1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * PHY drivers for the sungem ethernet driver.
4 *
5 * This file could be shared with other drivers.
6 *
7 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 *
9 * TODO:
10 * - Add support for PHYs that provide an IRQ line
11 * - Eventually moved the entire polling state machine in
12 * there (out of the eth driver), so that it can easily be
13 * skipped on PHYs that implement it in hardware.
14 * - On LXT971 & BCM5201, Apple uses some chip specific regs
15 * to read the link status. Figure out why and if it makes
16 * sense to do the same (magic aneg ?)
17 * - Apple has some additional power management code for some
18 * Broadcom PHYs that they "hide" from the OpenSource version
19 * of darwin, still need to reverse engineer that
20 */
21
22
23#include <linux/module.h>
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/netdevice.h>
28#include <linux/etherdevice.h>
29#include <linux/mii.h>
30#include <linux/ethtool.h>
31#include <linux/delay.h>
32#include <linux/of.h>
33#include <linux/sungem_phy.h>
34
35/* Link modes of the BCM5400 PHY */
36static const int phy_BCM5400_link_table[8][3] = {
37 { 0, 0, 0 }, /* No link */
38 { 0, 0, 0 }, /* 10BT Half Duplex */
39 { 1, 0, 0 }, /* 10BT Full Duplex */
40 { 0, 1, 0 }, /* 100BT Half Duplex */
41 { 0, 1, 0 }, /* 100BT Half Duplex */
42 { 1, 1, 0 }, /* 100BT Full Duplex*/
43 { 1, 0, 1 }, /* 1000BT */
44 { 1, 0, 1 }, /* 1000BT */
45};
46
47static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
48{
49 return phy->mdio_read(phy->dev, id, reg);
50}
51
52static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
53{
54 phy->mdio_write(phy->dev, id, reg, val);
55}
56
57static inline int sungem_phy_read(struct mii_phy* phy, int reg)
58{
59 return phy->mdio_read(phy->dev, phy->mii_id, reg);
60}
61
62static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
63{
64 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
65}
66
67static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
68{
69 u16 val;
70 int limit = 10000;
71
72 val = __sungem_phy_read(phy, id: phy_id, MII_BMCR);
73 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
74 val |= BMCR_RESET;
75 __sungem_phy_write(phy, id: phy_id, MII_BMCR, val);
76
77 udelay(100);
78
79 while (--limit) {
80 val = __sungem_phy_read(phy, id: phy_id, MII_BMCR);
81 if ((val & BMCR_RESET) == 0)
82 break;
83 udelay(10);
84 }
85 if ((val & BMCR_ISOLATE) && limit > 0)
86 __sungem_phy_write(phy, id: phy_id, MII_BMCR, val: val & ~BMCR_ISOLATE);
87
88 return limit <= 0;
89}
90
91static int bcm5201_init(struct mii_phy* phy)
92{
93 u16 data;
94
95 data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
96 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
97 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, val: data);
98
99 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, val: 0);
100
101 return 0;
102}
103
104static int bcm5201_suspend(struct mii_phy* phy)
105{
106 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, val: 0);
107 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
108
109 return 0;
110}
111
112static int bcm5221_init(struct mii_phy* phy)
113{
114 u16 data;
115
116 data = sungem_phy_read(phy, MII_BCM5221_TEST);
117 sungem_phy_write(phy, MII_BCM5221_TEST,
118 val: data | MII_BCM5221_TEST_ENABLE_SHADOWS);
119
120 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
121 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
122 val: data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
123
124 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
125 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
126 val: data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
127
128 data = sungem_phy_read(phy, MII_BCM5221_TEST);
129 sungem_phy_write(phy, MII_BCM5221_TEST,
130 val: data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
131
132 return 0;
133}
134
135static int bcm5221_suspend(struct mii_phy* phy)
136{
137 u16 data;
138
139 data = sungem_phy_read(phy, MII_BCM5221_TEST);
140 sungem_phy_write(phy, MII_BCM5221_TEST,
141 val: data | MII_BCM5221_TEST_ENABLE_SHADOWS);
142
143 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
144 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
145 val: data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
146
147 return 0;
148}
149
150static int bcm5241_init(struct mii_phy* phy)
151{
152 u16 data;
153
154 data = sungem_phy_read(phy, MII_BCM5221_TEST);
155 sungem_phy_write(phy, MII_BCM5221_TEST,
