1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50#include <linux/debugfs.h>
51#include <linux/delay.h>
52#include <linux/dmaengine.h>
53#include <linux/dma-mapping.h>
54#include <linux/errno.h>
55#include <linux/export.h>
56#include <linux/interrupt.h>
57#include <linux/module.h>
58#include <linux/pci.h>
59#include <linux/slab.h>
60#include <linux/types.h>
61#include <linux/uaccess.h>
62#include "linux/ntb.h"
63#include "linux/ntb_transport.h"
64
65#define NTB_TRANSPORT_VERSION 4
66#define NTB_TRANSPORT_VER "4"
67#define NTB_TRANSPORT_NAME "ntb_transport"
68#define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69#define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72MODULE_VERSION(NTB_TRANSPORT_VER);
73MODULE_LICENSE("Dual BSD/GPL");
74MODULE_AUTHOR("Intel Corporation");
75
76static unsigned long max_mw_size;
77module_param(max_mw_size, ulong, 0644);
78MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80static unsigned int transport_mtu = 0x10000;
81module_param(transport_mtu, uint, 0644);
82MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84static unsigned char max_num_clients;
85module_param(max_num_clients, byte, 0644);
86MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88static unsigned int copy_bytes = 1024;
89module_param(copy_bytes, uint, 0644);
90MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92static bool use_dma;
93module_param(use_dma, bool, 0644);
94MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96static bool use_msi;
97#ifdef CONFIG_NTB_MSI
98module_param(use_msi, bool, 0644);
99MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100#endif
101
102static struct dentry *nt_debugfs_dir;
103
104/* Only two-ports NTB devices are supported */
105#define PIDX NTB_DEF_PEER_IDX
106
107struct ntb_queue_entry {
108 /* ntb_queue list reference */
109 struct list_head entry;
110 /* pointers to data to be transferred */
111 void *cb_data;
112 void *buf;
113 unsigned int len;
114 unsigned int flags;
115 int retries;
116 int errors;
117 unsigned int tx_index;
118 unsigned int rx_index;
119
120 struct ntb_transport_qp *qp;
121 union {
122 struct ntb_payload_header __iomem *tx_hdr;
123 struct ntb_payload_header *rx_hdr;
124 };
125};
126
127struct ntb_rx_info {
128 unsigned int entry;
129};
130
131struct ntb_transport_qp {
132 struct ntb_transport_ctx *transport;
133 struct ntb_dev *ndev;
134 void *cb_data;
135 struct dma_chan *tx_dma_chan;
136 struct dma_chan *rx_dma_chan;
137
138 bool client_ready;
139 bool link_is_up;
140 bool active;
141
142 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
143 u64 qp_bit;
144
145 struct ntb_rx_info __iomem *rx_info;
146 struct ntb_rx_info *remote_rx_info;
147
148 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 void *data, int len);
150 struct list_head tx_free_q;
151 spinlock_t ntb_tx_free_q_lock;
152 void __iomem *tx_mw;
153 phys_addr_t tx_mw_phys;
154 size_t tx_mw_size;
155 dma_addr_t tx_mw_dma_addr;
156 unsigned int tx_index;
157 unsigned int tx_max_entry;
158 unsigned int tx_max_frame;
159
160 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 void *data, int len);
162 struct list_head rx_post_q;
163 struct list_head rx_pend_q;
164 struct list_head rx_free_q;
165 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 spinlock_t ntb_rx_q_lock;
167 void *rx_buff;
168 unsigned int rx_index;
169 unsigned int rx_max_entry;
170 unsigned int rx_max_frame;
171 unsigned int rx_alloc_entry;
172 dma_cookie_t last_cookie;
173 struct tasklet_struct rxc_db_work;
174
175 void (*event_handler)(void *data, int status);
176 struct delayed_work link_work;
177 struct work_struct link_cleanup;
178
179 struct dentry *debugfs_dir;
180 struct dentry *debugfs_stats;
181
182 /* Stats */
183 u64 rx_bytes;
184 u64 rx_pkts;
185 u64 rx_ring_empty;
186 u64 rx_err_no_buf;
187 u64 rx_err_oflow;
188 u64 rx_err_ver;
189 u64 rx_memcpy;
190 u64 rx_async;
191 u64 tx_bytes;
192 u64 tx_pkts;
193 u64 tx_ring_full;
194 u64 tx_err_no_buf;
195 u64 tx_memcpy;
196 u64 tx_async;
197
198 bool use_msi;
199 int msi_irq;
200 struct ntb_msi_desc msi_desc;
201 struct ntb_msi_desc peer_msi_desc;
202};
203
204struct ntb_transport_mw {
205 phys_addr_t phys_addr;
206 resource_size_t phys_size;
207 void __iomem *vbase;
208 size_t xlat_size;
209 size_t buff_size;
210 size_t alloc_size;
211 void *alloc_addr;
212 void *virt_addr;
213 dma_addr_t dma_addr;
214};
215
216struct ntb_transport_client_dev {
217 struct list_head entry;
218 struct ntb_transport_ctx *nt;
219 struct device dev;
220};
221
222struct ntb_transport_ctx {
223 struct list_head entry;
224 struct list_head client_devs;
225
226 struct ntb_dev *ndev;
227
228 struct ntb_transport_mw *mw_vec;
229 struct ntb_transport_qp *qp_vec;
230 unsigned int mw_count;
231 unsigned int qp_count;
232 u64 qp_bitmap;
233 u64 qp_bitmap_free;
234
235 bool use_msi;
236 unsigned int msi_spad_offset;
237 u64 msi_db_mask;
238
239 bool link_is_up;
240 struct delayed_work link_work;
241 struct work_struct link_cleanup;
242
243 struct dentry *debugfs_node_dir;
244};
245
246enum {
247 DESC_DONE_FLAG = BIT(0),
248 LINK_DOWN_FLAG = BIT(1),
249};
250
251struct ntb_payload_header {
252 unsigned int ver;
253 unsigned int len;
254 unsigned int flags;
255};
256
257enum {
258 VERSION = 0,
259 QP_LINKS,
260 NUM_QPS,
261 NUM_MWS,
262 MW0_SZ_HIGH,
263 MW0_SZ_LOW,
264};
265
266#define dev_client_dev(__dev) \
267 container_of((__dev), struct ntb_transport_client_dev, dev)
268
269#define drv_client(__drv) \
270 container_of((__drv), struct ntb_transport_client, driver)
271
272#define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
273#define NTB_QP_DEF_NUM_ENTRIES 100
274#define NTB_LINK_DOWN_TIMEOUT 10
275
276static void ntb_transport_rxc_db(unsigned long data);
277static const struct ntb_ctx_ops ntb_transport_ops;
278static struct ntb_client ntb_transport_client;
279static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 struct ntb_queue_entry *entry);
281static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284
285
286static int ntb_transport_bus_match(struct device *dev,
287 struct device_driver *drv)
288{
289 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290}
291
292static int ntb_transport_bus_probe(struct device *dev)
293{
294 const struct ntb_transport_client *client;
295 int rc;
296
297 get_device(dev);
298
299 client = drv_client(dev->driver);
300 rc = client->probe(dev);
301 if (rc)
302 put_device(dev);
303
304 return rc;
305}
306
307static void ntb_transport_bus_remove(struct device *dev)
308{
309 const struct ntb_transport_client *client;
310
311 client = drv_client(dev->driver);
312 client->remove(dev);
313
314 put_device(dev);
315}
316
317static struct bus_type ntb_transport_bus = {
318 .name = "ntb_transport",
319 .match = ntb_transport_bus_match,
320 .probe = ntb_transport_bus_probe,
321 .remove = ntb_transport_bus_remove,
322};
323
324static LIST_HEAD(ntb_transport_list);
325
326static int ntb_bus_init(struct ntb_transport_ctx *nt)
327{
328 list_add_tail(new: &nt->entry, head: &ntb_transport_list);
329 return 0;
330}
331
332static void ntb_bus_remove(struct ntb_transport_ctx *nt)
333{
334 struct ntb_transport_client_dev *client_dev, *cd;
335
336 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
337 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
338 dev_name(&client_dev->dev));
339 list_del(entry: &client_dev->entry);
340 device_unregister(dev: &client_dev->dev);
341 }
342
343 list_del(entry: &nt->entry);
344}
345
346static void ntb_transport_client_release(struct device *dev)
347{
348 struct ntb_transport_client_dev *client_dev;
349
350 client_dev = dev_client_dev(dev);
351 kfree(objp: client_dev);
352}
353
354/**
355 * ntb_transport_unregister_client_dev - Unregister NTB client device
356 * @device_name: Name of NTB client device
357 *
358 * Unregister an NTB client device with the NTB transport layer
359 */
360void ntb_transport_unregister_client_dev(char *device_name)
361{
362 struct ntb_transport_client_dev *client, *cd;
363 struct ntb_transport_ctx *nt;
364
365 list_for_each_entry(nt, &ntb_transport_list, entry)
366 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
367 if (!strncmp(dev_name(dev: &client->dev), device_name,
368 strlen(device_name))) {
369 list_del(entry: &client->entry);
370 device_unregister(dev: &client->dev);
371 }
372}
373EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
374
375/**
376 * ntb_transport_register_client_dev - Register NTB client device
377 * @device_name: Name of NTB client device
378 *
379 * Register an NTB client device with the NTB transport layer
380 */
