1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/kref.h>
4#include <linux/list.h>
5#include <linux/mutex.h>
6#include <linux/phylink.h>
7#include <linux/property.h>
8#include <linux/rtnetlink.h>
9#include <linux/slab.h>
10
11#include "sfp.h"
12
13/**
14 * struct sfp_bus - internal representation of a sfp bus
15 */
16struct sfp_bus {
17 /* private: */
18 struct kref kref;
19 struct list_head node;
20 const struct fwnode_handle *fwnode;
21
22 const struct sfp_socket_ops *socket_ops;
23 struct device *sfp_dev;
24 struct sfp *sfp;
25 const struct sfp_quirk *sfp_quirk;
26
27 const struct sfp_upstream_ops *upstream_ops;
28 void *upstream;
29 struct phy_device *phydev;
30
31 bool registered;
32 bool started;
33};
34
35/**
36 * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
37 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
38 * @id: a pointer to the module's &struct sfp_eeprom_id
39 * @support: optional pointer to an array of unsigned long for the
40 * ethtool support mask
41 *
42 * Parse the EEPROM identification given in @id, and return one of
43 * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
44 * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
45 * the connector type.
46 *
47 * If the port type is not known, returns %PORT_OTHER.
48 */
49int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
50 unsigned long *support)
51{
52 int port;
53
54 /* port is the physical connector, set this from the connector field. */
55 switch (id->base.connector) {
56 case SFF8024_CONNECTOR_SC:
57 case SFF8024_CONNECTOR_FIBERJACK:
58 case SFF8024_CONNECTOR_LC:
59 case SFF8024_CONNECTOR_MT_RJ:
60 case SFF8024_CONNECTOR_MU:
61 case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
62 case SFF8024_CONNECTOR_MPO_1X12:
63 case SFF8024_CONNECTOR_MPO_2X16:
64 port = PORT_FIBRE;
65 break;
66
67 case SFF8024_CONNECTOR_RJ45:
68 port = PORT_TP;
69 break;
70
71 case SFF8024_CONNECTOR_COPPER_PIGTAIL:
72 port = PORT_DA;
73 break;
74
75 case SFF8024_CONNECTOR_UNSPEC:
76 if (id->base.e1000_base_t) {
77 port = PORT_TP;
78 break;
79 }
80 fallthrough;
81 case SFF8024_CONNECTOR_SG: /* guess */
82 case SFF8024_CONNECTOR_HSSDC_II:
83 case SFF8024_CONNECTOR_NOSEPARATE:
84 case SFF8024_CONNECTOR_MXC_2X16:
85 port = PORT_OTHER;
86 break;
87 default:
88 dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
89 id->base.connector);
90 port = PORT_OTHER;
91 break;
92 }
93
94 if (support) {
95 switch (port) {
96 case PORT_FIBRE:
97 phylink_set(support, FIBRE);
98 break;
99
100 case PORT_TP:
101 phylink_set(support, TP);
102 break;
103 }
104 }
105
106 return port;
107}
108EXPORT_SYMBOL_GPL(sfp_parse_port);
109
110/**
111 * sfp_may_have_phy() - indicate whether the module may have a PHY
112 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
113 * @id: a pointer to the module's &struct sfp_eeprom_id
114 *
115 * Parse the EEPROM identification given in @id, and return whether
116 * this module may have a PHY.
117 */
118bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
119{
120 if (id->base.e1000_base_t)
121 return true;
122
123 if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
124 switch (id->base.extended_cc) {
125 case SFF8024_ECC_10GBASE_T_SFI:
126 case SFF8024_ECC_10GBASE_T_SR:
127 case SFF8024_ECC_5GBASE_T:
128 case SFF8024_ECC_2_5GBASE_T:
129 return true;
130 }
131 }
132
133 return false;
134}
135EXPORT_SYMBOL_GPL(sfp_may_have_phy);
136
137/**
138 * sfp_parse_support() - Parse the eeprom id for supported link modes
139 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
140 * @id: a pointer to the module's &struct sfp_eeprom_id
141 * @support: pointer to an array of unsigned long for the ethtool support mask
142 * @interfaces: pointer to an array of unsigned long for phy interface modes
143 * mask
144 *
145 * Parse the EEPROM identification information and derive the supported
146 * ethtool link modes for the module.
