1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 *
5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 *
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
12 *
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
15 *
16 * Softnet support and various other patches from Val Henson of
17 * ODS/Essential.
18 *
19 * PCI DMA mapping code partly based on work by Francois Romieu.
20 */
21
22
23#define DEBUG 1
24#define RX_DMA_SKBUFF 1
25#define PKT_COPY_THRESHOLD 512
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/errno.h>
30#include <linux/ioport.h>
31#include <linux/pci.h>
32#include <linux/kernel.h>
33#include <linux/netdevice.h>
34#include <linux/hippidevice.h>
35#include <linux/skbuff.h>
36#include <linux/delay.h>
37#include <linux/mm.h>
38#include <linux/slab.h>
39#include <net/sock.h>
40
41#include <asm/cache.h>
42#include <asm/byteorder.h>
43#include <asm/io.h>
44#include <asm/irq.h>
45#include <linux/uaccess.h>
46
47#define rr_if_busy(dev) netif_queue_stopped(dev)
48#define rr_if_running(dev) netif_running(dev)
49
50#include "rrunner.h"
51
52#define RUN_AT(x) (jiffies + (x))
53
54
55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57MODULE_LICENSE("GPL");
58
59static const char version[] =
60"rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
61
62
63static const struct net_device_ops rr_netdev_ops = {
64 .ndo_open = rr_open,
65 .ndo_stop = rr_close,
66 .ndo_siocdevprivate = rr_siocdevprivate,
67 .ndo_start_xmit = rr_start_xmit,
68 .ndo_set_mac_address = hippi_mac_addr,
69};
70
71/*
72 * Implementation notes:
73 *
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
79 * chunk.
80 *
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
84 */
85
86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87{
88 struct net_device *dev;
89 static int version_disp;
90 u8 pci_latency;
91 struct rr_private *rrpriv;
92 void *tmpptr;
93 dma_addr_t ring_dma;
94 int ret = -ENOMEM;
95
96 dev = alloc_hippi_dev(sizeof_priv: sizeof(struct rr_private));
97 if (!dev)
98 goto out3;
99
100 ret = pci_enable_device(dev: pdev);
101 if (ret) {
102 ret = -ENODEV;
103 goto out2;
104 }
105
106 rrpriv = netdev_priv(dev);
107
108 SET_NETDEV_DEV(dev, &pdev->dev);
109
110 ret = pci_request_regions(pdev, "rrunner");
111 if (ret < 0)
112 goto out;
113
114 pci_set_drvdata(pdev, data: dev);
115
116 rrpriv->pci_dev = pdev;
117
118 spin_lock_init(&rrpriv->lock);
119
120 dev->netdev_ops = &rr_netdev_ops;
121
122 /* display version info if adapter is found */
123 if (!version_disp) {
124 /* set display flag to TRUE so that */
125 /* we only display this string ONCE */
126 version_disp = 1;
127 printk(version);
128 }
129
130 pci_read_config_byte(dev: pdev, PCI_LATENCY_TIMER, val: &pci_latency);
131 if (pci_latency <= 0x58){
132 pci_latency = 0x58;
133 pci_write_config_byte(dev: pdev, PCI_LATENCY_TIMER, val: pci_latency);
134 }
135
136 pci_set_master(dev: pdev);
137
138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 (unsigned long long)pci_resource_start(pdev, 0),
141 pdev->irq, pci_latency);
142
143 /*
144 * Remap the MMIO regs into kernel space.
145 */
146 rrpriv->regs = pci_iomap(dev: pdev, bar: 0, max: 0x1000);
147 if (!rrpriv->regs) {
148 printk(KERN_ERR "%s: Unable to map I/O register, "
149 "RoadRunner will be disabled.\n", dev->name);
150 ret = -EIO;
151 goto out;
152 }
153
154 tmpptr = dma_alloc_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, dma_handle: &ring_dma,
155 GFP_KERNEL);
156 rrpriv->tx_ring = tmpptr;
157 rrpriv->tx_ring_dma = ring_dma;
158
159 if (!tmpptr) {
160 ret = -ENOMEM;
161 goto out;
162 }
163
164 tmpptr = dma_alloc_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, dma_handle: &ring_dma,
165 GFP_KERNEL);
166 rrpriv->rx_ring = tmpptr;
167 rrpriv->rx_ring_dma = ring_dma;
168
169 if (!tmpptr) {
170 ret = -ENOMEM;
171 goto out;
172 }
173
174 tmpptr = dma_alloc_coherent(dev: &pdev->dev, EVT_RING_SIZE, dma_handle: &ring_dma,
175 GFP_KERNEL);
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
178
179 if (!tmpptr) {
180 ret = -ENOMEM;
181 goto out;
182 }
183
184 /*
185 * Don't access any register before this point!
186 */
187#ifdef __BIG_ENDIAN
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
190#endif
191 /*
192 * Need to add a case for little-endian 64-bit hosts here.
193 */
194
195 rr_init(dev);
196
197 ret = register_netdev(dev);
198 if (ret)
199 goto out;
200 return 0;
201
202 out:
203 if (rrpriv->evt_ring)
204 dma_free_coherent(dev: &pdev->dev, EVT_RING_SIZE, cpu_addr: rrpriv->evt_ring,
205 dma_handle: rrpriv->evt_ring_dma);
206 if (rrpriv->rx_ring)
207 dma_free_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, cpu_addr: rrpriv->rx_ring,
208 dma_handle: rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 dma_free_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, cpu_addr: rrpriv->tx_ring,
211 dma_handle: rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 pci_iounmap(dev: pdev, rrpriv->regs);
214 if (pdev)
215 pci_release_regions(pdev);
216 pci_disable_device(dev: pdev);
217 out2:
218 free_netdev(dev);
219 out3:
220 return ret;
221}
222
223static void rr_remove_one(struct pci_dev *pdev)
224{
225 struct net_device *dev = pci_get_drvdata(pdev);
226 struct rr_private *rr = netdev_priv(dev);
227
228 if (!(readl(addr: &rr->regs->HostCtrl) & NIC_HALTED)) {
229 printk(KERN_ERR "%s: trying to unload running NIC\n",
230 dev->name);
231 writel(HALT_NIC, addr: &rr->regs->HostCtrl);
232 }
233
234 unregister_netdev(dev);
235 dma_free_coherent(dev: &pdev->dev, EVT_RING_SIZE, cpu_addr: rr->evt_ring,
236 dma_handle: rr->evt_ring_dma);
237 dma_free_coherent(dev: &pdev->dev, RX_TOTAL_SIZE, cpu_addr: rr->rx_ring,
238 dma_handle: rr->rx_ring_dma);
239 dma_free_coherent(dev: &pdev->dev, TX_TOTAL_SIZE, cpu_addr: rr->tx_ring,
240 dma_handle: rr->tx_ring_dma);
241 pci_iounmap(dev: pdev, rr->regs);
242 pci_release_regions(pdev);
243 pci_disable_device(dev: pdev);
244 free_netdev(dev);
245}
246
247
248/*
249 * Commands are considered to be slow, thus there is no reason to
250 * inline this.
