1// SPDX-License-Identifier: GPL-2.0
2#include <linux/debugfs.h>
3#include <linux/delay.h>
4#include <linux/gpio/consumer.h>
5#include <linux/hwmon.h>
6#include <linux/i2c.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/mdio/mdio-i2c.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "sfp.h"
20#include "swphy.h"
21
22enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75};
76
77static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85};
86
87static const char *mod_state_to_str(unsigned short mod_state)
88{
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92}
93
94static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98};
99
100static const char *dev_state_to_str(unsigned short dev_state)
101{
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105}
106
107static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119};
120
121static const char *event_to_str(unsigned short event)
122{
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126}
127
128static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140};
141
142static const char *sm_state_to_str(unsigned short sm_state)
143{
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147}
148
149static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156};
157
158static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165};
166
167/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172#define T_WAIT msecs_to_jiffies(50)
173#define T_START_UP msecs_to_jiffies(300)
174#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176/* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179#define T_RESET_US 10
180#define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182/* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187#define N_FAULT_INIT 5
188#define N_FAULT 5
189
190/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193#define T_PHY_RETRY msecs_to_jiffies(50)
194#define R_PHY_RETRY 12
195
196/* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203#define T_SERIAL msecs_to_jiffies(300)
204#define T_HPOWER_LEVEL msecs_to_jiffies(300)
205#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206#define R_PROBE_RETRY_INIT 10
207#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208#define R_PROBE_RETRY_SLOW 12
209
210/* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215#define SFP_PHY_ADDR 22
216#define SFP_PHY_ADDR_ROLLBALL 17
217
218/* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222#define SFP_EEPROM_BLOCK_SIZE 16
223
224struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227};
228
229struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
262
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
273
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278
279 unsigned int rate_kbd;
280 unsigned int rs_threshold_kbd;
281 unsigned int rs_state_mask;
282
283 bool have_a2;
284
285 const struct sfp_quirk *quirk;
286
287#if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293#endif
294
295#if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297#endif
298};
299
300static bool sff_module_supported(const struct sfp_eeprom_id *id)
301{
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304}
305
306static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309};
310
311static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312{
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(p: id->base.vendor_name, q: "UBNT ", size: 16) &&
324 !memcmp(p: id->base.vendor_pn, q: "UF-INSTANT ", size: 16))
325 return true;
326
327 return false;
328}
329
330static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334};
335
336static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340};
341MODULE_DEVICE_TABLE(of, sfp_of_match);
342
343static void sfp_fixup_long_startup(struct sfp *sfp)
344{
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346}
347
348static void sfp_fixup_ignore_los(struct sfp *sfp)
349{
350 /* This forces LOS to zero, so we ignore transitions */
351 sfp->state_ignore_mask |= SFP_F_LOS;
352 /* Make sure that LOS options are clear */
353 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
354 SFP_OPTIONS_LOS_NORMAL);
355}
356
357static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
358{
359 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
360}
361
362static void sfp_fixup_nokia(struct sfp *sfp)
363{
364 sfp_fixup_long_startup(sfp);
365 sfp_fixup_ignore_los(sfp);
366}
367
368// For 10GBASE-T short-reach modules
369static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
370{
371 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
372 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
373}
374
375static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
376{
377 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
378 sfp->module_t_wait = msecs_to_jiffies(m: secs * 1000);
379}
380
381static void sfp_fixup_fs_10gt(struct sfp *sfp)
382{
383 sfp_fixup_10gbaset_30m(sfp);
384
385 // These SFPs need 4 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, secs: 4);
387}
388
389static void sfp_fixup_halny_gsfp(struct sfp *sfp)
390{
391 /* Ignore the TX_FAULT and LOS signals on this module.
392 * these are possibly used for other purposes on this
393 * module, e.g. a serial port.
394 */
395 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
396}
397
398static void sfp_fixup_rollball(struct sfp *sfp)
399{
400 // Rollball SFPs need 25 seconds before the PHY can be accessed
401 sfp_fixup_rollball_proto(sfp, secs: 25);
402}
403
404static void sfp_fixup_rollball_cc(struct sfp *sfp)
405{
406 sfp_fixup_rollball(sfp);
407
408 /* Some RollBall SFPs may have wrong (zero) extended compliance code
409 * burned in EEPROM. For PHY probing we need the correct one.
410 */
411 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
412}
413
414static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417{
418 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_2500baseX_Full_BIT, addr: modes);
419 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
420}
421
422static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
423 unsigned long *modes,
424 unsigned long *interfaces)
425{
426 linkmode_clear_bit(nr: ETHTOOL_LINK_MODE_Autoneg_BIT, addr: modes);
427}
428
429static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
430 unsigned long *modes,
431 unsigned long *interfaces)
432{
433 /* Copper 2.5G SFP */
434 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_2500baseT_Full_BIT, addr: modes);
435 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
436 sfp_quirk_disable_autoneg(id, modes, interfaces);
437}
438
439static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
440 unsigned long *modes,
441 unsigned long *interfaces)
442{
443 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
444 * types including 10G Ethernet which is not truth. So clear all claimed
445 * modes and set only one mode which module supports: 1000baseX_Full.
446 */
447 linkmode_zero(dst: modes);
448 linkmode_set_bit(nr: ETHTOOL_LINK_MODE_1000baseX_Full_BIT, addr: modes);
449}
450
451#define SFP_QUIRK(_v, _p, _m, _f) \
452 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
453#define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
454#define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
455
456static const struct sfp_quirk sfp_quirks[] = {
457 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
458 // report 2500MBd NRZ in their EEPROM
459 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
460
461 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
462 // NRZ in their EEPROM
463 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
464 sfp_fixup_nokia),
465
466 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
467 // Rollball protocol to talk to the PHY.
468 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
469
470 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
471 // NRZ in their EEPROM
472 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
473 sfp_fixup_ignore_tx_fault),
474
475 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
476
477 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
478 // 2600MBd in their EERPOM
479 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
480
481 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
482 // their EEPROM
483 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
484 sfp_fixup_ignore_tx_fault),
485
486 // FS 2.5G Base-T
487 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
488
489 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
490 // 2500MBd NRZ in their EEPROM
491 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
492
493 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
494
495 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
496 // Rollball protocol to talk to the PHY.
497 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
498 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
499
500 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
501 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
502 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
503 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
504 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
505 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
506};
507
508static size_t sfp_strlen(const char *str, size_t maxlen)
509{
510 size_t size, i;
511
512 /* Trailing characters should be filled with space chars, but
513 * some manufacturers can't read SFF-8472 and use NUL.
514 */
515 for (i = 0, size = 0; i < maxlen; i++)
516 if (str[i] != ' ' && str[i] != '\0')
517 size = i + 1;
518
519 return size;
520}
521
522static bool sfp_match(const char *qs, const char *str, size_t len)
523{
524 if (!qs)
525 return true;
526 if (strlen(qs) != len)
527 return false;
528 return !strncmp(qs, str, len);
529}
530
531static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
532{
533 const struct sfp_quirk *q;
534 unsigned int i;
535 size_t vs, ps;
536
537 vs = sfp_strlen(str: id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
538 ps = sfp_strlen(str: id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
539
540 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