156 val: data | MII_BCM5221_TEST_ENABLE_SHADOWS);
157
158 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
159 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
160 val: data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
161
162 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
163 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
164 val: data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
165
166 data = sungem_phy_read(phy, MII_BCM5221_TEST);
167 sungem_phy_write(phy, MII_BCM5221_TEST,
168 val: data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
169
170 return 0;
171}
172
173static int bcm5241_suspend(struct mii_phy* phy)
174{
175 u16 data;
176
177 data = sungem_phy_read(phy, MII_BCM5221_TEST);
178 sungem_phy_write(phy, MII_BCM5221_TEST,
179 val: data | MII_BCM5221_TEST_ENABLE_SHADOWS);
180
181 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
182 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
183 val: data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
184
185 return 0;
186}
187
188static int bcm5400_init(struct mii_phy* phy)
189{
190 u16 data;
191
192 /* Configure for gigabit full duplex */
193 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
194 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
195 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, val: data);
196
197 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
198 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
199 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, val: data);
200
201 udelay(100);
202
203 /* Reset and configure cascaded 10/100 PHY */
204 (void)reset_one_mii_phy(phy, phy_id: 0x1f);
205
206 data = __sungem_phy_read(phy, id: 0x1f, MII_BCM5201_MULTIPHY);
207 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
208 __sungem_phy_write(phy, id: 0x1f, MII_BCM5201_MULTIPHY, val: data);
209
210 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
211 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
212 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, val: data);
213
214 return 0;
215}
216
217static int bcm5400_suspend(struct mii_phy* phy)
218{
219#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
220 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
221#endif
222 return 0;
223}
224
225static int bcm5401_init(struct mii_phy* phy)
226{
227 u16 data;
228 int rev;
229
230 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
231 if (rev == 0 || rev == 3) {
232 /* Some revisions of 5401 appear to need this
233 * initialisation sequence to disable, according
234 * to OF, "tap power management"
235 *
236 * WARNING ! OF and Darwin don't agree on the
237 * register addresses. OF seem to interpret the
238 * register numbers below as decimal
239 *
240 * Note: This should (and does) match tg3_init_5401phy_dsp
241 * in the tg3.c driver. -DaveM
242 */
243 sungem_phy_write(phy, reg: 0x18, val: 0x0c20);
244 sungem_phy_write(phy, reg: 0x17, val: 0x0012);
245 sungem_phy_write(phy, reg: 0x15, val: 0x1804);
246 sungem_phy_write(phy, reg: 0x17, val: 0x0013);
247 sungem_phy_write(phy, reg: 0x15, val: 0x1204);
248 sungem_phy_write(phy, reg: 0x17, val: 0x8006);
249 sungem_phy_write(phy, reg: 0x15, val: 0x0132);
250 sungem_phy_write(phy, reg: 0x17, val: 0x8006);
251 sungem_phy_write(phy, reg: 0x15, val: 0x0232);
252 sungem_phy_write(phy, reg: 0x17, val: 0x201f);
253 sungem_phy_write(phy, reg: 0x15, val: 0x0a20);
254 }
255
256 /* Configure for gigabit full duplex */
257 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
258 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
259 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, val: data);
260
261 udelay(10);
262
263 /* Reset and configure cascaded 10/100 PHY */
264 (void)reset_one_mii_phy(phy, phy_id: 0x1f);
265
266 data = __sungem_phy_read(phy, id: 0x1f, MII_BCM5201_MULTIPHY);
267 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
268 __sungem_phy_write(phy, id: 0x1f, MII_BCM5201_MULTIPHY, val: data);
269
270 return 0;
271}
272
273static int bcm5401_suspend(struct mii_phy* phy)
274{
275#if 0 /* Commented out in Darwin... someone has those dawn docs ? */
276 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
277#endif
278 return 0;
279}
280
281static int bcm5411_init(struct mii_phy* phy)
282{
283 u16 data;
284
285 /* Here's some more Apple black magic to setup
286 * some voltage stuffs.
287 */
288 sungem_phy_write(phy, reg: 0x1c, val: 0x8c23);
289 sungem_phy_write(phy, reg: 0x1c, val: 0x8ca3);