251 */
252static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
253{
254 struct rr_regs __iomem *regs;
255 u32 idx;
256
257 regs = rrpriv->regs;
258 /*
259 * This is temporary - it will go away in the final version.
260 * We probably also want to make this function inline.
261 */
262 if (readl(addr: &regs->HostCtrl) & NIC_HALTED){
263 printk("issuing command for halted NIC, code 0x%x, "
264 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
265 if (readl(addr: &regs->Mode) & FATAL_ERR)
266 printk("error codes Fail1 %02x, Fail2 %02x\n",
267 readl(&regs->Fail1), readl(&regs->Fail2));
268 }
269
270 idx = rrpriv->info->cmd_ctrl.pi;
271
272 writel(val: *(u32*)(cmd), addr: &regs->CmdRing[idx]);
273 wmb();
274
275 idx = (idx - 1) % CMD_RING_ENTRIES;
276 rrpriv->info->cmd_ctrl.pi = idx;
277 wmb();
278
279 if (readl(addr: &regs->Mode) & FATAL_ERR)
280 printk("error code %02x\n", readl(&regs->Fail1));
281}
282
283
284/*
285 * Reset the board in a sensible manner. The NIC is already halted
286 * when we get here and a spin-lock is held.
287 */
288static int rr_reset(struct net_device *dev)
289{
290 struct rr_private *rrpriv;
291 struct rr_regs __iomem *regs;
292 u32 start_pc;
293 int i;
294
295 rrpriv = netdev_priv(dev);
296 regs = rrpriv->regs;
297
298 rr_load_firmware(dev);
299
300 writel(val: 0x01000000, addr: &regs->TX_state);
301 writel(val: 0xff800000, addr: &regs->RX_state);
302 writel(val: 0, addr: &regs->AssistState);
303 writel(CLEAR_INTA, addr: &regs->LocalCtrl);
304 writel(val: 0x01, addr: &regs->BrkPt);
305 writel(val: 0, addr: &regs->Timer);
306 writel(val: 0, addr: &regs->TimerRef);
307 writel(RESET_DMA, addr: &regs->DmaReadState);
308 writel(RESET_DMA, addr: &regs->DmaWriteState);
309 writel(val: 0, addr: &regs->DmaWriteHostHi);
310 writel(val: 0, addr: &regs->DmaWriteHostLo);
311 writel(val: 0, addr: &regs->DmaReadHostHi);
312 writel(val: 0, addr: &regs->DmaReadHostLo);
313 writel(val: 0, addr: &regs->DmaReadLen);
314 writel(val: 0, addr: &regs->DmaWriteLen);
315 writel(val: 0, addr: &regs->DmaWriteLcl);
316 writel(val: 0, addr: &regs->DmaWriteIPchecksum);
317 writel(val: 0, addr: &regs->DmaReadLcl);
318 writel(val: 0, addr: &regs->DmaReadIPchecksum);
319 writel(val: 0, addr: &regs->PciState);
320#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, addr: &regs->Mode);
322#elif (BITS_PER_LONG == 64)
323 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
324#else
325 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
326#endif
327
328#if 0
329 /*
330 * Don't worry, this is just black magic.
331 */
332 writel(0xdf000, &regs->RxBase);
333 writel(0xdf000, &regs->RxPrd);
334 writel(0xdf000, &regs->RxCon);
335 writel(0xce000, &regs->TxBase);
336 writel(0xce000, &regs->TxPrd);
337 writel(0xce000, &regs->TxCon);
338 writel(0, &regs->RxIndPro);
339 writel(0, &regs->RxIndCon);
340 writel(0, &regs->RxIndRef);
341 writel(0, &regs->TxIndPro);
342 writel(0, &regs->TxIndCon);
343 writel(0, &regs->TxIndRef);
344 writel(0xcc000, &regs->pad10[0]);
345 writel(0, &regs->DrCmndPro);
346 writel(0, &regs->DrCmndCon);
347 writel(0, &regs->DwCmndPro);
348 writel(0, &regs->DwCmndCon);
349 writel(0, &regs->DwCmndRef);
350 writel(0, &regs->DrDataPro);
351 writel(0, &regs->DrDataCon);
352 writel(0, &regs->DrDataRef);
353 writel(0, &regs->DwDataPro);
354 writel(0, &regs->DwDataCon);
355 writel(0, &regs->DwDataRef);
356#endif
357
358 writel(val: 0xffffffff, addr: &regs->MbEvent);
359 writel(val: 0, addr: &regs->Event);
360
361 writel(val: 0, addr: &regs->TxPi);
362 writel(val: 0, addr: &regs->IpRxPi);
363
364 writel(val: 0, addr: &regs->EvtCon);
365 writel(val: 0, addr: &regs->EvtPrd);
366
367 rrpriv->info->evt_ctrl.pi = 0;
368
369 for (i = 0; i < CMD_RING_ENTRIES; i++)
370 writel(val: 0, addr: &regs->CmdRing[i]);
371
372/*
373 * Why 32 ? is this not cache line size dependent?
374 */
375 writel(RBURST_64|WBURST_64, addr: &regs->PciState);
376 wmb();
377
378 start_pc = rr_read_eeprom_word(rrpriv,
379 offsetof(struct eeprom, rncd_info.FwStart));
380
381#if (DEBUG > 1)
382 printk("%s: Executing firmware at address 0x%06x\n",
383 dev->name, start_pc);
384#endif
385
386 writel(val: start_pc + 0x800, addr: &regs->Pc);
387 wmb();
388 udelay(5);
389
390 writel(val: start_pc, addr: &regs->Pc);
391 wmb();
392
393 return 0;
394}
395
396
397/*
398 * Read a string from the EEPROM.
399 */
400static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401 unsigned long offset,
402 unsigned char *buf,
403 unsigned long length)
404{
405 struct rr_regs __iomem *regs = rrpriv->regs;
406 u32 misc, io, host, i;
407
408 io = readl(addr: &regs->ExtIo);
409 writel(val: 0, addr: &regs->ExtIo);
410 misc = readl(addr: &regs->LocalCtrl);
411 writel(val: 0, addr: &regs->LocalCtrl);
412 host = readl(addr: &regs->HostCtrl);
413 writel(val: host | HALT_NIC, addr: &regs->HostCtrl);
414 mb();
415
416 for (i = 0; i < length; i++){
417 writel(val: (EEPROM_BASE + ((offset+i) << 3)), addr: &regs->WinBase);
418 mb();
419 buf[i] = (readl(addr: &regs->WinData) >> 24) & 0xff;
420 mb();
421 }
422
423 writel(val: host, addr: &regs->HostCtrl);
424 writel(val: misc, addr: &regs->LocalCtrl);
425 writel(val: io, addr: &regs->ExtIo);
426 mb();
427 return i;
428}
429
430
431/*
432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433 * it to our CPU byte-order.