541 if (sfp_match(qs: q->vendor, str: id->base.vendor_name, len: vs) &&
542 sfp_match(qs: q->part, str: id->base.vendor_pn, len: ps))
543 return q;
544
545 return NULL;
546}
547
548static unsigned long poll_jiffies;
549
550static unsigned int sfp_gpio_get_state(struct sfp *sfp)
551{
552 unsigned int i, state, v;
553
554 for (i = state = 0; i < GPIO_MAX; i++) {
555 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
556 continue;
557
558 v = gpiod_get_value_cansleep(desc: sfp->gpio[i]);
559 if (v)
560 state |= BIT(i);
561 }
562
563 return state;
564}
565
566static unsigned int sff_gpio_get_state(struct sfp *sfp)
567{
568 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
569}
570
571static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
572{
573 unsigned int drive;
574
575 if (state & SFP_F_PRESENT)
576 /* If the module is present, drive the requested signals */
577 drive = sfp->state_hw_drive;
578 else
579 /* Otherwise, let them float to the pull-ups */
580 drive = 0;
581
582 if (sfp->gpio[GPIO_TX_DISABLE]) {
583 if (drive & SFP_F_TX_DISABLE)
584 gpiod_direction_output(desc: sfp->gpio[GPIO_TX_DISABLE],
585 value: state & SFP_F_TX_DISABLE);
586 else
587 gpiod_direction_input(desc: sfp->gpio[GPIO_TX_DISABLE]);
588 }
589
590 if (sfp->gpio[GPIO_RS0]) {
591 if (drive & SFP_F_RS0)
592 gpiod_direction_output(desc: sfp->gpio[GPIO_RS0],
593 value: state & SFP_F_RS0);
594 else
595 gpiod_direction_input(desc: sfp->gpio[GPIO_RS0]);
596 }
597
598 if (sfp->gpio[GPIO_RS1]) {
599 if (drive & SFP_F_RS1)
600 gpiod_direction_output(desc: sfp->gpio[GPIO_RS1],
601 value: state & SFP_F_RS1);
602 else
603 gpiod_direction_input(desc: sfp->gpio[GPIO_RS1]);
604 }
605}
606
607static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
608 size_t len)
609{
610 struct i2c_msg msgs[2];
611 u8 bus_addr = a2 ? 0x51 : 0x50;
612 size_t block_size = sfp->i2c_block_size;
613 size_t this_len;
614 int ret;
615
616 msgs[0].addr = bus_addr;
617 msgs[0].flags = 0;
618 msgs[0].len = 1;
619 msgs[0].buf = &dev_addr;
620 msgs[1].addr = bus_addr;
621 msgs[1].flags = I2C_M_RD;
622 msgs[1].len = len;
623 msgs[1].buf = buf;
624
625 while (len) {
626 this_len = len;
627 if (this_len > block_size)
628 this_len = block_size;
629
630 msgs[1].len = this_len;
631
632 ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs));
633 if (ret < 0)
634 return ret;
635
636 if (ret != ARRAY_SIZE(msgs))
637 break;
638
639 msgs[1].buf += this_len;
640 dev_addr += this_len;
641 len -= this_len;
642 }
643
644 return msgs[1].buf - (u8 *)buf;
645}
646
647static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
648 size_t len)
649{
650 struct i2c_msg msgs[1];
651 u8 bus_addr = a2 ? 0x51 : 0x50;
652 int ret;
653
654 msgs[0].addr = bus_addr;
655 msgs[0].flags = 0;
656 msgs[0].len = 1 + len;
657 msgs[0].buf = kmalloc(size: 1 + len, GFP_KERNEL);
658 if (!msgs[0].buf)
659 return -ENOMEM;
660
661 msgs[0].buf[0] = dev_addr;
662 memcpy(&msgs[0].buf[1], buf, len);
663
664 ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs));
665
666 kfree(objp: msgs[0].buf);
667
668 if (ret < 0)
669 return ret;
670
671 return ret == ARRAY_SIZE(msgs) ? len : 0;
672}
673
674static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
675{
676 if (!i2c_check_functionality(adap: i2c, I2C_FUNC_I2C))
677 return -EINVAL;
678
679 sfp->i2c = i2c;
680 sfp->read = sfp_i2c_read;
681 sfp->write = sfp_i2c_write;
682
683 return 0;
684}
685
686static int sfp_i2c_mdiobus_create(struct sfp *sfp)
687{
688 struct mii_bus *i2c_mii;
689 int ret;
690
691 i2c_mii = mdio_i2c_alloc(parent: sfp->dev, i2c: sfp->i2c, protocol: sfp->mdio_protocol);
692 if (IS_ERR(ptr: i2c_mii))
693 return PTR_ERR(ptr: i2c_mii);
694
695 i2c_mii->name = "SFP I2C Bus";
696 i2c_mii->phy_mask = ~0;
697
698 ret = mdiobus_register(i2c_mii);
699 if (ret < 0) {
700 mdiobus_free(bus: i2c_mii);
701 return ret;
702 }
703
704 sfp->i2c_mii = i2c_mii;
705
706 return 0;
707}
708
709static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
710{
711 mdiobus_unregister(bus: sfp->i2c_mii);
712 sfp->i2c_mii = NULL;
713}
714
715/* Interface */
716static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
717{
718 return sfp->read(sfp, a2, addr, buf, len);
719}
720
721static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
722{
723 return sfp->write(sfp, a2, addr, buf, len);
724}
725
726static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
727{
728 int ret;
729 u8 old, v;
730
731 ret = sfp_read(sfp, a2, addr, buf: &old, len: sizeof(old));
732 if (ret != sizeof(old))
733 return ret;
734
735 v = (old & ~mask) | (val & mask);
736 if (v == old)
737 return sizeof(v);
738
739 return sfp_write(sfp, a2, addr, buf: &v, len: sizeof(v));
740}
741
742static unsigned int sfp_soft_get_state(struct sfp *sfp)
743{
744 unsigned int state = 0;
745 u8 status;
746 int ret;
747
748 ret = sfp_read(sfp, a2: true, addr: SFP_STATUS, buf: &status, len: sizeof(status));
749 if (ret == sizeof(status)) {
750 if (status & SFP_STATUS_RX_LOS)
751 state |= SFP_F_LOS;
752 if (status & SFP_STATUS_TX_FAULT)
753 state |= SFP_F_TX_FAULT;
754 } else {
755 dev_err_ratelimited(sfp->dev,
756 "failed to read SFP soft status: %pe\n",
757 ERR_PTR(ret));
758 /* Preserve the current state */
759 state = sfp->state;
760 }
761
762 return state & sfp->state_soft_mask;
763}
764
765static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
766 unsigned int soft)
767{
768 u8 mask = 0;
769 u8 val = 0;
770
771 if (soft & SFP_F_TX_DISABLE)
772 mask |= SFP_STATUS_TX_DISABLE_FORCE;
773 if (state & SFP_F_TX_DISABLE)
774 val |= SFP_STATUS_TX_DISABLE_FORCE;
775
776 if (soft & SFP_F_RS0)
777 mask |= SFP_STATUS_RS0_SELECT;
778 if (state & SFP_F_RS0)
779 val |= SFP_STATUS_RS0_SELECT;
780
781 if (mask)
782 sfp_modify_u8(sfp, a2: true, addr: SFP_STATUS, mask, val);
783
784 val = mask = 0;
785 if (soft & SFP_F_RS1)
786 mask |= SFP_EXT_STATUS_RS1_SELECT;
787 if (state & SFP_F_RS1)
788 val |= SFP_EXT_STATUS_RS1_SELECT;
789
790 if (mask)
791 sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS, mask, val);
792}
793
794static void sfp_soft_start_poll(struct sfp *sfp)
795{
796 const struct sfp_eeprom_id *id = &sfp->id;
797 unsigned int mask = 0;
798
799 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
800 mask |= SFP_F_TX_DISABLE;
801 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
802 mask |= SFP_F_TX_FAULT;
803 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
804 mask |= SFP_F_LOS;
805 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
806 mask |= sfp->rs_state_mask;
807
808 mutex_lock(&sfp->st_mutex);
809 // Poll the soft state for hardware pins we want to ignore
810 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
811 mask;
812
813 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
814 !sfp->need_poll)
815 mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies);
816 mutex_unlock(lock: &sfp->st_mutex);
817}
818
819static void sfp_soft_stop_poll(struct sfp *sfp)
820{
821 mutex_lock(&sfp->st_mutex);
822 sfp->state_soft_mask = 0;
823 mutex_unlock(lock: &sfp->st_mutex);
824}
825
826/* sfp_get_state() - must be called with st_mutex held, or in the
827 * initialisation path.
828 */
829static unsigned int sfp_get_state(struct sfp *sfp)
830{
831 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
832 unsigned int state;
833
834 state = sfp->get_state(sfp) & sfp->state_hw_mask;
835 if (state & SFP_F_PRESENT && soft)
836 state |= sfp_soft_get_state(sfp);
837
838 return state;
839}
840
841/* sfp_set_state() - must be called with st_mutex held, or in the
842 * initialisation path.
843 */
844static void sfp_set_state(struct sfp *sfp, unsigned int state)
845{
846 unsigned int soft;
847
848 sfp->set_state(sfp, state);
849
850 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
851 if (state & SFP_F_PRESENT && soft)
852 sfp_soft_set_state(sfp, state, soft);
853}
854
855static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
856{
857 mutex_lock(&sfp->st_mutex);
858 sfp->state = (sfp->state & ~mask) | set;
859 sfp_set_state(sfp, state: sfp->state);
860 mutex_unlock(lock: &sfp->st_mutex);
861}
862
863static unsigned int sfp_check(void *buf, size_t len)
864{
865 u8 *p, check;
866
867 for (p = buf, check = 0; len; p++, len--)
868 check += *p;
869
870 return check;
871}
872
873/* hwmon */
874#if IS_ENABLED(CONFIG_HWMON)
875static umode_t sfp_hwmon_is_visible(const void *data,
876 enum hwmon_sensor_types type,
877 u32 attr, int channel)
878{
879 const struct sfp *sfp = data;
880
881 switch (type) {
882 case hwmon_temp:
883 switch (attr) {
884 case hwmon_temp_min_alarm:
885 case hwmon_temp_max_alarm:
886 case hwmon_temp_lcrit_alarm:
887 case hwmon_temp_crit_alarm:
888 case hwmon_temp_min:
889 case hwmon_temp_max:
890 case hwmon_temp_lcrit:
891 case hwmon_temp_crit:
892 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
893 return 0;
894 fallthrough;
895 case hwmon_temp_input:
896 case hwmon_temp_label:
897 return 0444;
898 default:
899 return 0;
900 }
901 case hwmon_in:
902 switch (attr) {
903 case hwmon_in_min_alarm:
904 case hwmon_in_max_alarm:
905 case hwmon_in_lcrit_alarm:
906 case hwmon_in_crit_alarm:
907 case hwmon_in_min:
908 case hwmon_in_max:
909 case hwmon_in_lcrit:
910 case hwmon_in_crit:
911 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
912 return 0;
913 fallthrough;
914 case hwmon_in_input:
915 case hwmon_in_label:
916 return 0444;
917 default:
918 return 0;
919 }
920 case hwmon_curr:
921 switch (attr) {
922 case hwmon_curr_min_alarm:
923 case hwmon_curr_max_alarm:
924 case hwmon_curr_lcrit_alarm:
925 case hwmon_curr_crit_alarm:
926 case hwmon_curr_min:
927 case hwmon_curr_max:
928 case hwmon_curr_lcrit:
929 case hwmon_curr_crit:
930 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
931 return 0;
932 fallthrough;
933 case hwmon_curr_input:
934 case hwmon_curr_label:
935 return 0444;
936 default:
937 return 0;
938 }
939 case hwmon_power:
940 /* External calibration of receive power requires
941 * floating point arithmetic. Doing that in the kernel
942 * is not easy, so just skip it. If the module does
943 * not require external calibration, we can however
944 * show receiver power, since FP is then not needed.