381int ntb_transport_register_client_dev(char *device_name)
382{
383 struct ntb_transport_client_dev *client_dev;
384 struct ntb_transport_ctx *nt;
385 int node;
386 int rc, i = 0;
387
388 if (list_empty(head: &ntb_transport_list))
389 return -ENODEV;
390
391 list_for_each_entry(nt, &ntb_transport_list, entry) {
392 struct device *dev;
393
394 node = dev_to_node(dev: &nt->ndev->dev);
395
396 client_dev = kzalloc_node(size: sizeof(*client_dev),
397 GFP_KERNEL, node);
398 if (!client_dev) {
399 rc = -ENOMEM;
400 goto err;
401 }
402
403 dev = &client_dev->dev;
404
405 /* setup and register client devices */
406 dev_set_name(dev, name: "%s%d", device_name, i);
407 dev->bus = &ntb_transport_bus;
408 dev->release = ntb_transport_client_release;
409 dev->parent = &nt->ndev->dev;
410
411 rc = device_register(dev);
412 if (rc) {
413 put_device(dev);
414 goto err;
415 }
416
417 list_add_tail(new: &client_dev->entry, head: &nt->client_devs);
418 i++;
419 }
420
421 return 0;
422
423err:
424 ntb_transport_unregister_client_dev(device_name);
425
426 return rc;
427}
428EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
429
430/**
431 * ntb_transport_register_client - Register NTB client driver
432 * @drv: NTB client driver to be registered
433 *
434 * Register an NTB client driver with the NTB transport layer
435 *
436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
437 */
438int ntb_transport_register_client(struct ntb_transport_client *drv)
439{
440 drv->driver.bus = &ntb_transport_bus;
441
442 if (list_empty(head: &ntb_transport_list))
443 return -ENODEV;
444
445 return driver_register(drv: &drv->driver);
446}
447EXPORT_SYMBOL_GPL(ntb_transport_register_client);
448
449/**
450 * ntb_transport_unregister_client - Unregister NTB client driver
451 * @drv: NTB client driver to be unregistered
452 *
453 * Unregister an NTB client driver with the NTB transport layer
454 *
455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
456 */
457void ntb_transport_unregister_client(struct ntb_transport_client *drv)
458{
459 driver_unregister(drv: &drv->driver);
460}
461EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
462
463static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
464 loff_t *offp)
465{
466 struct ntb_transport_qp *qp;
467 char *buf;
468 ssize_t ret, out_offset, out_count;
469
470 qp = filp->private_data;
471
472 if (!qp || !qp->link_is_up)
473 return 0;
474
475 out_count = 1000;
476
477 buf = kmalloc(size: out_count, GFP_KERNEL);
478 if (!buf)
479 return -ENOMEM;
480
481 out_offset = 0;
482 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
483 fmt: "\nNTB QP stats:\n\n");
484 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
485 fmt: "rx_bytes - \t%llu\n", qp->rx_bytes);
486 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
487 fmt: "rx_pkts - \t%llu\n", qp->rx_pkts);
488 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
489 fmt: "rx_memcpy - \t%llu\n", qp->rx_memcpy);
490 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
491 fmt: "rx_async - \t%llu\n", qp->rx_async);
492 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
493 fmt: "rx_ring_empty - %llu\n", qp->rx_ring_empty);
494 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
495 fmt: "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
496 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
497 fmt: "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
498 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
499 fmt: "rx_err_ver - \t%llu\n", qp->rx_err_ver);
500 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
501 fmt: "rx_buff - \t0x%p\n", qp->rx_buff);
502 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
503 fmt: "rx_index - \t%u\n", qp->rx_index);
504 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
505 fmt: "rx_max_entry - \t%u\n", qp->rx_max_entry);
506 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
507 fmt: "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
508
509 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
510 fmt: "tx_bytes - \t%llu\n", qp->tx_bytes);
511 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
512 fmt: "tx_pkts - \t%llu\n", qp->tx_pkts);
513 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
514 fmt: "tx_memcpy - \t%llu\n", qp->tx_memcpy);
515 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
516 fmt: "tx_async - \t%llu\n", qp->tx_async);
517 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
518 fmt: "tx_ring_full - \t%llu\n", qp->tx_ring_full);
519 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
520 fmt: "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
521 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
522 fmt: "tx_mw - \t0x%p\n", qp->tx_mw);
523 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
524 fmt: "tx_index (H) - \t%u\n", qp->tx_index);
525 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
526 fmt: "RRI (T) - \t%u\n",
527 qp->remote_rx_info->entry);
528 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
529 fmt: "tx_max_entry - \t%u\n", qp->tx_max_entry);
530 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
531 fmt: "free tx - \t%u\n",
532 ntb_transport_tx_free_entry(qp));
533
534 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
535 fmt: "\n");
536 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
537 fmt: "Using TX DMA - \t%s\n",
538 qp->tx_dma_chan ? "Yes" : "No");
539 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
540 fmt: "Using RX DMA - \t%s\n",
541 qp->rx_dma_chan ? "Yes" : "No");
542 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
543 fmt: "QP Link - \t%s\n",
544 qp->link_is_up ? "Up" : "Down");
545 out_offset += scnprintf(buf: buf + out_offset, size: out_count - out_offset,
546 fmt: "\n");
547
548 if (out_offset > out_count)
549 out_offset = out_count;
550
551 ret = simple_read_from_buffer(to: ubuf, count, ppos: offp, from: buf, available: out_offset);
552 kfree(objp: buf);
553 return ret;
554}
555
556static const struct file_operations ntb_qp_debugfs_stats = {
557 .owner = THIS_MODULE,
558 .open = simple_open,
559 .read = debugfs_read,
560};
561
562static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
563 struct list_head *list)
564{
565 unsigned long flags;
566
567 spin_lock_irqsave(lock, flags);
568 list_add_tail(new: entry, head: list);
569 spin_unlock_irqrestore(lock, flags);
570}
571
572static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
573 struct list_head *list)
574{
575 struct ntb_queue_entry *entry;
576 unsigned long flags;
577
578 spin_lock_irqsave(lock, flags);
579 if (list_empty(head: list)) {
580 entry = NULL;
581 goto out;
582 }
583 entry = list_first_entry(list, struct ntb_queue_entry, entry);
584 list_del(entry: &entry->entry);
585
586out:
587 spin_unlock_irqrestore(lock, flags);
588
589 return entry;
590}
591
592static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
593 struct list_head *list,
594 struct list_head *to_list)
595{
596 struct ntb_queue_entry *entry;
597 unsigned long flags;
598
599 spin_lock_irqsave(lock, flags);
600
601 if (list_empty(head: list)) {
602 entry = NULL;
603 } else {
604 entry = list_first_entry(list, struct ntb_queue_entry, entry);
605 list_move_tail(list: &entry->entry, head: to_list);
606 }
607
608 spin_unlock_irqrestore(lock, flags);
609
610 return entry;
611}
612
613static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
614 unsigned int qp_num)
615{
616 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
617 struct ntb_transport_mw *mw;
618 struct ntb_dev *ndev = nt->ndev;
619 struct ntb_queue_entry *entry;
620 unsigned int rx_size, num_qps_mw;
621 unsigned int mw_num, mw_count, qp_count;
622 unsigned int i;
623 int node;
624
625 mw_count = nt->mw_count;
626 qp_count = nt->qp_count;
627
628 mw_num = QP_TO_MW(nt, qp_num);
629 mw = &nt->mw_vec[mw_num];
630
631 if (!mw->virt_addr)
632 return -ENOMEM;
633
634 if (mw_num < qp_count % mw_count)
635 num_qps_mw = qp_count / mw_count + 1;
636 else
637 num_qps_mw = qp_count / mw_count;
638
639 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
640 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
641 rx_size -= sizeof(struct ntb_rx_info);
642
643 qp->remote_rx_info = qp->rx_buff + rx_size;
644
645 /* Due to housekeeping, there must be atleast 2 buffs */
646 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
647 qp->rx_max_entry = rx_size / qp->rx_max_frame;
648 qp->rx_index = 0;
649
650 /*
651 * Checking to see if we have more entries than the default.
652 * We should add additional entries if that is the case so we
653 * can be in sync with the transport frames.