434 */
435static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
436 size_t offset)
437{
438 __be32 word;
439
440 if ((rr_read_eeprom(rrpriv, offset,
441 buf: (unsigned char *)&word, length: 4) == 4))
442 return be32_to_cpu(word);
443 return 0;
444}
445
446
447/*
448 * Write a string to the EEPROM.
449 *
450 * This is only called when the firmware is not running.
451 */
452static unsigned int write_eeprom(struct rr_private *rrpriv,
453 unsigned long offset,
454 unsigned char *buf,
455 unsigned long length)
456{
457 struct rr_regs __iomem *regs = rrpriv->regs;
458 u32 misc, io, data, i, j, ready, error = 0;
459
460 io = readl(addr: &regs->ExtIo);
461 writel(val: 0, addr: &regs->ExtIo);
462 misc = readl(addr: &regs->LocalCtrl);
463 writel(ENABLE_EEPROM_WRITE, addr: &regs->LocalCtrl);
464 mb();
465
466 for (i = 0; i < length; i++){
467 writel(val: (EEPROM_BASE + ((offset+i) << 3)), addr: &regs->WinBase);
468 mb();
469 data = buf[i] << 24;
470 /*
471 * Only try to write the data if it is not the same
472 * value already.
473 */
474 if ((readl(addr: &regs->WinData) & 0xff000000) != data){
475 writel(val: data, addr: &regs->WinData);
476 ready = 0;
477 j = 0;
478 mb();
479 while(!ready){
480 udelay(20);
481 if ((readl(addr: &regs->WinData) & 0xff000000) ==
482 data)
483 ready = 1;
484 mb();
485 if (j++ > 5000){
486 printk("data mismatch: %08x, "
487 "WinData %08x\n", data,
488 readl(&regs->WinData));
489 ready = 1;
490 error = 1;
491 }
492 }
493 }
494 }
495
496 writel(val: misc, addr: &regs->LocalCtrl);
497 writel(val: io, addr: &regs->ExtIo);
498 mb();
499
500 return error;
501}
502
503
504static int rr_init(struct net_device *dev)
505{
506 u8 addr[HIPPI_ALEN] __aligned(4);
507 struct rr_private *rrpriv;
508 struct rr_regs __iomem *regs;
509 u32 sram_size, rev;
510
511 rrpriv = netdev_priv(dev);
512 regs = rrpriv->regs;
513
514 rev = readl(addr: &regs->FwRev);
515 rrpriv->fw_rev = rev;
516 if (rev > 0x00020024)
517 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
518 ((rev >> 8) & 0xff), (rev & 0xff));
519 else if (rev >= 0x00020000) {
520 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
521 "later is recommended)\n", (rev >> 16),
522 ((rev >> 8) & 0xff), (rev & 0xff));
523 }else{
524 printk(" Firmware revision too old: %i.%i.%i, please "
525 "upgrade to 2.0.37 or later.\n",
526 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
527 }
528
529#if (DEBUG > 2)
530 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
531#endif
532
533 /*
534 * Read the hardware address from the eeprom. The HW address
535 * is not really necessary for HIPPI but awfully convenient.
536 * The pointer arithmetic to put it in dev_addr is ugly, but
537 * Donald Becker does it this way for the GigE version of this
538 * card and it's shorter and more portable than any
539 * other method I've seen. -VAL
540 */
541
542 *(__be16 *)(addr) =
543 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544 *(__be32 *)(addr+2) =
545 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546 dev_addr_set(dev, addr);
547
548 printk(" MAC: %pM\n", dev->dev_addr);
549
550 sram_size = rr_read_eeprom_word(rrpriv, offset: 8);
551 printk(" SRAM size 0x%06x\n", sram_size);
552
553 return 0;
554}
555
556
557static int rr_init1(struct net_device *dev)
558{
559 struct rr_private *rrpriv;
560 struct rr_regs __iomem *regs;
561 unsigned long myjif, flags;
562 struct cmd cmd;
563 u32 hostctrl;
564 int ecode = 0;
565 short i;
566
567 rrpriv = netdev_priv(dev);
568 regs = rrpriv->regs;
569
570 spin_lock_irqsave(&rrpriv->lock, flags);
571
572 hostctrl = readl(addr: &regs->HostCtrl);
573 writel(val: hostctrl | HALT_NIC | RR_CLEAR_INT, addr: &regs->HostCtrl);
574 wmb();
575
576 if (hostctrl & PARITY_ERR){
577 printk("%s: Parity error halting NIC - this is serious!\n",
578 dev->name);
579 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
580 ecode = -EFAULT;
581 goto error;
582 }
583
584 set_rxaddr(regs, addr: rrpriv->rx_ctrl_dma);
585 set_infoaddr(regs, addr: rrpriv->info_dma);
586
587 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589 rrpriv->info->evt_ctrl.mode = 0;
590 rrpriv->info->evt_ctrl.pi = 0;
591 set_rraddr(ra: &rrpriv->info->evt_ctrl.rngptr, addr: rrpriv->evt_ring_dma);
592
593 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595 rrpriv->info->cmd_ctrl.mode = 0;
596 rrpriv->info->cmd_ctrl.pi = 15;
597
598 for (i = 0; i < CMD_RING_ENTRIES; i++) {
599 writel(val: 0, addr: &regs->CmdRing[i]);
600 }
601
602 for (i = 0; i < TX_RING_ENTRIES; i++) {
603 rrpriv->tx_ring[i].size = 0;
604 set_rraddr(ra: &rrpriv->tx_ring[i].addr, addr: 0);
605 rrpriv->tx_skbuff[i] = NULL;
606 }
607 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609 rrpriv->info->tx_ctrl.mode = 0;
610 rrpriv->info->tx_ctrl.pi = 0;
611 set_rraddr(ra: &rrpriv->info->tx_ctrl.rngptr, addr: rrpriv->tx_ring_dma);
612
613 /*
614 * Set dirty_tx before we start receiving interrupts, otherwise
615 * the interrupt handler might think it is supposed to process
616 * tx ints before we are up and running, which may cause a null
617 * pointer access in the int handler.
618 */
619 rrpriv->tx_full = 0;
620 rrpriv->cur_rx = 0;
621 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622
623 rr_reset(dev);
624
625 /* Tuning values */
626 writel(val: 0x5000, addr: &regs->ConRetry);
627 writel(val: 0x100, addr: &regs->ConRetryTmr);
628 writel(val: 0x500000, addr: &regs->ConTmout);
629 writel(val: 0x60, addr: &regs->IntrTmr);
630 writel(val: 0x500000, addr: &regs->TxDataMvTimeout);
631 writel(val: 0x200000, addr: &regs->RxDataMvTimeout);
632 writel(val: 0x80, addr: &regs->WriteDmaThresh);
633 writel(val: 0x80, addr: &regs->ReadDmaThresh);
634
635 rrpriv->fw_running = 0;
636 wmb();
637
638 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639 writel(val: hostctrl, addr: &regs->HostCtrl);
640 wmb();
641
642 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
643
644 for (i = 0; i < RX_RING_ENTRIES; i++) {
645 struct sk_buff *skb;
646 dma_addr_t addr;
647
648 rrpriv->rx_ring[i].mode = 0;
649 skb = alloc_skb(size: dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650 if (!skb) {
651 printk(KERN_WARNING "%s: Unable to allocate memory "
652 "for receive ring - halting NIC\n", dev->name);
653 ecode = -ENOMEM;
654 goto error;
655 }
656 rrpriv->rx_skbuff[i] = skb;
657 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
658 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
659 /*
660 * Sanity test to see if we conflict with the DMA
661 * limitations of the Roadrunner.