945 */
946 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
947 channel == 1)
948 return 0;
949 switch (attr) {
950 case hwmon_power_min_alarm:
951 case hwmon_power_max_alarm:
952 case hwmon_power_lcrit_alarm:
953 case hwmon_power_crit_alarm:
954 case hwmon_power_min:
955 case hwmon_power_max:
956 case hwmon_power_lcrit:
957 case hwmon_power_crit:
958 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
959 return 0;
960 fallthrough;
961 case hwmon_power_input:
962 case hwmon_power_label:
963 return 0444;
964 default:
965 return 0;
966 }
967 default:
968 return 0;
969 }
970}
971
972static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
973{
974 __be16 val;
975 int err;
976
977 err = sfp_read(sfp, a2: true, addr: reg, buf: &val, len: sizeof(val));
978 if (err < 0)
979 return err;
980
981 *value = be16_to_cpu(val);
982
983 return 0;
984}
985
986static void sfp_hwmon_to_rx_power(long *value)
987{
988 *value = DIV_ROUND_CLOSEST(*value, 10);
989}
990
991static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
992 long *value)
993{
994 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
995 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
996}
997
998static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
999{
1000 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1001 be16_to_cpu(sfp->diag.cal_t_offset), value);
1002
1003 if (*value >= 0x8000)
1004 *value -= 0x10000;
1005
1006 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1007}
1008
1009static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1010{
1011 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1012 be16_to_cpu(sfp->diag.cal_v_offset), value);
1013
1014 *value = DIV_ROUND_CLOSEST(*value, 10);
1015}
1016
1017static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1018{
1019 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1020 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1021
1022 *value = DIV_ROUND_CLOSEST(*value, 500);
1023}
1024
1025static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1026{
1027 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1028 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1029
1030 *value = DIV_ROUND_CLOSEST(*value, 10);
1031}
1032
1033static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1034{
1035 int err;
1036
1037 err = sfp_hwmon_read_sensor(sfp, reg, value);
1038 if (err < 0)
1039 return err;
1040
1041 sfp_hwmon_calibrate_temp(sfp, value);
1042
1043 return 0;
1044}
1045
1046static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1047{
1048 int err;
1049
1050 err = sfp_hwmon_read_sensor(sfp, reg, value);
1051 if (err < 0)
1052 return err;
1053
1054 sfp_hwmon_calibrate_vcc(sfp, value);
1055
1056 return 0;
1057}
1058
1059static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1060{
1061 int err;
1062
1063 err = sfp_hwmon_read_sensor(sfp, reg, value);
1064 if (err < 0)
1065 return err;
1066
1067 sfp_hwmon_calibrate_bias(sfp, value);
1068
1069 return 0;
1070}
1071
1072static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1073{
1074 int err;
1075
1076 err = sfp_hwmon_read_sensor(sfp, reg, value);
1077 if (err < 0)
1078 return err;
1079
1080 sfp_hwmon_calibrate_tx_power(sfp, value);
1081
1082 return 0;
1083}
1084
1085static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1086{
1087 int err;
1088
1089 err = sfp_hwmon_read_sensor(sfp, reg, value);
1090 if (err < 0)
1091 return err;
1092
1093 sfp_hwmon_to_rx_power(value);
1094
1095 return 0;
1096}
1097
1098static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1099{
1100 u8 status;
1101 int err;
1102
1103 switch (attr) {
1104 case hwmon_temp_input:
1105 return sfp_hwmon_read_temp(sfp, reg: SFP_TEMP, value);
1106
1107 case hwmon_temp_lcrit:
1108 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1109 sfp_hwmon_calibrate_temp(sfp, value);
1110 return 0;
1111
1112 case hwmon_temp_min:
1113 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1114 sfp_hwmon_calibrate_temp(sfp, value);
1115 return 0;
1116 case hwmon_temp_max:
1117 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1118 sfp_hwmon_calibrate_temp(sfp, value);
1119 return 0;
1120
1121 case hwmon_temp_crit:
1122 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1123 sfp_hwmon_calibrate_temp(sfp, value);
1124 return 0;
1125
1126 case hwmon_temp_lcrit_alarm:
1127 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1128 if (err < 0)
1129 return err;
1130
1131 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1132 return 0;
1133
1134 case hwmon_temp_min_alarm:
1135 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1136 if (err < 0)
1137 return err;
1138
1139 *value = !!(status & SFP_WARN0_TEMP_LOW);
1140 return 0;
1141
1142 case hwmon_temp_max_alarm:
1143 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1144 if (err < 0)
1145 return err;
1146
1147 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1148 return 0;
1149
1150 case hwmon_temp_crit_alarm:
1151 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1152 if (err < 0)
1153 return err;
1154
1155 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1156 return 0;
1157 default:
1158 return -EOPNOTSUPP;
1159 }
1160
1161 return -EOPNOTSUPP;
1162}
1163
1164static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1165{
1166 u8 status;
1167 int err;
1168
1169 switch (attr) {
1170 case hwmon_in_input:
1171 return sfp_hwmon_read_vcc(sfp, reg: SFP_VCC, value);
1172
1173 case hwmon_in_lcrit:
1174 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1175 sfp_hwmon_calibrate_vcc(sfp, value);
1176 return 0;
1177
1178 case hwmon_in_min:
1179 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1180 sfp_hwmon_calibrate_vcc(sfp, value);
1181 return 0;
1182
1183 case hwmon_in_max:
1184 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1185 sfp_hwmon_calibrate_vcc(sfp, value);
1186 return 0;
1187
1188 case hwmon_in_crit:
1189 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1190 sfp_hwmon_calibrate_vcc(sfp, value);
1191 return 0;
1192
1193 case hwmon_in_lcrit_alarm:
1194 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1195 if (err < 0)
1196 return err;
1197
1198 *value = !!(status & SFP_ALARM0_VCC_LOW);
1199 return 0;
1200
1201 case hwmon_in_min_alarm:
1202 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1203 if (err < 0)
1204 return err;
1205
1206 *value = !!(status & SFP_WARN0_VCC_LOW);
1207 return 0;
1208
1209 case hwmon_in_max_alarm:
1210 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1211 if (err < 0)
1212 return err;
1213
1214 *value = !!(status & SFP_WARN0_VCC_HIGH);
1215 return 0;
1216
1217 case hwmon_in_crit_alarm:
1218 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1219 if (err < 0)
1220 return err;
1221
1222 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1223 return 0;
1224 default:
1225 return -EOPNOTSUPP;
1226 }
1227
1228 return -EOPNOTSUPP;
1229}
1230
1231static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1232{
1233 u8 status;
1234 int err;
1235
1236 switch (attr) {
1237 case hwmon_curr_input:
1238 return sfp_hwmon_read_bias(sfp, reg: SFP_TX_BIAS, value);
1239
1240 case hwmon_curr_lcrit:
1241 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1242 sfp_hwmon_calibrate_bias(sfp, value);
1243 return 0;
1244
1245 case hwmon_curr_min:
1246 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1247 sfp_hwmon_calibrate_bias(sfp, value);
1248 return 0;
1249
1250 case hwmon_curr_max:
1251 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1252 sfp_hwmon_calibrate_bias(sfp, value);
1253 return 0;
1254
1255 case hwmon_curr_crit:
1256 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1257 sfp_hwmon_calibrate_bias(sfp, value);
1258 return 0;
1259
1260 case hwmon_curr_lcrit_alarm:
1261 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1262 if (err < 0)
1263 return err;
1264
1265 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1266 return 0;
1267
1268 case hwmon_curr_min_alarm:
1269 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1270 if (err < 0)
1271 return err;
1272
1273 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1274 return 0;
1275
1276 case hwmon_curr_max_alarm:
1277 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1278 if (err < 0)
1279 return err;
1280
1281 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1282 return 0;
1283
1284 case hwmon_curr_crit_alarm:
1285 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1286 if (err < 0)
1287 return err;
1288
1289 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1290 return 0;
1291 default:
1292 return -EOPNOTSUPP;
1293 }
1294
1295 return -EOPNOTSUPP;
1296}
1297
1298static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1299{
1300 u8 status;
1301 int err;
1302
1303 switch (attr) {
1304 case hwmon_power_input:
1305 return sfp_hwmon_read_tx_power(sfp, reg: SFP_TX_POWER, value);
1306
1307 case hwmon_power_lcrit:
1308 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1309 sfp_hwmon_calibrate_tx_power(sfp, value);
1310 return 0;
1311
1312 case hwmon_power_min:
1313 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1314 sfp_hwmon_calibrate_tx_power(sfp, value);
1315 return 0;
1316
1317 case hwmon_power_max:
1318 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1319 sfp_hwmon_calibrate_tx_power(sfp, value);
1320 return 0;
1321
1322 case hwmon_power_crit:
1323 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1324 sfp_hwmon_calibrate_tx_power(sfp, value);
1325 return 0;
1326
1327 case hwmon_power_lcrit_alarm:
1328 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1329 if (err < 0)
1330 return err;
1331
1332 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1333 return 0;
1334
1335 case hwmon_power_min_alarm:
1336 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1337 if (err < 0)
1338 return err;
1339
1340 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1341 return 0;
1342
1343 case hwmon_power_max_alarm:
1344 err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status));
1345 if (err < 0)
1346 return err;
1347
1348 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1349 return 0;
1350
1351 case hwmon_power_crit_alarm:
1352 err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status));
1353 if (err < 0)
1354 return err;
1355
1356 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1357 return 0;
1358 default:
1359 return -EOPNOTSUPP;
1360 }
1361
1362 return -EOPNOTSUPP;
1363}
1364
1365static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1366{
1367 u8 status;
1368 int err;
1369
1370 switch (attr) {
1371 case hwmon_power_input:
1372 return sfp_hwmon_read_rx_power(sfp, reg: SFP_RX_POWER, value);
1373
1374 case hwmon_power_lcrit:
1375 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1376 sfp_hwmon_to_rx_power(value);
1377 return 0;
1378
1379 case hwmon_power_min:
1380 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1381 sfp_hwmon_to_rx_power(value);
1382 return 0;
1383
1384 case hwmon_power_max:
1385 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1386 sfp_hwmon_to_rx_power(value);
1387 return 0;
1388
1389 case hwmon_power_crit:
1390 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1391 sfp_hwmon_to_rx_power(value);
1392 return 0;
1393
1394 case hwmon_power_lcrit_alarm:
1395 err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status));
1396 if (err < 0)
1397 return err;
1398
1399 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1400 return 0;
1401
1402 case hwmon_power_min_alarm:
1403 err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status));
1404 if (err < 0)
1405 return err;
1406
1407 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1408 return 0;
1409
1410 case hwmon_power_max_alarm:
1411 err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status));
1412 if (err < 0)
1413 return err;
1414
1415 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1416 return 0;
1417
1418 case hwmon_power_crit_alarm:
1419 err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status));
1420 if (err < 0)
1421 return err;
1422
1423 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1424 return 0;
1425 default:
1426 return -EOPNOTSUPP;
1427 }
1428
1429 return -EOPNOTSUPP;
1430}
1431
1432static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1433 u32 attr, int channel, long *value)
1434{
1435 struct sfp *sfp = dev_get_drvdata(dev);
1436
1437 switch (type) {
1438 case hwmon_temp:
1439 return sfp_hwmon_temp(sfp, attr, value);
1440 case hwmon_in:
1441 return sfp_hwmon_vcc(sfp, attr, value);
1442 case hwmon_curr:
1443 return sfp_hwmon_bias(sfp, attr, value);
1444 case hwmon_power:
1445 switch (channel) {
1446 case 0:
1447 return sfp_hwmon_tx_power(sfp, attr, value);
1448 case 1:
1449 return sfp_hwmon_rx_power(sfp, attr, value);
1450 default:
1451 return -EOPNOTSUPP;
1452 }
1453 default:
1454 return -EOPNOTSUPP;
1455 }
1456}
1457
1458static const char *const sfp_hwmon_power_labels[] = {
1459 "TX_power",
1460 "RX_power",
1461};
1462
1463static int sfp_hwmon_read_string(struct device *dev,
1464 enum hwmon_sensor_types type,
1465 u32 attr, int channel, const char **str)
1466{
1467 switch (type) {
1468 case hwmon_curr:
1469 switch (attr) {
1470 case hwmon_curr_label:
1471 *str = "bias";
1472 return 0;
1473 default:
1474 return -EOPNOTSUPP;
1475 }
1476 break;
1477 case hwmon_temp:
1478 switch (attr) {
1479 case hwmon_temp_label:
1480 *str = "temperature";
1481 return 0;
1482 default:
1483 return -EOPNOTSUPP;
1484 }
1485 break;
1486 case hwmon_in:
1487 switch (attr) {
1488 case hwmon_in_label:
1489 *str = "VCC";
1490 return 0;
1491 default:
1492 return -EOPNOTSUPP;
1493 }
1494 break;
1495 case hwmon_power:
1496 switch (attr) {
1497 case hwmon_power_label:
1498 *str = sfp_hwmon_power_labels[channel];
1499 return 0;
1500 default:
1501 return -EOPNOTSUPP;
1502 }
1503 break;
1504 default:
1505 return -EOPNOTSUPP;
1506 }
1507
1508 return -EOPNOTSUPP;
1509}
1510
1511static const struct hwmon_ops sfp_hwmon_ops = {
1512 .is_visible = sfp_hwmon_is_visible,
1513 .read = sfp_hwmon_read,
1514 .read_string = sfp_hwmon_read_string,
1515};
1516
1517static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1518 HWMON_CHANNEL_INFO(chip,
1519 HWMON_C_REGISTER_TZ),
1520 HWMON_CHANNEL_INFO(in,
1521 HWMON_I_INPUT |
1522 HWMON_I_MAX | HWMON_I_MIN |
1523 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1524 HWMON_I_CRIT | HWMON_I_LCRIT |
1525 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1526 HWMON_I_LABEL),
1527 HWMON_CHANNEL_INFO(temp,
1528 HWMON_T_INPUT |
1529 HWMON_T_MAX | HWMON_T_MIN |
1530 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1531 HWMON_T_CRIT | HWMON_T_LCRIT |
1532 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1533 HWMON_T_LABEL),
1534 HWMON_CHANNEL_INFO(curr,
1535 HWMON_C_INPUT |
1536 HWMON_C_MAX | HWMON_C_MIN |
1537 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1538 HWMON_C_CRIT | HWMON_C_LCRIT |
1539 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1540 HWMON_C_LABEL),
1541 HWMON_CHANNEL_INFO(power,
1542 /* Transmit power */
1543 HWMON_P_INPUT |
1544 HWMON_P_MAX | HWMON_P_MIN |
1545 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1546 HWMON_P_CRIT | HWMON_P_LCRIT |
1547 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1548 HWMON_P_LABEL,
1549 /* Receive power */
1550 HWMON_P_INPUT |
1551 HWMON_P_MAX | HWMON_P_MIN |
1552 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1553 HWMON_P_CRIT | HWMON_P_LCRIT |
1554 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1555 HWMON_P_LABEL),
1556 NULL,
1557};
1558
1559static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1560 .ops = &sfp_hwmon_ops,
1561 .info = sfp_hwmon_info,
1562};
1563
1564static void sfp_hwmon_probe(struct work_struct *work)
1565{
1566 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1567 int err;
1568
1569 /* hwmon interface needs to access 16bit registers in atomic way to
1570 * guarantee coherency of the diagnostic monitoring data. If it is not
1571 * possible to guarantee coherency because EEPROM is broken in such way
1572 * that does not support atomic 16bit read operation then we have to
1573 * skip registration of hwmon device.
