1478static int velocity_init_dma_rings(struct velocity_info *vptr)
1479{
1480 struct velocity_opt *opt = &vptr->options;
1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483 dma_addr_t pool_dma;
1484 void *pool;
1485 unsigned int i;
1486
1487 /*
1488 * Allocate all RD/TD rings a single pool.
1489 *
1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491 * alignment
1492 */
1493 pool = dma_alloc_coherent(dev: vptr->dev, size: tx_ring_size * vptr->tx.numq +
1494 rx_ring_size, dma_handle: &pool_dma, GFP_ATOMIC);
1495 if (!pool) {
1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497 vptr->netdev->name);
1498 return -ENOMEM;
1499 }
1500
1501 vptr->rx.ring = pool;
1502 vptr->rx.pool_dma = pool_dma;
1503
1504 pool += rx_ring_size;
1505 pool_dma += rx_ring_size;
1506
1507 for (i = 0; i < vptr->tx.numq; i++) {
1508 vptr->tx.rings[i] = pool;
1509 vptr->tx.pool_dma[i] = pool_dma;
1510 pool += tx_ring_size;
1511 pool_dma += tx_ring_size;
1512 }
1513
1514 return 0;
1515}
1516
1517static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518{
1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520}
1521
1522/**
1523 * velocity_alloc_rx_buf - allocate aligned receive buffer
1524 * @vptr: velocity
1525 * @idx: ring index
1526 *
1527 * Allocate a new full sized buffer for the reception of a frame and
1528 * map it into PCI space for the hardware to use. The hardware
1529 * requires *64* byte alignment of the buffer which makes life
1530 * less fun than would be ideal.
1531 */
1532static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533{
1534 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536
1537 rd_info->skb = netdev_alloc_skb(dev: vptr->netdev, length: vptr->rx.buf_sz + 64);
1538 if (rd_info->skb == NULL)
1539 return -ENOMEM;
1540
1541 /*
1542 * Do the gymnastics to get the buffer head for data at
1543 * 64byte alignment.
1544 */
1545 skb_reserve(skb: rd_info->skb,
1546 len: 64 - ((unsigned long) rd_info->skb->data & 63));
1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548 vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549
1550 /*
1551 * Fill in the descriptor to match
1552 */
1553
1554 *((u32 *) & (rd->rdesc0)) = 0;
1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557 rd->pa_high = 0;
1558 return 0;
1559}
1560
1561
1562static int velocity_rx_refill(struct velocity_info *vptr)
1563{
1564 int dirty = vptr->rx.dirty, done = 0;
1565
1566 do {
1567 struct rx_desc *rd = vptr->rx.ring + dirty;
1568
1569 /* Fine for an all zero Rx desc at init time as well */
1570 if (rd->rdesc0.len & OWNED_BY_NIC)
1571 break;
1572
1573 if (!vptr->rx.info[dirty].skb) {
1574 if (velocity_alloc_rx_buf(vptr, idx: dirty) < 0)
1575 break;
1576 }
1577 done++;
1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579 } while (dirty != vptr->rx.curr);
1580
1581 if (done) {
1582 vptr->rx.dirty = dirty;
1583 vptr->rx.filled += done;
1584 }
1585
1586 return done;
1587}
1588
1589/**
1590 * velocity_free_rd_ring - free receive ring
1591 * @vptr: velocity to clean up
1592 *
1593 * Free the receive buffers for each ring slot and any
1594 * attached socket buffers that need to go away.
1595 */
1596static void velocity_free_rd_ring(struct velocity_info *vptr)
1597{
1598 int i;
1599
1600 if (vptr->rx.info == NULL)
1601 return;
1602
1603 for (i = 0; i < vptr->options.numrx; i++) {
1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605 struct rx_desc *rd = vptr->rx.ring + i;
1606
1607 memset(rd, 0, sizeof(*rd));
1608
1609 if (!rd_info->skb)
1610 continue;
1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612 DMA_FROM_DEVICE);
1613 rd_info->skb_dma = 0;
1614
1615 dev_kfree_skb(rd_info->skb);
1616 rd_info->skb = NULL;
1617 }
1618
1619 kfree(objp: vptr->rx.info);
1620 vptr->rx.info = NULL;
1621}
1622
1623/**
1624 * velocity_init_rd_ring - set up receive ring
1625 * @vptr: velocity to configure
1626 *
1627 * Allocate and set up the receive buffers for each ring slot and
1628 * assign them to the network adapter.
1629 */
1630static int velocity_init_rd_ring(struct velocity_info *vptr)
1631{
1632 int ret = -ENOMEM;
1633
1634 vptr->rx.info = kcalloc(n: vptr->options.numrx,
1635 size: sizeof(struct velocity_rd_info), GFP_KERNEL);
1636 if (!vptr->rx.info)
1637 goto out;
1638
1639 velocity_init_rx_ring_indexes(vptr);
1640
1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642 netdev_err(dev: vptr->netdev, format: "failed to allocate RX buffer\n");
1643 velocity_free_rd_ring(vptr);
1644 goto out;
1645 }
1646
1647 ret = 0;
1648out:
1649 return ret;
1650}
1651
1652/**
1653 * velocity_init_td_ring - set up transmit ring
1654 * @vptr: velocity
1655 *
1656 * Set up the transmit ring and chain the ring pointers together.
1657 * Returns zero on success or a negative posix errno code for
1658 * failure.
1659 */
1660static int velocity_init_td_ring(struct velocity_info *vptr)
1661{
1662 int j;
1663
1664 /* Init the TD ring entries */
1665 for (j = 0; j < vptr->tx.numq; j++) {
1666
1667 vptr->tx.infos[j] = kcalloc(n: vptr->options.numtx,
1668 size: sizeof(struct velocity_td_info),
1669 GFP_KERNEL);
1670 if (!vptr->tx.infos[j]) {
1671 while (--j >= 0)
1672 kfree(objp: vptr->tx.infos[j]);
1673 return -ENOMEM;
1674 }
1675
1676 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1677 }
1678 return 0;
1679}
1680
1681/**
1682 * velocity_free_dma_rings - free PCI ring pointers
1683 * @vptr: Velocity to free from
1684 *
1685 * Clean up the PCI ring buffers allocated to this velocity.
1686 */
1687static void velocity_free_dma_rings(struct velocity_info *vptr)
1688{
1689 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1690 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1691
1692 dma_free_coherent(dev: vptr->dev, size, cpu_addr: vptr->rx.ring, dma_handle: vptr->rx.pool_dma);
1693}
1694
1695static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1696{
1697 int ret;
1698
1699 velocity_set_rxbufsize(vptr, mtu);
1700
1701 ret = velocity_init_dma_rings(vptr);
1702 if (ret < 0)
1703 goto out;
1704
1705 ret = velocity_init_rd_ring(vptr);
1706 if (ret < 0)
1707 goto err_free_dma_rings_0;
1708
1709 ret = velocity_init_td_ring(vptr);
1710 if (ret < 0)
1711 goto err_free_rd_ring_1;
1712out:
1713 return ret;
1714
1715err_free_rd_ring_1:
1716 velocity_free_rd_ring(vptr);
1717err_free_dma_rings_0:
1718 velocity_free_dma_rings(vptr);
1719 goto out;
1720}
1721
1722/**
1723 * velocity_free_tx_buf - free transmit buffer
1724 * @vptr: velocity
1725 * @tdinfo: buffer
1726 * @td: transmit descriptor to free
1727 *
1728 * Release an transmit buffer. If the buffer was preallocated then
1729 * recycle it, if not then unmap the buffer.
1730 */
1731static void velocity_free_tx_buf(struct velocity_info *vptr,
1732 struct velocity_td_info *tdinfo, struct tx_desc *td)
1733{
1734 struct sk_buff *skb = tdinfo->skb;
1735 int i;
1736
1737 /*
1738 * Don't unmap the pre-allocated tx_bufs
1739 */
1740 for (i = 0; i < tdinfo->nskb_dma; i++) {
1741 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1742
1743 /* For scatter-gather */
1744 if (skb_shinfo(skb)->nr_frags > 0)
1745 pktlen = max_t(size_t, pktlen,
1746 td->td_buf[i].size & ~TD_QUEUE);
1747
1748 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1749 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1750 }
1751 dev_consume_skb_irq(skb);
1752 tdinfo->skb = NULL;
1753}
1754
1755/*
1756 * FIXME: could we merge this with velocity_free_tx_buf ?
1757 */
1758static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1759 int q, int n)
1760{
1761 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1762 int i;
1763
1764 if (td_info == NULL)
1765 return;
1766
1767 if (td_info->skb) {
1768 for (i = 0; i < td_info->nskb_dma; i++) {
1769 if (td_info->skb_dma[i]) {
1770 dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1771 td_info->skb->len, DMA_TO_DEVICE);
1772 td_info->skb_dma[i] = 0;
1773 }
1774 }
1775 dev_kfree_skb(td_info->skb);
1776 td_info->skb = NULL;
1777 }
1778}
1779
1780/**
1781 * velocity_free_td_ring - free td ring
1782 * @vptr: velocity
1783 *
1784 * Free up the transmit ring for this particular velocity adapter.
1785 * We free the ring contents but not the ring itself.