662 */
663 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664 printk("skb alloc error\n");
665
666 set_rraddr(ra: &rrpriv->rx_ring[i].addr, addr);
667 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668 }
669
670 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672 rrpriv->rx_ctrl[4].mode = 8;
673 rrpriv->rx_ctrl[4].pi = 0;
674 wmb();
675 set_rraddr(ra: &rrpriv->rx_ctrl[4].rngptr, addr: rrpriv->rx_ring_dma);
676
677 udelay(1000);
678
679 /*
680 * Now start the FirmWare.
681 */
682 cmd.code = C_START_FW;
683 cmd.ring = 0;
684 cmd.index = 0;
685
686 rr_issue_cmd(rrpriv, cmd: &cmd);
687
688 /*
689 * Give the FirmWare time to chew on the `get running' command.
690 */
691 myjif = jiffies + 5 * HZ;
692 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693 cpu_relax();
694
695 netif_start_queue(dev);
696
697 return ecode;
698
699 error:
700 /*
701 * We might have gotten here because we are out of memory,
702 * make sure we release everything we allocated before failing
703 */
704 for (i = 0; i < RX_RING_ENTRIES; i++) {
705 struct sk_buff *skb = rrpriv->rx_skbuff[i];
706
707 if (skb) {
708 dma_unmap_single(&rrpriv->pci_dev->dev,
709 rrpriv->rx_ring[i].addr.addrlo,
710 dev->mtu + HIPPI_HLEN,
711 DMA_FROM_DEVICE);
712 rrpriv->rx_ring[i].size = 0;
713 set_rraddr(ra: &rrpriv->rx_ring[i].addr, addr: 0);
714 dev_kfree_skb(skb);
715 rrpriv->rx_skbuff[i] = NULL;
716 }
717 }
718 return ecode;
719}
720
721
722/*
723 * All events are considered to be slow (RX/TX ints do not generate
724 * events) and are handled here, outside the main interrupt handler,
725 * to reduce the size of the handler.
726 */
727static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728{
729 struct rr_private *rrpriv;
730 struct rr_regs __iomem *regs;
731 u32 tmp;
732
733 rrpriv = netdev_priv(dev);
734 regs = rrpriv->regs;
735
736 while (prodidx != eidx){
737 switch (rrpriv->evt_ring[eidx].code){
738 case E_NIC_UP:
739 tmp = readl(addr: &regs->FwRev);
740 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741 "up and running\n", dev->name,
742 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743 rrpriv->fw_running = 1;
744 writel(RX_RING_ENTRIES - 1, addr: &regs->IpRxPi);
745 wmb();
746 break;
747 case E_LINK_ON:
748 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749 break;
750 case E_LINK_OFF:
751 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752 break;
753 case E_RX_IDLE:
754 printk(KERN_WARNING "%s: RX data not moving\n",
755 dev->name);
756 goto drop;
757 case E_WATCHDOG:
758 printk(KERN_INFO "%s: The watchdog is here to see "
759 "us\n", dev->name);
760 break;
761 case E_INTERN_ERR:
762 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763 dev->name);
764 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765 addr: &regs->HostCtrl);
766 wmb();
767 break;
768 case E_HOST_ERR:
769 printk(KERN_ERR "%s: Host software error\n",
770 dev->name);
771 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772 addr: &regs->HostCtrl);
773 wmb();
774 break;
775 /*
776 * TX events.
777 */
778 case E_CON_REJ:
779 printk(KERN_WARNING "%s: Connection rejected\n",
780 dev->name);
781 dev->stats.tx_aborted_errors++;
782 break;
783 case E_CON_TMOUT:
784 printk(KERN_WARNING "%s: Connection timeout\n",
785 dev->name);
786 break;
787 case E_DISC_ERR:
788 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789 dev->name);
790 dev->stats.tx_aborted_errors++;
791 break;
792 case E_INT_PRTY:
793 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794 dev->name);
795 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796 addr: &regs->HostCtrl);
797 wmb();
798 break;
799 case E_TX_IDLE:
800 printk(KERN_WARNING "%s: Transmitter idle\n",
801 dev->name);
802 break;
803 case E_TX_LINK_DROP:
804 printk(KERN_WARNING "%s: Link lost during transmit\n",
805 dev->name);
806 dev->stats.tx_aborted_errors++;
807 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808 addr: &regs->HostCtrl);
809 wmb();
810 break;
811 case E_TX_INV_RNG:
812 printk(KERN_ERR "%s: Invalid send ring block\n",
813 dev->name);
814 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815 addr: &regs->HostCtrl);
816 wmb();
817 break;
818 case E_TX_INV_BUF:
819 printk(KERN_ERR "%s: Invalid send buffer address\n",
820 dev->name);
821 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822 addr: &regs->HostCtrl);
823 wmb();
824 break;
825 case E_TX_INV_DSC:
826 printk(KERN_ERR "%s: Invalid descriptor address\n",
827 dev->name);
828 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829 addr: &regs->HostCtrl);
830 wmb();
831 break;
832 /*
833 * RX events.
834 */
835 case E_RX_RNG_OUT:
836 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837 break;
838
839 case E_RX_PAR_ERR:
840 printk(KERN_WARNING "%s: Receive parity error\n",
841 dev->name);
842 goto drop;
843 case E_RX_LLRC_ERR:
844 printk(KERN_WARNING "%s: Receive LLRC error\n",
845 dev->name);
846 goto drop;
847 case E_PKT_LN_ERR:
848 printk(KERN_WARNING "%s: Receive packet length "
849 "error\n", dev->name);
850 goto drop;
851 case E_DTA_CKSM_ERR:
852 printk(KERN_WARNING "%s: Data checksum error\n",
853 dev->name);
854 goto drop;
855 case E_SHT_BST:
856 printk(KERN_WARNING "%s: Unexpected short burst "
857 "error\n", dev->name);
858 goto drop;
859 case E_STATE_ERR:
860 printk(KERN_WARNING "%s: Recv. state transition"
861 " error\n", dev->name);
862 goto drop;
863 case E_UNEXP_DATA:
864 printk(KERN_WARNING "%s: Unexpected data error\n",
865 dev->name);
866 goto drop;
867 case E_LST_LNK_ERR:
868 printk(KERN_WARNING "%s: Link lost error\n",
869 dev->name);
870 goto drop;
871 case E_FRM_ERR:
872 printk(KERN_WARNING "%s: Framing Error\n",
873 dev->name);
874 goto drop;
875 case E_FLG_SYN_ERR:
876 printk(KERN_WARNING "%s: Flag sync. lost during "
877 "packet\n", dev->name);
878 goto drop;
879 case E_RX_INV_BUF:
880 printk(KERN_ERR "%s: Invalid receive buffer "
881 "address\n", dev->name);
882 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883 addr: &regs->HostCtrl);
884 wmb();
885 break;
886 case E_RX_INV_DSC:
887 printk(KERN_ERR "%s: Invalid receive descriptor "
888 "address\n", dev->name);
889 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890 addr: &regs->HostCtrl);
891 wmb();
892 break;
893 case E_RNG_BLK:
894 printk(KERN_ERR "%s: Invalid ring block\n",
895 dev->name);
896 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897 addr: &regs->HostCtrl);
898 wmb();
899 break;
900 drop:
901 /* Label packet to be dropped.