654 */
655 node = dev_to_node(dev: &ndev->dev);
656 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
657 entry = kzalloc_node(size: sizeof(*entry), GFP_KERNEL, node);
658 if (!entry)
659 return -ENOMEM;
660
661 entry->qp = qp;
662 ntb_list_add(lock: &qp->ntb_rx_q_lock, entry: &entry->entry,
663 list: &qp->rx_free_q);
664 qp->rx_alloc_entry++;
665 }
666
667 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
668
669 /* setup the hdr offsets with 0's */
670 for (i = 0; i < qp->rx_max_entry; i++) {
671 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
672 sizeof(struct ntb_payload_header));
673 memset(offset, 0, sizeof(struct ntb_payload_header));
674 }
675
676 qp->rx_pkts = 0;
677 qp->tx_pkts = 0;
678 qp->tx_index = 0;
679
680 return 0;
681}
682
683static irqreturn_t ntb_transport_isr(int irq, void *dev)
684{
685 struct ntb_transport_qp *qp = dev;
686
687 tasklet_schedule(t: &qp->rxc_db_work);
688
689 return IRQ_HANDLED;
690}
691
692static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
693 unsigned int qp_num)
694{
695 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
696 int spad = qp_num * 2 + nt->msi_spad_offset;
697
698 if (!nt->use_msi)
699 return;
700
701 if (spad >= ntb_spad_count(ntb: nt->ndev))
702 return;
703
704 qp->peer_msi_desc.addr_offset =
705 ntb_peer_spad_read(ntb: qp->ndev, PIDX, sidx: spad);
706 qp->peer_msi_desc.data =
707 ntb_peer_spad_read(ntb: qp->ndev, PIDX, sidx: spad + 1);
708
709 dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
710 qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
711
712 if (qp->peer_msi_desc.addr_offset) {
713 qp->use_msi = true;
714 dev_info(&qp->ndev->pdev->dev,
715 "Using MSI interrupts for QP%d\n", qp_num);
716 }
717}
718
719static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
720 unsigned int qp_num)
721{
722 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
723 int spad = qp_num * 2 + nt->msi_spad_offset;
724 int rc;
725
726 if (!nt->use_msi)
727 return;
728
729 if (spad >= ntb_spad_count(ntb: nt->ndev)) {
730 dev_warn_once(&qp->ndev->pdev->dev,
731 "Not enough SPADS to use MSI interrupts\n");
732 return;
733 }
734
735 ntb_spad_write(ntb: qp->ndev, sidx: spad, val: 0);
736 ntb_spad_write(ntb: qp->ndev, sidx: spad + 1, val: 0);
737
738 if (!qp->msi_irq) {
739 qp->msi_irq = ntbm_msi_request_irq(ntb: qp->ndev, handler: ntb_transport_isr,
740 KBUILD_MODNAME, dev_id: qp,
741 msi_desc: &qp->msi_desc);
742 if (qp->msi_irq < 0) {
743 dev_warn(&qp->ndev->pdev->dev,
744 "Unable to allocate MSI interrupt for qp%d\n",
745 qp_num);
746 return;
747 }
748 }
749
750 rc = ntb_spad_write(ntb: qp->ndev, sidx: spad, val: qp->msi_desc.addr_offset);
751 if (rc)
752 goto err_free_interrupt;
753
754 rc = ntb_spad_write(ntb: qp->ndev, sidx: spad + 1, val: qp->msi_desc.data);
755 if (rc)
756 goto err_free_interrupt;
757
758 dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
759 qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
760 qp->msi_desc.data);
761
762 return;
763
764err_free_interrupt:
765 devm_free_irq(dev: &nt->ndev->dev, irq: qp->msi_irq, dev_id: qp);
766}
767
768static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
769{
770 int i;
771
772 dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
773
774 for (i = 0; i < nt->qp_count; i++)
775 ntb_transport_setup_qp_peer_msi(nt, qp_num: i);
776}
777
778static void ntb_transport_msi_desc_changed(void *data)
779{
780 struct ntb_transport_ctx *nt = data;
781 int i;
782
783 dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
784
785 for (i = 0; i < nt->qp_count; i++)
786 ntb_transport_setup_qp_msi(nt, qp_num: i);
787
788 ntb_peer_db_set(ntb: nt->ndev, db_bits: nt->msi_db_mask);
789}
790
791static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
792{
793 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
794 struct pci_dev *pdev = nt->ndev->pdev;
795
796 if (!mw->virt_addr)
797 return;
798
799 ntb_mw_clear_trans(ntb: nt->ndev, PIDX, widx: num_mw);
800 dma_free_coherent(dev: &pdev->dev, size: mw->alloc_size,
801 cpu_addr: mw->alloc_addr, dma_handle: mw->dma_addr);
802 mw->xlat_size = 0;
803 mw->buff_size = 0;
804 mw->alloc_size = 0;
805 mw->alloc_addr = NULL;
806 mw->virt_addr = NULL;
807}
808
809static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
810 struct device *dma_dev, size_t align)
811{
812 dma_addr_t dma_addr;
813 void *alloc_addr, *virt_addr;
814 int rc;
815
816 alloc_addr = dma_alloc_coherent(dev: dma_dev, size: mw->alloc_size,
817 dma_handle: &dma_addr, GFP_KERNEL);
818 if (!alloc_addr) {
819 dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
820 mw->alloc_size);
821 return -ENOMEM;
822 }
823 virt_addr = alloc_addr;
824
825 /*
826 * we must ensure that the memory address allocated is BAR size
827 * aligned in order for the XLAT register to take the value. This
828 * is a requirement of the hardware. It is recommended to setup CMA
829 * for BAR sizes equal or greater than 4MB.
830 */
831 if (!IS_ALIGNED(dma_addr, align)) {
832 if (mw->alloc_size > mw->buff_size) {
833 virt_addr = PTR_ALIGN(alloc_addr, align);
834 dma_addr = ALIGN(dma_addr, align);
835 } else {
836 rc = -ENOMEM;
837 goto err;
838 }
839 }
840
841 mw->alloc_addr = alloc_addr;
842 mw->virt_addr = virt_addr;
843 mw->dma_addr = dma_addr;
844
845 return 0;
846
847err:
848 dma_free_coherent(dev: dma_dev, size: mw->alloc_size, cpu_addr: alloc_addr, dma_handle: dma_addr);
849
850 return rc;
851}
852
853static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
854 resource_size_t size)
855{
856 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
857 struct pci_dev *pdev = nt->ndev->pdev;
858 size_t xlat_size, buff_size;
859 resource_size_t xlat_align;
860 resource_size_t xlat_align_size;
861 int rc;
862
863 if (!size)
864 return -EINVAL;
865
866 rc = ntb_mw_get_align(ntb: nt->ndev, PIDX, widx: num_mw, addr_align: &xlat_align,
867 size_align: &xlat_align_size, NULL);
868 if (rc)
869 return rc;
870
871 xlat_size = round_up(size, xlat_align_size);
872 buff_size = round_up(size, xlat_align);
873
874 /* No need to re-setup */
875 if (mw->xlat_size == xlat_size)
876 return 0;
877
878 if (mw->buff_size)
879 ntb_free_mw(nt, num_mw);
880
881 /* Alloc memory for receiving data. Must be aligned */
882 mw->xlat_size = xlat_size;
883 mw->buff_size = buff_size;
884 mw->alloc_size = buff_size;
885
886 rc = ntb_alloc_mw_buffer(mw, dma_dev: &pdev->dev, align: xlat_align);
887 if (rc) {
888 mw->alloc_size *= 2;
889 rc = ntb_alloc_mw_buffer(mw, dma_dev: &pdev->dev, align: xlat_align);
890 if (rc) {
891 dev_err(&pdev->dev,
892 "Unable to alloc aligned MW buff\n");
893 mw->xlat_size = 0;
894 mw->buff_size = 0;
895 mw->alloc_size = 0;
896 return rc;
897 }
898 }
899
900 /* Notify HW the memory location of the receive buffer */
901 rc = ntb_mw_set_trans(ntb: nt->ndev, PIDX, widx: num_mw, addr: mw->dma_addr,
902 size: mw->xlat_size);
903 if (rc) {
904 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
905 ntb_free_mw(nt, num_mw);
906 return -EIO;
907 }
908
909 return 0;
910}
911
912static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
913{
914 qp->link_is_up = false;
915 qp->active = false;
916
917 qp->tx_index = 0;
918 qp->rx_index = 0;
919 qp->rx_bytes = 0;
920 qp->rx_pkts = 0;
921 qp->rx_ring_empty = 0;
922 qp->rx_err_no_buf = 0;
923 qp->rx_err_oflow = 0;
924 qp->rx_err_ver = 0;
925 qp->rx_memcpy = 0;
926 qp->rx_async = 0;
927 qp->tx_bytes = 0;
928 qp->tx_pkts = 0;
929 qp->tx_ring_full = 0;
930 qp->tx_err_no_buf = 0;
931 qp->tx_memcpy = 0;
932 qp->tx_async = 0;
933}
934
935static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
936{
937 ntb_qp_link_context_reset(qp);
938 if (qp->remote_rx_info)
939 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
940}
941
942static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
943{
944 struct ntb_transport_ctx *nt = qp->transport;
945 struct pci_dev *pdev = nt->ndev->pdev;
946
947 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
948
949 cancel_delayed_work_sync(dwork: &qp->link_work);
950 ntb_qp_link_down_reset(qp);
951
952 if (qp->event_handler)
953 qp->event_handler(qp->cb_data, qp->link_is_up);
954}
955
956static void ntb_qp_link_cleanup_work(struct work_struct *work)
957{
958 struct ntb_transport_qp *qp = container_of(work,
959 struct ntb_transport_qp,
960 link_cleanup);
961 struct ntb_transport_ctx *nt = qp->transport;
962
963 ntb_qp_link_cleanup(qp);
964
965 if (nt->link_is_up)
966 schedule_delayed_work(dwork: &qp->link_work,
967 delay: msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
968}
969
970static void ntb_qp_link_down(struct ntb_transport_qp *qp)
971{
972 schedule_work(work: &qp->link_cleanup);
973}
974
975static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
976{
977 struct ntb_transport_qp *qp;
978 u64 qp_bitmap_alloc;
979 unsigned int i, count;
980
981 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
982
983 /* Pass along the info to any clients */
984 for (i = 0; i < nt->qp_count; i++)