1786 */
1787static void velocity_free_td_ring(struct velocity_info *vptr)
1788{
1789 int i, j;
1790
1791 for (j = 0; j < vptr->tx.numq; j++) {
1792 if (vptr->tx.infos[j] == NULL)
1793 continue;
1794 for (i = 0; i < vptr->options.numtx; i++)
1795 velocity_free_td_ring_entry(vptr, q: j, n: i);
1796
1797 kfree(objp: vptr->tx.infos[j]);
1798 vptr->tx.infos[j] = NULL;
1799 }
1800}
1801
1802static void velocity_free_rings(struct velocity_info *vptr)
1803{
1804 velocity_free_td_ring(vptr);
1805 velocity_free_rd_ring(vptr);
1806 velocity_free_dma_rings(vptr);
1807}
1808
1809/**
1810 * velocity_error - handle error from controller
1811 * @vptr: velocity
1812 * @status: card status
1813 *
1814 * Process an error report from the hardware and attempt to recover
1815 * the card itself. At the moment we cannot recover from some
1816 * theoretically impossible errors but this could be fixed using
1817 * the pci_device_failed logic to bounce the hardware
1818 *
1819 */
1820static void velocity_error(struct velocity_info *vptr, int status)
1821{
1822
1823 if (status & ISR_TXSTLI) {
1824 struct mac_regs __iomem *regs = vptr->mac_regs;
1825
1826 netdev_err(dev: vptr->netdev, format: "TD structure error TDindex=%hx\n",
1827 readw(addr: &regs->TDIdx[0]));
1828 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1829 writew(TRDCSR_RUN, addr: &regs->TDCSRClr);
1830 netif_stop_queue(dev: vptr->netdev);
1831
1832 /* FIXME: port over the pci_device_failed code and use it
1833 here */
1834 }
1835
1836 if (status & ISR_SRCI) {
1837 struct mac_regs __iomem *regs = vptr->mac_regs;
1838 int linked;
1839
1840 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1841 vptr->mii_status = check_connection_type(regs);
1842
1843 /*
1844 * If it is a 3119, disable frame bursting in
1845 * halfduplex mode and enable it in fullduplex
1846 * mode
1847 */
1848 if (vptr->rev_id < REV_ID_VT3216_A0) {
1849 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1850 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1851 else
1852 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1853 }
1854 /*
1855 * Only enable CD heart beat counter in 10HD mode
1856 */
1857 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1858 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1859 else
1860 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1861
1862 setup_queue_timers(vptr);
1863 }
1864 /*
1865 * Get link status from PHYSR0
1866 */
1867 linked = readb(addr: &regs->PHYSR0) & PHYSR0_LINKGD;
1868
1869 if (linked) {
1870 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1871 netif_carrier_on(dev: vptr->netdev);
1872 } else {
1873 vptr->mii_status |= VELOCITY_LINK_FAIL;
1874 netif_carrier_off(dev: vptr->netdev);
1875 }
1876
1877 velocity_print_link_status(vptr);
1878 enable_flow_control_ability(vptr);
1879
1880 /*
1881 * Re-enable auto-polling because SRCI will disable
1882 * auto-polling
1883 */
1884
1885 enable_mii_autopoll(regs);
1886
1887 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1888 netif_stop_queue(dev: vptr->netdev);
1889 else
1890 netif_wake_queue(dev: vptr->netdev);
1891
1892 }
1893 if (status & ISR_MIBFI)
1894 velocity_update_hw_mibs(vptr);
1895 if (status & ISR_LSTEI)
1896 mac_rx_queue_wake(vptr->mac_regs);
1897}
1898
1899/**
1900 * velocity_tx_srv - transmit interrupt service
1901 * @vptr: Velocity
1902 *
1903 * Scan the queues looking for transmitted packets that
1904 * we can complete and clean up. Update any statistics as
1905 * necessary/
1906 */
1907static int velocity_tx_srv(struct velocity_info *vptr)
1908{
1909 struct tx_desc *td;
1910 int qnum;
1911 int full = 0;
1912 int idx;
1913 int works = 0;
1914 struct velocity_td_info *tdinfo;
1915 struct net_device_stats *stats = &vptr->netdev->stats;
1916
1917 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1918 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1919 idx = (idx + 1) % vptr->options.numtx) {
1920
1921 /*
1922 * Get Tx Descriptor
1923 */
1924 td = &(vptr->tx.rings[qnum][idx]);
1925 tdinfo = &(vptr->tx.infos[qnum][idx]);
1926
1927 if (td->tdesc0.len & OWNED_BY_NIC)
1928 break;
1929
1930 if ((works++ > 15))
1931 break;
1932
1933 if (td->tdesc0.TSR & TSR0_TERR) {
1934 stats->tx_errors++;
1935 stats->tx_dropped++;
1936 if (td->tdesc0.TSR & TSR0_CDH)
1937 stats->tx_heartbeat_errors++;
1938 if (td->tdesc0.TSR & TSR0_CRS)
1939 stats->tx_carrier_errors++;
1940 if (td->tdesc0.TSR & TSR0_ABT)
1941 stats->tx_aborted_errors++;
1942 if (td->tdesc0.TSR & TSR0_OWC)
1943 stats->tx_window_errors++;
1944 } else {
1945 stats->tx_packets++;
1946 stats->tx_bytes += tdinfo->skb->len;
1947 }
1948 velocity_free_tx_buf(vptr, tdinfo, td);
1949 vptr->tx.used[qnum]--;
1950 }
1951 vptr->tx.tail[qnum] = idx;
1952
1953 if (AVAIL_TD(vptr, qnum) < 1)
1954 full = 1;
1955 }
1956 /*
1957 * Look to see if we should kick the transmit network
1958 * layer for more work.
1959 */
1960 if (netif_queue_stopped(dev: vptr->netdev) && (full == 0) &&
1961 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1962 netif_wake_queue(dev: vptr->netdev);
1963 }
1964 return works;
1965}
1966
1967/**
1968 * velocity_rx_csum - checksum process
1969 * @rd: receive packet descriptor
1970 * @skb: network layer packet buffer
1971 *
1972 * Process the status bits for the received packet and determine
1973 * if the checksum was computed and verified by the hardware
1974 */
1975static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1976{
1977 skb_checksum_none_assert(skb);
1978
1979 if (rd->rdesc1.CSM & CSM_IPKT) {
1980 if (rd->rdesc1.CSM & CSM_IPOK) {
1981 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1982 (rd->rdesc1.CSM & CSM_UDPKT)) {
1983 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1984 return;
1985 }
1986 skb->ip_summed = CHECKSUM_UNNECESSARY;
1987 }
1988 }
1989}
1990
1991/**
1992 * velocity_rx_copy - in place Rx copy for small packets
1993 * @rx_skb: network layer packet buffer candidate
1994 * @pkt_size: received data size
1995 * @vptr: velocity adapter
1996 *
1997 * Replace the current skb that is scheduled for Rx processing by a
1998 * shorter, immediately allocated skb, if the received packet is small
1999 * enough. This function returns a negative value if the received
2000 * packet is too big or if memory is exhausted.
2001 */
2002static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2003 struct velocity_info *vptr)
2004{
2005 int ret = -1;
2006 if (pkt_size < rx_copybreak) {
2007 struct sk_buff *new_skb;
2008
2009 new_skb = netdev_alloc_skb_ip_align(dev: vptr->netdev, length: pkt_size);
2010 if (new_skb) {
2011 new_skb->ip_summed = rx_skb[0]->ip_summed;
2012 skb_copy_from_linear_data(skb: *rx_skb, to: new_skb->data, len: pkt_size);
2013 *rx_skb = new_skb;
2014 ret = 0;
2015 }
2016
2017 }
2018 return ret;
2019}
2020
2021/**
2022 * velocity_iph_realign - IP header alignment
2023 * @vptr: velocity we are handling
2024 * @skb: network layer packet buffer
2025 * @pkt_size: received data size
2026 *
2027 * Align IP header on a 2 bytes boundary. This behavior can be
2028 * configured by the user.
2029 */
2030static inline void velocity_iph_realign(struct velocity_info *vptr,
2031 struct sk_buff *skb, int pkt_size)
2032{
2033 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2034 memmove(skb->data + 2, skb->data, pkt_size);
2035 skb_reserve(skb, len: 2);
2036 }
2037}
2038
2039/**
2040 * velocity_receive_frame - received packet processor
2041 * @vptr: velocity we are handling
2042 * @idx: ring index
2043 *
2044 * A packet has arrived. We process the packet and if appropriate
2045 * pass the frame up the network stack
2046 */
2047static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2048{
2049 struct net_device_stats *stats = &vptr->netdev->stats;
2050 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2051 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2052 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2053 struct sk_buff *skb;
2054
2055 if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2056 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2057 netdev_err(dev: vptr->netdev, format: "received frame spans multiple RDs\n");
2058 stats->rx_length_errors++;
2059 return -EINVAL;
2060 }
2061
2062 if (rd->rdesc0.RSR & RSR_MAR)
2063 stats->multicast++;
2064
2065 skb = rd_info->skb;
2066
2067 dma_sync_single_for_cpu(dev: vptr->dev, addr: rd_info->skb_dma,
2068 size: vptr->rx.buf_sz, dir: DMA_FROM_DEVICE);
2069
2070 velocity_rx_csum(rd, skb);
2071
2072 if (velocity_rx_copy(rx_skb: &skb, pkt_size: pkt_len, vptr) < 0) {
2073 velocity_iph_realign(vptr, skb, pkt_size: pkt_len);
2074 rd_info->skb = NULL;
2075 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2076 DMA_FROM_DEVICE);
2077 } else {
2078 dma_sync_single_for_device(dev: vptr->dev, addr: rd_info->skb_dma,
2079 size: vptr->rx.buf_sz, dir: DMA_FROM_DEVICE);
2080 }
2081
2082 skb_put(skb, len: pkt_len - 4);
2083 skb->protocol = eth_type_trans(skb, dev: vptr->netdev);
2084
2085 if (rd->rdesc0.RSR & RSR_DETAG) {
2086 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2087
2088 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vid);
2089 }
2090 netif_receive_skb(skb);
2091
2092 stats->rx_bytes += pkt_len;
2093 stats->rx_packets++;
2094
2095 return 0;
2096}
2097
2098/**
2099 * velocity_rx_srv - service RX interrupt
2100 * @vptr: velocity
2101 * @budget_left: remaining budget
2102 *
2103 * Walk the receive ring of the velocity adapter and remove
2104 * any received packets from the receive queue. Hand the ring
2105 * slots back to the adapter for reuse.