902 * Actual dropping occurs in rx
903 * handling.
904 *
905 * The index of packet we get to drop is
906 * the index of the packet following
907 * the bad packet. -kbf
908 */
909 {
910 u16 index = rrpriv->evt_ring[eidx].index;
911 index = (index + (RX_RING_ENTRIES - 1)) %
912 RX_RING_ENTRIES;
913 rrpriv->rx_ring[index].mode |=
914 (PACKET_BAD | PACKET_END);
915 }
916 break;
917 default:
918 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919 dev->name, rrpriv->evt_ring[eidx].code);
920 }
921 eidx = (eidx + 1) % EVT_RING_ENTRIES;
922 }
923
924 rrpriv->info->evt_ctrl.pi = eidx;
925 wmb();
926 return eidx;
927}
928
929
930static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931{
932 struct rr_private *rrpriv = netdev_priv(dev);
933 struct rr_regs __iomem *regs = rrpriv->regs;
934
935 do {
936 struct rx_desc *desc;
937 u32 pkt_len;
938
939 desc = &(rrpriv->rx_ring[index]);
940 pkt_len = desc->size;
941#if (DEBUG > 2)
942 printk("index %i, rxlimit %i\n", index, rxlimit);
943 printk("len %x, mode %x\n", pkt_len, desc->mode);
944#endif
945 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946 dev->stats.rx_dropped++;
947 goto defer;
948 }
949
950 if (pkt_len > 0){
951 struct sk_buff *skb, *rx_skb;
952
953 rx_skb = rrpriv->rx_skbuff[index];
954
955 if (pkt_len < PKT_COPY_THRESHOLD) {
956 skb = alloc_skb(size: pkt_len, GFP_ATOMIC);
957 if (skb == NULL){
958 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959 dev->stats.rx_dropped++;
960 goto defer;
961 } else {
962 dma_sync_single_for_cpu(dev: &rrpriv->pci_dev->dev,
963 addr: desc->addr.addrlo,
964 size: pkt_len,
965 dir: DMA_FROM_DEVICE);
966
967 skb_put_data(skb, data: rx_skb->data,
968 len: pkt_len);
969
970 dma_sync_single_for_device(dev: &rrpriv->pci_dev->dev,
971 addr: desc->addr.addrlo,
972 size: pkt_len,
973 dir: DMA_FROM_DEVICE);
974 }
975 }else{
976 struct sk_buff *newskb;
977
978 newskb = alloc_skb(size: dev->mtu + HIPPI_HLEN,
979 GFP_ATOMIC);
980 if (newskb){
981 dma_addr_t addr;
982
983 dma_unmap_single(&rrpriv->pci_dev->dev,
984 desc->addr.addrlo,
985 dev->mtu + HIPPI_HLEN,
986 DMA_FROM_DEVICE);
987 skb = rx_skb;
988 skb_put(skb, len: pkt_len);
989 rrpriv->rx_skbuff[index] = newskb;
990 addr = dma_map_single(&rrpriv->pci_dev->dev,
991 newskb->data,
992 dev->mtu + HIPPI_HLEN,
993 DMA_FROM_DEVICE);
994 set_rraddr(ra: &desc->addr, addr);
995 } else {
996 printk("%s: Out of memory, deferring "
997 "packet\n", dev->name);
998 dev->stats.rx_dropped++;
999 goto defer;
1000 }
1001 }
1002 skb->protocol = hippi_type_trans(skb, dev);
1003
1004 netif_rx(skb); /* send it up */
1005
1006 dev->stats.rx_packets++;
1007 dev->stats.rx_bytes += pkt_len;
1008 }
1009 defer:
1010 desc->mode = 0;
1011 desc->size = dev->mtu + HIPPI_HLEN;
1012
1013 if ((index & 7) == 7)
1014 writel(val: index, addr: &regs->IpRxPi);
1015
1016 index = (index + 1) % RX_RING_ENTRIES;
1017 } while(index != rxlimit);
1018
1019 rrpriv->cur_rx = index;
1020 wmb();
1021}
1022
1023
1024static irqreturn_t rr_interrupt(int irq, void *dev_id)
1025{
1026 struct rr_private *rrpriv;
1027 struct rr_regs __iomem *regs;
1028 struct net_device *dev = (struct net_device *)dev_id;
1029 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1030
1031 rrpriv = netdev_priv(dev);
1032 regs = rrpriv->regs;
1033
1034 if (!(readl(addr: &regs->HostCtrl) & RR_INT))
1035 return IRQ_NONE;
1036
1037 spin_lock(lock: &rrpriv->lock);
1038
1039 prodidx = readl(addr: &regs->EvtPrd);
1040 txcsmr = (prodidx >> 8) & 0xff;
1041 rxlimit = (prodidx >> 16) & 0xff;
1042 prodidx &= 0xff;
1043
1044#if (DEBUG > 2)
1045 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046 prodidx, rrpriv->info->evt_ctrl.pi);
1047#endif
1048 /*
1049 * Order here is important. We must handle events
1050 * before doing anything else in order to catch
1051 * such things as LLRC errors, etc -kbf
1052 */
1053
1054 eidx = rrpriv->info->evt_ctrl.pi;
1055 if (prodidx != eidx)
1056 eidx = rr_handle_event(dev, prodidx, eidx);
1057
1058 rxindex = rrpriv->cur_rx;
1059 if (rxindex != rxlimit)
1060 rx_int(dev, rxlimit, index: rxindex);
1061
1062 txcon = rrpriv->dirty_tx;
1063 if (txcsmr != txcon) {
1064 do {
1065 /* Due to occational firmware TX producer/consumer out
1066 * of sync. error need to check entry in ring -kbf
1067 */
1068 if(rrpriv->tx_skbuff[txcon]){
1069 struct tx_desc *desc;
1070 struct sk_buff *skb;
1071
1072 desc = &(rrpriv->tx_ring[txcon]);
1073 skb = rrpriv->tx_skbuff[txcon];
1074
1075 dev->stats.tx_packets++;
1076 dev->stats.tx_bytes += skb->len;
1077
1078 dma_unmap_single(&rrpriv->pci_dev->dev,
1079 desc->addr.addrlo, skb->len,
1080 DMA_TO_DEVICE);
1081 dev_kfree_skb_irq(skb);
1082
1083 rrpriv->tx_skbuff[txcon] = NULL;
1084 desc->size = 0;
1085 set_rraddr(ra: &rrpriv->tx_ring[txcon].addr, addr: 0);
1086 desc->mode = 0;
1087 }
1088 txcon = (txcon + 1) % TX_RING_ENTRIES;
1089 } while (txcsmr != txcon);
1090 wmb();
1091