290 sungem_phy_write(phy, reg: 0x1c, val: 0x8c23);
291
292 /* Here, Apple seems to want to reset it, do
293 * it as well
294 */
295 sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
296 sungem_phy_write(phy, MII_BMCR, val: 0x1340);
297
298 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
299 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
300 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, val: data);
301
302 udelay(10);
303
304 /* Reset and configure cascaded 10/100 PHY */
305 (void)reset_one_mii_phy(phy, phy_id: 0x1f);
306
307 return 0;
308}
309
310static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
311{
312 u16 ctl, adv;
313
314 phy->autoneg = 1;
315 phy->speed = SPEED_10;
316 phy->duplex = DUPLEX_HALF;
317 phy->pause = 0;
318 phy->advertising = advertise;
319
320 /* Setup standard advertise */
321 adv = sungem_phy_read(phy, MII_ADVERTISE);
322 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
323 if (advertise & ADVERTISED_10baseT_Half)
324 adv |= ADVERTISE_10HALF;
325 if (advertise & ADVERTISED_10baseT_Full)
326 adv |= ADVERTISE_10FULL;
327 if (advertise & ADVERTISED_100baseT_Half)
328 adv |= ADVERTISE_100HALF;
329 if (advertise & ADVERTISED_100baseT_Full)
330 adv |= ADVERTISE_100FULL;
331 sungem_phy_write(phy, MII_ADVERTISE, val: adv);
332
333 /* Start/Restart aneg */
334 ctl = sungem_phy_read(phy, MII_BMCR);
335 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
336 sungem_phy_write(phy, MII_BMCR, val: ctl);
337
338 return 0;
339}
340
341static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
342{
343 u16 ctl;
344
345 phy->autoneg = 0;
346 phy->speed = speed;
347 phy->duplex = fd;
348 phy->pause = 0;
349
350 ctl = sungem_phy_read(phy, MII_BMCR);
351 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
352
353 /* First reset the PHY */
354 sungem_phy_write(phy, MII_BMCR, val: ctl | BMCR_RESET);
355
356 /* Select speed & duplex */
357 switch(speed) {
358 case SPEED_10:
359 break;
360 case SPEED_100:
361 ctl |= BMCR_SPEED100;
362 break;
363 case SPEED_1000:
364 default:
365 return -EINVAL;
366 }
367 if (fd == DUPLEX_FULL)
368 ctl |= BMCR_FULLDPLX;
369 sungem_phy_write(phy, MII_BMCR, val: ctl);
370
371 return 0;
372}
373
374static int genmii_poll_link(struct mii_phy *phy)
375{
376 u16 status;
377
378 (void)sungem_phy_read(phy, MII_BMSR);
379 status = sungem_phy_read(phy, MII_BMSR);
380 if ((status & BMSR_LSTATUS) == 0)
381 return 0;
382 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
383 return 0;
384 return 1;
385}
386
387static int genmii_read_link(struct mii_phy *phy)
388{
389 u16 lpa;
390
391 if (phy->autoneg) {
392 lpa = sungem_phy_read(phy, MII_LPA);
393
394 if (lpa & (LPA_10FULL | LPA_100FULL))
395 phy->duplex = DUPLEX_FULL;
396 else
397 phy->duplex = DUPLEX_HALF;
398 if (lpa & (LPA_100FULL | LPA_100HALF))
399 phy->speed = SPEED_100;
400 else
401 phy->speed = SPEED_10;
402 phy->pause = 0;
403 }
404 /* On non-aneg, we assume what we put in BMCR is the speed,
405 * though magic-aneg shouldn't prevent this case from occurring
406 */
407
408 return 0;
409}
410
411static int generic_suspend(struct mii_phy* phy)
412{
413 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
414
415 return 0;
416}
417
418static int bcm5421_init(struct mii_phy* phy)
419{
420 u16 data;
421 unsigned int id;
422
423 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
424
425 /* Revision 0 of 5421 needs some fixups */
426 if (id == 0x002060e0) {
427 /* This is borrowed from MacOS
428 */
429 sungem_phy_write(phy, reg: 0x18, val: 0x1007);
430 data = sungem_phy_read(phy, reg: 0x18);
431 sungem_phy_write(phy, reg: 0x18, val: data | 0x0400);
432 sungem_phy_write(phy, reg: 0x18, val: 0x0007);
433 data = sungem_phy_read(phy, reg: 0x18);
434 sungem_phy_write(phy, reg: 0x18, val: data | 0x0800);
435 sungem_phy_write(phy, reg: 0x17, val: 0x000a);
436 data = sungem_phy_read(phy, reg: 0x15);
437 sungem_phy_write(phy, reg: 0x15, val: data | 0x0200);
438 }
439
440 /* Pick up some init code from OF for K2 version */
441 if ((id & 0xfffffff0) == 0x002062e0) {
442 sungem_phy_write(phy, reg: 4, val: 0x01e1);
443 sungem_phy_write(phy, reg: 9, val: 0x0300);
444 }
445
446 /* Check if we can enable automatic low power */
447#ifdef CONFIG_PPC_PMAC
448 if (phy->platform_data) {
449 struct device_node *np = of_get_parent(phy->platform_data);
450 int can_low_power = 1;
451 if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
452 can_low_power = 0;
453 of_node_put(np);