147 */
148void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
149 unsigned long *support, unsigned long *interfaces)
150{
151 unsigned int br_min, br_nom, br_max;
152 __ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
153
154 phylink_set(modes, Autoneg);
155 phylink_set(modes, Pause);
156 phylink_set(modes, Asym_Pause);
157
158 /* Decode the bitrate information to MBd */
159 br_min = br_nom = br_max = 0;
160 if (id->base.br_nominal) {
161 if (id->base.br_nominal != 255) {
162 br_nom = id->base.br_nominal * 100;
163 br_min = br_nom - id->base.br_nominal * id->ext.br_min;
164 br_max = br_nom + id->base.br_nominal * id->ext.br_max;
165 } else if (id->ext.br_max) {
166 br_nom = 250 * id->ext.br_max;
167 br_max = br_nom + br_nom * id->ext.br_min / 100;
168 br_min = br_nom - br_nom * id->ext.br_min / 100;
169 }
170
171 /* When using passive cables, in case neither BR,min nor BR,max
172 * are specified, set br_min to 0 as the nominal value is then
173 * used as the maximum.
174 */
175 if (br_min == br_max && id->base.sfp_ct_passive)
176 br_min = 0;
177 }
178
179 /* Set ethtool support from the compliance fields. */
180 if (id->base.e10g_base_sr) {
181 phylink_set(modes, 10000baseSR_Full);
182 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
183 }
184 if (id->base.e10g_base_lr) {
185 phylink_set(modes, 10000baseLR_Full);
186 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
187 }
188 if (id->base.e10g_base_lrm) {
189 phylink_set(modes, 10000baseLRM_Full);
190 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
191 }
192 if (id->base.e10g_base_er) {
193 phylink_set(modes, 10000baseER_Full);
194 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
195 }
196 if (id->base.e1000_base_sx ||
197 id->base.e1000_base_lx ||
198 id->base.e1000_base_cx) {
199 phylink_set(modes, 1000baseX_Full);
200 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
201 }
202 if (id->base.e1000_base_t) {
203 phylink_set(modes, 1000baseT_Half);
204 phylink_set(modes, 1000baseT_Full);
205 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
206 __set_bit(PHY_INTERFACE_MODE_SGMII, interfaces);
207 }
208
209 /* 1000Base-PX or 1000Base-BX10 */
210 if ((id->base.e_base_px || id->base.e_base_bx10) &&
211 br_min <= 1300 && br_max >= 1200) {
212 phylink_set(modes, 1000baseX_Full);
213 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
214 }
215
216 /* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
217 if (id->base.e100_base_fx || id->base.e100_base_lx) {
218 phylink_set(modes, 100baseFX_Full);
219 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
220 }
221 if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100) {
222 phylink_set(modes, 100baseFX_Full);
223 __set_bit(PHY_INTERFACE_MODE_100BASEX, interfaces);
224 }
225
226 /* For active or passive cables, select the link modes
227 * based on the bit rates and the cable compliance bytes.
228 */
229 if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
230 /* This may look odd, but some manufacturers use 12000MBd */
231 if (br_min <= 12000 && br_max >= 10300) {
232 phylink_set(modes, 10000baseCR_Full);
233 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
234 }
235 if (br_min <= 3200 && br_max >= 3100) {
236 phylink_set(modes, 2500baseX_Full);
237 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
238 }
239 if (br_min <= 1300 && br_max >= 1200) {
240 phylink_set(modes, 1000baseX_Full);
241 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
242 }
243 }
244 if (id->base.sfp_ct_passive) {
245 if (id->base.passive.sff8431_app_e) {
246 phylink_set(modes, 10000baseCR_Full);
247 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
248 }
249 }
250 if (id->base.sfp_ct_active) {
251 if (id->base.active.sff8431_app_e ||
252 id->base.active.sff8431_lim) {
253 phylink_set(modes, 10000baseCR_Full);
254 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
255 }
256 }
257
258 switch (id->base.extended_cc) {
259 case SFF8024_ECC_UNSPEC:
260 break;
261 case SFF8024_ECC_100G_25GAUI_C2M_AOC:
262 if (br_min <= 28000 && br_max >= 25000) {
263 /* 25GBASE-R, possibly with FEC */
264 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
265 /* There is currently no link mode for 25000base
266 * with unspecified range, reuse SR.