1092 rrpriv->dirty_tx = txcon;
1093 if (rrpriv->tx_full && rr_if_busy(dev) &&
1094 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095 != rrpriv->dirty_tx)){
1096 rrpriv->tx_full = 0;
1097 netif_wake_queue(dev);
1098 }
1099 }
1100
1101 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102 writel(val: eidx, addr: &regs->EvtCon);
1103 wmb();
1104
1105 spin_unlock(lock: &rrpriv->lock);
1106 return IRQ_HANDLED;
1107}
1108
1109static inline void rr_raz_tx(struct rr_private *rrpriv,
1110 struct net_device *dev)
1111{
1112 int i;
1113
1114 for (i = 0; i < TX_RING_ENTRIES; i++) {
1115 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1116
1117 if (skb) {
1118 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1119
1120 dma_unmap_single(&rrpriv->pci_dev->dev,
1121 desc->addr.addrlo, skb->len,
1122 DMA_TO_DEVICE);
1123 desc->size = 0;
1124 set_rraddr(ra: &desc->addr, addr: 0);
1125 dev_kfree_skb(skb);
1126 rrpriv->tx_skbuff[i] = NULL;
1127 }
1128 }
1129}
1130
1131
1132static inline void rr_raz_rx(struct rr_private *rrpriv,
1133 struct net_device *dev)
1134{
1135 int i;
1136
1137 for (i = 0; i < RX_RING_ENTRIES; i++) {
1138 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140 if (skb) {
1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143 dma_unmap_single(&rrpriv->pci_dev->dev,
1144 desc->addr.addrlo,
1145 dev->mtu + HIPPI_HLEN,
1146 DMA_FROM_DEVICE);
1147 desc->size = 0;
1148 set_rraddr(ra: &desc->addr, addr: 0);
1149 dev_kfree_skb(skb);
1150 rrpriv->rx_skbuff[i] = NULL;
1151 }
1152 }
1153}
1154
1155static void rr_timer(struct timer_list *t)
1156{
1157 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158 struct net_device *dev = pci_get_drvdata(pdev: rrpriv->pci_dev);
1159 struct rr_regs __iomem *regs = rrpriv->regs;
1160 unsigned long flags;
1161
1162 if (readl(addr: &regs->HostCtrl) & NIC_HALTED){
1163 printk("%s: Restarting nic\n", dev->name);
1164 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165 memset(rrpriv->info, 0, sizeof(struct rr_info));
1166 wmb();
1167
1168 rr_raz_tx(rrpriv, dev);
1169 rr_raz_rx(rrpriv, dev);
1170
1171 if (rr_init1(dev)) {
1172 spin_lock_irqsave(&rrpriv->lock, flags);
1173 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1174 addr: &regs->HostCtrl);
1175 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1176 }
1177 }
1178 rrpriv->timer.expires = RUN_AT(5*HZ);
1179 add_timer(timer: &rrpriv->timer);
1180}
1181
1182
1183static int rr_open(struct net_device *dev)
1184{
1185 struct rr_private *rrpriv = netdev_priv(dev);
1186 struct pci_dev *pdev = rrpriv->pci_dev;
1187 struct rr_regs __iomem *regs;
1188 int ecode = 0;
1189 unsigned long flags;
1190 dma_addr_t dma_addr;
1191
1192 regs = rrpriv->regs;
1193
1194 if (rrpriv->fw_rev < 0x00020000) {
1195 printk(KERN_WARNING "%s: trying to configure device with "
1196 "obsolete firmware\n", dev->name);
1197 ecode = -EBUSY;
1198 goto error;
1199 }
1200
1201 rrpriv->rx_ctrl = dma_alloc_coherent(dev: &pdev->dev,
1202 size: 256 * sizeof(struct ring_ctrl),
1203 dma_handle: &dma_addr, GFP_KERNEL);
1204 if (!rrpriv->rx_ctrl) {
1205 ecode = -ENOMEM;
1206 goto error;
1207 }
1208 rrpriv->rx_ctrl_dma = dma_addr;
1209
1210 rrpriv->info = dma_alloc_coherent(dev: &pdev->dev, size: sizeof(struct rr_info),
1211 dma_handle: &dma_addr, GFP_KERNEL);
1212 if (!rrpriv->info) {
1213 ecode = -ENOMEM;
1214 goto error;
1215 }
1216 rrpriv->info_dma = dma_addr;
1217 wmb();
1218
1219 spin_lock_irqsave(&rrpriv->lock, flags);
1220 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, addr: &regs->HostCtrl);
1221 readl(addr: &regs->HostCtrl);
1222 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1223
1224 if (request_irq(irq: pdev->irq, handler: rr_interrupt, IRQF_SHARED, name: dev->name, dev)) {
1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226 dev->name, pdev->irq);
1227 ecode = -EAGAIN;
1228 goto error;
1229 }
1230
1231 if ((ecode = rr_init1(dev)))
1232 goto error;
1233
1234 /* Set the timer to switch to check for link beat and perhaps switch
1235 to an alternate media type. */
1236 timer_setup(&rrpriv->timer, rr_timer, 0);
1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1238 add_timer(timer: &rrpriv->timer);
1239
1240 netif_start_queue(dev);
1241
1242 return ecode;
1243
1244 error:
1245 spin_lock_irqsave(&rrpriv->lock, flags);
1246 writel(readl(addr: &regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, addr: &regs->HostCtrl);
1247 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1248
1249 if (rrpriv->info) {
1250 dma_free_coherent(dev: &pdev->dev, size: sizeof(struct rr_info),
1251 cpu_addr: rrpriv->info, dma_handle: rrpriv->info_dma);
1252 rrpriv->info = NULL;
1253 }
1254 if (rrpriv->rx_ctrl) {
1255 dma_free_coherent(dev: &pdev->dev, size: 256 * sizeof(struct ring_ctrl),
1256 cpu_addr: rrpriv->rx_ctrl, dma_handle: rrpriv->rx_ctrl_dma);
1257 rrpriv->rx_ctrl = NULL;
1258 }
1259
1260 netif_stop_queue(dev);
1261