454 if (can_low_power) {
455 /* Enable automatic low-power */
456 sungem_phy_write(phy, 0x1c, 0x9002);
457 sungem_phy_write(phy, 0x1c, 0xa821);
458 sungem_phy_write(phy, 0x1c, 0x941d);
459 }
460 }
461#endif /* CONFIG_PPC_PMAC */
462
463 return 0;
464}
465
466static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
467{
468 u16 ctl, adv;
469
470 phy->autoneg = 1;
471 phy->speed = SPEED_10;
472 phy->duplex = DUPLEX_HALF;
473 phy->pause = 0;
474 phy->advertising = advertise;
475
476 /* Setup standard advertise */
477 adv = sungem_phy_read(phy, MII_ADVERTISE);
478 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
479 if (advertise & ADVERTISED_10baseT_Half)
480 adv |= ADVERTISE_10HALF;
481 if (advertise & ADVERTISED_10baseT_Full)
482 adv |= ADVERTISE_10FULL;
483 if (advertise & ADVERTISED_100baseT_Half)
484 adv |= ADVERTISE_100HALF;
485 if (advertise & ADVERTISED_100baseT_Full)
486 adv |= ADVERTISE_100FULL;
487 if (advertise & ADVERTISED_Pause)
488 adv |= ADVERTISE_PAUSE_CAP;
489 if (advertise & ADVERTISED_Asym_Pause)
490 adv |= ADVERTISE_PAUSE_ASYM;
491 sungem_phy_write(phy, MII_ADVERTISE, val: adv);
492
493 /* Setup 1000BT advertise */
494 adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
495 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
496 if (advertise & SUPPORTED_1000baseT_Half)
497 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
498 if (advertise & SUPPORTED_1000baseT_Full)
499 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
500 sungem_phy_write(phy, MII_1000BASETCONTROL, val: adv);
501
502 /* Start/Restart aneg */
503 ctl = sungem_phy_read(phy, MII_BMCR);
504 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
505 sungem_phy_write(phy, MII_BMCR, val: ctl);
506
507 return 0;
508}
509
510static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
511{
512 u16 ctl;
513
514 phy->autoneg = 0;
515 phy->speed = speed;
516 phy->duplex = fd;
517 phy->pause = 0;
518
519 ctl = sungem_phy_read(phy, MII_BMCR);
520 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
521
522 /* First reset the PHY */
523 sungem_phy_write(phy, MII_BMCR, val: ctl | BMCR_RESET);
524
525 /* Select speed & duplex */
526 switch(speed) {
527 case SPEED_10:
528 break;
529 case SPEED_100:
530 ctl |= BMCR_SPEED100;
531 break;
532 case SPEED_1000:
533 ctl |= BMCR_SPD2;
534 }
535 if (fd == DUPLEX_FULL)
536 ctl |= BMCR_FULLDPLX;
537
538 // XXX Should we set the sungem to GII now on 1000BT ?
539
540 sungem_phy_write(phy, MII_BMCR, val: ctl);
541
542 return 0;
543}
544
545static int bcm54xx_read_link(struct mii_phy *phy)
546{
547 int link_mode;
548 u16 val;
549
550 if (phy->autoneg) {
551 val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
552 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
553 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
554 phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
555 DUPLEX_FULL : DUPLEX_HALF;
556 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
557 SPEED_1000 :
558 (phy_BCM5400_link_table[link_mode][1] ?
559 SPEED_100 : SPEED_10);
560 val = sungem_phy_read(phy, MII_LPA);
561 phy->pause = (phy->duplex == DUPLEX_FULL) &&
562 ((val & LPA_PAUSE) != 0);
563 }
564 /* On non-aneg, we assume what we put in BMCR is the speed,
565 * though magic-aneg shouldn't prevent this case from occurring
566 */
567
568 return 0;
569}
570
571static int marvell88e1111_init(struct mii_phy* phy)
572{
573 u16 rev;
574
575 /* magic init sequence for rev 0 */
576 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
577 if (rev == 0) {
578 sungem_phy_write(phy, reg: 0x1d, val: 0x000a);
579 sungem_phy_write(phy, reg: 0x1e, val: 0x0821);
580
581 sungem_phy_write(phy, reg: 0x1d, val: 0x0006);
582 sungem_phy_write(phy, reg: 0x1e, val: 0x8600);
583
584 sungem_phy_write(phy, reg: 0x1d, val: 0x000b);
585 sungem_phy_write(phy, reg: 0x1e, val: 0x0100);
586
587 sungem_phy_write(phy, reg: 0x1d, val: 0x0004);
588 sungem_phy_write(phy, reg: 0x1e, val: 0x4850);
589 }
590 return 0;
591}
592
593#define BCM5421_MODE_MASK (1 << 5)
594
595static int bcm5421_poll_link(struct mii_phy* phy)
596{
597 u32 phy_reg;
598 int mode;
599
600 /* find out in what mode we are */
601 sungem_phy_write(phy, MII_NCONFIG, val: 0x1000);
602 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
603
604 mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
605
606 if ( mode == BCM54XX_COPPER)
607 return genmii_poll_link(phy);
608
609 /* try to find out whether we have a link */
610 sungem_phy_write(phy, MII_NCONFIG, val: 0x2000);