2106 */
2107static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2108{
2109 struct net_device_stats *stats = &vptr->netdev->stats;
2110 int rd_curr = vptr->rx.curr;
2111 int works = 0;
2112
2113 while (works < budget_left) {
2114 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2115
2116 if (!vptr->rx.info[rd_curr].skb)
2117 break;
2118
2119 if (rd->rdesc0.len & OWNED_BY_NIC)
2120 break;
2121
2122 rmb();
2123
2124 /*
2125 * Don't drop CE or RL error frame although RXOK is off
2126 */
2127 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2128 if (velocity_receive_frame(vptr, idx: rd_curr) < 0)
2129 stats->rx_dropped++;
2130 } else {
2131 if (rd->rdesc0.RSR & RSR_CRC)
2132 stats->rx_crc_errors++;
2133 if (rd->rdesc0.RSR & RSR_FAE)
2134 stats->rx_frame_errors++;
2135
2136 stats->rx_dropped++;
2137 }
2138
2139 rd->size |= RX_INTEN;
2140
2141 rd_curr++;
2142 if (rd_curr >= vptr->options.numrx)
2143 rd_curr = 0;
2144 works++;
2145 }
2146
2147 vptr->rx.curr = rd_curr;
2148
2149 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2150 velocity_give_many_rx_descs(vptr);
2151
2152 VAR_USED(stats);
2153 return works;
2154}
2155
2156static int velocity_poll(struct napi_struct *napi, int budget)
2157{
2158 struct velocity_info *vptr = container_of(napi,
2159 struct velocity_info, napi);
2160 unsigned int rx_done;
2161 unsigned long flags;
2162
2163 /*
2164 * Do rx and tx twice for performance (taken from the VIA
2165 * out-of-tree driver).
2166 */
2167 rx_done = velocity_rx_srv(vptr, budget_left: budget);
2168 spin_lock_irqsave(&vptr->lock, flags);
2169 velocity_tx_srv(vptr);
2170 /* If budget not fully consumed, exit the polling mode */
2171 if (rx_done < budget) {
2172 napi_complete_done(n: napi, work_done: rx_done);
2173 mac_enable_int(vptr->mac_regs);
2174 }
2175 spin_unlock_irqrestore(lock: &vptr->lock, flags);
2176
2177 return rx_done;
2178}
2179
2180/**
2181 * velocity_intr - interrupt callback
2182 * @irq: interrupt number
2183 * @dev_instance: interrupting device
2184 *
2185 * Called whenever an interrupt is generated by the velocity
2186 * adapter IRQ line. We may not be the source of the interrupt
2187 * and need to identify initially if we are, and if not exit as
2188 * efficiently as possible.
2189 */
2190static irqreturn_t velocity_intr(int irq, void *dev_instance)
2191{
2192 struct net_device *dev = dev_instance;
2193 struct velocity_info *vptr = netdev_priv(dev);
2194 u32 isr_status;
2195
2196 spin_lock(lock: &vptr->lock);
2197 isr_status = mac_read_isr(vptr->mac_regs);
2198
2199 /* Not us ? */
2200 if (isr_status == 0) {
2201 spin_unlock(lock: &vptr->lock);
2202 return IRQ_NONE;
2203 }
2204
2205 /* Ack the interrupt */
2206 mac_write_isr(vptr->mac_regs, isr_status);
2207
2208 if (likely(napi_schedule_prep(&vptr->napi))) {
2209 mac_disable_int(vptr->mac_regs);
2210 __napi_schedule(n: &vptr->napi);
2211 }
2212
2213 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2214 velocity_error(vptr, status: isr_status);
2215
2216 spin_unlock(lock: &vptr->lock);
2217
2218 return IRQ_HANDLED;
2219}
2220
2221/**
2222 * velocity_open - interface activation callback
2223 * @dev: network layer device to open
2224 *
2225 * Called when the network layer brings the interface up. Returns
2226 * a negative posix error code on failure, or zero on success.
2227 *
2228 * All the ring allocation and set up is done on open for this
2229 * adapter to minimise memory usage when inactive
2230 */
2231static int velocity_open(struct net_device *dev)
2232{
2233 struct velocity_info *vptr = netdev_priv(dev);
2234 int ret;
2235
2236 ret = velocity_init_rings(vptr, mtu: dev->mtu);
2237 if (ret < 0)
2238 goto out;
2239
2240 /* Ensure chip is running */
2241 velocity_set_power_state(vptr, PCI_D0);
2242
2243 velocity_init_registers(vptr, type: VELOCITY_INIT_COLD);
2244
2245 ret = request_irq(irq: dev->irq, handler: velocity_intr, IRQF_SHARED,
2246 name: dev->name, dev);
2247 if (ret < 0) {
2248 /* Power down the chip */
2249 velocity_set_power_state(vptr, PCI_D3hot);
2250 velocity_free_rings(vptr);
2251 goto out;
2252 }
2253
2254 velocity_give_many_rx_descs(vptr);
2255
2256 mac_enable_int(vptr->mac_regs);
2257 netif_start_queue(dev);
2258 napi_enable(n: &vptr->napi);
2259 vptr->flags |= VELOCITY_FLAGS_OPENED;
2260out:
2261 return ret;
2262}
2263
2264/**
2265 * velocity_shutdown - shut down the chip
2266 * @vptr: velocity to deactivate
2267 *
2268 * Shuts down the internal operations of the velocity and
2269 * disables interrupts, autopolling, transmit and receive
2270 */
2271static void velocity_shutdown(struct velocity_info *vptr)
2272{
2273 struct mac_regs __iomem *regs = vptr->mac_regs;
2274 mac_disable_int(regs);
2275 writel(CR0_STOP, addr: &regs->CR0Set);
2276 writew(val: 0xFFFF, addr: &regs->TDCSRClr);
2277 writeb(val: 0xFF, addr: &regs->RDCSRClr);
2278 safe_disable_mii_autopoll(regs);
2279 mac_clear_isr(regs);
2280}
2281
2282/**
2283 * velocity_change_mtu - MTU change callback
2284 * @dev: network device
2285 * @new_mtu: desired MTU
2286 *
2287 * Handle requests from the networking layer for MTU change on
2288 * this interface. It gets called on a change by the network layer.
2289 * Return zero for success or negative posix error code.
2290 */
2291static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2292{
2293 struct velocity_info *vptr = netdev_priv(dev);
2294 int ret = 0;
2295
2296 if (!netif_running(dev)) {
2297 dev->mtu = new_mtu;
2298 goto out_0;
2299 }
2300
2301 if (dev->mtu != new_mtu) {
2302 struct velocity_info *tmp_vptr;
2303 unsigned long flags;
2304 struct rx_info rx;
2305 struct tx_info tx;
2306
2307 tmp_vptr = kzalloc(size: sizeof(*tmp_vptr), GFP_KERNEL);
2308 if (!tmp_vptr) {
2309 ret = -ENOMEM;
2310 goto out_0;
2311 }
2312
2313 tmp_vptr->netdev = dev;
2314 tmp_vptr->pdev = vptr->pdev;
2315 tmp_vptr->dev = vptr->dev;
2316 tmp_vptr->options = vptr->options;
2317 tmp_vptr->tx.numq = vptr->tx.numq;
2318
2319 ret = velocity_init_rings(vptr: tmp_vptr, mtu: new_mtu);
2320 if (ret < 0)
2321 goto out_free_tmp_vptr_1;
2322
2323 napi_disable(n: &vptr->napi);
2324
2325 spin_lock_irqsave(&vptr->lock, flags);
2326
2327 netif_stop_queue(dev);
2328 velocity_shutdown(vptr);
2329
2330 rx = vptr->rx;
2331 tx = vptr->tx;
2332
2333 vptr->rx = tmp_vptr->rx;
2334 vptr->tx = tmp_vptr->tx;
2335
2336 tmp_vptr->rx = rx;
2337 tmp_vptr->tx = tx;
2338
2339 dev->mtu = new_mtu;
2340
2341 velocity_init_registers(vptr, type: VELOCITY_INIT_COLD);
2342
2343 velocity_give_many_rx_descs(vptr);
2344
2345 napi_enable(n: &vptr->napi);
2346
2347 mac_enable_int(vptr->mac_regs);
2348 netif_start_queue(dev);
2349
2350 spin_unlock_irqrestore(lock: &vptr->lock, flags);
2351
2352 velocity_free_rings(vptr: tmp_vptr);
2353
2354out_free_tmp_vptr_1:
2355 kfree(objp: tmp_vptr);
2356 }
2357out_0:
2358 return ret;
2359}
2360
2361#ifdef CONFIG_NET_POLL_CONTROLLER
2362/**
2363 * velocity_poll_controller - Velocity Poll controller function
2364 * @dev: network device
2365 *
2366 *
2367 * Used by NETCONSOLE and other diagnostic tools to allow network I/P
2368 * with interrupts disabled.