1574 */
1575 if (sfp->i2c_block_size < 2) {
1576 dev_info(sfp->dev,
1577 "skipping hwmon device registration due to broken EEPROM\n");
1578 dev_info(sfp->dev,
1579 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1580 return;
1581 }
1582
1583 err = sfp_read(sfp, a2: true, addr: 0, buf: &sfp->diag, len: sizeof(sfp->diag));
1584 if (err < 0) {
1585 if (sfp->hwmon_tries--) {
1586 mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe,
1587 T_PROBE_RETRY_SLOW);
1588 } else {
1589 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1590 ERR_PTR(err));
1591 }
1592 return;
1593 }
1594
1595 sfp->hwmon_name = hwmon_sanitize_name(name: dev_name(dev: sfp->dev));
1596 if (IS_ERR(ptr: sfp->hwmon_name)) {
1597 dev_err(sfp->dev, "out of memory for hwmon name\n");
1598 return;
1599 }
1600
1601 sfp->hwmon_dev = hwmon_device_register_with_info(dev: sfp->dev,
1602 name: sfp->hwmon_name, drvdata: sfp,
1603 info: &sfp_hwmon_chip_info,
1604 NULL);
1605 if (IS_ERR(ptr: sfp->hwmon_dev))
1606 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1607 PTR_ERR(sfp->hwmon_dev));
1608}
1609
1610static int sfp_hwmon_insert(struct sfp *sfp)
1611{
1612 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1613 mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe, delay: 1);
1614 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1615 }
1616
1617 return 0;
1618}
1619
1620static void sfp_hwmon_remove(struct sfp *sfp)
1621{
1622 cancel_delayed_work_sync(dwork: &sfp->hwmon_probe);
1623 if (!IS_ERR_OR_NULL(ptr: sfp->hwmon_dev)) {
1624 hwmon_device_unregister(dev: sfp->hwmon_dev);
1625 sfp->hwmon_dev = NULL;
1626 kfree(objp: sfp->hwmon_name);
1627 }
1628}
1629
1630static int sfp_hwmon_init(struct sfp *sfp)
1631{
1632 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1633
1634 return 0;
1635}
1636
1637static void sfp_hwmon_exit(struct sfp *sfp)
1638{
1639 cancel_delayed_work_sync(dwork: &sfp->hwmon_probe);
1640}
1641#else
1642static int sfp_hwmon_insert(struct sfp *sfp)
1643{
1644 return 0;
1645}
1646
1647static void sfp_hwmon_remove(struct sfp *sfp)
1648{
1649}
1650
1651static int sfp_hwmon_init(struct sfp *sfp)
1652{
1653 return 0;
1654}
1655
1656static void sfp_hwmon_exit(struct sfp *sfp)
1657{
1658}
1659#endif
1660
1661/* Helpers */
1662static void sfp_module_tx_disable(struct sfp *sfp)
1663{
1664 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1665 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1666 sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: SFP_F_TX_DISABLE);
1667}
1668
1669static void sfp_module_tx_enable(struct sfp *sfp)
1670{
1671 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1672 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1673 sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: 0);
1674}
1675
1676#if IS_ENABLED(CONFIG_DEBUG_FS)
1677static int sfp_debug_state_show(struct seq_file *s, void *data)
1678{
1679 struct sfp *sfp = s->private;
1680
1681 seq_printf(m: s, fmt: "Module state: %s\n",
1682 mod_state_to_str(mod_state: sfp->sm_mod_state));
1683 seq_printf(m: s, fmt: "Module probe attempts: %d %d\n",
1684 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1685 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1686 seq_printf(m: s, fmt: "Device state: %s\n",
1687 dev_state_to_str(dev_state: sfp->sm_dev_state));
1688 seq_printf(m: s, fmt: "Main state: %s\n",
1689 sm_state_to_str(sm_state: sfp->sm_state));
1690 seq_printf(m: s, fmt: "Fault recovery remaining retries: %d\n",
1691 sfp->sm_fault_retries);
1692 seq_printf(m: s, fmt: "PHY probe remaining retries: %d\n",
1693 sfp->sm_phy_retries);
1694 seq_printf(m: s, fmt: "Signalling rate: %u kBd\n", sfp->rate_kbd);
1695 seq_printf(m: s, fmt: "Rate select threshold: %u kBd\n",
1696 sfp->rs_threshold_kbd);
1697 seq_printf(m: s, fmt: "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1698 seq_printf(m: s, fmt: "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1699 seq_printf(m: s, fmt: "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1700 seq_printf(m: s, fmt: "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1701 seq_printf(m: s, fmt: "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1702 seq_printf(m: s, fmt: "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1703 return 0;
1704}
1705DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1706
1707static void sfp_debugfs_init(struct sfp *sfp)
1708{
1709 sfp->debugfs_dir = debugfs_create_dir(name: dev_name(dev: sfp->dev), NULL);
1710
1711 debugfs_create_file(name: "state", mode: 0600, parent: sfp->debugfs_dir, data: sfp,
1712 fops: &sfp_debug_state_fops);
1713}
1714
1715static void sfp_debugfs_exit(struct sfp *sfp)
1716{
1717 debugfs_remove_recursive(dentry: sfp->debugfs_dir);
1718}
1719#else
1720static void sfp_debugfs_init(struct sfp *sfp)
1721{
1722}
1723
1724static void sfp_debugfs_exit(struct sfp *sfp)
1725{
1726}
1727#endif
1728
1729static void sfp_module_tx_fault_reset(struct sfp *sfp)
1730{
1731 unsigned int state;
1732
1733 mutex_lock(&sfp->st_mutex);
1734 state = sfp->state;
1735 if (!(state & SFP_F_TX_DISABLE)) {
1736 sfp_set_state(sfp, state: state | SFP_F_TX_DISABLE);
1737
1738 udelay(T_RESET_US);
1739
1740 sfp_set_state(sfp, state);
1741 }
1742 mutex_unlock(lock: &sfp->st_mutex);
1743}
1744
1745/* SFP state machine */
1746static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1747{
1748 if (timeout)
1749 mod_delayed_work(wq: system_power_efficient_wq, dwork: &sfp->timeout,
1750 delay: timeout);
1751 else
1752 cancel_delayed_work(dwork: &sfp->timeout);
1753}
1754
1755static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1756 unsigned int timeout)
1757{
1758 sfp->sm_state = state;
1759 sfp_sm_set_timer(sfp, timeout);
1760}
1761
1762static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1763 unsigned int timeout)
1764{
1765 sfp->sm_mod_state = state;
1766 sfp_sm_set_timer(sfp, timeout);
1767}
1768
1769static void sfp_sm_phy_detach(struct sfp *sfp)
1770{
1771 sfp_remove_phy(bus: sfp->sfp_bus);
1772 phy_device_remove(phydev: sfp->mod_phy);
1773 phy_device_free(phydev: sfp->mod_phy);
1774 sfp->mod_phy = NULL;
1775}
1776
1777static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1778{
1779 struct phy_device *phy;
1780 int err;
1781
1782 phy = get_phy_device(bus: sfp->i2c_mii, addr, is_c45);
1783 if (phy == ERR_PTR(error: -ENODEV))
1784 return PTR_ERR(ptr: phy);
1785 if (IS_ERR(ptr: phy)) {
1786 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1787 return PTR_ERR(ptr: phy);
1788 }
1789
1790 /* Mark this PHY as being on a SFP module */
1791 phy->is_on_sfp_module = true;
1792
1793 err = phy_device_register(phy);
1794 if (err) {
1795 phy_device_free(phydev: phy);
1796 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1797 ERR_PTR(err));
1798 return err;
1799 }
1800
1801 err = sfp_add_phy(bus: sfp->sfp_bus, phydev: phy);
1802 if (err) {
1803 phy_device_remove(phydev: phy);
1804 phy_device_free(phydev: phy);
1805 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1806 return err;
1807 }
1808
1809 sfp->mod_phy = phy;
1810
1811 return 0;
1812}
1813
1814static void sfp_sm_link_up(struct sfp *sfp)
1815{
1816 sfp_link_up(bus: sfp->sfp_bus);
1817 sfp_sm_next(sfp, state: SFP_S_LINK_UP, timeout: 0);
1818}
1819
1820static void sfp_sm_link_down(struct sfp *sfp)
1821{
1822 sfp_link_down(bus: sfp->sfp_bus);
1823}
1824
1825static void sfp_sm_link_check_los(struct sfp *sfp)
1826{
1827 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1828 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1829 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1830 bool los = false;
1831
1832 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1833 * are set, we assume that no LOS signal is available. If both are
1834 * set, we assume LOS is not implemented (and is meaningless.)