611 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
612
613 if (phy_reg & 0x0020)
614 return 0;
615 else
616 return 1;
617}
618
619static int bcm5421_read_link(struct mii_phy* phy)
620{
621 u32 phy_reg;
622 int mode;
623
624 /* find out in what mode we are */
625 sungem_phy_write(phy, MII_NCONFIG, val: 0x1000);
626 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
627
628 mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
629
630 if ( mode == BCM54XX_COPPER)
631 return bcm54xx_read_link(phy);
632
633 phy->speed = SPEED_1000;
634
635 /* find out whether we are running half- or full duplex */
636 sungem_phy_write(phy, MII_NCONFIG, val: 0x2000);
637 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
638
639 if ( (phy_reg & 0x0080) >> 7)
640 phy->duplex |= DUPLEX_HALF;
641 else
642 phy->duplex |= DUPLEX_FULL;
643
644 return 0;
645}
646
647static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
648{
649 /* enable fiber mode */
650 sungem_phy_write(phy, MII_NCONFIG, val: 0x9020);
651 /* LEDs active in both modes, autosense prio = fiber */
652 sungem_phy_write(phy, MII_NCONFIG, val: 0x945f);
653
654 if (!autoneg) {
655 /* switch off fibre autoneg */
656 sungem_phy_write(phy, MII_NCONFIG, val: 0xfc01);
657 sungem_phy_write(phy, reg: 0x0b, val: 0x0004);
658 }
659
660 phy->autoneg = autoneg;
661
662 return 0;
663}
664
665#define BCM5461_FIBER_LINK (1 << 2)
666#define BCM5461_MODE_MASK (3 << 1)
667
668static int bcm5461_poll_link(struct mii_phy* phy)
669{
670 u32 phy_reg;
671 int mode;
672
673 /* find out in what mode we are */
674 sungem_phy_write(phy, MII_NCONFIG, val: 0x7c00);
675 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
676
677 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
678
679 if ( mode == BCM54XX_COPPER)
680 return genmii_poll_link(phy);
681
682 /* find out whether we have a link */
683 sungem_phy_write(phy, MII_NCONFIG, val: 0x7000);
684 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
685
686 if (phy_reg & BCM5461_FIBER_LINK)
687 return 1;
688 else
689 return 0;
690}
691
692#define BCM5461_FIBER_DUPLEX (1 << 3)
693
694static int bcm5461_read_link(struct mii_phy* phy)
695{
696 u32 phy_reg;
697 int mode;
698
699 /* find out in what mode we are */
700 sungem_phy_write(phy, MII_NCONFIG, val: 0x7c00);
701 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
702
703 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
704
705 if ( mode == BCM54XX_COPPER) {
706 return bcm54xx_read_link(phy);
707 }
708
709 phy->speed = SPEED_1000;
710
711 /* find out whether we are running half- or full duplex */
712 sungem_phy_write(phy, MII_NCONFIG, val: 0x7000);
713 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
714
715 if (phy_reg & BCM5461_FIBER_DUPLEX)
716 phy->duplex |= DUPLEX_FULL;
717 else
718 phy->duplex |= DUPLEX_HALF;
719
720 return 0;
721}
722
723static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
724{
725 /* select fiber mode, enable 1000 base-X registers */
726 sungem_phy_write(phy, MII_NCONFIG, val: 0xfc0b);
727
728 if (autoneg) {
729 /* enable fiber with no autonegotiation */
730 sungem_phy_write(phy, MII_ADVERTISE, val: 0x01e0);
731 sungem_phy_write(phy, MII_BMCR, val: 0x1140);
732 } else {
733 /* enable fiber with autonegotiation */
734 sungem_phy_write(phy, MII_BMCR, val: 0x0140);
735 }
736
737 phy->autoneg = autoneg;
738
739 return 0;
740}
741
742static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
743{
744 u16 ctl, adv;
745
746 phy->autoneg = 1;
747 phy->speed = SPEED_10;
748 phy->duplex = DUPLEX_HALF;
749 phy->pause = 0;
750 phy->advertising = advertise;
751
752 /* Setup standard advertise */
753 adv = sungem_phy_read(phy, MII_ADVERTISE);
754 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
755 if (advertise & ADVERTISED_10baseT_Half)
756 adv |= ADVERTISE_10HALF;
757 if (advertise & ADVERTISED_10baseT_Full)
758 adv |= ADVERTISE_10FULL;
759 if (advertise & ADVERTISED_100baseT_Half)
760 adv |= ADVERTISE_100HALF;
761 if (advertise & ADVERTISED_100baseT_Full)
762 adv |= ADVERTISE_100FULL;
763 if (advertise & ADVERTISED_Pause)
764 adv |= ADVERTISE_PAUSE_CAP;
765 if (advertise & ADVERTISED_Asym_Pause)
766 adv |= ADVERTISE_PAUSE_ASYM;
767 sungem_phy_write(phy, MII_ADVERTISE, val: adv);
768
769 /* Setup 1000BT advertise & enable crossover detect
770 * XXX How do we advertise 1000BT ? Darwin source is
771 * confusing here, they read from specific control and
772 * write to control... Someone has specs for those
773 * beasts ?