2369 */
2370static void velocity_poll_controller(struct net_device *dev)
2371{
2372 disable_irq(irq: dev->irq);
2373 velocity_intr(irq: dev->irq, dev_instance: dev);
2374 enable_irq(irq: dev->irq);
2375}
2376#endif
2377
2378/**
2379 * velocity_mii_ioctl - MII ioctl handler
2380 * @dev: network device
2381 * @ifr: the ifreq block for the ioctl
2382 * @cmd: the command
2383 *
2384 * Process MII requests made via ioctl from the network layer. These
2385 * are used by tools like kudzu to interrogate the link state of the
2386 * hardware
2387 */
2388static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2389{
2390 struct velocity_info *vptr = netdev_priv(dev);
2391 struct mac_regs __iomem *regs = vptr->mac_regs;
2392 unsigned long flags;
2393 struct mii_ioctl_data *miidata = if_mii(rq: ifr);
2394 int err;
2395
2396 switch (cmd) {
2397 case SIOCGMIIPHY:
2398 miidata->phy_id = readb(addr: &regs->MIIADR) & 0x1f;
2399 break;
2400 case SIOCGMIIREG:
2401 if (velocity_mii_read(regs: vptr->mac_regs, index: miidata->reg_num & 0x1f, data: &(miidata->val_out)) < 0)
2402 return -ETIMEDOUT;
2403 break;
2404 case SIOCSMIIREG:
2405 spin_lock_irqsave(&vptr->lock, flags);
2406 err = velocity_mii_write(regs: vptr->mac_regs, mii_addr: miidata->reg_num & 0x1f, data: miidata->val_in);
2407 spin_unlock_irqrestore(lock: &vptr->lock, flags);
2408 check_connection_type(regs: vptr->mac_regs);
2409 if (err)
2410 return err;
2411 break;
2412 default:
2413 return -EOPNOTSUPP;
2414 }
2415 return 0;
2416}
2417
2418/**
2419 * velocity_ioctl - ioctl entry point
2420 * @dev: network device
2421 * @rq: interface request ioctl
2422 * @cmd: command code
2423 *
2424 * Called when the user issues an ioctl request to the network
2425 * device in question. The velocity interface supports MII.
2426 */
2427static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2428{
2429 struct velocity_info *vptr = netdev_priv(dev);
2430 int ret;
2431
2432 /* If we are asked for information and the device is power
2433 saving then we need to bring the device back up to talk to it */
2434
2435 if (!netif_running(dev))
2436 velocity_set_power_state(vptr, PCI_D0);
2437
2438 switch (cmd) {
2439 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2440 case SIOCGMIIREG: /* Read MII PHY register. */
2441 case SIOCSMIIREG: /* Write to MII PHY register. */
2442 ret = velocity_mii_ioctl(dev, ifr: rq, cmd);
2443 break;
2444
2445 default:
2446 ret = -EOPNOTSUPP;
2447 }
2448 if (!netif_running(dev))
2449 velocity_set_power_state(vptr, PCI_D3hot);
2450
2451
2452 return ret;
2453}
2454
2455/**
2456 * velocity_get_stats - statistics callback
2457 * @dev: network device
2458 *
2459 * Callback from the network layer to allow driver statistics
2460 * to be resynchronized with hardware collected state. In the
2461 * case of the velocity we need to pull the MIB counters from
2462 * the hardware into the counters before letting the network
2463 * layer display them.
2464 */
2465static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2466{
2467 struct velocity_info *vptr = netdev_priv(dev);
2468
2469 /* If the hardware is down, don't touch MII */
2470 if (!netif_running(dev))
2471 return &dev->stats;
2472
2473 spin_lock_irq(lock: &vptr->lock);
2474 velocity_update_hw_mibs(vptr);
2475 spin_unlock_irq(lock: &vptr->lock);
2476
2477 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2478 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2479 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2480
2481// unsigned long rx_dropped; /* no space in linux buffers */
2482 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2483 /* detailed rx_errors: */
2484// unsigned long rx_length_errors;
2485// unsigned long rx_over_errors; /* receiver ring buff overflow */
2486 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2487// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2488// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2489// unsigned long rx_missed_errors; /* receiver missed packet */
2490
2491 /* detailed tx_errors */
2492// unsigned long tx_fifo_errors;
2493
2494 return &dev->stats;
2495}
2496
2497/**
2498 * velocity_close - close adapter callback
2499 * @dev: network device
2500 *
2501 * Callback from the network layer when the velocity is being
2502 * deactivated by the network layer
2503 */
2504static int velocity_close(struct net_device *dev)
2505{
2506 struct velocity_info *vptr = netdev_priv(dev);
2507
2508 napi_disable(n: &vptr->napi);
2509 netif_stop_queue(dev);
2510 velocity_shutdown(vptr);
2511
2512 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2513 velocity_get_ip(vptr);
2514
2515 free_irq(dev->irq, dev);
2516
2517 velocity_free_rings(vptr);
2518
2519 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2520 return 0;
2521}
2522
2523/**
2524 * velocity_xmit - transmit packet callback
2525 * @skb: buffer to transmit
2526 * @dev: network device
2527 *
2528 * Called by the network layer to request a packet is queued to
2529 * the velocity. Returns zero on success.
2530 */
2531static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2532 struct net_device *dev)
2533{
2534 struct velocity_info *vptr = netdev_priv(dev);
2535 int qnum = 0;
2536 struct tx_desc *td_ptr;
2537 struct velocity_td_info *tdinfo;
2538 unsigned long flags;
2539 int pktlen;
2540 int index, prev;
2541 int i = 0;
2542
2543 if (skb_padto(skb, ETH_ZLEN))
2544 goto out;
2545
2546 /* The hardware can handle at most 7 memory segments, so merge
2547 * the skb if there are more */
2548 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2549 dev_kfree_skb_any(skb);
2550 return NETDEV_TX_OK;
2551 }
2552
2553 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2554 max_t(unsigned int, skb->len, ETH_ZLEN) :
2555 skb_headlen(skb);
2556
2557 spin_lock_irqsave(&vptr->lock, flags);
2558
2559 index = vptr->tx.curr[qnum];
2560 td_ptr = &(vptr->tx.rings[qnum][index]);
2561 tdinfo = &(vptr->tx.infos[qnum][index]);
2562
2563 td_ptr->tdesc1.TCR = TCR0_TIC;
2564 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2565
2566 /*
2567 * Map the linear network buffer into PCI space and
2568 * add it to the transmit ring.
2569 */
2570 tdinfo->skb = skb;
2571 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2572 DMA_TO_DEVICE);
2573 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2574 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2575 td_ptr->td_buf[0].pa_high = 0;
2576 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2577
2578 /* Handle fragments */
2579 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2580 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2581
2582 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(dev: vptr->dev,
2583 frag, offset: 0,
2584 size: skb_frag_size(frag),
2585 dir: DMA_TO_DEVICE);
2586
2587 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2588 td_ptr->td_buf[i + 1].pa_high = 0;
2589 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2590 }
2591 tdinfo->nskb_dma = i + 1;
2592
2593 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2594
2595 if (skb_vlan_tag_present(skb)) {
2596 td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2597 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2598 }
2599
2600 /*
2601 * Handle hardware checksum
2602 */
2603 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2604 const struct iphdr *ip = ip_hdr(skb);
2605 if (ip->protocol == IPPROTO_TCP)
2606 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2607 else if (ip->protocol == IPPROTO_UDP)
2608 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2609 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2610 }
2611
2612 prev = index - 1;
2613 if (prev < 0)
2614 prev = vptr->options.numtx - 1;
2615 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2616 vptr->tx.used[qnum]++;
2617 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2618
2619 if (AVAIL_TD(vptr, qnum) < 1)
2620 netif_stop_queue(dev);
2621
2622 td_ptr = &(vptr->tx.rings[qnum][prev]);
2623 td_ptr->td_buf[0].size |= TD_QUEUE;
2624 mac_tx_queue_wake(vptr->mac_regs, qnum);
2625
2626 spin_unlock_irqrestore(lock: &vptr->lock, flags);
2627out:
2628 return NETDEV_TX_OK;
2629}
2630
2631static const struct net_device_ops velocity_netdev_ops = {
2632 .ndo_open = velocity_open,
2633 .ndo_stop = velocity_close,
2634 .ndo_start_xmit = velocity_xmit,
2635 .ndo_get_stats = velocity_get_stats,
2636 .ndo_validate_addr = eth_validate_addr,
2637 .ndo_set_mac_address = eth_mac_addr,
2638 .ndo_set_rx_mode = velocity_set_multi,
2639 .ndo_change_mtu = velocity_change_mtu,
2640 .ndo_eth_ioctl = velocity_ioctl,
2641 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2642 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2643#ifdef CONFIG_NET_POLL_CONTROLLER
2644 .ndo_poll_controller = velocity_poll_controller,
2645#endif
2646};
2647
2648/**
2649 * velocity_init_info - init private data
2650 * @vptr: Velocity info
2651 * @info: Board type
2652 *
2653 * Set up the initial velocity_info struct for the device that has been
2654 * discovered.