267 */
268 phylink_set(modes, 25000baseSR_Full);
269 }
270 break;
271 case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
272 phylink_set(modes, 100000baseSR4_Full);
273 phylink_set(modes, 25000baseSR_Full);
274 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
275 break;
276 case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
277 case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
278 phylink_set(modes, 100000baseLR4_ER4_Full);
279 break;
280 case SFF8024_ECC_100GBASE_CR4:
281 phylink_set(modes, 100000baseCR4_Full);
282 fallthrough;
283 case SFF8024_ECC_25GBASE_CR_S:
284 case SFF8024_ECC_25GBASE_CR_N:
285 phylink_set(modes, 25000baseCR_Full);
286 __set_bit(PHY_INTERFACE_MODE_25GBASER, interfaces);
287 break;
288 case SFF8024_ECC_10GBASE_T_SFI:
289 case SFF8024_ECC_10GBASE_T_SR:
290 phylink_set(modes, 10000baseT_Full);
291 __set_bit(PHY_INTERFACE_MODE_10GBASER, interfaces);
292 break;
293 case SFF8024_ECC_5GBASE_T:
294 phylink_set(modes, 5000baseT_Full);
295 __set_bit(PHY_INTERFACE_MODE_5GBASER, interfaces);
296 break;
297 case SFF8024_ECC_2_5GBASE_T:
298 phylink_set(modes, 2500baseT_Full);
299 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
300 break;
301 default:
302 dev_warn(bus->sfp_dev,
303 "Unknown/unsupported extended compliance code: 0x%02x\n",
304 id->base.extended_cc);
305 break;
306 }
307
308 /* For fibre channel SFP, derive possible BaseX modes */
309 if (id->base.fc_speed_100 ||
310 id->base.fc_speed_200 ||
311 id->base.fc_speed_400) {
312 if (id->base.br_nominal >= 31) {
313 phylink_set(modes, 2500baseX_Full);
314 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
315 }
316 if (id->base.br_nominal >= 12) {
317 phylink_set(modes, 1000baseX_Full);
318 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
319 }
320 }
321
322 /* If we haven't discovered any modes that this module supports, try
323 * the bitrate to determine supported modes. Some BiDi modules (eg,
324 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
325 * wavelengths, so do not set any transceiver bits.
326 *
327 * Do the same for modules supporting 2500BASE-X. Note that some
328 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
329 * 2500BASE-X, so we allow some slack here.
330 */
331 if (bitmap_empty(src: modes, nbits: __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
332 if (br_min <= 1300 && br_max >= 1200) {
333 phylink_set(modes, 1000baseX_Full);
334 __set_bit(PHY_INTERFACE_MODE_1000BASEX, interfaces);
335 }
336 if (br_min <= 3200 && br_max >= 2500) {
337 phylink_set(modes, 2500baseX_Full);
338 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
339 }
340 }
341
342 if (bus->sfp_quirk && bus->sfp_quirk->modes)
343 bus->sfp_quirk->modes(id, modes, interfaces);
344
345 linkmode_or(dst: support, a: support, b: modes);
346}
347EXPORT_SYMBOL_GPL(sfp_parse_support);
348
349/**
350 * sfp_select_interface() - Select appropriate phy_interface_t mode
351 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
352 * @link_modes: ethtool link modes mask
353 *
354 * Derive the phy_interface_t mode for the SFP module from the link
355 * modes mask.