774 */
775 adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
776 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
777 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
778 MII_1000BASETCONTROL_HALFDUPLEXCAP);
779 if (advertise & SUPPORTED_1000baseT_Half)
780 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
781 if (advertise & SUPPORTED_1000baseT_Full)
782 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
783 sungem_phy_write(phy, MII_1000BASETCONTROL, val: adv);
784
785 /* Start/Restart aneg */
786 ctl = sungem_phy_read(phy, MII_BMCR);
787 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
788 sungem_phy_write(phy, MII_BMCR, val: ctl);
789
790 return 0;
791}
792
793static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
794{
795 u16 ctl, ctl2;
796
797 phy->autoneg = 0;
798 phy->speed = speed;
799 phy->duplex = fd;
800 phy->pause = 0;
801
802 ctl = sungem_phy_read(phy, MII_BMCR);
803 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
804 ctl |= BMCR_RESET;
805
806 /* Select speed & duplex */
807 switch(speed) {
808 case SPEED_10:
809 break;
810 case SPEED_100:
811 ctl |= BMCR_SPEED100;
812 break;
813 /* I'm not sure about the one below, again, Darwin source is
814 * quite confusing and I lack chip specs
815 */
816 case SPEED_1000:
817 ctl |= BMCR_SPD2;
818 }
819 if (fd == DUPLEX_FULL)
820 ctl |= BMCR_FULLDPLX;
821
822 /* Disable crossover. Again, the way Apple does it is strange,
823 * though I don't assume they are wrong ;)
824 */
825 ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
826 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
827 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
828 MII_1000BASETCONTROL_FULLDUPLEXCAP |
829 MII_1000BASETCONTROL_HALFDUPLEXCAP);
830 if (speed == SPEED_1000)
831 ctl2 |= (fd == DUPLEX_FULL) ?
832 MII_1000BASETCONTROL_FULLDUPLEXCAP :
833 MII_1000BASETCONTROL_HALFDUPLEXCAP;
834 sungem_phy_write(phy, MII_1000BASETCONTROL, val: ctl2);
835
836 // XXX Should we set the sungem to GII now on 1000BT ?
837
838 sungem_phy_write(phy, MII_BMCR, val: ctl);
839
840 return 0;
841}
842
843static int marvell_read_link(struct mii_phy *phy)
844{
845 u16 status, pmask;
846
847 if (phy->autoneg) {
848 status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
849 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
850 return -EAGAIN;
851 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
852 phy->speed = SPEED_1000;
853 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
854 phy->speed = SPEED_100;
855 else
856 phy->speed = SPEED_10;
857 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
858 phy->duplex = DUPLEX_FULL;
859 else
860 phy->duplex = DUPLEX_HALF;
861 pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
862 MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
863 phy->pause = (status & pmask) == pmask;
864 }
865 /* On non-aneg, we assume what we put in BMCR is the speed,
866 * though magic-aneg shouldn't prevent this case from occurring
867 */
868
869 return 0;
870}
871
872#define MII_BASIC_FEATURES \
873 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
874 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
875 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
876 SUPPORTED_Pause)
877
878/* On gigabit capable PHYs, we advertise Pause support but not asym pause
879 * support for now as I'm not sure it's supported and Darwin doesn't do
880 * it neither. --BenH.
881 */
882#define MII_GBIT_FEATURES \
883 (MII_BASIC_FEATURES | \
884 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
885
886/* Broadcom BCM 5201 */
887static const struct mii_phy_ops bcm5201_phy_ops = {
888 .init = bcm5201_init,
889 .suspend = bcm5201_suspend,
890 .setup_aneg = genmii_setup_aneg,
891 .setup_forced = genmii_setup_forced,
892 .poll_link = genmii_poll_link,
893 .read_link = genmii_read_link,
894};
895
896static struct mii_phy_def bcm5201_phy_def = {
897 .phy_id = 0x00406210,
898 .phy_id_mask = 0xfffffff0,
899 .name = "BCM5201",
900 .features = MII_BASIC_FEATURES,
901 .magic_aneg = 1,
902 .ops = &bcm5201_phy_ops
903};
904
905/* Broadcom BCM 5221 */
906static const struct mii_phy_ops bcm5221_phy_ops = {
907 .suspend = bcm5221_suspend,
908 .init = bcm5221_init,
909 .setup_aneg = genmii_setup_aneg,
910 .setup_forced = genmii_setup_forced,
911 .poll_link = genmii_poll_link,
912 .read_link = genmii_read_link,
913};
914
915static struct mii_phy_def bcm5221_phy_def = {
916 .phy_id = 0x004061e0,
917 .phy_id_mask = 0xfffffff0,
918 .name = "BCM5221",
919 .features = MII_BASIC_FEATURES,
920 .magic_aneg = 1,
921 .ops = &bcm5221_phy_ops
922};
923
924/* Broadcom BCM 5241 */
925static const struct mii_phy_ops bcm5241_phy_ops = {
926 .suspend = bcm5241_suspend,
927 .init = bcm5241_init,
928 .setup_aneg = genmii_setup_aneg,
929 .setup_forced = genmii_setup_forced,
930 .poll_link = genmii_poll_link,