2655 */
2656static void velocity_init_info(struct velocity_info *vptr,
2657 const struct velocity_info_tbl *info)
2658{
2659 vptr->chip_id = info->chip_id;
2660 vptr->tx.numq = info->txqueue;
2661 vptr->multicast_limit = MCAM_SIZE;
2662 spin_lock_init(&vptr->lock);
2663}
2664
2665/**
2666 * velocity_get_pci_info - retrieve PCI info for device
2667 * @vptr: velocity device
2668 *
2669 * Retrieve the PCI configuration space data that interests us from
2670 * the kernel PCI layer
2671 */
2672static int velocity_get_pci_info(struct velocity_info *vptr)
2673{
2674 struct pci_dev *pdev = vptr->pdev;
2675
2676 pci_set_master(dev: pdev);
2677
2678 vptr->ioaddr = pci_resource_start(pdev, 0);
2679 vptr->memaddr = pci_resource_start(pdev, 1);
2680
2681 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 dev_err(&pdev->dev,
2683 "region #0 is not an I/O resource, aborting.\n");
2684 return -EINVAL;
2685 }
2686
2687 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 dev_err(&pdev->dev,
2689 "region #1 is an I/O resource, aborting.\n");
2690 return -EINVAL;
2691 }
2692
2693 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 dev_err(&pdev->dev, "region #1 is too small.\n");
2695 return -EINVAL;
2696 }
2697
2698 return 0;
2699}
2700
2701/**
2702 * velocity_get_platform_info - retrieve platform info for device
2703 * @vptr: velocity device
2704 *
2705 * Retrieve the Platform configuration data that interests us
2706 */
2707static int velocity_get_platform_info(struct velocity_info *vptr)
2708{
2709 struct resource res;
2710 int ret;
2711
2712 vptr->no_eeprom = of_property_read_bool(np: vptr->dev->of_node, propname: "no-eeprom");
2713
2714 ret = of_address_to_resource(dev: vptr->dev->of_node, index: 0, r: &res);
2715 if (ret) {
2716 dev_err(vptr->dev, "unable to find memory address\n");
2717 return ret;
2718 }
2719
2720 vptr->memaddr = res.start;
2721
2722 if (resource_size(res: &res) < VELOCITY_IO_SIZE) {
2723 dev_err(vptr->dev, "memory region is too small.\n");
2724 return -EINVAL;
2725 }
2726
2727 return 0;
2728}
2729
2730/**
2731 * velocity_print_info - per driver data
2732 * @vptr: velocity
2733 *
2734 * Print per driver data as the kernel driver finds Velocity
2735 * hardware
2736 */
2737static void velocity_print_info(struct velocity_info *vptr)
2738{
2739 netdev_info(dev: vptr->netdev, format: "%s - Ethernet Address: %pM\n",
2740 get_chip_name(chip_id: vptr->chip_id), vptr->netdev->dev_addr);
2741}
2742
2743static u32 velocity_get_link(struct net_device *dev)
2744{
2745 struct velocity_info *vptr = netdev_priv(dev);
2746 struct mac_regs __iomem *regs = vptr->mac_regs;
2747 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2748}
2749
2750/**
2751 * velocity_probe - set up discovered velocity device
2752 * @dev: PCI device
2753 * @info: table of match
2754 * @irq: interrupt info
2755 * @bustype: bus that device is connected to
2756 *
2757 * Configure a discovered adapter from scratch. Return a negative
2758 * errno error code on failure paths.
2759 */
2760static int velocity_probe(struct device *dev, int irq,
2761 const struct velocity_info_tbl *info,
2762 enum velocity_bus_type bustype)
2763{
2764 struct net_device *netdev;
2765 int i;
2766 struct velocity_info *vptr;
2767 struct mac_regs __iomem *regs;
2768 int ret = -ENOMEM;
2769 u8 addr[ETH_ALEN];
2770
2771 /* FIXME: this driver, like almost all other ethernet drivers,
2772 * can support more than MAX_UNITS.
2773 */
2774 if (velocity_nics >= MAX_UNITS) {
2775 dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2776 return -ENODEV;
2777 }
2778
2779 netdev = alloc_etherdev(sizeof(struct velocity_info));
2780 if (!netdev)
2781 goto out;
2782
2783 /* Chain it all together */
2784
2785 SET_NETDEV_DEV(netdev, dev);
2786 vptr = netdev_priv(dev: netdev);
2787
2788 pr_info_once("%s Ver. %s\n", VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2789 pr_info_once("Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2790 pr_info_once("Copyright (c) 2004 Red Hat Inc.\n");
2791
2792 netdev->irq = irq;
2793 vptr->netdev = netdev;
2794 vptr->dev = dev;
2795
2796 velocity_init_info(vptr, info);
2797
2798 if (bustype == BUS_PCI) {
2799 vptr->pdev = to_pci_dev(dev);
2800
2801 ret = velocity_get_pci_info(vptr);
2802 if (ret < 0)
2803 goto err_free_dev;
2804 } else {
2805 vptr->pdev = NULL;
2806 ret = velocity_get_platform_info(vptr);
2807 if (ret < 0)
2808 goto err_free_dev;
2809 }
2810
2811 regs = ioremap(offset: vptr->memaddr, VELOCITY_IO_SIZE);
2812 if (regs == NULL) {
2813 ret = -EIO;
2814 goto err_free_dev;
2815 }
2816
2817 vptr->mac_regs = regs;
2818 vptr->rev_id = readb(addr: &regs->rev_id);
2819
2820 mac_wol_reset(regs);
2821
2822 for (i = 0; i < 6; i++)
2823 addr[i] = readb(addr: &regs->PAR[i]);
2824 eth_hw_addr_set(dev: netdev, addr);
2825
2826
2827 velocity_get_options(opts: &vptr->options, index: velocity_nics);
2828
2829 /*
2830 * Mask out the options cannot be set to the chip
2831 */
2832
2833 vptr->options.flags &= info->flags;
2834
2835 /*
2836 * Enable the chip specified capbilities
2837 */
2838
2839 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2840
2841 vptr->wol_opts = vptr->options.wol_opts;
2842 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2843
2844 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2845
2846 netdev->netdev_ops = &velocity_netdev_ops;
2847 netdev->ethtool_ops = &velocity_ethtool_ops;
2848 netif_napi_add(dev: netdev, napi: &vptr->napi, poll: velocity_poll);
2849
2850 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2851 NETIF_F_HW_VLAN_CTAG_TX;
2852 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2853 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2854 NETIF_F_IP_CSUM;
2855
2856 /* MTU range: 64 - 9000 */
2857 netdev->min_mtu = VELOCITY_MIN_MTU;
2858 netdev->max_mtu = VELOCITY_MAX_MTU;
2859
2860 ret = register_netdev(dev: netdev);
2861 if (ret < 0)
2862 goto err_iounmap;
2863
2864 if (!velocity_get_link(dev: netdev)) {
2865 netif_carrier_off(dev: netdev);
2866 vptr->mii_status |= VELOCITY_LINK_FAIL;
2867 }
2868
2869 velocity_print_info(vptr);
2870 dev_set_drvdata(dev: vptr->dev, data: netdev);
2871
2872 /* and leave the chip powered down */
2873
2874 velocity_set_power_state(vptr, PCI_D3hot);
2875 velocity_nics++;
2876out:
2877 return ret;
2878
2879err_iounmap:
2880 netif_napi_del(napi: &vptr->napi);
2881 iounmap(addr: regs);
2882err_free_dev:
2883 free_netdev(dev: netdev);
2884 goto out;
2885}
2886
2887/**
2888 * velocity_remove - device unplug
2889 * @dev: device being removed
2890 *
2891 * Device unload callback. Called on an unplug or on module
2892 * unload for each active device that is present. Disconnects
2893 * the device from the network layer and frees all the resources
2894 */
2895static int velocity_remove(struct device *dev)
2896{
2897 struct net_device *netdev = dev_get_drvdata(dev);
2898 struct velocity_info *vptr = netdev_priv(dev: netdev);
2899
2900 unregister_netdev(dev: netdev);
2901 netif_napi_del(napi: &vptr->napi);
2902 iounmap(addr: vptr->mac_regs);
2903 free_netdev(dev: netdev);
2904 velocity_nics--;
2905
2906 return 0;
2907}
2908
2909static int velocity_pci_probe(struct pci_dev *pdev,
2910 const struct pci_device_id *ent)
2911{
2912 const struct velocity_info_tbl *info =
2913 &chip_info_table[ent->driver_data];
2914 int ret;
2915
2916 ret = pci_enable_device(dev: pdev);
2917 if (ret < 0)
2918 return ret;
2919
2920 ret = pci_request_regions(pdev, VELOCITY_NAME);
2921 if (ret < 0) {
2922 dev_err(&pdev->dev, "No PCI resources.\n");
2923 goto fail1;
2924 }
2925
2926 ret = velocity_probe(dev: &pdev->dev, irq: pdev->irq, info, bustype: BUS_PCI);
2927 if (ret == 0)
2928 return 0;
2929
2930 pci_release_regions(pdev);
2931fail1:
2932 pci_disable_device(dev: pdev);
2933 return ret;
2934}
2935
2936static void velocity_pci_remove(struct pci_dev *pdev)
2937{
2938 velocity_remove(dev: &pdev->dev);
2939
2940 pci_release_regions(pdev);
2941 pci_disable_device(dev: pdev);
2942}
2943
2944static int velocity_platform_probe(struct platform_device *pdev)
2945{
2946 const struct velocity_info_tbl *info;
2947 int irq;
2948
2949 info = of_device_get_match_data(dev: &pdev->dev);
2950 if (!info)
2951 return -EINVAL;
2952
2953 irq = irq_of_parse_and_map(node: pdev->dev.of_node, index: 0);
2954 if (!irq)
2955 return -EINVAL;
2956
2957 return velocity_probe(dev: &pdev->dev, irq, info, bustype: BUS_PLATFORM);
2958}
2959
2960static void velocity_platform_remove(struct platform_device *pdev)
2961{
2962 velocity_remove(dev: &pdev->dev);
2963}
2964
2965#ifdef CONFIG_PM_SLEEP
2966/**
2967 * wol_calc_crc - WOL CRC
2968 * @size: size of the wake mask
2969 * @pattern: data pattern
2970 * @mask_pattern: mask
2971 *
2972 * Compute the wake on lan crc hashes for the packet header
2973 * we are interested in.