1262 return ecode;
1263}
1264
1265
1266static void rr_dump(struct net_device *dev)
1267{
1268 struct rr_private *rrpriv;
1269 struct rr_regs __iomem *regs;
1270 u32 index, cons;
1271 short i;
1272 int len;
1273
1274 rrpriv = netdev_priv(dev);
1275 regs = rrpriv->regs;
1276
1277 printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280 readl(&regs->RxPrd), readl(&regs->TxPrd),
1281 readl(&regs->EvtPrd), readl(&regs->TxPi),
1282 rrpriv->info->tx_ctrl.pi);
1283
1284 printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286 index = (((readl(addr: &regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287 cons = rrpriv->dirty_tx;
1288 printk("TX ring index %i, TX consumer %i\n",
1289 index, cons);
1290
1291 if (rrpriv->tx_skbuff[index]){
1292 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294 for (i = 0; i < len; i++){
1295 if (!(i & 7))
1296 printk("\n");
1297 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298 }
1299 printk("\n");
1300 }
1301
1302 if (rrpriv->tx_skbuff[cons]){
1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306 rrpriv->tx_ring[cons].mode,
1307 rrpriv->tx_ring[cons].size,
1308 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309 rrpriv->tx_skbuff[cons]->data,
1310 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311 for (i = 0; i < len; i++){
1312 if (!(i & 7))
1313 printk("\n");
1314 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315 }
1316 printk("\n");
1317 }
1318
1319 printk("dumping TX ring info:\n");
1320 for (i = 0; i < TX_RING_ENTRIES; i++)
1321 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322 rrpriv->tx_ring[i].mode,
1323 rrpriv->tx_ring[i].size,
1324 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326}
1327
1328
1329static int rr_close(struct net_device *dev)
1330{
1331 struct rr_private *rrpriv = netdev_priv(dev);
1332 struct rr_regs __iomem *regs = rrpriv->regs;
1333 struct pci_dev *pdev = rrpriv->pci_dev;
1334 unsigned long flags;
1335 u32 tmp;
1336 short i;
1337
1338 netif_stop_queue(dev);
1339
1340
1341 /*
1342 * Lock to make sure we are not cleaning up while another CPU
1343 * is handling interrupts.
1344 */
1345 spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347 tmp = readl(addr: &regs->HostCtrl);
1348 if (tmp & NIC_HALTED){
1349 printk("%s: NIC already halted\n", dev->name);
1350 rr_dump(dev);
1351 }else{
1352 tmp |= HALT_NIC | RR_CLEAR_INT;
1353 writel(val: tmp, addr: &regs->HostCtrl);
1354 readl(addr: &regs->HostCtrl);
1355 }
1356
1357 rrpriv->fw_running = 0;
1358
1359 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1360 del_timer_sync(timer: &rrpriv->timer);
1361 spin_lock_irqsave(&rrpriv->lock, flags);
1362
1363 writel(val: 0, addr: &regs->TxPi);
1364 writel(val: 0, addr: &regs->IpRxPi);
1365
1366 writel(val: 0, addr: &regs->EvtCon);
1367 writel(val: 0, addr: &regs->EvtPrd);
1368
1369 for (i = 0; i < CMD_RING_ENTRIES; i++)
1370 writel(val: 0, addr: &regs->CmdRing[i]);
1371
1372 rrpriv->info->tx_ctrl.entries = 0;
1373 rrpriv->info->cmd_ctrl.pi = 0;
1374 rrpriv->info->evt_ctrl.pi = 0;
1375 rrpriv->rx_ctrl[4].entries = 0;
1376
1377 rr_raz_tx(rrpriv, dev);
1378 rr_raz_rx(rrpriv, dev);
1379
1380 dma_free_coherent(dev: &pdev->dev, size: 256 * sizeof(struct ring_ctrl),
1381 cpu_addr: rrpriv->rx_ctrl, dma_handle: rrpriv->rx_ctrl_dma);
1382 rrpriv->rx_ctrl = NULL;
1383
1384 dma_free_coherent(dev: &pdev->dev, size: sizeof(struct rr_info), cpu_addr: rrpriv->info,
1385 dma_handle: rrpriv->info_dma);
1386 rrpriv->info = NULL;
1387
1388 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1389 free_irq(pdev->irq, dev);
1390
1391 return 0;
1392}
1393
1394
1395static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396 struct net_device *dev)
1397{
1398 struct rr_private *rrpriv = netdev_priv(dev);
1399 struct rr_regs __iomem *regs = rrpriv->regs;
1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401 struct ring_ctrl *txctrl;
1402 unsigned long flags;
1403 u32 index, len = skb->len;
1404 u32 *ifield;
1405 struct sk_buff *new_skb;
1406
1407 if (readl(addr: &regs->Mode) & FATAL_ERR)
1408 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409 readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411 /*
1412 * We probably need to deal with tbusy here to prevent overruns.
1413 */
1414
1415 if (skb_headroom(skb) < 8){
1416 printk("incoming skb too small - reallocating\n");
1417 if (!(new_skb = dev_alloc_skb(length: len + 8))) {
1418 dev_kfree_skb(skb);
1419 netif_wake_queue(dev);
1420 return NETDEV_TX_OK;
1421 }
1422 skb_reserve(skb: new_skb, len: 8);
1423 skb_put(skb: new_skb, len);
1424 skb_copy_from_linear_data(skb, to: new_skb->data, len);
1425 dev_kfree_skb(skb);
1426 skb = new_skb;
1427 }
1428
1429 ifield = skb_push(skb, len: 8);
1430
1431 ifield[0] = 0;
1432 ifield[1] = hcb->ifield;
1433
1434 /*
1435 * We don't need the lock before we are actually going to start
1436 * fiddling with the control blocks.