356 */
357phy_interface_t sfp_select_interface(struct sfp_bus *bus,
358 unsigned long *link_modes)
359{
360 if (phylink_test(link_modes, 25000baseCR_Full) ||
361 phylink_test(link_modes, 25000baseKR_Full) ||
362 phylink_test(link_modes, 25000baseSR_Full))
363 return PHY_INTERFACE_MODE_25GBASER;
364
365 if (phylink_test(link_modes, 10000baseCR_Full) ||
366 phylink_test(link_modes, 10000baseSR_Full) ||
367 phylink_test(link_modes, 10000baseLR_Full) ||
368 phylink_test(link_modes, 10000baseLRM_Full) ||
369 phylink_test(link_modes, 10000baseER_Full) ||
370 phylink_test(link_modes, 10000baseT_Full))
371 return PHY_INTERFACE_MODE_10GBASER;
372
373 if (phylink_test(link_modes, 5000baseT_Full))
374 return PHY_INTERFACE_MODE_5GBASER;
375
376 if (phylink_test(link_modes, 2500baseX_Full))
377 return PHY_INTERFACE_MODE_2500BASEX;
378
379 if (phylink_test(link_modes, 1000baseT_Half) ||
380 phylink_test(link_modes, 1000baseT_Full))
381 return PHY_INTERFACE_MODE_SGMII;
382
383 if (phylink_test(link_modes, 1000baseX_Full))
384 return PHY_INTERFACE_MODE_1000BASEX;
385
386 if (phylink_test(link_modes, 100baseFX_Full))
387 return PHY_INTERFACE_MODE_100BASEX;
388
389 dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
390
391 return PHY_INTERFACE_MODE_NA;
392}
393EXPORT_SYMBOL_GPL(sfp_select_interface);
394
395static LIST_HEAD(sfp_buses);
396static DEFINE_MUTEX(sfp_mutex);
397
398static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
399{
400 return bus->registered ? bus->upstream_ops : NULL;
401}
402
403static struct sfp_bus *sfp_bus_get(const struct fwnode_handle *fwnode)
404{
405 struct sfp_bus *sfp, *new, *found = NULL;
406
407 new = kzalloc(size: sizeof(*new), GFP_KERNEL);
408
409 mutex_lock(&sfp_mutex);
410
411 list_for_each_entry(sfp, &sfp_buses, node) {
412 if (sfp->fwnode == fwnode) {
413 kref_get(kref: &sfp->kref);
414 found = sfp;
415 break;
416 }
417 }
418
419 if (!found && new) {
420 kref_init(kref: &new->kref);
421 new->fwnode = fwnode;
422 list_add(new: &new->node, head: &sfp_buses);
423 found = new;
424 new = NULL;
425 }
426
427 mutex_unlock(lock: &sfp_mutex);
428
429 kfree(objp: new);
430
431 return found;
432}
433
434static void sfp_bus_release(struct kref *kref)
435{
436 struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
437
438 list_del(entry: &bus->node);
439 mutex_unlock(lock: &sfp_mutex);
440 kfree(objp: bus);
441}
442
443/**
444 * sfp_bus_put() - put a reference on the &struct sfp_bus
445 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
446 *
447 * Put a reference on the &struct sfp_bus and free the underlying structure
448 * if this was the last reference.