985 if (qp_bitmap_alloc & BIT_ULL(i)) {
986 qp = &nt->qp_vec[i];
987 ntb_qp_link_cleanup(qp);
988 cancel_work_sync(work: &qp->link_cleanup);
989 cancel_delayed_work_sync(dwork: &qp->link_work);
990 }
991
992 if (!nt->link_is_up)
993 cancel_delayed_work_sync(dwork: &nt->link_work);
994
995 for (i = 0; i < nt->mw_count; i++)
996 ntb_free_mw(nt, num_mw: i);
997
998 /* The scratchpad registers keep the values if the remote side
999 * goes down, blast them now to give them a sane value the next
1000 * time they are accessed
1001 */
1002 count = ntb_spad_count(ntb: nt->ndev);
1003 for (i = 0; i < count; i++)
1004 ntb_spad_write(ntb: nt->ndev, sidx: i, val: 0);
1005}
1006
1007static void ntb_transport_link_cleanup_work(struct work_struct *work)
1008{
1009 struct ntb_transport_ctx *nt =
1010 container_of(work, struct ntb_transport_ctx, link_cleanup);
1011
1012 ntb_transport_link_cleanup(nt);
1013}
1014
1015static void ntb_transport_event_callback(void *data)
1016{
1017 struct ntb_transport_ctx *nt = data;
1018
1019 if (ntb_link_is_up(ntb: nt->ndev, NULL, NULL) == 1)
1020 schedule_delayed_work(dwork: &nt->link_work, delay: 0);
1021 else
1022 schedule_work(work: &nt->link_cleanup);
1023}
1024
1025static void ntb_transport_link_work(struct work_struct *work)
1026{
1027 struct ntb_transport_ctx *nt =
1028 container_of(work, struct ntb_transport_ctx, link_work.work);
1029 struct ntb_dev *ndev = nt->ndev;
1030 struct pci_dev *pdev = ndev->pdev;
1031 resource_size_t size;
1032 u32 val;
1033 int rc = 0, i, spad;
1034
1035 /* send the local info, in the opposite order of the way we read it */
1036
1037 if (nt->use_msi) {
1038 rc = ntb_msi_setup_mws(ntb: ndev);
1039 if (rc) {
1040 dev_warn(&pdev->dev,
1041 "Failed to register MSI memory window: %d\n",
1042 rc);
1043 nt->use_msi = false;
1044 }
1045 }
1046
1047 for (i = 0; i < nt->qp_count; i++)
1048 ntb_transport_setup_qp_msi(nt, qp_num: i);
1049
1050 for (i = 0; i < nt->mw_count; i++) {
1051 size = nt->mw_vec[i].phys_size;
1052
1053 if (max_mw_size && size > max_mw_size)
1054 size = max_mw_size;
1055
1056 spad = MW0_SZ_HIGH + (i * 2);
1057 ntb_peer_spad_write(ntb: ndev, PIDX, sidx: spad, upper_32_bits(size));
1058
1059 spad = MW0_SZ_LOW + (i * 2);
1060 ntb_peer_spad_write(ntb: ndev, PIDX, sidx: spad, lower_32_bits(size));
1061 }
1062
1063 ntb_peer_spad_write(ntb: ndev, PIDX, sidx: NUM_MWS, val: nt->mw_count);
1064
1065 ntb_peer_spad_write(ntb: ndev, PIDX, sidx: NUM_QPS, val: nt->qp_count);
1066
1067 ntb_peer_spad_write(ntb: ndev, PIDX, sidx: VERSION, NTB_TRANSPORT_VERSION);
1068
1069 /* Query the remote side for its info */
1070 val = ntb_spad_read(ntb: ndev, sidx: VERSION);
1071 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1072 if (val != NTB_TRANSPORT_VERSION)
1073 goto out;
1074
1075 val = ntb_spad_read(ntb: ndev, sidx: NUM_QPS);
1076 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1077 if (val != nt->qp_count)
1078 goto out;
1079
1080 val = ntb_spad_read(ntb: ndev, sidx: NUM_MWS);
1081 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1082 if (val != nt->mw_count)
1083 goto out;
1084
1085 for (i = 0; i < nt->mw_count; i++) {
1086 u64 val64;
1087
1088 val = ntb_spad_read(ntb: ndev, sidx: MW0_SZ_HIGH + (i * 2));
1089 val64 = (u64)val << 32;
1090
1091 val = ntb_spad_read(ntb: ndev, sidx: MW0_SZ_LOW + (i * 2));
1092 val64 |= val;
1093
1094 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1095
1096 rc = ntb_set_mw(nt, num_mw: i, size: val64);
1097 if (rc)
1098 goto out1;
1099 }
1100
1101 nt->link_is_up = true;
1102
1103 for (i = 0; i < nt->qp_count; i++) {
1104 struct ntb_transport_qp *qp = &nt->qp_vec[i];
1105
1106 ntb_transport_setup_qp_mw(nt, qp_num: i);
1107 ntb_transport_setup_qp_peer_msi(nt, qp_num: i);
1108
1109 if (qp->client_ready)
1110 schedule_delayed_work(dwork: &qp->link_work, delay: 0);
1111 }
1112
1113 return;
1114
1115out1:
1116 for (i = 0; i < nt->mw_count; i++)
1117 ntb_free_mw(nt, num_mw: i);
1118
1119 /* if there's an actual failure, we should just bail */
1120 if (rc < 0)
1121 return;
1122
1123out:
1124 if (ntb_link_is_up(ntb: ndev, NULL, NULL) == 1)
1125 schedule_delayed_work(dwork: &nt->link_work,
1126 delay: msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1127}
1128
1129static void ntb_qp_link_work(struct work_struct *work)
1130{
1131 struct ntb_transport_qp *qp = container_of(work,
1132 struct ntb_transport_qp,
1133 link_work.work);
1134 struct pci_dev *pdev = qp->ndev->pdev;
1135 struct ntb_transport_ctx *nt = qp->transport;
1136 int val;
1137
1138 WARN_ON(!nt->link_is_up);
1139
1140 val = ntb_spad_read(ntb: nt->ndev, sidx: QP_LINKS);
1141
1142 ntb_peer_spad_write(ntb: nt->ndev, PIDX, sidx: QP_LINKS, val: val | BIT(qp->qp_num));
1143
1144 /* query remote spad for qp ready bits */
1145 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1146
1147 /* See if the remote side is up */
1148 if (val & BIT(qp->qp_num)) {
1149 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1150 qp->link_is_up = true;
1151 qp->active = true;
1152
1153 if (qp->event_handler)
1154 qp->event_handler(qp->cb_data, qp->link_is_up);
1155
1156 if (qp->active)
1157 tasklet_schedule(t: &qp->rxc_db_work);
1158 } else if (nt->link_is_up)
1159 schedule_delayed_work(dwork: &qp->link_work,
1160 delay: msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1161}
1162
1163static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1164 unsigned int qp_num)
1165{
1166 struct ntb_transport_qp *qp;
1167 phys_addr_t mw_base;
1168 resource_size_t mw_size;
1169 unsigned int num_qps_mw, tx_size;
1170 unsigned int mw_num, mw_count, qp_count;
1171 u64 qp_offset;
1172
1173 mw_count = nt->mw_count;
1174 qp_count = nt->qp_count;
1175
1176 mw_num = QP_TO_MW(nt, qp_num);
1177
1178 qp = &nt->qp_vec[qp_num];
1179 qp->qp_num = qp_num;
1180 qp->transport = nt;
1181 qp->ndev = nt->ndev;
1182 qp->client_ready = false;
1183 qp->event_handler = NULL;
1184 ntb_qp_link_context_reset(qp);
1185
1186 if (mw_num < qp_count % mw_count)
1187 num_qps_mw = qp_count / mw_count + 1;
1188 else
1189 num_qps_mw = qp_count / mw_count;
1190
1191 mw_base = nt->mw_vec[mw_num].phys_addr;
1192 mw_size = nt->mw_vec[mw_num].phys_size;
1193
1194 if (max_mw_size && mw_size > max_mw_size)
1195 mw_size = max_mw_size;
1196
1197 tx_size = (unsigned int)mw_size / num_qps_mw;
1198 qp_offset = tx_size * (qp_num / mw_count);
1199
1200 qp->tx_mw_size = tx_size;
1201 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1202 if (!qp->tx_mw)
1203 return -EINVAL;
1204
1205 qp->tx_mw_phys = mw_base + qp_offset;
1206 if (!qp->tx_mw_phys)
1207 return -EINVAL;
1208
1209 tx_size -= sizeof(struct ntb_rx_info);
1210 qp->rx_info = qp->tx_mw + tx_size;
1211
1212 /* Due to housekeeping, there must be atleast 2 buffs */
1213 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1214 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1215
1216 if (nt->debugfs_node_dir) {
1217 char debugfs_name[4];
1218
1219 snprintf(buf: debugfs_name, size: 4, fmt: "qp%d", qp_num);
1220 qp->debugfs_dir = debugfs_create_dir(name: debugfs_name,
1221 parent: nt->debugfs_node_dir);
1222
1223 qp->debugfs_stats = debugfs_create_file(name: "stats", S_IRUSR,
1224 parent: qp->debugfs_dir, data: qp,
1225 fops: &ntb_qp_debugfs_stats);
1226 } else {
1227 qp->debugfs_dir = NULL;
1228 qp->debugfs_stats = NULL;
1229 }
1230
1231 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1232 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1233
1234 spin_lock_init(&qp->ntb_rx_q_lock);
1235 spin_lock_init(&qp->ntb_tx_free_q_lock);
1236
1237 INIT_LIST_HEAD(list: &qp->rx_post_q);
1238 INIT_LIST_HEAD(list: &qp->rx_pend_q);
1239 INIT_LIST_HEAD(list: &qp->rx_free_q);
1240 INIT_LIST_HEAD(list: &qp->tx_free_q);
1241
1242 tasklet_init(t: &qp->rxc_db_work, func: ntb_transport_rxc_db,
1243 data: (unsigned long)qp);
1244
1245 return 0;
1246}
1247
1248static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1249{
1250 struct ntb_transport_ctx *nt;
1251 struct ntb_transport_mw *mw;
1252 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1253 u64 qp_bitmap;
1254 int node;
1255 int rc, i;
1256
1257 mw_count = ntb_peer_mw_count(ntb: ndev);
1258
1259 if (!ndev->ops->mw_set_trans) {
1260 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1261 return -EINVAL;
1262 }
1263
1264 if (ntb_db_is_unsafe(ntb: ndev))
1265 dev_dbg(&ndev->dev,
1266 "doorbell is unsafe, proceed anyway...\n");
1267 if (ntb_spad_is_unsafe(ntb: ndev))
1268 dev_dbg(&ndev->dev,
1269 "scratchpad is unsafe, proceed anyway...\n");
1270
1271 if (ntb_peer_port_count(ntb: ndev) != NTB_DEF_PEER_CNT)
1272 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1273
1274 node = dev_to_node(dev: &ndev->dev);
1275
1276 nt = kzalloc_node(size: sizeof(*nt), GFP_KERNEL, node);
1277 if (!nt)
1278 return -ENOMEM;
1279
1280 nt->ndev = ndev;
1281
1282 /*
1283 * If we are using MSI, and have at least one extra memory window,
1284 * we will reserve the last MW for the MSI window.