2974 */
2975static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2976{
2977 u16 crc = 0xFFFF;
2978 u8 mask;
2979 int i, j;
2980
2981 for (i = 0; i < size; i++) {
2982 mask = mask_pattern[i];
2983
2984 /* Skip this loop if the mask equals to zero */
2985 if (mask == 0x00)
2986 continue;
2987
2988 for (j = 0; j < 8; j++) {
2989 if ((mask & 0x01) == 0) {
2990 mask >>= 1;
2991 continue;
2992 }
2993 mask >>= 1;
2994 crc = crc_ccitt(crc, buffer: &(pattern[i * 8 + j]), len: 1);
2995 }
2996 }
2997 /* Finally, invert the result once to get the correct data */
2998 crc = ~crc;
2999 return bitrev32(crc) >> 16;
3000}
3001
3002/**
3003 * velocity_set_wol - set up for wake on lan
3004 * @vptr: velocity to set WOL status on
3005 *
3006 * Set a card up for wake on lan either by unicast or by
3007 * ARP packet.
3008 *
3009 * FIXME: check static buffer is safe here
3010 */
3011static int velocity_set_wol(struct velocity_info *vptr)
3012{
3013 struct mac_regs __iomem *regs = vptr->mac_regs;
3014 enum speed_opt spd_dpx = vptr->options.spd_dpx;
3015 static u8 buf[256];
3016 int i;
3017
3018 static u32 mask_pattern[2][4] = {
3019 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3020 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3021 };
3022
3023 writew(val: 0xFFFF, addr: &regs->WOLCRClr);
3024 writeb(WOLCFG_SAB | WOLCFG_SAM, addr: &regs->WOLCFGSet);
3025 writew(WOLCR_MAGIC_EN, addr: &regs->WOLCRSet);
3026
3027 /*
3028 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3029 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3030 */
3031
3032 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3033 writew(WOLCR_UNICAST_EN, addr: &regs->WOLCRSet);
3034
3035 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3036 struct arp_packet *arp = (struct arp_packet *) buf;
3037 u16 crc;
3038 memset(buf, 0, sizeof(struct arp_packet) + 7);
3039
3040 for (i = 0; i < 4; i++)
3041 writel(val: mask_pattern[0][i], addr: &regs->ByteMask[0][i]);
3042
3043 arp->type = htons(ETH_P_ARP);
3044 arp->ar_op = htons(1);
3045
3046 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3047
3048 crc = wol_calc_crc(size: (sizeof(struct arp_packet) + 7) / 8, pattern: buf,
3049 mask_pattern: (u8 *) & mask_pattern[0][0]);
3050
3051 writew(val: crc, addr: &regs->PatternCRC[0]);
3052 writew(WOLCR_ARP_EN, addr: &regs->WOLCRSet);
3053 }
3054
3055 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3056 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3057
3058 writew(val: 0x0FFF, addr: &regs->WOLSRClr);
3059
3060 if (spd_dpx == SPD_DPX_1000_FULL)
3061 goto mac_done;
3062
3063 if (spd_dpx != SPD_DPX_AUTO)
3064 goto advertise_done;
3065
3066 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3067 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3068 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3069
3070 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3071 }
3072
3073 if (vptr->mii_status & VELOCITY_SPEED_1000)
3074 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3075
3076advertise_done:
3077 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3078
3079 {
3080 u8 GCR;
3081 GCR = readb(addr: &regs->CHIPGCR);
3082 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3083 writeb(val: GCR, addr: &regs->CHIPGCR);
3084 }
3085
3086mac_done:
3087 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3088 /* Turn on SWPTAG just before entering power mode */
3089 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3090 /* Go to bed ..... */
3091 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3092
3093 return 0;
3094}
3095
3096/**
3097 * velocity_save_context - save registers
3098 * @vptr: velocity
3099 * @context: buffer for stored context
3100 *
3101 * Retrieve the current configuration from the velocity hardware
3102 * and stash it in the context structure, for use by the context
3103 * restore functions. This allows us to save things we need across
3104 * power down states
3105 */
3106static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3107{
3108 struct mac_regs __iomem *regs = vptr->mac_regs;
3109 u16 i;
3110 u8 __iomem *ptr = (u8 __iomem *)regs;
3111
3112 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3113 *((u32 *) (context->mac_reg + i)) = readl(addr: ptr + i);
3114
3115 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3116 *((u32 *) (context->mac_reg + i)) = readl(addr: ptr + i);
3117
3118 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3119 *((u32 *) (context->mac_reg + i)) = readl(addr: ptr + i);
3120
3121}
3122
3123static int velocity_suspend(struct device *dev)
3124{
3125 struct net_device *netdev = dev_get_drvdata(dev);
3126 struct velocity_info *vptr = netdev_priv(dev: netdev);
3127 unsigned long flags;
3128
3129 if (!netif_running(dev: vptr->netdev))
3130 return 0;
3131
3132 netif_device_detach(dev: vptr->netdev);
3133
3134 spin_lock_irqsave(&vptr->lock, flags);
3135 if (vptr->pdev)
3136 pci_save_state(dev: vptr->pdev);
3137
3138 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3139 velocity_get_ip(vptr);
3140 velocity_save_context(vptr, context: &vptr->context);
3141 velocity_shutdown(vptr);
3142 velocity_set_wol(vptr);
3143 if (vptr->pdev)
3144 pci_enable_wake(dev: vptr->pdev, PCI_D3hot, enable: 1);
3145 velocity_set_power_state(vptr, PCI_D3hot);
3146 } else {
3147 velocity_save_context(vptr, context: &vptr->context);
3148 velocity_shutdown(vptr);
3149 if (vptr->pdev)
3150 pci_disable_device(dev: vptr->pdev);
3151 velocity_set_power_state(vptr, PCI_D3hot);
3152 }
3153
3154 spin_unlock_irqrestore(lock: &vptr->lock, flags);
3155 return 0;
3156}
3157
3158/**
3159 * velocity_restore_context - restore registers
3160 * @vptr: velocity
3161 * @context: buffer for stored context
3162 *
3163 * Reload the register configuration from the velocity context
3164 * created by velocity_save_context.