449 */
450void sfp_bus_put(struct sfp_bus *bus)
451{
452 if (bus)
453 kref_put_mutex(kref: &bus->kref, release: sfp_bus_release, lock: &sfp_mutex);
454}
455EXPORT_SYMBOL_GPL(sfp_bus_put);
456
457static int sfp_register_bus(struct sfp_bus *bus)
458{
459 const struct sfp_upstream_ops *ops = bus->upstream_ops;
460 int ret;
461
462 if (ops) {
463 if (ops->link_down)
464 ops->link_down(bus->upstream);
465 if (ops->connect_phy && bus->phydev) {
466 ret = ops->connect_phy(bus->upstream, bus->phydev);
467 if (ret)
468 return ret;
469 }
470 }
471 bus->registered = true;
472 bus->socket_ops->attach(bus->sfp);
473 if (bus->started)
474 bus->socket_ops->start(bus->sfp);
475 bus->upstream_ops->attach(bus->upstream, bus);
476 return 0;
477}
478
479static void sfp_unregister_bus(struct sfp_bus *bus)
480{
481 const struct sfp_upstream_ops *ops = bus->upstream_ops;
482
483 if (bus->registered) {
484 bus->upstream_ops->detach(bus->upstream, bus);
485 if (bus->started)
486 bus->socket_ops->stop(bus->sfp);
487 bus->socket_ops->detach(bus->sfp);
488 if (bus->phydev && ops && ops->disconnect_phy)
489 ops->disconnect_phy(bus->upstream);
490 }
491 bus->registered = false;
492}
493
494/**
495 * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
496 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
497 * @modinfo: a &struct ethtool_modinfo
498 *
499 * Fill in the type and eeprom_len parameters in @modinfo for a module on
500 * the sfp bus specified by @bus.
501 *
502 * Returns 0 on success or a negative errno number.
503 */
504int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
505{
506 return bus->socket_ops->module_info(bus->sfp, modinfo);
507}
508EXPORT_SYMBOL_GPL(sfp_get_module_info);
509
510/**
511 * sfp_get_module_eeprom() - Read the SFP module EEPROM
512 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
513 * @ee: a &struct ethtool_eeprom
514 * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
515 *
516 * Read the EEPROM as specified by the supplied @ee. See the documentation
517 * for &struct ethtool_eeprom for the region to be read.
518 *
519 * Returns 0 on success or a negative errno number.
520 */
521int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
522 u8 *data)
523{
524 return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
525}
526EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
527
528/**
529 * sfp_get_module_eeprom_by_page() - Read a page from the SFP module EEPROM
530 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
531 * @page: a &struct ethtool_module_eeprom
532 * @extack: extack for reporting problems
533 *
534 * Read an EEPROM page as specified by the supplied @page. See the
535 * documentation for &struct ethtool_module_eeprom for the page to be read.
536 *
537 * Returns 0 on success or a negative errno number. More error
538 * information might be provided via extack
539 */
540int sfp_get_module_eeprom_by_page(struct sfp_bus *bus,
541 const struct ethtool_module_eeprom *page,
542 struct netlink_ext_ack *extack)
543{
544 return bus->socket_ops->module_eeprom_by_page(bus->sfp, page, extack);
545}
546EXPORT_SYMBOL_GPL(sfp_get_module_eeprom_by_page);
547
548/**
549 * sfp_upstream_start() - Inform the SFP that the network device is up
550 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
551 *
552 * Inform the SFP socket that the network device is now up, so that the
553 * module can be enabled by allowing TX_DISABLE to be deasserted. This
554 * should be called from the network device driver's &struct net_device_ops
555 * ndo_open() method.
556 */
557void sfp_upstream_start(struct sfp_bus *bus)
558{
559 if (bus->registered)
560 bus->socket_ops->start(bus->sfp);
561 bus->started = true;
562}
563EXPORT_SYMBOL_GPL(sfp_upstream_start);
564
565/**
566 * sfp_upstream_stop() - Inform the SFP that the network device is down
567 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
568 *
569 * Inform the SFP socket that the network device is now up, so that the
570 * module can be disabled by asserting TX_DISABLE, disabling the laser
571 * in optical modules. This should be called from the network device
572 * driver's &struct net_device_ops ndo_stop() method.
573 */
574void sfp_upstream_stop(struct sfp_bus *bus)
575{
576 if (bus->registered)
577 bus->socket_ops->stop(bus->sfp);
578 bus->started = false;
579}
580EXPORT_SYMBOL_GPL(sfp_upstream_stop);
581
582static void sfp_upstream_clear(struct sfp_bus *bus)
583{
584 bus->upstream_ops = NULL;
585 bus->upstream = NULL;
586}
587
588/**
589 * sfp_upstream_set_signal_rate() - set data signalling rate
590 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
591 * @rate_kbd: signalling rate in units of 1000 baud
592 *
593 * Configure the rate select settings on the SFP module for the signalling
594 * rate (not the same as the data rate).