1285 */
1286 if (use_msi && mw_count > 1) {
1287 rc = ntb_msi_init(ntb: ndev, desc_changed: ntb_transport_msi_desc_changed);
1288 if (!rc) {
1289 mw_count -= 1;
1290 nt->use_msi = true;
1291 }
1292 }
1293
1294 spad_count = ntb_spad_count(ntb: ndev);
1295
1296 /* Limit the MW's based on the availability of scratchpads */
1297
1298 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1299 nt->mw_count = 0;
1300 rc = -EINVAL;
1301 goto err;
1302 }
1303
1304 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1305 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1306
1307 nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1308
1309 nt->mw_vec = kcalloc_node(n: mw_count, size: sizeof(*nt->mw_vec),
1310 GFP_KERNEL, node);
1311 if (!nt->mw_vec) {
1312 rc = -ENOMEM;
1313 goto err;
1314 }
1315
1316 for (i = 0; i < mw_count; i++) {
1317 mw = &nt->mw_vec[i];
1318
1319 rc = ntb_peer_mw_get_addr(ntb: ndev, widx: i, base: &mw->phys_addr,
1320 size: &mw->phys_size);
1321 if (rc)
1322 goto err1;
1323
1324 mw->vbase = ioremap_wc(offset: mw->phys_addr, size: mw->phys_size);
1325 if (!mw->vbase) {
1326 rc = -ENOMEM;
1327 goto err1;
1328 }
1329
1330 mw->buff_size = 0;
1331 mw->xlat_size = 0;
1332 mw->virt_addr = NULL;
1333 mw->dma_addr = 0;
1334 }
1335
1336 qp_bitmap = ntb_db_valid_mask(ntb: ndev);
1337
1338 qp_count = ilog2(qp_bitmap);
1339 if (nt->use_msi) {
1340 qp_count -= 1;
1341 nt->msi_db_mask = 1 << qp_count;
1342 ntb_db_clear_mask(ntb: ndev, db_bits: nt->msi_db_mask);
1343 }
1344
1345 if (max_num_clients && max_num_clients < qp_count)
1346 qp_count = max_num_clients;
1347 else if (nt->mw_count < qp_count)
1348 qp_count = nt->mw_count;
1349
1350 qp_bitmap &= BIT_ULL(qp_count) - 1;
1351
1352 nt->qp_count = qp_count;
1353 nt->qp_bitmap = qp_bitmap;
1354 nt->qp_bitmap_free = qp_bitmap;
1355
1356 nt->qp_vec = kcalloc_node(n: qp_count, size: sizeof(*nt->qp_vec),
1357 GFP_KERNEL, node);
1358 if (!nt->qp_vec) {
1359 rc = -ENOMEM;
1360 goto err1;
1361 }
1362
1363 if (nt_debugfs_dir) {
1364 nt->debugfs_node_dir =
1365 debugfs_create_dir(name: pci_name(pdev: ndev->pdev),
1366 parent: nt_debugfs_dir);
1367 }
1368
1369 for (i = 0; i < qp_count; i++) {
1370 rc = ntb_transport_init_queue(nt, qp_num: i);
1371 if (rc)
1372 goto err2;
1373 }
1374
1375 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1376 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1377
1378 rc = ntb_set_ctx(ntb: ndev, ctx: nt, ctx_ops: &ntb_transport_ops);
1379 if (rc)
1380 goto err2;
1381
1382 INIT_LIST_HEAD(list: &nt->client_devs);
1383 rc = ntb_bus_init(nt);
1384 if (rc)
1385 goto err3;
1386
1387 nt->link_is_up = false;
1388 ntb_link_enable(ntb: ndev, max_speed: NTB_SPEED_AUTO, max_width: NTB_WIDTH_AUTO);
1389 ntb_link_event(ntb: ndev);
1390
1391 return 0;
1392
1393err3:
1394 ntb_clear_ctx(ntb: ndev);
1395err2:
1396 kfree(objp: nt->qp_vec);
1397err1:
1398 while (i--) {
1399 mw = &nt->mw_vec[i];
1400 iounmap(addr: mw->vbase);
1401 }
1402 kfree(objp: nt->mw_vec);
1403err:
1404 kfree(objp: nt);
1405 return rc;
1406}
1407
1408static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1409{
1410 struct ntb_transport_ctx *nt = ndev->ctx;
1411 struct ntb_transport_qp *qp;
1412 u64 qp_bitmap_alloc;
1413 int i;
1414
1415 ntb_transport_link_cleanup(nt);
1416 cancel_work_sync(work: &nt->link_cleanup);
1417 cancel_delayed_work_sync(dwork: &nt->link_work);
1418
1419 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1420
1421 /* verify that all the qp's are freed */
1422 for (i = 0; i < nt->qp_count; i++) {
1423 qp = &nt->qp_vec[i];
1424 if (qp_bitmap_alloc & BIT_ULL(i))
1425 ntb_transport_free_queue(qp);
1426 debugfs_remove_recursive(dentry: qp->debugfs_dir);
1427 }
1428
1429 ntb_link_disable(ntb: ndev);
1430 ntb_clear_ctx(ntb: ndev);
1431
1432 ntb_bus_remove(nt);
1433
1434 for (i = nt->mw_count; i--; ) {
1435 ntb_free_mw(nt, num_mw: i);
1436 iounmap(addr: nt->mw_vec[i].vbase);
1437 }
1438
1439 kfree(objp: nt->qp_vec);
1440 kfree(objp: nt->mw_vec);
1441 kfree(objp: nt);
1442}
1443
1444static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1445{
1446 struct ntb_queue_entry *entry;
1447 void *cb_data;
1448 unsigned int len;
1449 unsigned long irqflags;
1450
1451 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1452
1453 while (!list_empty(head: &qp->rx_post_q)) {
1454 entry = list_first_entry(&qp->rx_post_q,
1455 struct ntb_queue_entry, entry);
1456 if (!(entry->flags & DESC_DONE_FLAG))
1457 break;
1458
1459 entry->rx_hdr->flags = 0;
1460 iowrite32(entry->rx_index, &qp->rx_info->entry);
1461
1462 cb_data = entry->cb_data;
1463 len = entry->len;
1464
1465 list_move_tail(list: &entry->entry, head: &qp->rx_free_q);
1466
1467 spin_unlock_irqrestore(lock: &qp->ntb_rx_q_lock, flags: irqflags);
1468
1469 if (qp->rx_handler && qp->client_ready)
1470 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1471
1472 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1473 }
1474
1475 spin_unlock_irqrestore(lock: &qp->ntb_rx_q_lock, flags: irqflags);
1476}
1477
1478static void ntb_rx_copy_callback(void *data,
1479 const struct dmaengine_result *res)
1480{
1481 struct ntb_queue_entry *entry = data;
1482
1483 /* we need to check DMA results if we are using DMA */
1484 if (res) {
1485 enum dmaengine_tx_result dma_err = res->result;
1486
1487 switch (dma_err) {
1488 case DMA_TRANS_READ_FAILED:
1489 case DMA_TRANS_WRITE_FAILED:
1490 entry->errors++;
1491 fallthrough;
1492 case DMA_TRANS_ABORTED:
1493 {
1494 struct ntb_transport_qp *qp = entry->qp;
1495 void *offset = qp->rx_buff + qp->rx_max_frame *
1496 qp->rx_index;
1497
1498 ntb_memcpy_rx(entry, offset);
1499 qp->rx_memcpy++;
1500 return;
1501 }
1502
1503 case DMA_TRANS_NOERROR:
1504 default:
1505 break;
1506 }
1507 }
1508
1509 entry->flags |= DESC_DONE_FLAG;
1510
1511 ntb_complete_rxc(qp: entry->qp);
1512}
1513
1514static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1515{
1516 void *buf = entry->buf;
1517 size_t len = entry->len;
1518
1519 memcpy(buf, offset, len);
1520
1521 /* Ensure that the data is fully copied out before clearing the flag */
1522 wmb();
1523
1524 ntb_rx_copy_callback(data: entry, NULL);
1525}
1526
1527static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1528{
1529 struct dma_async_tx_descriptor *txd;
1530 struct ntb_transport_qp *qp = entry->qp;
1531 struct dma_chan *chan = qp->rx_dma_chan;
1532 struct dma_device *device;
1533 size_t pay_off, buff_off, len;
1534 struct dmaengine_unmap_data *unmap;
1535 dma_cookie_t cookie;
1536 void *buf = entry->buf;
1537
1538 len = entry->len;
1539 device = chan->device;
1540 pay_off = (size_t)offset & ~PAGE_MASK;
1541 buff_off = (size_t)buf & ~PAGE_MASK;
1542
1543 if (!is_dma_copy_aligned(dev: device, off1: pay_off, off2: buff_off, len))