3165 */
3166static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3167{
3168 struct mac_regs __iomem *regs = vptr->mac_regs;
3169 int i;
3170 u8 __iomem *ptr = (u8 __iomem *)regs;
3171
3172 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3173 writel(val: *((u32 *) (context->mac_reg + i)), addr: ptr + i);
3174
3175 /* Just skip cr0 */
3176 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3177 /* Clear */
3178 writeb(val: ~(*((u8 *) (context->mac_reg + i))), addr: ptr + i + 4);
3179 /* Set */
3180 writeb(val: *((u8 *) (context->mac_reg + i)), addr: ptr + i);
3181 }
3182
3183 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3184 writel(val: *((u32 *) (context->mac_reg + i)), addr: ptr + i);
3185
3186 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3187 writel(val: *((u32 *) (context->mac_reg + i)), addr: ptr + i);
3188
3189 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3190 writeb(val: *((u8 *) (context->mac_reg + i)), addr: ptr + i);
3191}
3192
3193static int velocity_resume(struct device *dev)
3194{
3195 struct net_device *netdev = dev_get_drvdata(dev);
3196 struct velocity_info *vptr = netdev_priv(dev: netdev);
3197 unsigned long flags;
3198 int i;
3199
3200 if (!netif_running(dev: vptr->netdev))
3201 return 0;
3202
3203 velocity_set_power_state(vptr, PCI_D0);
3204
3205 if (vptr->pdev) {
3206 pci_enable_wake(dev: vptr->pdev, PCI_D0, enable: 0);
3207 pci_restore_state(dev: vptr->pdev);
3208 }
3209
3210 mac_wol_reset(regs: vptr->mac_regs);
3211
3212 spin_lock_irqsave(&vptr->lock, flags);
3213 velocity_restore_context(vptr, context: &vptr->context);
3214 velocity_init_registers(vptr, type: VELOCITY_INIT_WOL);
3215 mac_disable_int(vptr->mac_regs);
3216
3217 velocity_tx_srv(vptr);
3218
3219 for (i = 0; i < vptr->tx.numq; i++) {
3220 if (vptr->tx.used[i])
3221 mac_tx_queue_wake(vptr->mac_regs, i);
3222 }
3223
3224 mac_enable_int(vptr->mac_regs);
3225 spin_unlock_irqrestore(lock: &vptr->lock, flags);
3226 netif_device_attach(dev: vptr->netdev);
3227
3228 return 0;
3229}
3230#endif /* CONFIG_PM_SLEEP */
3231
3232static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3233
3234/*
3235 * Definition for our device driver. The PCI layer interface
3236 * uses this to handle all our card discover and plugging
3237 */
3238static struct pci_driver velocity_pci_driver = {
3239 .name = VELOCITY_NAME,
3240 .id_table = velocity_pci_id_table,
3241 .probe = velocity_pci_probe,
3242 .remove = velocity_pci_remove,
3243 .driver = {
3244 .pm = &velocity_pm_ops,
3245 },
3246};
3247
3248static struct platform_driver velocity_platform_driver = {
3249 .probe = velocity_platform_probe,
3250 .remove_new = velocity_platform_remove,
3251 .driver = {
3252 .name = "via-velocity",
3253 .of_match_table = velocity_of_ids,
3254 .pm = &velocity_pm_ops,
3255 },
3256};
3257
3258/**
3259 * velocity_ethtool_up - pre hook for ethtool
3260 * @dev: network device
3261 *
3262 * Called before an ethtool operation. We need to make sure the
3263 * chip is out of D3 state before we poke at it. In case of ethtool
3264 * ops nesting, only wake the device up in the outermost block.
3265 */
3266static int velocity_ethtool_up(struct net_device *dev)
3267{
3268 struct velocity_info *vptr = netdev_priv(dev);
3269
3270 if (vptr->ethtool_ops_nesting == U32_MAX)
3271 return -EBUSY;
3272 if (!vptr->ethtool_ops_nesting++ && !netif_running(dev))
3273 velocity_set_power_state(vptr, PCI_D0);
3274 return 0;
3275}
3276
3277/**
3278 * velocity_ethtool_down - post hook for ethtool
3279 * @dev: network device
3280 *
3281 * Called after an ethtool operation. Restore the chip back to D3
3282 * state if it isn't running. In case of ethtool ops nesting, only
3283 * put the device to sleep in the outermost block.
3284 */
3285static void velocity_ethtool_down(struct net_device *dev)
3286{
3287 struct velocity_info *vptr = netdev_priv(dev);
3288
3289 if (!--vptr->ethtool_ops_nesting && !netif_running(dev))
3290 velocity_set_power_state(vptr, PCI_D3hot);
3291}
3292
3293static int velocity_get_link_ksettings(struct net_device *dev,
3294 struct ethtool_link_ksettings *cmd)
3295{
3296 struct velocity_info *vptr = netdev_priv(dev);
3297 struct mac_regs __iomem *regs = vptr->mac_regs;
3298 u32 status;
3299 u32 supported, advertising;
3300
3301 status = check_connection_type(regs: vptr->mac_regs);
3302
3303 supported = SUPPORTED_TP |
3304 SUPPORTED_Autoneg |
3305 SUPPORTED_10baseT_Half |
3306 SUPPORTED_10baseT_Full |
3307 SUPPORTED_100baseT_Half |
3308 SUPPORTED_100baseT_Full |
3309 SUPPORTED_1000baseT_Half |
3310 SUPPORTED_1000baseT_Full;
3311
3312 advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3313 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3314 advertising |=
3315 ADVERTISED_10baseT_Half |
3316 ADVERTISED_10baseT_Full |
3317 ADVERTISED_100baseT_Half |
3318 ADVERTISED_100baseT_Full |
3319 ADVERTISED_1000baseT_Half |
3320 ADVERTISED_1000baseT_Full;
3321 } else {
3322 switch (vptr->options.spd_dpx) {
3323 case SPD_DPX_1000_FULL:
3324 advertising |= ADVERTISED_1000baseT_Full;
3325 break;
3326 case SPD_DPX_100_HALF:
3327 advertising |= ADVERTISED_100baseT_Half;
3328 break;
3329 case SPD_DPX_100_FULL:
3330 advertising |= ADVERTISED_100baseT_Full;
3331 break;
3332 case SPD_DPX_10_HALF:
3333 advertising |= ADVERTISED_10baseT_Half;
3334 break;
3335 case SPD_DPX_10_FULL:
3336 advertising |= ADVERTISED_10baseT_Full;
3337 break;
3338 default:
3339 break;
3340 }
3341 }
3342
3343 if (status & VELOCITY_SPEED_1000)
3344 cmd->base.speed = SPEED_1000;
3345 else if (status & VELOCITY_SPEED_100)
3346 cmd->base.speed = SPEED_100;
3347 else
3348 cmd->base.speed = SPEED_10;
3349
3350 cmd->base.autoneg = (status & VELOCITY_AUTONEG_ENABLE) ?
3351 AUTONEG_ENABLE : AUTONEG_DISABLE;
3352 cmd->base.port = PORT_TP;
3353 cmd->base.phy_address = readb(addr: &regs->MIIADR) & 0x1F;
3354
3355 if (status & VELOCITY_DUPLEX_FULL)
3356 cmd->base.duplex = DUPLEX_FULL;
3357 else
3358 cmd->base.duplex = DUPLEX_HALF;
3359
3360 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.supported,
3361 legacy_u32: supported);
3362 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.advertising,
3363 legacy_u32: advertising);
3364
3365 return 0;
3366}
3367
3368static int velocity_set_link_ksettings(struct net_device *dev,
3369 const struct ethtool_link_ksettings *cmd)
3370{
3371 struct velocity_info *vptr = netdev_priv(dev);
3372 u32 speed = cmd->base.speed;
3373 u32 curr_status;
3374 u32 new_status = 0;
3375 int ret = 0;
3376
3377 curr_status = check_connection_type(regs: vptr->mac_regs);
3378 curr_status &= (~VELOCITY_LINK_FAIL);
3379
3380 new_status |= ((cmd->base.autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3381 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3382 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3383 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3384 new_status |= ((cmd->base.duplex == DUPLEX_FULL) ?