1835 */
1836 if (los_options == los_inverted)
1837 los = !(sfp->state & SFP_F_LOS);
1838 else if (los_options == los_normal)
1839 los = !!(sfp->state & SFP_F_LOS);
1840
1841 if (los)
1842 sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0);
1843 else
1844 sfp_sm_link_up(sfp);
1845}
1846
1847static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1848{
1849 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1850 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1851 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1852
1853 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1854 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1855}
1856
1857static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1858{
1859 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1860 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1861 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1862
1863 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1864 (los_options == los_normal && event == SFP_E_LOS_LOW);
1865}
1866
1867static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1868{
1869 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1870 dev_err(sfp->dev,
1871 "module persistently indicates fault, disabling\n");
1872 sfp_sm_next(sfp, state: SFP_S_TX_DISABLE, timeout: 0);
1873 } else {
1874 if (warn)
1875 dev_err(sfp->dev, "module transmit fault indicated\n");
1876
1877 sfp_sm_next(sfp, state: next_state, T_FAULT_RECOVER);
1878 }
1879}
1880
1881static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1882{
1883 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1884 return sfp_i2c_mdiobus_create(sfp);
1885
1886 return 0;
1887}
1888
1889/* Probe a SFP for a PHY device if the module supports copper - the PHY
1890 * normally sits at I2C bus address 0x56, and may either be a clause 22
1891 * or clause 45 PHY.
1892 *
1893 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1894 * negotiation enabled, but some may be in 1000base-X - which is for the
1895 * PHY driver to determine.
1896 *
1897 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1898 * mode according to the negotiated line speed.
1899 */
1900static int sfp_sm_probe_for_phy(struct sfp *sfp)
1901{
1902 int err = 0;
1903
1904 switch (sfp->mdio_protocol) {
1905 case MDIO_I2C_NONE:
1906 break;
1907
1908 case MDIO_I2C_MARVELL_C22:
1909 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: false);
1910 break;
1911
1912 case MDIO_I2C_C45:
1913 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: true);
1914 break;
1915
1916 case MDIO_I2C_ROLLBALL:
1917 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, is_c45: true);
1918 break;
1919 }
1920
1921 return err;
1922}
1923
1924static int sfp_module_parse_power(struct sfp *sfp)
1925{
1926 u32 power_mW = 1000;
1927 bool supports_a2;
1928
1929 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1930 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1931 power_mW = 1500;
1932 /* Added in Rev 11.9, but there is no compliance code for this */
1933 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1934 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1935 power_mW = 2000;
1936
1937 /* Power level 1 modules (max. 1W) are always supported. */
1938 if (power_mW <= 1000) {
1939 sfp->module_power_mW = power_mW;
1940 return 0;
1941 }
1942
1943 supports_a2 = sfp->id.ext.sff8472_compliance !=
1944 SFP_SFF8472_COMPLIANCE_NONE ||
1945 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1946
1947 if (power_mW > sfp->max_power_mW) {
1948 /* Module power specification exceeds the allowed maximum. */
1949 if (!supports_a2) {
1950 /* The module appears not to implement bus address
1951 * 0xa2, so assume that the module powers up in the
1952 * indicated mode.
1953 */
1954 dev_err(sfp->dev,
1955 "Host does not support %u.%uW modules\n",
1956 power_mW / 1000, (power_mW / 100) % 10);
1957 return -EINVAL;
1958 } else {
1959 dev_warn(sfp->dev,
1960 "Host does not support %u.%uW modules, module left in power mode 1\n",
1961 power_mW / 1000, (power_mW / 100) % 10);
1962 return 0;
1963 }
1964 }
1965
1966 if (!supports_a2) {
1967 /* The module power level is below the host maximum and the
1968 * module appears not to implement bus address 0xa2, so assume
1969 * that the module powers up in the indicated mode.
1970 */
1971 return 0;
1972 }
1973
1974 /* If the module requires a higher power mode, but also requires
1975 * an address change sequence, warn the user that the module may
1976 * not be functional.
1977 */
1978 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1979 dev_warn(sfp->dev,
1980 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1981 power_mW / 1000, (power_mW / 100) % 10);
1982 return 0;
1983 }
1984
1985 sfp->module_power_mW = power_mW;
1986
1987 return 0;
1988}
1989
1990static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1991{
1992 int err;
1993
1994 err = sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS,
1995 mask: SFP_EXT_STATUS_PWRLVL_SELECT,
1996 val: enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1997 if (err != sizeof(u8)) {
1998 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1999 enable ? "en" : "dis", ERR_PTR(err));
2000 return -EAGAIN;
2001 }
2002
2003 if (enable)
2004 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2005 sfp->module_power_mW / 1000,
2006 (sfp->module_power_mW / 100) % 10);
2007
2008 return 0;
2009}
2010
2011static void sfp_module_parse_rate_select(struct sfp *sfp)
2012{
2013 u8 rate_id;
2014
2015 sfp->rs_threshold_kbd = 0;
2016 sfp->rs_state_mask = 0;
2017
2018 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2019 /* No support for RateSelect */
2020 return;
2021
2022 /* Default to INF-8074 RateSelect operation. The signalling threshold
2023 * rate is not well specified, so always select "Full Bandwidth", but
2024 * SFF-8079 reveals that it is understood that RS0 will be low for
2025 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2026 * This method exists prior to SFF-8472.
2027 */
2028 sfp->rs_state_mask = SFP_F_RS0;
2029 sfp->rs_threshold_kbd = 1594;
2030
2031 /* Parse the rate identifier, which is complicated due to history:
2032 * SFF-8472 rev 9.5 marks this field as reserved.
2033 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2034 * compliance is not required.
2035 * SFF-8472 rev 10.2 defines this field using values 0..4
2036 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2037 * and even values.
2038 */
2039 rate_id = sfp->id.base.rate_id;
2040 if (rate_id == 0)
2041 /* Unspecified */
2042 return;
2043
2044 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2045 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2046 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2047 */
2048 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2049 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2050 rate_id == 3)
2051 rate_id = SFF_RID_8431;
2052
2053 if (rate_id & SFF_RID_8079) {
2054 /* SFF-8079 RateSelect / Application Select in conjunction with
2055 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2056 * with only bit 0 used, which takes precedence over SFF-8472.
2057 */
2058 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2059 /* SFF-8079 Part 1 - rate selection between Fibre
2060 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2061 * is high for 2125, so we have to subtract 1 to
2062 * include it.
2063 */
2064 sfp->rs_threshold_kbd = 2125 - 1;
2065 sfp->rs_state_mask = SFP_F_RS0;
2066 }
2067 return;
2068 }
2069
2070 /* SFF-8472 rev 9.5 does not define the rate identifier */
2071 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2072 return;
2073
2074 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2075 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2076 */
2077 switch (rate_id) {
2078 case SFF_RID_8431_RX_ONLY:
2079 sfp->rs_threshold_kbd = 4250;
2080 sfp->rs_state_mask = SFP_F_RS0;
2081 break;
2082
2083 case SFF_RID_8431_TX_ONLY:
2084 sfp->rs_threshold_kbd = 4250;
2085 sfp->rs_state_mask = SFP_F_RS1;
2086 break;
2087
2088 case SFF_RID_8431:
2089 sfp->rs_threshold_kbd = 4250;
2090 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2091 break;
2092
2093 case SFF_RID_10G8G:
2094 sfp->rs_threshold_kbd = 9000;
2095 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096 break;
2097 }
2098}
2099
2100/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2101 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2102 * not support multibyte reads from the EEPROM. Each multi-byte read
2103 * operation returns just one byte of EEPROM followed by zeros. There is
2104 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2105 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2106 * name and vendor id into EEPROM, so there is even no way to detect if
2107 * module is V-SOL V2801F. Therefore check for those zeros in the read
2108 * data and then based on check switch to reading EEPROM to one byte
2109 * at a time.
2110 */
2111static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2112{
2113 size_t i, block_size = sfp->i2c_block_size;
2114
2115 /* Already using byte IO */
2116 if (block_size == 1)
2117 return false;
2118
2119 for (i = 1; i < len; i += block_size) {
2120 if (memchr_inv(p: buf + i, c: '\0', min(block_size - 1, len - i)))
2121 return false;
2122 }
2123 return true;
2124}
2125
2126static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2127{
2128 u8 check;
2129 int err;
2130
2131 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2132 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2133 id->base.connector != SFF8024_CONNECTOR_LC) {
2134 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2135 id->base.phys_id = SFF8024_ID_SFF_8472;
2136 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2137 id->base.connector = SFF8024_CONNECTOR_LC;
2138 err = sfp_write(sfp, a2: false, addr: SFP_PHYS_ID, buf: &id->base, len: 3);
2139 if (err != 3) {
2140 dev_err(sfp->dev,
2141 "Failed to rewrite module EEPROM: %pe\n",
2142 ERR_PTR(err));
2143 return err;
2144 }
2145
2146 /* Cotsworks modules have been found to require a delay between write operations. */
2147 mdelay(50);
2148
2149 /* Update base structure checksum */
2150 check = sfp_check(buf: &id->base, len: sizeof(id->base) - 1);
2151 err = sfp_write(sfp, a2: false, addr: SFP_CC_BASE, buf: &check, len: 1);
2152 if (err != 1) {
2153 dev_err(sfp->dev,
2154 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2155 ERR_PTR(err));
2156 return err;
2157 }
2158 }
2159 return 0;
2160}
2161
2162static int sfp_module_parse_sff8472(struct sfp *sfp)
2163{
2164 /* If the module requires address swap mode, warn about it */
2165 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2166 dev_warn(sfp->dev,
2167 "module address swap to access page 0xA2 is not supported.\n");
2168 else
2169 sfp->have_a2 = true;
2170
2171 return 0;
2172}
2173
2174static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2175{
2176 /* SFP module inserted - read I2C data */
2177 struct sfp_eeprom_id id;
2178 bool cotsworks_sfbg;
2179 unsigned int mask;
2180 bool cotsworks;
2181 u8 check;
2182 int ret;
2183
2184 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2185
2186 ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base));
2187 if (ret < 0) {
2188 if (report)
2189 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2190 ERR_PTR(ret));
2191 return -EAGAIN;
2192 }
2193
2194 if (ret != sizeof(id.base)) {
2195 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2196 return -EAGAIN;
2197 }
2198
2199 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2200 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2201 * that EEPROM supports atomic 16bit read operation for diagnostic
2202 * fields, so do not switch to one byte reading at a time unless it
2203 * is really required and we have no other option.