1544 goto err;
1545
1546 unmap = dmaengine_get_unmap_data(dev: device->dev, nr: 2, GFP_NOWAIT);
1547 if (!unmap)
1548 goto err;
1549
1550 unmap->len = len;
1551 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1552 pay_off, len, DMA_TO_DEVICE);
1553 if (dma_mapping_error(dev: device->dev, dma_addr: unmap->addr[0]))
1554 goto err_get_unmap;
1555
1556 unmap->to_cnt = 1;
1557
1558 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1559 buff_off, len, DMA_FROM_DEVICE);
1560 if (dma_mapping_error(dev: device->dev, dma_addr: unmap->addr[1]))
1561 goto err_get_unmap;
1562
1563 unmap->from_cnt = 1;
1564
1565 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1566 unmap->addr[0], len,
1567 DMA_PREP_INTERRUPT);
1568 if (!txd)
1569 goto err_get_unmap;
1570
1571 txd->callback_result = ntb_rx_copy_callback;
1572 txd->callback_param = entry;
1573 dma_set_unmap(tx: txd, unmap);
1574
1575 cookie = dmaengine_submit(desc: txd);
1576 if (dma_submit_error(cookie))
1577 goto err_set_unmap;
1578
1579 dmaengine_unmap_put(unmap);
1580
1581 qp->last_cookie = cookie;
1582
1583 qp->rx_async++;
1584
1585 return 0;
1586
1587err_set_unmap:
1588 dmaengine_unmap_put(unmap);
1589err_get_unmap:
1590 dmaengine_unmap_put(unmap);
1591err:
1592 return -ENXIO;
1593}
1594
1595static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1596{
1597 struct ntb_transport_qp *qp = entry->qp;
1598 struct dma_chan *chan = qp->rx_dma_chan;
1599 int res;
1600
1601 if (!chan)
1602 goto err;
1603
1604 if (entry->len < copy_bytes)
1605 goto err;
1606
1607 res = ntb_async_rx_submit(entry, offset);
1608 if (res < 0)
1609 goto err;
1610
1611 if (!entry->retries)
1612 qp->rx_async++;
1613
1614 return;
1615
1616err:
1617 ntb_memcpy_rx(entry, offset);
1618 qp->rx_memcpy++;
1619}
1620
1621static int ntb_process_rxc(struct ntb_transport_qp *qp)
1622{
1623 struct ntb_payload_header *hdr;
1624 struct ntb_queue_entry *entry;
1625 void *offset;
1626
1627 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1628 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1629
1630 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1631 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1632
1633 if (!(hdr->flags & DESC_DONE_FLAG)) {
1634 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1635 qp->rx_ring_empty++;
1636 return -EAGAIN;
1637 }
1638
1639 if (hdr->flags & LINK_DOWN_FLAG) {
1640 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1641 ntb_qp_link_down(qp);
1642 hdr->flags = 0;
1643 return -EAGAIN;
1644 }
1645
1646 if (hdr->ver != (u32)qp->rx_pkts) {
1647 dev_dbg(&qp->ndev->pdev->dev,
1648 "version mismatch, expected %llu - got %u\n",
1649 qp->rx_pkts, hdr->ver);
1650 qp->rx_err_ver++;
1651 return -EIO;
1652 }
1653
1654 entry = ntb_list_mv(lock: &qp->ntb_rx_q_lock, list: &qp->rx_pend_q, to_list: &qp->rx_post_q);
1655 if (!entry) {
1656 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1657 qp->rx_err_no_buf++;
1658 return -EAGAIN;
1659 }
1660
1661 entry->rx_hdr = hdr;
1662 entry->rx_index = qp->rx_index;
1663
1664 if (hdr->len > entry->len) {
1665 dev_dbg(&qp->ndev->pdev->dev,
1666 "receive buffer overflow! Wanted %d got %d\n",
1667 hdr->len, entry->len);
1668 qp->rx_err_oflow++;
1669
1670 entry->len = -EIO;
1671 entry->flags |= DESC_DONE_FLAG;
1672
1673 ntb_complete_rxc(qp);
1674 } else {
1675 dev_dbg(&qp->ndev->pdev->dev,
1676 "RX OK index %u ver %u size %d into buf size %d\n",
1677 qp->rx_index, hdr->ver, hdr->len, entry->len);
1678
1679 qp->rx_bytes += hdr->len;
1680 qp->rx_pkts++;
1681
1682 entry->len = hdr->len;
1683
1684 ntb_async_rx(entry, offset);
1685 }
1686
1687 qp->rx_index++;
1688 qp->rx_index %= qp->rx_max_entry;
1689
1690 return 0;
1691}
1692
1693static void ntb_transport_rxc_db(unsigned long data)
1694{
1695 struct ntb_transport_qp *qp = (void *)data;
1696 int rc, i;
1697
1698 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1699 __func__, qp->qp_num);
1700
1701 /* Limit the number of packets processed in a single interrupt to
1702 * provide fairness to others
1703 */
1704 for (i = 0; i < qp->rx_max_entry; i++) {
1705 rc = ntb_process_rxc(qp);
1706 if (rc)
1707 break;
1708 }
1709
1710 if (i && qp->rx_dma_chan)
1711 dma_async_issue_pending(chan: qp->rx_dma_chan);
1712
1713 if (i == qp->rx_max_entry) {
1714 /* there is more work to do */
1715 if (qp->active)
1716 tasklet_schedule(t: &qp->rxc_db_work);
1717 } else if (ntb_db_read(ntb: qp->ndev) & BIT_ULL(qp->qp_num)) {
1718 /* the doorbell bit is set: clear it */
1719 ntb_db_clear(ntb: qp->ndev, BIT_ULL(qp->qp_num));
1720 /* ntb_db_read ensures ntb_db_clear write is committed */
1721 ntb_db_read(ntb: qp->ndev);
1722
1723 /* an interrupt may have arrived between finishing
1724 * ntb_process_rxc and clearing the doorbell bit:
1725 * there might be some more work to do.
1726 */
1727 if (qp->active)
1728 tasklet_schedule(t: &qp->rxc_db_work);
1729 }
1730}
1731
1732static void ntb_tx_copy_callback(void *data,
1733 const struct dmaengine_result *res)
1734{
1735 struct ntb_queue_entry *entry = data;
1736 struct ntb_transport_qp *qp = entry->qp;
1737 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1738
1739 /* we need to check DMA results if we are using DMA */
1740 if (res) {
1741 enum dmaengine_tx_result dma_err = res->result;
1742
1743 switch (dma_err) {
1744 case DMA_TRANS_READ_FAILED:
1745 case DMA_TRANS_WRITE_FAILED:
1746 entry->errors++;
1747 fallthrough;
1748 case DMA_TRANS_ABORTED:
1749 {
1750 void __iomem *offset =
1751 qp->tx_mw + qp->tx_max_frame *
1752 entry->tx_index;
1753
1754 /* resubmit via CPU */
1755 ntb_memcpy_tx(entry, offset);
1756 qp->tx_memcpy++;
1757 return;
1758 }
1759
1760 case DMA_TRANS_NOERROR:
1761 default:
1762 break;
1763 }
1764 }
1765
1766 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1767
1768 if (qp->use_msi)
1769 ntb_msi_peer_trigger(ntb: qp->ndev, PIDX, desc: &qp->peer_msi_desc);
1770 else
1771 ntb_peer_db_set(ntb: qp->ndev, BIT_ULL(qp->qp_num));
1772
1773 /* The entry length can only be zero if the packet is intended to be a
1774 * "link down" or similar. Since no payload is being sent in these
1775 * cases, there is nothing to add to the completion queue.
1776 */
1777 if (entry->len > 0) {
1778 qp->tx_bytes += entry->len;
1779
1780 if (qp->tx_handler)
1781 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1782 entry->len);
1783 }
1784
1785 ntb_list_add(lock: &qp->ntb_tx_free_q_lock, entry: &entry->entry, list: &qp->tx_free_q);
1786}
1787
1788static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1789{
1790#ifdef ARCH_HAS_NOCACHE_UACCESS
1791 /*
1792 * Using non-temporal mov to improve performance on non-cached
1793 * writes, even though we aren't actually copying from user space.