931 .read_link = genmii_read_link,
932};
933static struct mii_phy_def bcm5241_phy_def = {
934 .phy_id = 0x0143bc30,
935 .phy_id_mask = 0xfffffff0,
936 .name = "BCM5241",
937 .features = MII_BASIC_FEATURES,
938 .magic_aneg = 1,
939 .ops = &bcm5241_phy_ops
940};
941
942/* Broadcom BCM 5400 */
943static const struct mii_phy_ops bcm5400_phy_ops = {
944 .init = bcm5400_init,
945 .suspend = bcm5400_suspend,
946 .setup_aneg = bcm54xx_setup_aneg,
947 .setup_forced = bcm54xx_setup_forced,
948 .poll_link = genmii_poll_link,
949 .read_link = bcm54xx_read_link,
950};
951
952static struct mii_phy_def bcm5400_phy_def = {
953 .phy_id = 0x00206040,
954 .phy_id_mask = 0xfffffff0,
955 .name = "BCM5400",
956 .features = MII_GBIT_FEATURES,
957 .magic_aneg = 1,
958 .ops = &bcm5400_phy_ops
959};
960
961/* Broadcom BCM 5401 */
962static const struct mii_phy_ops bcm5401_phy_ops = {
963 .init = bcm5401_init,
964 .suspend = bcm5401_suspend,
965 .setup_aneg = bcm54xx_setup_aneg,
966 .setup_forced = bcm54xx_setup_forced,
967 .poll_link = genmii_poll_link,
968 .read_link = bcm54xx_read_link,
969};
970
971static struct mii_phy_def bcm5401_phy_def = {
972 .phy_id = 0x00206050,
973 .phy_id_mask = 0xfffffff0,
974 .name = "BCM5401",
975 .features = MII_GBIT_FEATURES,
976 .magic_aneg = 1,
977 .ops = &bcm5401_phy_ops
978};
979
980/* Broadcom BCM 5411 */
981static const struct mii_phy_ops bcm5411_phy_ops = {
982 .init = bcm5411_init,
983 .suspend = generic_suspend,
984 .setup_aneg = bcm54xx_setup_aneg,
985 .setup_forced = bcm54xx_setup_forced,
986 .poll_link = genmii_poll_link,
987 .read_link = bcm54xx_read_link,
988};
989
990static struct mii_phy_def bcm5411_phy_def = {
991 .phy_id = 0x00206070,
992 .phy_id_mask = 0xfffffff0,
993 .name = "BCM5411",
994 .features = MII_GBIT_FEATURES,
995 .magic_aneg = 1,
996 .ops = &bcm5411_phy_ops
997};
998
999/* Broadcom BCM 5421 */
1000static const struct mii_phy_ops bcm5421_phy_ops = {
1001 .init = bcm5421_init,
1002 .suspend = generic_suspend,
1003 .setup_aneg = bcm54xx_setup_aneg,
1004 .setup_forced = bcm54xx_setup_forced,
1005 .poll_link = bcm5421_poll_link,
1006 .read_link = bcm5421_read_link,
1007 .enable_fiber = bcm5421_enable_fiber,
1008};
1009
1010static struct mii_phy_def bcm5421_phy_def = {
1011 .phy_id = 0x002060e0,
1012 .phy_id_mask = 0xfffffff0,
1013 .name = "BCM5421",
1014 .features = MII_GBIT_FEATURES,
1015 .magic_aneg = 1,
1016 .ops = &bcm5421_phy_ops
1017};
1018
1019/* Broadcom BCM 5421 built-in K2 */
1020static const struct mii_phy_ops bcm5421k2_phy_ops = {
1021 .init = bcm5421_init,
1022 .suspend = generic_suspend,
1023 .setup_aneg = bcm54xx_setup_aneg,
1024 .setup_forced = bcm54xx_setup_forced,
1025 .poll_link = genmii_poll_link,
1026 .read_link = bcm54xx_read_link,
1027};
1028
1029static struct mii_phy_def bcm5421k2_phy_def = {
1030 .phy_id = 0x002062e0,
1031 .phy_id_mask = 0xfffffff0,
1032 .name = "BCM5421-K2",
1033 .features = MII_GBIT_FEATURES,
1034 .magic_aneg = 1,
1035 .ops = &bcm5421k2_phy_ops
1036};
1037
1038static const struct mii_phy_ops bcm5461_phy_ops = {
1039 .init = bcm5421_init,
1040 .suspend = generic_suspend,
1041 .setup_aneg = bcm54xx_setup_aneg,
1042 .setup_forced = bcm54xx_setup_forced,
1043 .poll_link = bcm5461_poll_link,
1044 .read_link = bcm5461_read_link,
1045 .enable_fiber = bcm5461_enable_fiber,
1046};
1047
1048static struct mii_phy_def bcm5461_phy_def = {
1049 .phy_id = 0x002060c0,
1050 .phy_id_mask = 0xfffffff0,
1051 .name = "BCM5461",
1052 .features = MII_GBIT_FEATURES,
1053 .magic_aneg = 1,
1054 .ops = &bcm5461_phy_ops
1055};
1056
1057/* Broadcom BCM 5462 built-in Vesta */
1058static const struct mii_phy_ops bcm5462V_phy_ops = {
1059 .init = bcm5421_init,
1060 .suspend = generic_suspend,
1061 .setup_aneg = bcm54xx_setup_aneg,
1062 .setup_forced = bcm54xx_setup_forced,
1063 .poll_link = genmii_poll_link,
1064 .read_link = bcm54xx_read_link,
1065};
1066
1067static struct mii_phy_def bcm5462V_phy_def = {
1068 .phy_id = 0x002060d0,
1069 .phy_id_mask = 0xfffffff0,
1070 .name = "BCM5462-Vesta",
1071 .features = MII_GBIT_FEATURES,
1072 .magic_aneg = 1,
1073 .ops = &bcm5462V_phy_ops
1074};
1075
1076/* Marvell 88E1101 amd 88E1111 */
1077static const struct mii_phy_ops marvell88e1101_phy_ops = {
1078 .suspend = generic_suspend,
1079 .setup_aneg = marvell_setup_aneg,
1080 .setup_forced = marvell_setup_forced,
1081 .poll_link = genmii_poll_link,
1082 .read_link = marvell_read_link
1083};
1084
1085static const struct mii_phy_ops marvell88e1111_phy_ops = {
1086 .init = marvell88e1111_init,
1087 .suspend = generic_suspend,
1088 .setup_aneg = marvell_setup_aneg,
1089 .setup_forced = marvell_setup_forced,
1090 .poll_link = genmii_poll_link,
1091 .read_link = marvell_read_link
1092};
1093
1094/* two revs in darwin for the 88e1101 ... I could use a datasheet
1095 * to get the proper names...