2204 */
2205 if (sfp_id_needs_byte_io(sfp, buf: &id.base, len: sizeof(id.base))) {
2206 dev_info(sfp->dev,
2207 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2208 dev_info(sfp->dev,
2209 "Switching to reading EEPROM to one byte at a time\n");
2210 sfp->i2c_block_size = 1;
2211
2212 ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base));
2213 if (ret < 0) {
2214 if (report)
2215 dev_err(sfp->dev,
2216 "failed to read EEPROM: %pe\n",
2217 ERR_PTR(ret));
2218 return -EAGAIN;
2219 }
2220
2221 if (ret != sizeof(id.base)) {
2222 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2223 ERR_PTR(ret));
2224 return -EAGAIN;
2225 }
2226 }
2227
2228 /* Cotsworks do not seem to update the checksums when they
2229 * do the final programming with the final module part number,
2230 * serial number and date code.
2231 */
2232 cotsworks = !memcmp(p: id.base.vendor_name, q: "COTSWORKS ", size: 16);
2233 cotsworks_sfbg = !memcmp(p: id.base.vendor_pn, q: "SFBG", size: 4);
2234
2235 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2236 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2237 * Cotsworks PN matches and bytes are not correct.
2238 */
2239 if (cotsworks && cotsworks_sfbg) {
2240 ret = sfp_cotsworks_fixup_check(sfp, id: &id);
2241 if (ret < 0)
2242 return ret;
2243 }
2244
2245 /* Validate the checksum over the base structure */
2246 check = sfp_check(buf: &id.base, len: sizeof(id.base) - 1);
2247 if (check != id.base.cc_base) {
2248 if (cotsworks) {
2249 dev_warn(sfp->dev,
2250 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2251 check, id.base.cc_base);
2252 } else {
2253 dev_err(sfp->dev,
2254 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2255 check, id.base.cc_base);
2256 print_hex_dump(KERN_ERR, prefix_str: "sfp EE: ", prefix_type: DUMP_PREFIX_OFFSET,
2257 rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true);
2258 return -EINVAL;
2259 }
2260 }
2261
2262 ret = sfp_read(sfp, a2: false, addr: SFP_CC_BASE + 1, buf: &id.ext, len: sizeof(id.ext));
2263 if (ret < 0) {
2264 if (report)
2265 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2266 ERR_PTR(ret));
2267 return -EAGAIN;
2268 }
2269
2270 if (ret != sizeof(id.ext)) {
2271 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2272 return -EAGAIN;
2273 }
2274
2275 check = sfp_check(buf: &id.ext, len: sizeof(id.ext) - 1);
2276 if (check != id.ext.cc_ext) {
2277 if (cotsworks) {
2278 dev_warn(sfp->dev,
2279 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2280 check, id.ext.cc_ext);
2281 } else {
2282 dev_err(sfp->dev,
2283 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2284 check, id.ext.cc_ext);
2285 print_hex_dump(KERN_ERR, prefix_str: "sfp EE: ", prefix_type: DUMP_PREFIX_OFFSET,
2286 rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true);
2287 memset(&id.ext, 0, sizeof(id.ext));
2288 }
2289 }
2290
2291 sfp->id = id;
2292
2293 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2294 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2295 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2296 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2297 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2298 (int)sizeof(id.ext.datecode), id.ext.datecode);
2299
2300 /* Check whether we support this module */
2301 if (!sfp->type->module_supported(&id)) {
2302 dev_err(sfp->dev,
2303 "module is not supported - phys id 0x%02x 0x%02x\n",
2304 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2305 return -EINVAL;
2306 }
2307
2308 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2309 ret = sfp_module_parse_sff8472(sfp);
2310 if (ret < 0)
2311 return ret;
2312 }
2313
2314 /* Parse the module power requirement */
2315 ret = sfp_module_parse_power(sfp);
2316 if (ret < 0)
2317 return ret;
2318
2319 sfp_module_parse_rate_select(sfp);
2320
2321 mask = SFP_F_PRESENT;
2322 if (sfp->gpio[GPIO_TX_DISABLE])
2323 mask |= SFP_F_TX_DISABLE;
2324 if (sfp->gpio[GPIO_TX_FAULT])
2325 mask |= SFP_F_TX_FAULT;
2326 if (sfp->gpio[GPIO_LOS])
2327 mask |= SFP_F_LOS;
2328 if (sfp->gpio[GPIO_RS0])
2329 mask |= SFP_F_RS0;
2330 if (sfp->gpio[GPIO_RS1])
2331 mask |= SFP_F_RS1;
2332
2333 sfp->module_t_start_up = T_START_UP;
2334 sfp->module_t_wait = T_WAIT;
2335
2336 sfp->state_ignore_mask = 0;
2337
2338 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2339 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2340 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2341 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2342 sfp->mdio_protocol = MDIO_I2C_C45;
2343 else if (sfp->id.base.e1000_base_t)
2344 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2345 else
2346 sfp->mdio_protocol = MDIO_I2C_NONE;
2347
2348 sfp->quirk = sfp_lookup_quirk(id: &id);
2349
2350 mutex_lock(&sfp->st_mutex);
2351 /* Initialise state bits to use from hardware */
2352 sfp->state_hw_mask = mask;
2353
2354 /* We want to drive the rate select pins that the module is using */
2355 sfp->state_hw_drive |= sfp->rs_state_mask;
2356
2357 if (sfp->quirk && sfp->quirk->fixup)
2358 sfp->quirk->fixup(sfp);
2359
2360 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2361 mutex_unlock(lock: &sfp->st_mutex);
2362
2363 return 0;
2364}
2365
2366static void sfp_sm_mod_remove(struct sfp *sfp)
2367{
2368 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2369 sfp_module_remove(bus: sfp->sfp_bus);
2370
2371 sfp_hwmon_remove(sfp);
2372
2373 memset(&sfp->id, 0, sizeof(sfp->id));
2374 sfp->module_power_mW = 0;
2375 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2376 sfp->have_a2 = false;
2377
2378 dev_info(sfp->dev, "module removed\n");
2379}
2380
2381/* This state machine tracks the upstream's state */
2382static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2383{
2384 switch (sfp->sm_dev_state) {
2385 default:
2386 if (event == SFP_E_DEV_ATTACH)
2387 sfp->sm_dev_state = SFP_DEV_DOWN;
2388 break;
2389
2390 case SFP_DEV_DOWN:
2391 if (event == SFP_E_DEV_DETACH)
2392 sfp->sm_dev_state = SFP_DEV_DETACHED;
2393 else if (event == SFP_E_DEV_UP)
2394 sfp->sm_dev_state = SFP_DEV_UP;
2395 break;
2396
2397 case SFP_DEV_UP:
2398 if (event == SFP_E_DEV_DETACH)
2399 sfp->sm_dev_state = SFP_DEV_DETACHED;
2400 else if (event == SFP_E_DEV_DOWN)
2401 sfp->sm_dev_state = SFP_DEV_DOWN;
2402 break;
2403 }
2404}
2405
2406/* This state machine tracks the insert/remove state of the module, probes
2407 * the on-board EEPROM, and sets up the power level.
2408 */
2409static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2410{
2411 int err;
2412
2413 /* Handle remove event globally, it resets this state machine */
2414 if (event == SFP_E_REMOVE) {
2415 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2416 sfp_sm_mod_remove(sfp);
2417 sfp_sm_mod_next(sfp, state: SFP_MOD_EMPTY, timeout: 0);
2418 return;
2419 }
2420
2421 /* Handle device detach globally */
2422 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2423 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2424 if (sfp->module_power_mW > 1000 &&
2425 sfp->sm_mod_state > SFP_MOD_HPOWER)
2426 sfp_sm_mod_hpower(sfp, enable: false);
2427 sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0);
2428 return;
2429 }
2430
2431 switch (sfp->sm_mod_state) {
2432 default:
2433 if (event == SFP_E_INSERT) {
2434 sfp_sm_mod_next(sfp, state: SFP_MOD_PROBE, T_SERIAL);
2435 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2436 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2437 }
2438 break;
2439
2440 case SFP_MOD_PROBE:
2441 /* Wait for T_PROBE_INIT to time out */
2442 if (event != SFP_E_TIMEOUT)
2443 break;
2444
2445 err = sfp_sm_mod_probe(sfp, report: sfp->sm_mod_tries == 1);
2446 if (err == -EAGAIN) {
2447 if (sfp->sm_mod_tries_init &&
2448 --sfp->sm_mod_tries_init) {
2449 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2450 break;
2451 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2452 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2453 dev_warn(sfp->dev,
2454 "please wait, module slow to respond\n");
2455 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2456 break;
2457 }
2458 }
2459 if (err < 0) {
2460 sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0);
2461 break;
2462 }
2463
2464 /* Force a poll to re-read the hardware signal state after
2465 * sfp_sm_mod_probe() changed state_hw_mask.
2466 */
2467 mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: 1);
2468
2469 err = sfp_hwmon_insert(sfp);
2470 if (err)
2471 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2472 ERR_PTR(err));
2473
2474 sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0);
2475 fallthrough;
2476 case SFP_MOD_WAITDEV:
2477 /* Ensure that the device is attached before proceeding */
2478 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2479 break;
2480
2481 /* Report the module insertion to the upstream device */
2482 err = sfp_module_insert(bus: sfp->sfp_bus, id: &sfp->id,
2483 quirk: sfp->quirk);
2484 if (err < 0) {
2485 sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0);
2486 break;
2487 }
2488
2489 /* If this is a power level 1 module, we are done */
2490 if (sfp->module_power_mW <= 1000)
2491 goto insert;
2492
2493 sfp_sm_mod_next(sfp, state: SFP_MOD_HPOWER, timeout: 0);
2494 fallthrough;
2495 case SFP_MOD_HPOWER:
2496 /* Enable high power mode */
2497 err = sfp_sm_mod_hpower(sfp, enable: true);
2498 if (err < 0) {
2499 if (err != -EAGAIN) {
2500 sfp_module_remove(bus: sfp->sfp_bus);
2501 sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0);
2502 } else {
2503 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2504 }
2505 break;
2506 }
2507
2508 sfp_sm_mod_next(sfp, state: SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2509 break;
2510
2511 case SFP_MOD_WAITPWR:
2512 /* Wait for T_HPOWER_LEVEL to time out */
2513 if (event != SFP_E_TIMEOUT)
2514 break;
2515
2516 insert:
2517 sfp_sm_mod_next(sfp, state: SFP_MOD_PRESENT, timeout: 0);
2518 break;
2519
2520 case SFP_MOD_PRESENT:
2521 case SFP_MOD_ERROR:
2522 break;
2523 }
2524}
2525
2526static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2527{
2528 unsigned long timeout;
2529 int ret;
2530
2531 /* Some events are global */
2532 if (sfp->sm_state != SFP_S_DOWN &&
2533 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2534 sfp->sm_dev_state != SFP_DEV_UP)) {
2535 if (sfp->sm_state == SFP_S_LINK_UP &&
2536 sfp->sm_dev_state == SFP_DEV_UP)
2537 sfp_sm_link_down(sfp);
2538 if (sfp->sm_state > SFP_S_INIT)
2539 sfp_module_stop(bus: sfp->sfp_bus);
2540 if (sfp->mod_phy)
2541 sfp_sm_phy_detach(sfp);
2542 if (sfp->i2c_mii)
2543 sfp_i2c_mdiobus_destroy(sfp);
2544 sfp_module_tx_disable(sfp);
2545 sfp_soft_stop_poll(sfp);
2546 sfp_sm_next(sfp, state: SFP_S_DOWN, timeout: 0);
2547 return;
2548 }
2549
2550 /* The main state machine */
2551 switch (sfp->sm_state) {
2552 case SFP_S_DOWN:
2553 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2554 sfp->sm_dev_state != SFP_DEV_UP)
2555 break;
2556
2557 /* Only use the soft state bits if we have access to the A2h
2558 * memory, which implies that we have some level of SFF-8472
2559 * compliance.