1794 */
1795 __copy_from_user_inatomic_nocache(dst: offset, src: entry->buf, size: entry->len);
1796#else
1797 memcpy_toio(offset, entry->buf, entry->len);
1798#endif
1799
1800 /* Ensure that the data is fully copied out before setting the flags */
1801 wmb();
1802
1803 ntb_tx_copy_callback(data: entry, NULL);
1804}
1805
1806static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1807 struct ntb_queue_entry *entry)
1808{
1809 struct dma_async_tx_descriptor *txd;
1810 struct dma_chan *chan = qp->tx_dma_chan;
1811 struct dma_device *device;
1812 size_t len = entry->len;
1813 void *buf = entry->buf;
1814 size_t dest_off, buff_off;
1815 struct dmaengine_unmap_data *unmap;
1816 dma_addr_t dest;
1817 dma_cookie_t cookie;
1818
1819 device = chan->device;
1820 dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1821 buff_off = (size_t)buf & ~PAGE_MASK;
1822 dest_off = (size_t)dest & ~PAGE_MASK;
1823
1824 if (!is_dma_copy_aligned(dev: device, off1: buff_off, off2: dest_off, len))
1825 goto err;
1826
1827 unmap = dmaengine_get_unmap_data(dev: device->dev, nr: 1, GFP_NOWAIT);
1828 if (!unmap)
1829 goto err;
1830
1831 unmap->len = len;
1832 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1833 buff_off, len, DMA_TO_DEVICE);
1834 if (dma_mapping_error(dev: device->dev, dma_addr: unmap->addr[0]))
1835 goto err_get_unmap;
1836
1837 unmap->to_cnt = 1;
1838
1839 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1840 DMA_PREP_INTERRUPT);
1841 if (!txd)
1842 goto err_get_unmap;
1843
1844 txd->callback_result = ntb_tx_copy_callback;
1845 txd->callback_param = entry;
1846 dma_set_unmap(tx: txd, unmap);
1847
1848 cookie = dmaengine_submit(desc: txd);
1849 if (dma_submit_error(cookie))
1850 goto err_set_unmap;
1851
1852 dmaengine_unmap_put(unmap);
1853
1854 dma_async_issue_pending(chan);
1855
1856 return 0;
1857err_set_unmap:
1858 dmaengine_unmap_put(unmap);
1859err_get_unmap:
1860 dmaengine_unmap_put(unmap);
1861err:
1862 return -ENXIO;
1863}
1864
1865static void ntb_async_tx(struct ntb_transport_qp *qp,
1866 struct ntb_queue_entry *entry)
1867{
1868 struct ntb_payload_header __iomem *hdr;
1869 struct dma_chan *chan = qp->tx_dma_chan;
1870 void __iomem *offset;
1871 int res;
1872
1873 entry->tx_index = qp->tx_index;
1874 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1875 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1876 entry->tx_hdr = hdr;
1877
1878 iowrite32(entry->len, &hdr->len);
1879 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1880
1881 if (!chan)
1882 goto err;
1883
1884 if (entry->len < copy_bytes)
1885 goto err;
1886
1887 res = ntb_async_tx_submit(qp, entry);
1888 if (res < 0)
1889 goto err;
1890
1891 if (!entry->retries)
1892 qp->tx_async++;
1893
1894 return;
1895
1896err:
1897 ntb_memcpy_tx(entry, offset);
1898 qp->tx_memcpy++;
1899}
1900
1901static int ntb_process_tx(struct ntb_transport_qp *qp,
1902 struct ntb_queue_entry *entry)
1903{
1904 if (!ntb_transport_tx_free_entry(qp)) {
1905 qp->tx_ring_full++;
1906 return -EAGAIN;
1907 }
1908
1909 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1910 if (qp->tx_handler)
1911 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1912
1913 ntb_list_add(lock: &qp->ntb_tx_free_q_lock, entry: &entry->entry,
1914 list: &qp->tx_free_q);
1915 return 0;
1916 }
1917
1918 ntb_async_tx(qp, entry);
1919
1920 qp->tx_index++;
1921 qp->tx_index %= qp->tx_max_entry;
1922
1923 qp->tx_pkts++;
1924
1925 return 0;
1926}
1927
1928static void ntb_send_link_down(struct ntb_transport_qp *qp)
1929{
1930 struct pci_dev *pdev = qp->ndev->pdev;
1931 struct ntb_queue_entry *entry;
1932 int i, rc;
1933
1934 if (!qp->link_is_up)
1935 return;
1936
1937 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1938
1939 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1940 entry = ntb_list_rm(lock: &qp->ntb_tx_free_q_lock, list: &qp->tx_free_q);
1941 if (entry)
1942 break;
1943 msleep(msecs: 100);
1944 }
1945
1946 if (!entry)
1947 return;
1948
1949 entry->cb_data = NULL;
1950 entry->buf = NULL;
1951 entry->len = 0;
1952 entry->flags = LINK_DOWN_FLAG;
1953
1954 rc = ntb_process_tx(qp, entry);
1955 if (rc)
1956 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1957 qp->qp_num);
1958
1959 ntb_qp_link_down_reset(qp);
1960}
1961
1962static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1963{
1964 return dev_to_node(dev: &chan->dev->device) == (int)(unsigned long)node;
1965}
1966
1967/**
1968 * ntb_transport_create_queue - Create a new NTB transport layer queue
1969 * @rx_handler: receive callback function
1970 * @tx_handler: transmit callback function
1971 * @event_handler: event callback function
1972 *
1973 * Create a new NTB transport layer queue and provide the queue with a callback
1974 * routine for both transmit and receive. The receive callback routine will be
1975 * used to pass up data when the transport has received it on the queue. The
1976 * transmit callback routine will be called when the transport has completed the
1977 * transmission of the data on the queue and the data is ready to be freed.
1978 *
1979 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1980 */
1981struct ntb_transport_qp *
1982ntb_transport_create_queue(void *data, struct device *client_dev,
1983 const struct ntb_queue_handlers *handlers)
1984{
1985 struct ntb_dev *ndev;
1986 struct pci_dev *pdev;
1987 struct ntb_transport_ctx *nt;
1988 struct ntb_queue_entry *entry;
1989 struct ntb_transport_qp *qp;
1990 u64 qp_bit;
1991 unsigned int free_queue;
1992 dma_cap_mask_t dma_mask;
1993 int node;
1994 int i;
1995
1996 ndev = dev_ntb(client_dev->parent);
1997 pdev = ndev->pdev;
1998 nt = ndev->ctx;
1999
2000 node = dev_to_node(dev: &ndev->dev);
2001
2002 free_queue = ffs(nt->qp_bitmap_free);
2003 if (!free_queue)
2004 goto err;
2005
2006 /* decrement free_queue to make it zero based */
2007 free_queue--;
2008
2009 qp = &nt->qp_vec[free_queue];
2010 qp_bit = BIT_ULL(qp->qp_num);
2011
2012 nt->qp_bitmap_free &= ~qp_bit;
2013
2014 qp->cb_data = data;
2015 qp->rx_handler = handlers->rx_handler;
2016 qp->tx_handler = handlers->tx_handler;
2017 qp->event_handler = handlers->event_handler;
2018
2019 dma_cap_zero(dma_mask);
2020 dma_cap_set(DMA_MEMCPY, dma_mask);
2021
2022 if (use_dma) {
2023 qp->tx_dma_chan =
2024 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2025 (void *)(unsigned long)node);
2026 if (!qp->tx_dma_chan)
2027 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2028
2029 qp->rx_dma_chan =
2030 dma_request_channel(dma_mask, ntb_dma_filter_fn,
2031 (void *)(unsigned long)node);
2032 if (!qp->rx_dma_chan)
2033 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2034 } else {
2035 qp->tx_dma_chan = NULL;
2036 qp->rx_dma_chan = NULL;
2037 }
2038
2039 qp->tx_mw_dma_addr = 0;
2040 if (qp->tx_dma_chan) {
2041 qp->tx_mw_dma_addr =
2042 dma_map_resource(dev: qp->tx_dma_chan->device->dev,
2043 phys_addr: qp->tx_mw_phys, size: qp->tx_mw_size,
2044 dir: DMA_FROM_DEVICE, attrs: 0);
2045 if (dma_mapping_error(dev: qp->tx_dma_chan->device->dev,
2046 dma_addr: qp->tx_mw_dma_addr)) {
2047 qp->tx_mw_dma_addr = 0;
2048 goto err1;
2049 }
2050 }
2051
2052 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2053 qp->tx_dma_chan ? "DMA" : "CPU");
2054
2055 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2056 qp->rx_dma_chan ? "DMA" : "CPU");
2057
2058 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2059 entry = kzalloc_node(size: sizeof(*entry), GFP_KERNEL, node);
2060 if (!entry)
2061 goto err1;
2062
2063 entry->qp = qp;
2064 ntb_list_add(lock: &qp->ntb_rx_q_lock, entry: &entry->entry,
2065 list: &qp->rx_free_q);
2066 }
2067 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2068
2069 for (i = 0; i < qp->tx_max_entry; i++) {
2070 entry = kzalloc_node(size: sizeof(*entry), GFP_KERNEL, node);
2071 if (!entry)
2072 goto err2;
2073
2074 entry->qp = qp;
2075 ntb_list_add(lock: &qp->ntb_tx_free_q_lock, entry: &entry->entry,
2076 list: &qp->tx_free_q);
2077 }
2078
2079 ntb_db_clear(ntb: qp->ndev, db_bits: qp_bit);
2080 ntb_db_clear_mask(ntb: qp->ndev, db_bits: qp_bit);
2081
2082 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2083
2084 return qp;
2085
2086err2:
2087 while ((entry = ntb_list_rm(lock: &qp->ntb_tx_free_q_lock, list: &qp->tx_free_q)))
2088 kfree(objp: entry);
2089err1:
2090 qp->rx_alloc_entry = 0;
2091 while ((entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_free_q)))
2092 kfree(objp: entry);
2093 if (qp->tx_mw_dma_addr)
2094 dma_unmap_resource(dev: qp->tx_dma_chan->device->dev,
2095 addr: qp->tx_mw_dma_addr, size: qp->tx_mw_size,
2096 dir: DMA_FROM_DEVICE, attrs: 0);
2097 if (qp->tx_dma_chan)
2098 dma_release_channel(chan: qp->tx_dma_chan);
2099 if (qp->rx_dma_chan)
2100 dma_release_channel(chan: qp->rx_dma_chan);
2101 nt->qp_bitmap_free |= qp_bit;
2102err:
2103 return NULL;
2104}
2105EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2106
2107/**
2108 * ntb_transport_free_queue - Frees NTB transport queue
2109 * @qp: NTB queue to be freed
2110 *
2111 * Frees NTB transport queue
2112 */
2113void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2114{
2115 struct pci_dev *pdev;
2116 struct ntb_queue_entry *entry;
2117 u64 qp_bit;
2118
2119 if (!qp)
2120 return;
2121
2122 pdev = qp->ndev->pdev;
2123
2124 qp->active = false;
2125
2126 if (qp->tx_dma_chan) {
2127 struct dma_chan *chan = qp->tx_dma_chan;
2128 /* Putting the dma_chan to NULL will force any new traffic to be
2129 * processed by the CPU instead of the DAM engine
2130 */
2131 qp->tx_dma_chan = NULL;
2132
2133 /* Try to be nice and wait for any queued DMA engine
2134 * transactions to process before smashing it with a rock
2135 */
2136 dma_sync_wait(chan, cookie: qp->last_cookie);
2137 dmaengine_terminate_all(chan);
2138
2139 dma_unmap_resource(dev: chan->device->dev,
2140 addr: qp->tx_mw_dma_addr, size: qp->tx_mw_size,
2141 dir: DMA_FROM_DEVICE, attrs: 0);
2142
2143 dma_release_channel(chan);
2144 }
2145
2146 if (qp->rx_dma_chan) {
2147 struct dma_chan *chan = qp->rx_dma_chan;
2148 /* Putting the dma_chan to NULL will force any new traffic to be
2149 * processed by the CPU instead of the DAM engine
2150 */
2151 qp->rx_dma_chan = NULL;
2152
2153 /* Try to be nice and wait for any queued DMA engine
2154 * transactions to process before smashing it with a rock
2155 */
2156 dma_sync_wait(chan, cookie: qp->last_cookie);
2157 dmaengine_terminate_all(chan);
2158 dma_release_channel(chan);
2159 }
2160
2161 qp_bit = BIT_ULL(qp->qp_num);
2162
2163 ntb_db_set_mask(ntb: qp->ndev, db_bits: qp_bit);
2164 tasklet_kill(t: &qp->rxc_db_work);
2165
2166 cancel_delayed_work_sync(dwork: &qp->link_work);
2167
2168 qp->cb_data = NULL;
2169 qp->rx_handler = NULL;
2170 qp->tx_handler = NULL;
2171 qp->event_handler = NULL;
2172
2173 while ((entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_free_q)))
2174 kfree(objp: entry);
2175
2176 while ((entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_pend_q))) {
2177 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2178 kfree(objp: entry);
2179 }
2180
2181 while ((entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_post_q))) {
2182 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2183 kfree(objp: entry);
2184 }
2185
2186 while ((entry = ntb_list_rm(lock: &qp->ntb_tx_free_q_lock, list: &qp->tx_free_q)))
2187 kfree(objp: entry);
2188
2189 qp->transport->qp_bitmap_free |= qp_bit;
2190
2191 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2192}
2193EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2194
2195/**
2196 * ntb_transport_rx_remove - Dequeues enqueued rx packet
2197 * @qp: NTB queue to be freed
2198 * @len: pointer to variable to write enqueued buffers length
2199 *
2200 * Dequeues unused buffers from receive queue. Should only be used during
2201 * shutdown of qp.