1096 */
1097static struct mii_phy_def marvell88e1101v1_phy_def = {
1098 .phy_id = 0x01410c20,
1099 .phy_id_mask = 0xfffffff0,
1100 .name = "Marvell 88E1101v1",
1101 .features = MII_GBIT_FEATURES,
1102 .magic_aneg = 1,
1103 .ops = &marvell88e1101_phy_ops
1104};
1105static struct mii_phy_def marvell88e1101v2_phy_def = {
1106 .phy_id = 0x01410c60,
1107 .phy_id_mask = 0xfffffff0,
1108 .name = "Marvell 88E1101v2",
1109 .features = MII_GBIT_FEATURES,
1110 .magic_aneg = 1,
1111 .ops = &marvell88e1101_phy_ops
1112};
1113static struct mii_phy_def marvell88e1111_phy_def = {
1114 .phy_id = 0x01410cc0,
1115 .phy_id_mask = 0xfffffff0,
1116 .name = "Marvell 88E1111",
1117 .features = MII_GBIT_FEATURES,
1118 .magic_aneg = 1,
1119 .ops = &marvell88e1111_phy_ops
1120};
1121
1122/* Generic implementation for most 10/100 PHYs */
1123static const struct mii_phy_ops generic_phy_ops = {
1124 .setup_aneg = genmii_setup_aneg,
1125 .setup_forced = genmii_setup_forced,
1126 .poll_link = genmii_poll_link,
1127 .read_link = genmii_read_link
1128};
1129
1130static struct mii_phy_def genmii_phy_def = {
1131 .phy_id = 0x00000000,
1132 .phy_id_mask = 0x00000000,
1133 .name = "Generic MII",
1134 .features = MII_BASIC_FEATURES,
1135 .magic_aneg = 0,
1136 .ops = &generic_phy_ops
1137};
1138
1139static struct mii_phy_def* mii_phy_table[] = {
1140 &bcm5201_phy_def,
1141 &bcm5221_phy_def,
1142 &bcm5241_phy_def,
1143 &bcm5400_phy_def,
1144 &bcm5401_phy_def,
1145 &bcm5411_phy_def,
1146 &bcm5421_phy_def,
1147 &bcm5421k2_phy_def,
1148 &bcm5461_phy_def,
1149 &bcm5462V_phy_def,
1150 &marvell88e1101v1_phy_def,
1151 &marvell88e1101v2_phy_def,
1152 &marvell88e1111_phy_def,
1153 &genmii_phy_def,
1154 NULL
1155};
1156
1157int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1158{
1159 int rc;
1160 u32 id;
1161 struct mii_phy_def* def;
1162 int i;
1163
1164 /* We do not reset the mii_phy structure as the driver
1165 * may re-probe the PHY regulary
1166 */
1167 phy->mii_id = mii_id;
1168
1169 /* Take PHY out of isloate mode and reset it. */
1170 rc = reset_one_mii_phy(phy, phy_id: mii_id);
1171 if (rc)
1172 goto fail;
1173
1174 /* Read ID and find matching entry */
1175 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1176 printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1177 id, mii_id);
1178 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1179 if ((id & def->phy_id_mask) == def->phy_id)
1180 break;
1181 /* Should never be NULL (we have a generic entry), but... */
1182 if (def == NULL)
1183 goto fail;
1184
1185 phy->def = def;
1186
1187 return 0;
1188fail:
1189 phy->speed = 0;
1190 phy->duplex = 0;
1191 phy->pause = 0;
1192 phy->advertising = 0;
1193 return -ENODEV;
1194}
1195
1196EXPORT_SYMBOL(sungem_phy_probe);
1197MODULE_DESCRIPTION("PHY drivers for the sungem Ethernet MAC driver");
1198MODULE_LICENSE("GPL");
1199

source code of linux/drivers/net/sungem_phy.c