2560 */
2561 if (sfp->have_a2)
2562 sfp_soft_start_poll(sfp);
2563
2564 sfp_module_tx_enable(sfp);
2565
2566 /* Initialise the fault clearance retries */
2567 sfp->sm_fault_retries = N_FAULT_INIT;
2568
2569 /* We need to check the TX_FAULT state, which is not defined
2570 * while TX_DISABLE is asserted. The earliest we want to do
2571 * anything (such as probe for a PHY) is 50ms (or more on
2572 * specific modules).
2573 */
2574 sfp_sm_next(sfp, state: SFP_S_WAIT, timeout: sfp->module_t_wait);
2575 break;
2576
2577 case SFP_S_WAIT:
2578 if (event != SFP_E_TIMEOUT)
2579 break;
2580
2581 if (sfp->state & SFP_F_TX_FAULT) {
2582 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2583 * from the TX_DISABLE deassertion for the module to
2584 * initialise, which is indicated by TX_FAULT
2585 * deasserting.
2586 */
2587 timeout = sfp->module_t_start_up;
2588 if (timeout > sfp->module_t_wait)
2589 timeout -= sfp->module_t_wait;
2590 else
2591 timeout = 1;
2592
2593 sfp_sm_next(sfp, state: SFP_S_INIT, timeout);
2594 } else {
2595 /* TX_FAULT is not asserted, assume the module has
2596 * finished initialising.
2597 */
2598 goto init_done;
2599 }
2600 break;
2601
2602 case SFP_S_INIT:
2603 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2604 /* TX_FAULT is still asserted after t_init
2605 * or t_start_up, so assume there is a fault.
2606 */
2607 sfp_sm_fault(sfp, next_state: SFP_S_INIT_TX_FAULT,
2608 warn: sfp->sm_fault_retries == N_FAULT_INIT);
2609 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2610 init_done:
2611 /* Create mdiobus and start trying for PHY */
2612 ret = sfp_sm_add_mdio_bus(sfp);
2613 if (ret < 0) {
2614 sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0);
2615 break;
2616 }
2617 sfp->sm_phy_retries = R_PHY_RETRY;
2618 goto phy_probe;
2619 }
2620 break;
2621
2622 case SFP_S_INIT_PHY:
2623 if (event != SFP_E_TIMEOUT)
2624 break;
2625 phy_probe:
2626 /* TX_FAULT deasserted or we timed out with TX_FAULT
2627 * clear. Probe for the PHY and check the LOS state.
2628 */
2629 ret = sfp_sm_probe_for_phy(sfp);
2630 if (ret == -ENODEV) {
2631 if (--sfp->sm_phy_retries) {
2632 sfp_sm_next(sfp, state: SFP_S_INIT_PHY, T_PHY_RETRY);
2633 break;
2634 } else {
2635 dev_info(sfp->dev, "no PHY detected\n");
2636 }
2637 } else if (ret) {
2638 sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0);
2639 break;
2640 }
2641 if (sfp_module_start(bus: sfp->sfp_bus)) {
2642 sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0);
2643 break;
2644 }
2645 sfp_sm_link_check_los(sfp);
2646
2647 /* Reset the fault retry count */
2648 sfp->sm_fault_retries = N_FAULT;
2649 break;
2650
2651 case SFP_S_INIT_TX_FAULT:
2652 if (event == SFP_E_TIMEOUT) {
2653 sfp_module_tx_fault_reset(sfp);
2654 sfp_sm_next(sfp, state: SFP_S_INIT, timeout: sfp->module_t_start_up);
2655 }
2656 break;
2657
2658 case SFP_S_WAIT_LOS:
2659 if (event == SFP_E_TX_FAULT)
2660 sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true);
2661 else if (sfp_los_event_inactive(sfp, event))
2662 sfp_sm_link_up(sfp);
2663 break;
2664
2665 case SFP_S_LINK_UP:
2666 if (event == SFP_E_TX_FAULT) {
2667 sfp_sm_link_down(sfp);
2668 sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true);
2669 } else if (sfp_los_event_active(sfp, event)) {
2670 sfp_sm_link_down(sfp);
2671 sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0);
2672 }
2673 break;
2674
2675 case SFP_S_TX_FAULT:
2676 if (event == SFP_E_TIMEOUT) {
2677 sfp_module_tx_fault_reset(sfp);
2678 sfp_sm_next(sfp, state: SFP_S_REINIT, timeout: sfp->module_t_start_up);
2679 }
2680 break;
2681
2682 case SFP_S_REINIT:
2683 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2684 sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: false);
2685 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2686 dev_info(sfp->dev, "module transmit fault recovered\n");
2687 sfp_sm_link_check_los(sfp);
2688 }
2689 break;
2690
2691 case SFP_S_TX_DISABLE:
2692 break;
2693 }
2694}
2695
2696static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2697{
2698 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2699 mod_state_to_str(sfp->sm_mod_state),
2700 dev_state_to_str(sfp->sm_dev_state),
2701 sm_state_to_str(sfp->sm_state),
2702 event_to_str(event));
2703
2704 sfp_sm_device(sfp, event);
2705 sfp_sm_module(sfp, event);
2706 sfp_sm_main(sfp, event);
2707
2708 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2709 mod_state_to_str(sfp->sm_mod_state),
2710 dev_state_to_str(sfp->sm_dev_state),
2711 sm_state_to_str(sfp->sm_state));
2712}
2713
2714static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2715{
2716 mutex_lock(&sfp->sm_mutex);
2717 __sfp_sm_event(sfp, event);
2718 mutex_unlock(lock: &sfp->sm_mutex);
2719}
2720
2721static void sfp_attach(struct sfp *sfp)
2722{
2723 sfp_sm_event(sfp, event: SFP_E_DEV_ATTACH);
2724}
2725
2726static void sfp_detach(struct sfp *sfp)
2727{
2728 sfp_sm_event(sfp, event: SFP_E_DEV_DETACH);
2729}
2730
2731static void sfp_start(struct sfp *sfp)
2732{
2733 sfp_sm_event(sfp, event: SFP_E_DEV_UP);
2734}
2735
2736static void sfp_stop(struct sfp *sfp)
2737{
2738 sfp_sm_event(sfp, event: SFP_E_DEV_DOWN);
2739}
2740
2741static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2742{
2743 unsigned int set;
2744
2745 sfp->rate_kbd = rate_kbd;
2746
2747 if (rate_kbd > sfp->rs_threshold_kbd)
2748 set = sfp->rs_state_mask;
2749 else
2750 set = 0;
2751
2752 sfp_mod_state(sfp, mask: SFP_F_RS0 | SFP_F_RS1, set);
2753}
2754
2755static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2756{
2757 /* locking... and check module is present */
2758
2759 if (sfp->id.ext.sff8472_compliance &&
2760 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2761 modinfo->type = ETH_MODULE_SFF_8472;
2762 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2763 } else {
2764 modinfo->type = ETH_MODULE_SFF_8079;
2765 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2766 }
2767 return 0;
2768}
2769
2770static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2771 u8 *data)
2772{
2773 unsigned int first, last, len;
2774 int ret;
2775
2776 if (!(sfp->state & SFP_F_PRESENT))
2777 return -ENODEV;
2778
2779 if (ee->len == 0)
2780 return -EINVAL;
2781
2782 first = ee->offset;
2783 last = ee->offset + ee->len;
2784 if (first < ETH_MODULE_SFF_8079_LEN) {
2785 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2786 len -= first;
2787
2788 ret = sfp_read(sfp, a2: false, addr: first, buf: data, len);
2789 if (ret < 0)
2790 return ret;
2791
2792 first += len;
2793 data += len;
2794 }
2795 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2796 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2797 len -= first;
2798 first -= ETH_MODULE_SFF_8079_LEN;
2799
2800 ret = sfp_read(sfp, a2: true, addr: first, buf: data, len);
2801 if (ret < 0)
2802 return ret;
2803 }
2804 return 0;
2805}
2806
2807static int sfp_module_eeprom_by_page(struct sfp *sfp,
2808 const struct ethtool_module_eeprom *page,
2809 struct netlink_ext_ack *extack)
2810{
2811 if (!(sfp->state & SFP_F_PRESENT))
2812 return -ENODEV;
2813
2814 if (page->bank) {
2815 NL_SET_ERR_MSG(extack, "Banks not supported");
2816 return -EOPNOTSUPP;
2817 }
2818
2819 if (page->page) {
2820 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2821 return -EOPNOTSUPP;
2822 }
2823
2824 if (page->i2c_address != 0x50 &&
2825 page->i2c_address != 0x51) {
2826 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2827 return -EOPNOTSUPP;
2828 }
2829
2830 return sfp_read(sfp, a2: page->i2c_address == 0x51, addr: page->offset,
2831 buf: page->data, len: page->length);
2832};
2833
2834static const struct sfp_socket_ops sfp_module_ops = {
2835 .attach = sfp_attach,
2836 .detach = sfp_detach,
2837 .start = sfp_start,
2838 .stop = sfp_stop,
2839 .set_signal_rate = sfp_set_signal_rate,
2840 .module_info = sfp_module_info,
2841 .module_eeprom = sfp_module_eeprom,
2842 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2843};
2844
2845static void sfp_timeout(struct work_struct *work)
2846{
2847 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2848
2849 rtnl_lock();
2850 sfp_sm_event(sfp, event: SFP_E_TIMEOUT);
2851 rtnl_unlock();
2852}
2853
2854static void sfp_check_state(struct sfp *sfp)
2855{
2856 unsigned int state, i, changed;
2857
2858 rtnl_lock();
2859 mutex_lock(&sfp->st_mutex);
2860 state = sfp_get_state(sfp);
2861 changed = state ^ sfp->state;
2862 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2863
2864 for (i = 0; i < GPIO_MAX; i++)
2865 if (changed & BIT(i))
2866 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2867 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2868
2869 state |= sfp->state & SFP_F_OUTPUTS;
2870 sfp->state = state;
2871 mutex_unlock(lock: &sfp->st_mutex);
2872
2873 mutex_lock(&sfp->sm_mutex);
2874 if (changed & SFP_F_PRESENT)
2875 __sfp_sm_event(sfp, event: state & SFP_F_PRESENT ?