3385 VELOCITY_DUPLEX_FULL : 0);
3386
3387 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3388 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3389 ret = -EINVAL;
3390 } else {
3391 enum speed_opt spd_dpx;
3392
3393 if (new_status & VELOCITY_AUTONEG_ENABLE)
3394 spd_dpx = SPD_DPX_AUTO;
3395 else if ((new_status & VELOCITY_SPEED_1000) &&
3396 (new_status & VELOCITY_DUPLEX_FULL)) {
3397 spd_dpx = SPD_DPX_1000_FULL;
3398 } else if (new_status & VELOCITY_SPEED_100)
3399 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3400 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3401 else if (new_status & VELOCITY_SPEED_10)
3402 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3403 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3404 else
3405 return -EOPNOTSUPP;
3406
3407 vptr->options.spd_dpx = spd_dpx;
3408
3409 velocity_set_media_mode(vptr, mii_status: new_status);
3410 }
3411
3412 return ret;
3413}
3414
3415static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3416{
3417 struct velocity_info *vptr = netdev_priv(dev);
3418
3419 strscpy(p: info->driver, VELOCITY_NAME, size: sizeof(info->driver));
3420 strscpy(p: info->version, VELOCITY_VERSION, size: sizeof(info->version));
3421 if (vptr->pdev)
3422 strscpy(p: info->bus_info, q: pci_name(pdev: vptr->pdev),
3423 size: sizeof(info->bus_info));
3424 else
3425 strscpy(p: info->bus_info, q: "platform", size: sizeof(info->bus_info));
3426}
3427
3428static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3429{
3430 struct velocity_info *vptr = netdev_priv(dev);
3431 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3432 wol->wolopts |= WAKE_MAGIC;
3433 /*
3434 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3435 wol.wolopts|=WAKE_PHY;
3436 */
3437 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3438 wol->wolopts |= WAKE_UCAST;
3439 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3440 wol->wolopts |= WAKE_ARP;
3441 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3442}
3443
3444static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3445{
3446 struct velocity_info *vptr = netdev_priv(dev);
3447
3448 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3449 return -EFAULT;
3450 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3451
3452 /*
3453 if (wol.wolopts & WAKE_PHY) {
3454 vptr->wol_opts|=VELOCITY_WOL_PHY;
3455 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3456 }
3457 */
3458
3459 if (wol->wolopts & WAKE_MAGIC) {
3460 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3461 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3462 }
3463 if (wol->wolopts & WAKE_UCAST) {
3464 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3465 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3466 }
3467 if (wol->wolopts & WAKE_ARP) {
3468 vptr->wol_opts |= VELOCITY_WOL_ARP;
3469 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3470 }
3471 memcpy(vptr->wol_passwd, wol->sopass, 6);
3472 return 0;
3473}
3474
3475static int get_pending_timer_val(int val)
3476{
3477 int mult_bits = val >> 6;
3478 int mult = 1;
3479
3480 switch (mult_bits)
3481 {
3482 case 1:
3483 mult = 4; break;
3484 case 2:
3485 mult = 16; break;
3486 case 3:
3487 mult = 64; break;
3488 case 0:
3489 default:
3490 break;
3491 }
3492
3493 return (val & 0x3f) * mult;
3494}
3495
3496static void set_pending_timer_val(int *val, u32 us)
3497{
3498 u8 mult = 0;
3499 u8 shift = 0;
3500
3501 if (us >= 0x3f) {
3502 mult = 1; /* mult with 4 */
3503 shift = 2;
3504 }
3505 if (us >= 0x3f * 4) {
3506 mult = 2; /* mult with 16 */
3507 shift = 4;
3508 }
3509 if (us >= 0x3f * 16) {
3510 mult = 3; /* mult with 64 */
3511 shift = 6;
3512 }
3513
3514 *val = (mult << 6) | ((us >> shift) & 0x3f);
3515}
3516
3517
3518static int velocity_get_coalesce(struct net_device *dev,
3519 struct ethtool_coalesce *ecmd,
3520 struct kernel_ethtool_coalesce *kernel_coal,
3521 struct netlink_ext_ack *extack)
3522{
3523 struct velocity_info *vptr = netdev_priv(dev);
3524
3525 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3526 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3527
3528 ecmd->rx_coalesce_usecs = get_pending_timer_val(val: vptr->options.rxqueue_timer);
3529 ecmd->tx_coalesce_usecs = get_pending_timer_val(val: vptr->options.txqueue_timer);
3530
3531 return 0;
3532}
3533
3534static int velocity_set_coalesce(struct net_device *dev,
3535 struct ethtool_coalesce *ecmd,
3536 struct kernel_ethtool_coalesce *kernel_coal,
3537 struct netlink_ext_ack *extack)
3538{
3539 struct velocity_info *vptr = netdev_priv(dev);
3540 int max_us = 0x3f * 64;
3541 unsigned long flags;
3542
3543 /* 6 bits of */
3544 if (ecmd->tx_coalesce_usecs > max_us)
3545 return -EINVAL;
3546 if (ecmd->rx_coalesce_usecs > max_us)
3547 return -EINVAL;
3548
3549 if (ecmd->tx_max_coalesced_frames > 0xff)
3550 return -EINVAL;
3551 if (ecmd->rx_max_coalesced_frames > 0xff)
3552 return -EINVAL;
3553
3554 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3555 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3556
3557 set_pending_timer_val(val: &vptr->options.rxqueue_timer,
3558 us: ecmd->rx_coalesce_usecs);
3559 set_pending_timer_val(val: &vptr->options.txqueue_timer,
3560 us: ecmd->tx_coalesce_usecs);
3561
3562 /* Setup the interrupt suppression and queue timers */
3563 spin_lock_irqsave(&vptr->lock, flags);
3564 mac_disable_int(vptr->mac_regs);
3565 setup_adaptive_interrupts(vptr);
3566 setup_queue_timers(vptr);
3567
3568 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3569 mac_clear_isr(vptr->mac_regs);
3570 mac_enable_int(vptr->mac_regs);
3571 spin_unlock_irqrestore(lock: &vptr->lock, flags);
3572
3573 return 0;
3574}
3575
3576static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3577 "rx_all",
3578 "rx_ok",
3579 "tx_ok",
3580 "rx_error",
3581 "rx_runt_ok",
3582 "rx_runt_err",
3583 "rx_64",
3584 "tx_64",
3585 "rx_65_to_127",
3586 "tx_65_to_127",
3587 "rx_128_to_255",
3588 "tx_128_to_255",
3589 "rx_256_to_511",
3590 "tx_256_to_511",
3591 "rx_512_to_1023",
3592 "tx_512_to_1023",
3593 "rx_1024_to_1518",
3594 "tx_1024_to_1518",
3595 "tx_ether_collisions",
3596 "rx_crc_errors",
3597 "rx_jumbo",
3598 "tx_jumbo",
3599 "rx_mac_control_frames",
3600 "tx_mac_control_frames",
3601 "rx_frame_alignment_errors",
3602 "rx_long_ok",
3603 "rx_long_err",
3604 "tx_sqe_errors",
3605 "rx_no_buf",
3606 "rx_symbol_errors",
3607 "in_range_length_errors",
3608 "late_collisions"
3609};
3610
3611static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3612{
3613 switch (sset) {
3614 case ETH_SS_STATS:
3615 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3616 break;
3617 }
3618}
3619
3620static int velocity_get_sset_count(struct net_device *dev, int sset)
3621{
3622 switch (sset) {
3623 case ETH_SS_STATS:
3624 return ARRAY_SIZE(velocity_gstrings);
3625 default:
3626 return -EOPNOTSUPP;
3627 }
3628}
3629
3630static void velocity_get_ethtool_stats(struct net_device *dev,
3631 struct ethtool_stats *stats, u64 *data)
3632{
3633 if (netif_running(dev)) {
3634 struct velocity_info *vptr = netdev_priv(dev);
3635 u32 *p = vptr->mib_counter;
3636 int i;
3637
3638 spin_lock_irq(lock: &vptr->lock);
3639 velocity_update_hw_mibs(vptr);
3640 spin_unlock_irq(lock: &vptr->lock);
3641
3642 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3643 *data++ = *p++;
3644 }
3645}
3646
3647static const struct ethtool_ops velocity_ethtool_ops = {
3648 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3649 ETHTOOL_COALESCE_MAX_FRAMES,
3650 .get_drvinfo = velocity_get_drvinfo,
3651 .get_wol = velocity_ethtool_get_wol,
3652 .set_wol = velocity_ethtool_set_wol,
3653 .get_link = velocity_get_link,
3654 .get_strings = velocity_get_strings,
3655 .get_sset_count = velocity_get_sset_count,
3656 .get_ethtool_stats = velocity_get_ethtool_stats,
3657 .get_coalesce = velocity_get_coalesce,
3658 .set_coalesce = velocity_set_coalesce,
3659 .begin = velocity_ethtool_up,
3660 .complete = velocity_ethtool_down,
3661 .get_link_ksettings = velocity_get_link_ksettings,
3662 .set_link_ksettings = velocity_set_link_ksettings,
3663};
3664
3665#if defined(CONFIG_PM) && defined(CONFIG_INET)
3666static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3667{
3668 struct in_ifaddr *ifa = ptr;
3669 struct net_device *dev = ifa->ifa_dev->dev;
3670
3671 if (dev_net(dev) == &init_net &&
3672 dev->netdev_ops == &velocity_netdev_ops)
3673 velocity_get_ip(vptr: netdev_priv(dev));
3674
3675 return NOTIFY_DONE;
3676}
3677
3678static struct notifier_block velocity_inetaddr_notifier = {
3679 .notifier_call = velocity_netdev_event,
3680};
3681
3682static void velocity_register_notifier(void)
3683{
3684 register_inetaddr_notifier(nb: &velocity_inetaddr_notifier);
3685}
3686
3687static void velocity_unregister_notifier(void)
3688{
3689 unregister_inetaddr_notifier(nb: &velocity_inetaddr_notifier);
3690}
3691
3692#else
3693
3694#define velocity_register_notifier() do {} while (0)
3695#define velocity_unregister_notifier() do {} while (0)
3696
3697#endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3698
3699/**
3700 * velocity_init_module - load time function
3701 *
3702 * Called when the velocity module is loaded. The PCI driver
3703 * is registered with the PCI layer, and in turn will call
3704 * the probe functions for each velocity adapter installed
3705 * in the system.
3706 */
3707static int __init velocity_init_module(void)
3708{
3709 int ret_pci, ret_platform;
3710
3711 velocity_register_notifier();
3712
3713 ret_pci = pci_register_driver(&velocity_pci_driver);
3714 ret_platform = platform_driver_register(&velocity_platform_driver);
3715
3716 /* if both_registers failed, remove the notifier */
3717 if ((ret_pci < 0) && (ret_platform < 0)) {
3718 velocity_unregister_notifier();
3719 return ret_pci;
3720 }
3721
3722 return 0;
3723}
3724
3725/**
3726 * velocity_cleanup_module - module unload
3727 *
3728 * When the velocity hardware is unloaded this function is called.
3729 * It will clean up the notifiers and the unregister the PCI
3730 * driver interface for this hardware. This in turn cleans up
3731 * all discovered interfaces before returning from the function
3732 */
3733static void __exit velocity_cleanup_module(void)
3734{
3735 velocity_unregister_notifier();
3736
3737 pci_unregister_driver(dev: &velocity_pci_driver);
3738 platform_driver_unregister(&velocity_platform_driver);
3739}
3740
3741module_init(velocity_init_module);
3742module_exit(velocity_cleanup_module);
3743

source code of linux/drivers/net/ethernet/via/via-velocity.c