1437 */
1438 spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440 txctrl = &rrpriv->info->tx_ctrl;
1441
1442 index = txctrl->pi;
1443
1444 rrpriv->tx_skbuff[index] = skb;
1445 set_rraddr(ra: &rrpriv->tx_ring[index].addr,
1446 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450 wmb();
1451 writel(val: txctrl->pi, addr: &regs->TxPi);
1452
1453 if (txctrl->pi == rrpriv->dirty_tx){
1454 rrpriv->tx_full = 1;
1455 netif_stop_queue(dev);
1456 }
1457
1458 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1459
1460 return NETDEV_TX_OK;
1461}
1462
1463
1464/*
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1467 *
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1470 */
1471static int rr_load_firmware(struct net_device *dev)
1472{
1473 struct rr_private *rrpriv;
1474 struct rr_regs __iomem *regs;
1475 size_t eptr, segptr;
1476 int i, j;
1477 u32 localctrl, sptr, len, tmp;
1478 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480 rrpriv = netdev_priv(dev);
1481 regs = rrpriv->regs;
1482
1483 if (dev->flags & IFF_UP)
1484 return -EBUSY;
1485
1486 if (!(readl(addr: &regs->HostCtrl) & NIC_HALTED)){
1487 printk("%s: Trying to load firmware to a running NIC.\n",
1488 dev->name);
1489 return -EBUSY;
1490 }
1491
1492 localctrl = readl(addr: &regs->LocalCtrl);
1493 writel(val: 0, addr: &regs->LocalCtrl);
1494
1495 writel(val: 0, addr: &regs->EvtPrd);
1496 writel(val: 0, addr: &regs->RxPrd);
1497 writel(val: 0, addr: &regs->TxPrd);
1498
1499 /*
1500 * First wipe the entire SRAM, otherwise we might run into all
1501 * kinds of trouble ... sigh, this took almost all afternoon
1502 * to track down ;-(
1503 */
1504 io = readl(addr: &regs->ExtIo);
1505 writel(val: 0, addr: &regs->ExtIo);
1506 sram_size = rr_read_eeprom_word(rrpriv, offset: 8);
1507
1508 for (i = 200; i < sram_size / 4; i++){
1509 writel(val: i * 4, addr: &regs->WinBase);
1510 mb();
1511 writel(val: 0, addr: &regs->WinData);
1512 mb();
1513 }
1514 writel(val: io, addr: &regs->ExtIo);
1515 mb();
1516
1517 eptr = rr_read_eeprom_word(rrpriv,
1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519 eptr = ((eptr & 0x1fffff) >> 3);
1520
1521 p2len = rr_read_eeprom_word(rrpriv, offset: 0x83*4);
1522 p2len = (p2len << 2);
1523 p2size = rr_read_eeprom_word(rrpriv, offset: 0x84*4);
1524 p2size = ((p2size & 0x1fffff) >> 3);
1525
1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527 printk("%s: eptr is invalid\n", dev->name);
1528 goto out;
1529 }
1530
1531 revision = rr_read_eeprom_word(rrpriv,
1532 offsetof(struct eeprom, manf.HeaderFmt));
1533
1534 if (revision != 1){
1535 printk("%s: invalid firmware format (%i)\n",
1536 dev->name, revision);
1537 goto out;
1538 }
1539
1540 nr_seg = rr_read_eeprom_word(rrpriv, offset: eptr);
1541 eptr +=4;
1542#if (DEBUG > 1)
1543 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544#endif
1545
1546 for (i = 0; i < nr_seg; i++){
1547 sptr = rr_read_eeprom_word(rrpriv, offset: eptr);
1548 eptr += 4;
1549 len = rr_read_eeprom_word(rrpriv, offset: eptr);
1550 eptr += 4;
1551 segptr = rr_read_eeprom_word(rrpriv, offset: eptr);
1552 segptr = ((segptr & 0x1fffff) >> 3);
1553 eptr += 4;
1554#if (DEBUG > 1)
1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556 dev->name, i, sptr, len, segptr);
1557#endif
1558 for (j = 0; j < len; j++){
1559 tmp = rr_read_eeprom_word(rrpriv, offset: segptr);
1560 writel(val: sptr, addr: &regs->WinBase);
1561 mb();
1562 writel(val: tmp, addr: &regs->WinData);
1563 mb();
1564 segptr += 4;
1565 sptr += 4;
1566 }
1567 }
1568
1569out:
1570 writel(val: localctrl, addr: &regs->LocalCtrl);
1571 mb();
1572 return 0;
1573}
1574
1575
1576static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577 void __user *data, int cmd)
1578{
1579 struct rr_private *rrpriv;
1580 unsigned char *image, *oldimage;
1581 unsigned long flags;
1582 unsigned int i;
1583 int error = -EOPNOTSUPP;
1584
1585 rrpriv = netdev_priv(dev);
1586
1587 switch(cmd){
1588 case SIOCRRGFW:
1589 if (!capable(CAP_SYS_RAWIO)){
1590 return -EPERM;
1591 }
1592
1593 image = kmalloc_array(EEPROM_WORDS, size: sizeof(u32), GFP_KERNEL);
1594 if (!image)
1595 return -ENOMEM;
1596
1597 if (rrpriv->fw_running){
1598 printk("%s: Firmware already running\n", dev->name);
1599 error = -EPERM;
1600 goto gf_out;
1601 }
1602
1603 spin_lock_irqsave(&rrpriv->lock, flags);
1604 i = rr_read_eeprom(rrpriv, offset: 0, buf: image, EEPROM_BYTES);
1605 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1606 if (i != EEPROM_BYTES){
1607 printk(KERN_ERR "%s: Error reading EEPROM\n",
1608 dev->name);
1609 error = -EFAULT;
1610 goto gf_out;
1611 }
1612 error = copy_to_user(to: data, from: image, EEPROM_BYTES);
1613 if (error)
1614 error = -EFAULT;
1615 gf_out:
1616 kfree(objp: image);
1617 return error;
1618
1619 case SIOCRRPFW:
1620 if (!capable(CAP_SYS_RAWIO)){
1621 return -EPERM;
1622 }
1623
1624 image = memdup_user(data, EEPROM_BYTES);
1625 if (IS_ERR(ptr: image))
1626 return PTR_ERR(ptr: image);
1627
1628 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1629 if (!oldimage) {
1630 kfree(objp: image);
1631 return -ENOMEM;
1632 }
1633
1634 if (rrpriv->fw_running){
1635 printk("%s: Firmware already running\n", dev->name);
1636 error = -EPERM;
1637 goto wf_out;
1638 }
1639
1640 printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642 spin_lock_irqsave(&rrpriv->lock, flags);
1643 error = write_eeprom(rrpriv, offset: 0, buf: image, EEPROM_BYTES);
1644 if (error)
1645 printk(KERN_ERR "%s: Error writing EEPROM\n",
1646 dev->name);
1647
1648 i = rr_read_eeprom(rrpriv, offset: 0, buf: oldimage, EEPROM_BYTES);
1649 spin_unlock_irqrestore(lock: &rrpriv->lock, flags);
1650
1651 if (i != EEPROM_BYTES)
1652 printk(KERN_ERR "%s: Error reading back EEPROM "
1653 "image\n", dev->name);
1654
1655 error = memcmp(p: image, q: oldimage, EEPROM_BYTES);
1656 if (error){
1657 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658 dev->name);
1659 error = -EFAULT;
1660 }
1661 wf_out:
1662 kfree(objp: oldimage);
1663 kfree(objp: image);
1664 return error;
1665
1666 case SIOCRRID:
1667 return put_user(0x52523032, (int __user *)data);
1668 default:
1669 return error;
1670 }
1671}
1672
1673static const struct pci_device_id rr_pci_tbl[] = {
1674 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675 PCI_ANY_ID, PCI_ANY_ID, },
1676 { 0,}
1677};
1678MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680static struct pci_driver rr_driver = {
1681 .name = "rrunner",
1682 .id_table = rr_pci_tbl,
1683 .probe = rr_init_one,
1684 .remove = rr_remove_one,
1685};
1686
1687module_pci_driver(rr_driver);
1688

source code of linux/drivers/net/hippi/rrunner.c