2876 SFP_E_INSERT : SFP_E_REMOVE);
2877
2878 if (changed & SFP_F_TX_FAULT)
2879 __sfp_sm_event(sfp, event: state & SFP_F_TX_FAULT ?
2880 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2881
2882 if (changed & SFP_F_LOS)
2883 __sfp_sm_event(sfp, event: state & SFP_F_LOS ?
2884 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2885 mutex_unlock(lock: &sfp->sm_mutex);
2886 rtnl_unlock();
2887}
2888
2889static irqreturn_t sfp_irq(int irq, void *data)
2890{
2891 struct sfp *sfp = data;
2892
2893 sfp_check_state(sfp);
2894
2895 return IRQ_HANDLED;
2896}
2897
2898static void sfp_poll(struct work_struct *work)
2899{
2900 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2901
2902 sfp_check_state(sfp);
2903
2904 // st_mutex doesn't need to be held here for state_soft_mask,
2905 // it's unimportant if we race while reading this.
2906 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2907 sfp->need_poll)
2908 mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies);
2909}
2910
2911static struct sfp *sfp_alloc(struct device *dev)
2912{
2913 struct sfp *sfp;
2914
2915 sfp = kzalloc(size: sizeof(*sfp), GFP_KERNEL);
2916 if (!sfp)
2917 return ERR_PTR(error: -ENOMEM);
2918
2919 sfp->dev = dev;
2920 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2921
2922 mutex_init(&sfp->sm_mutex);
2923 mutex_init(&sfp->st_mutex);
2924 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2925 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2926
2927 sfp_hwmon_init(sfp);
2928
2929 return sfp;
2930}
2931
2932static void sfp_cleanup(void *data)
2933{
2934 struct sfp *sfp = data;
2935
2936 sfp_hwmon_exit(sfp);
2937
2938 cancel_delayed_work_sync(dwork: &sfp->poll);
2939 cancel_delayed_work_sync(dwork: &sfp->timeout);
2940 if (sfp->i2c_mii) {
2941 mdiobus_unregister(bus: sfp->i2c_mii);
2942 mdiobus_free(bus: sfp->i2c_mii);
2943 }
2944 if (sfp->i2c)
2945 i2c_put_adapter(adap: sfp->i2c);
2946 kfree(objp: sfp);
2947}
2948
2949static int sfp_i2c_get(struct sfp *sfp)
2950{
2951 struct fwnode_handle *h;
2952 struct i2c_adapter *i2c;
2953 int err;
2954
2955 h = fwnode_find_reference(dev_fwnode(sfp->dev), name: "i2c-bus", index: 0);
2956 if (IS_ERR(ptr: h)) {
2957 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2958 return -ENODEV;
2959 }
2960
2961 i2c = i2c_get_adapter_by_fwnode(fwnode: h);
2962 if (!i2c) {
2963 err = -EPROBE_DEFER;
2964 goto put;
2965 }
2966
2967 err = sfp_i2c_configure(sfp, i2c);
2968 if (err)
2969 i2c_put_adapter(adap: i2c);
2970put:
2971 fwnode_handle_put(fwnode: h);
2972 return err;
2973}
2974
2975static int sfp_probe(struct platform_device *pdev)
2976{
2977 const struct sff_data *sff;
2978 char *sfp_irq_name;
2979 struct sfp *sfp;
2980 int err, i;
2981
2982 sfp = sfp_alloc(dev: &pdev->dev);
2983 if (IS_ERR(ptr: sfp))
2984 return PTR_ERR(ptr: sfp);
2985
2986 platform_set_drvdata(pdev, data: sfp);
2987
2988 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2989 if (err < 0)
2990 return err;
2991
2992 sff = device_get_match_data(dev: sfp->dev);
2993 if (!sff)
2994 sff = &sfp_data;
2995
2996 sfp->type = sff;
2997
2998 err = sfp_i2c_get(sfp);
2999 if (err)
3000 return err;
3001
3002 for (i = 0; i < GPIO_MAX; i++)
3003 if (sff->gpios & BIT(i)) {
3004 sfp->gpio[i] = devm_gpiod_get_optional(dev: sfp->dev,
3005 con_id: gpio_names[i], flags: gpio_flags[i]);
3006 if (IS_ERR(ptr: sfp->gpio[i]))
3007 return PTR_ERR(ptr: sfp->gpio[i]);
3008 }
3009
3010 sfp->state_hw_mask = SFP_F_PRESENT;
3011 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3012
3013 sfp->get_state = sfp_gpio_get_state;
3014 sfp->set_state = sfp_gpio_set_state;
3015
3016 /* Modules that have no detect signal are always present */
3017 if (!(sfp->gpio[GPIO_MODDEF0]))
3018 sfp->get_state = sff_gpio_get_state;
3019
3020 device_property_read_u32(dev: &pdev->dev, propname: "maximum-power-milliwatt",
3021 val: &sfp->max_power_mW);
3022 if (sfp->max_power_mW < 1000) {
3023 if (sfp->max_power_mW)
3024 dev_warn(sfp->dev,
3025 "Firmware bug: host maximum power should be at least 1W\n");
3026 sfp->max_power_mW = 1000;
3027 }
3028
3029 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3030 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3031
3032 /* Get the initial state, and always signal TX disable,
3033 * since the network interface will not be up.
3034 */
3035 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3036
3037 if (sfp->gpio[GPIO_RS0] &&
3038 gpiod_get_value_cansleep(desc: sfp->gpio[GPIO_RS0]))
3039 sfp->state |= SFP_F_RS0;
3040 sfp_set_state(sfp, state: sfp->state);
3041 sfp_module_tx_disable(sfp);
3042 if (sfp->state & SFP_F_PRESENT) {
3043 rtnl_lock();
3044 sfp_sm_event(sfp, event: SFP_E_INSERT);
3045 rtnl_unlock();
3046 }
3047
3048 for (i = 0; i < GPIO_MAX; i++) {
3049 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3050 continue;
3051
3052 sfp->gpio_irq[i] = gpiod_to_irq(desc: sfp->gpio[i]);
3053 if (sfp->gpio_irq[i] < 0) {
3054 sfp->gpio_irq[i] = 0;
3055 sfp->need_poll = true;
3056 continue;
3057 }
3058
3059 sfp_irq_name = devm_kasprintf(dev: sfp->dev, GFP_KERNEL,
3060 fmt: "%s-%s", dev_name(dev: sfp->dev),
3061 gpio_names[i]);
3062
3063 if (!sfp_irq_name)
3064 return -ENOMEM;
3065
3066 err = devm_request_threaded_irq(dev: sfp->dev, irq: sfp->gpio_irq[i],
3067 NULL, thread_fn: sfp_irq,
3068 IRQF_ONESHOT |
3069 IRQF_TRIGGER_RISING |
3070 IRQF_TRIGGER_FALLING,
3071 devname: sfp_irq_name, dev_id: sfp);
3072 if (err) {
3073 sfp->gpio_irq[i] = 0;
3074 sfp->need_poll = true;
3075 }
3076 }
3077
3078 if (sfp->need_poll)
3079 mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies);
3080
3081 /* We could have an issue in cases no Tx disable pin is available or
3082 * wired as modules using a laser as their light source will continue to
3083 * be active when the fiber is removed. This could be a safety issue and
3084 * we should at least warn the user about that.
3085 */
3086 if (!sfp->gpio[GPIO_TX_DISABLE])
3087 dev_warn(sfp->dev,
3088 "No tx_disable pin: SFP modules will always be emitting.\n");
3089
3090 sfp->sfp_bus = sfp_register_socket(dev: sfp->dev, sfp, ops: &sfp_module_ops);
3091 if (!sfp->sfp_bus)
3092 return -ENOMEM;
3093
3094 sfp_debugfs_init(sfp);
3095
3096 return 0;
3097}
3098
3099static int sfp_remove(struct platform_device *pdev)
3100{
3101 struct sfp *sfp = platform_get_drvdata(pdev);
3102
3103 sfp_debugfs_exit(sfp);
3104 sfp_unregister_socket(bus: sfp->sfp_bus);
3105
3106 rtnl_lock();
3107 sfp_sm_event(sfp, event: SFP_E_REMOVE);
3108 rtnl_unlock();
3109
3110 return 0;
3111}
3112
3113static void sfp_shutdown(struct platform_device *pdev)
3114{
3115 struct sfp *sfp = platform_get_drvdata(pdev);
3116 int i;
3117
3118 for (i = 0; i < GPIO_MAX; i++) {
3119 if (!sfp->gpio_irq[i])
3120 continue;
3121
3122 devm_free_irq(dev: sfp->dev, irq: sfp->gpio_irq[i], dev_id: sfp);
3123 }
3124
3125 cancel_delayed_work_sync(dwork: &sfp->poll);
3126 cancel_delayed_work_sync(dwork: &sfp->timeout);
3127}
3128
3129static struct platform_driver sfp_driver = {
3130 .probe = sfp_probe,
3131 .remove = sfp_remove,
3132 .shutdown = sfp_shutdown,
3133 .driver = {
3134 .name = "sfp",
3135 .of_match_table = sfp_of_match,
3136 },
3137};
3138
3139static int sfp_init(void)
3140{
3141 poll_jiffies = msecs_to_jiffies(m: 100);
3142
3143 return platform_driver_register(&sfp_driver);
3144}
3145module_init(sfp_init);
3146
3147static void sfp_exit(void)
3148{
3149 platform_driver_unregister(&sfp_driver);
3150}
3151module_exit(sfp_exit);
3152
3153MODULE_ALIAS("platform:sfp");
3154MODULE_AUTHOR("Russell King");
3155MODULE_LICENSE("GPL v2");
3156

source code of linux/drivers/net/phy/sfp.c