595 *
596 * Locks that may be held:
597 * Phylink's state_mutex
598 * rtnl lock
599 * SFP's sm_mutex
600 */
601void sfp_upstream_set_signal_rate(struct sfp_bus *bus, unsigned int rate_kbd)
602{
603 if (bus->registered)
604 bus->socket_ops->set_signal_rate(bus->sfp, rate_kbd);
605}
606EXPORT_SYMBOL_GPL(sfp_upstream_set_signal_rate);
607
608/**
609 * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
610 * @fwnode: firmware node for the parent device (MAC or PHY)
611 *
612 * Parse the parent device's firmware node for a SFP bus, and locate
613 * the sfp_bus structure, incrementing its reference count. This must
614 * be put via sfp_bus_put() when done.
615 *
616 * Returns:
617 * - on success, a pointer to the sfp_bus structure,
618 * - %NULL if no SFP is specified,
619 * - on failure, an error pointer value:
620 *
621 * - corresponding to the errors detailed for
622 * fwnode_property_get_reference_args().
623 * - %-ENOMEM if we failed to allocate the bus.
624 * - an error from the upstream's connect_phy() method.
625 */
626struct sfp_bus *sfp_bus_find_fwnode(const struct fwnode_handle *fwnode)
627{
628 struct fwnode_reference_args ref;
629 struct sfp_bus *bus;
630 int ret;
631
632 ret = fwnode_property_get_reference_args(fwnode, prop: "sfp", NULL,
633 nargs: 0, index: 0, args: &ref);
634 if (ret == -ENOENT)
635 return NULL;
636 else if (ret < 0)
637 return ERR_PTR(error: ret);
638
639 if (!fwnode_device_is_available(fwnode: ref.fwnode)) {
640 fwnode_handle_put(fwnode: ref.fwnode);
641 return NULL;
642 }
643
644 bus = sfp_bus_get(fwnode: ref.fwnode);
645 fwnode_handle_put(fwnode: ref.fwnode);
646 if (!bus)
647 return ERR_PTR(error: -ENOMEM);
648
649 return bus;
650}
651EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
652
653/**
654 * sfp_bus_add_upstream() - parse and register the neighbouring device
655 * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
656 * @upstream: the upstream private data
657 * @ops: the upstream's &struct sfp_upstream_ops
658 *
659 * Add upstream driver for the SFP bus, and if the bus is complete, register
660 * the SFP bus using sfp_register_upstream(). This takes a reference on the
661 * bus, so it is safe to put the bus after this call.
662 *
663 * Returns:
664 * - on success, a pointer to the sfp_bus structure,
665 * - %NULL if no SFP is specified,
666 * - on failure, an error pointer value:
667 *
668 * - corresponding to the errors detailed for
669 * fwnode_property_get_reference_args().
670 * - %-ENOMEM if we failed to allocate the bus.
671 * - an error from the upstream's connect_phy() method.
672 */
673int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
674 const struct sfp_upstream_ops *ops)
675{
676 int ret;
677
678 /* If no bus, return success */
679 if (!bus)
680 return 0;
681
682 rtnl_lock();
683 kref_get(kref: &bus->kref);
684 bus->upstream_ops = ops;
685 bus->upstream = upstream;
686
687 if (bus->sfp) {
688 ret = sfp_register_bus(bus);
689 if (ret)
690 sfp_upstream_clear(bus);
691 } else {
692 ret = 0;
693 }
694 rtnl_unlock();
695
696 if (ret)
697 sfp_bus_put(bus);
698
699 return ret;
700}
701EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
702
703/**
704 * sfp_bus_del_upstream() - Delete a sfp bus
705 * @bus: a pointer to the &struct sfp_bus structure for the sfp module
706 *
707 * Delete a previously registered upstream connection for the SFP
708 * module. @bus should have been added by sfp_bus_add_upstream().
709 */
710void sfp_bus_del_upstream(struct sfp_bus *bus)
711{
712 if (bus) {
713 rtnl_lock();
714 if (bus->sfp)
715 sfp_unregister_bus(bus);
716 sfp_upstream_clear(bus);
717 rtnl_unlock();
718
719 sfp_bus_put(bus);
720 }
721}
722EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
723
724/* Socket driver entry points */
725int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
726{
727 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
728 int ret = 0;
729
730 if (ops && ops->connect_phy)
731 ret = ops->connect_phy(bus->upstream, phydev);
732
733 if (ret == 0)
734 bus->phydev = phydev;
735
736 return ret;
737}
738EXPORT_SYMBOL_GPL(sfp_add_phy);
739
740void sfp_remove_phy(struct sfp_bus *bus)
741{
742 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
743
744 if (ops && ops->disconnect_phy)
745 ops->disconnect_phy(bus->upstream);
746 bus->phydev = NULL;
747}
748EXPORT_SYMBOL_GPL(sfp_remove_phy);
749
750void sfp_link_up(struct sfp_bus *bus)
751{
752 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
753
754 if (ops && ops->link_up)
755 ops->link_up(bus->upstream);
756}
757EXPORT_SYMBOL_GPL(sfp_link_up);
758
759void sfp_link_down(struct sfp_bus *bus)
760{
761 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
762
763 if (ops && ops->link_down)
764 ops->link_down(bus->upstream);
765}
766EXPORT_SYMBOL_GPL(sfp_link_down);
767
768int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
769 const struct sfp_quirk *quirk)
770{
771 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
772 int ret = 0;
773
774 bus->sfp_quirk = quirk;
775
776 if (ops && ops->module_insert)
777 ret = ops->module_insert(bus->upstream, id);
778
779 return ret;
780}
781EXPORT_SYMBOL_GPL(sfp_module_insert);
782
783void sfp_module_remove(struct sfp_bus *bus)
784{
785 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
786
787 if (ops && ops->module_remove)
788 ops->module_remove(bus->upstream);
789
790 bus->sfp_quirk = NULL;
791}
792EXPORT_SYMBOL_GPL(sfp_module_remove);
793
794int sfp_module_start(struct sfp_bus *bus)
795{
796 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
797 int ret = 0;
798
799 if (ops && ops->module_start)
800 ret = ops->module_start(bus->upstream);
801
802 return ret;
803}
804EXPORT_SYMBOL_GPL(sfp_module_start);
805
806void sfp_module_stop(struct sfp_bus *bus)
807{
808 const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
809
810 if (ops && ops->module_stop)
811 ops->module_stop(bus->upstream);
812}
813EXPORT_SYMBOL_GPL(sfp_module_stop);
814
815static void sfp_socket_clear(struct sfp_bus *bus)
816{
817 bus->sfp_dev = NULL;
818 bus->sfp = NULL;
819 bus->socket_ops = NULL;
820}
821
822struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
823 const struct sfp_socket_ops *ops)
824{
825 struct sfp_bus *bus = sfp_bus_get(fwnode: dev->fwnode);
826 int ret = 0;
827
828 if (bus) {
829 rtnl_lock();
830 bus->sfp_dev = dev;
831 bus->sfp = sfp;
832 bus->socket_ops = ops;
833
834 if (bus->upstream_ops) {
835 ret = sfp_register_bus(bus);
836 if (ret)
837 sfp_socket_clear(bus);
838 }
839 rtnl_unlock();
840 }
841
842 if (ret) {
843 sfp_bus_put(bus);
844 bus = NULL;
845 }
846
847 return bus;
848}
849EXPORT_SYMBOL_GPL(sfp_register_socket);
850
851void sfp_unregister_socket(struct sfp_bus *bus)
852{
853 rtnl_lock();
854 if (bus->upstream_ops)
855 sfp_unregister_bus(bus);
856 sfp_socket_clear(bus);
857 rtnl_unlock();
858
859 sfp_bus_put(bus);
860}
861EXPORT_SYMBOL_GPL(sfp_unregister_socket);
862

source code of linux/drivers/net/phy/sfp-bus.c