2202 *
2203 * RETURNS: NULL error value on error, or void* for success.
2204 */
2205void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2206{
2207 struct ntb_queue_entry *entry;
2208 void *buf;
2209
2210 if (!qp || qp->client_ready)
2211 return NULL;
2212
2213 entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_pend_q);
2214 if (!entry)
2215 return NULL;
2216
2217 buf = entry->cb_data;
2218 *len = entry->len;
2219
2220 ntb_list_add(lock: &qp->ntb_rx_q_lock, entry: &entry->entry, list: &qp->rx_free_q);
2221
2222 return buf;
2223}
2224EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2225
2226/**
2227 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2228 * @qp: NTB transport layer queue the entry is to be enqueued on
2229 * @cb: per buffer pointer for callback function to use
2230 * @data: pointer to data buffer that incoming packets will be copied into
2231 * @len: length of the data buffer
2232 *
2233 * Enqueue a new receive buffer onto the transport queue into which a NTB
2234 * payload can be received into.
2235 *
2236 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2237 */
2238int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2239 unsigned int len)
2240{
2241 struct ntb_queue_entry *entry;
2242
2243 if (!qp)
2244 return -EINVAL;
2245
2246 entry = ntb_list_rm(lock: &qp->ntb_rx_q_lock, list: &qp->rx_free_q);
2247 if (!entry)
2248 return -ENOMEM;
2249
2250 entry->cb_data = cb;
2251 entry->buf = data;
2252 entry->len = len;
2253 entry->flags = 0;
2254 entry->retries = 0;
2255 entry->errors = 0;
2256 entry->rx_index = 0;
2257
2258 ntb_list_add(lock: &qp->ntb_rx_q_lock, entry: &entry->entry, list: &qp->rx_pend_q);
2259
2260 if (qp->active)
2261 tasklet_schedule(t: &qp->rxc_db_work);
2262
2263 return 0;
2264}
2265EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2266
2267/**
2268 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2269 * @qp: NTB transport layer queue the entry is to be enqueued on
2270 * @cb: per buffer pointer for callback function to use
2271 * @data: pointer to data buffer that will be sent
2272 * @len: length of the data buffer
2273 *
2274 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2275 * payload will be transmitted. This assumes that a lock is being held to
2276 * serialize access to the qp.
2277 *
2278 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2279 */
2280int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2281 unsigned int len)
2282{
2283 struct ntb_queue_entry *entry;
2284 int rc;
2285
2286 if (!qp || !len)
2287 return -EINVAL;
2288
2289 /* If the qp link is down already, just ignore. */
2290 if (!qp->link_is_up)
2291 return 0;
2292
2293 entry = ntb_list_rm(lock: &qp->ntb_tx_free_q_lock, list: &qp->tx_free_q);
2294 if (!entry) {
2295 qp->tx_err_no_buf++;
2296 return -EBUSY;
2297 }
2298
2299 entry->cb_data = cb;
2300 entry->buf = data;
2301 entry->len = len;
2302 entry->flags = 0;
2303 entry->errors = 0;
2304 entry->retries = 0;
2305 entry->tx_index = 0;
2306
2307 rc = ntb_process_tx(qp, entry);
2308 if (rc)
2309 ntb_list_add(lock: &qp->ntb_tx_free_q_lock, entry: &entry->entry,
2310 list: &qp->tx_free_q);
2311
2312 return rc;
2313}
2314EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2315
2316/**
2317 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2318 * @qp: NTB transport layer queue to be enabled
2319 *
2320 * Notify NTB transport layer of client readiness to use queue
2321 */
2322void ntb_transport_link_up(struct ntb_transport_qp *qp)
2323{
2324 if (!qp)
2325 return;
2326
2327 qp->client_ready = true;
2328
2329 if (qp->transport->link_is_up)
2330 schedule_delayed_work(dwork: &qp->link_work, delay: 0);
2331}
2332EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2333
2334/**
2335 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2336 * @qp: NTB transport layer queue to be disabled
2337 *
2338 * Notify NTB transport layer of client's desire to no longer receive data on
2339 * transport queue specified. It is the client's responsibility to ensure all
2340 * entries on queue are purged or otherwise handled appropriately.
2341 */
2342void ntb_transport_link_down(struct ntb_transport_qp *qp)
2343{
2344 int val;
2345
2346 if (!qp)
2347 return;
2348
2349 qp->client_ready = false;
2350
2351 val = ntb_spad_read(ntb: qp->ndev, sidx: QP_LINKS);
2352
2353 ntb_peer_spad_write(ntb: qp->ndev, PIDX, sidx: QP_LINKS, val: val & ~BIT(qp->qp_num));
2354
2355 if (qp->link_is_up)
2356 ntb_send_link_down(qp);
2357 else
2358 cancel_delayed_work_sync(dwork: &qp->link_work);
2359}
2360EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2361
2362/**
2363 * ntb_transport_link_query - Query transport link state
2364 * @qp: NTB transport layer queue to be queried
2365 *
2366 * Query connectivity to the remote system of the NTB transport queue
2367 *
2368 * RETURNS: true for link up or false for link down
2369 */
2370bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2371{
2372 if (!qp)
2373 return false;
2374
2375 return qp->link_is_up;
2376}
2377EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2378
2379/**
2380 * ntb_transport_qp_num - Query the qp number
2381 * @qp: NTB transport layer queue to be queried
2382 *
2383 * Query qp number of the NTB transport queue
2384 *
2385 * RETURNS: a zero based number specifying the qp number
2386 */
2387unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2388{
2389 if (!qp)
2390 return 0;
2391
2392 return qp->qp_num;
2393}
2394EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2395
2396/**
2397 * ntb_transport_max_size - Query the max payload size of a qp
2398 * @qp: NTB transport layer queue to be queried
2399 *
2400 * Query the maximum payload size permissible on the given qp
2401 *
2402 * RETURNS: the max payload size of a qp
2403 */
2404unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2405{
2406 unsigned int max_size;
2407 unsigned int copy_align;
2408 struct dma_chan *rx_chan, *tx_chan;
2409
2410 if (!qp)
2411 return 0;
2412
2413 rx_chan = qp->rx_dma_chan;
2414 tx_chan = qp->tx_dma_chan;
2415
2416 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2417 tx_chan ? tx_chan->device->copy_align : 0);
2418
2419 /* If DMA engine usage is possible, try to find the max size for that */
2420 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2421 max_size = round_down(max_size, 1 << copy_align);
2422
2423 return max_size;
2424}
2425EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2426
2427unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2428{
2429 unsigned int head = qp->tx_index;
2430 unsigned int tail = qp->remote_rx_info->entry;
2431
2432 return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2433}
2434EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2435
2436static void ntb_transport_doorbell_callback(void *data, int vector)
2437{
2438 struct ntb_transport_ctx *nt = data;
2439 struct ntb_transport_qp *qp;
2440 u64 db_bits;
2441 unsigned int qp_num;
2442
2443 if (ntb_db_read(ntb: nt->ndev) & nt->msi_db_mask) {
2444 ntb_transport_msi_peer_desc_changed(nt);
2445 ntb_db_clear(ntb: nt->ndev, db_bits: nt->msi_db_mask);
2446 }
2447
2448 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2449 ntb_db_vector_mask(ntb: nt->ndev, vector));
2450
2451 while (db_bits) {
2452 qp_num = __ffs(db_bits);
2453 qp = &nt->qp_vec[qp_num];
2454
2455 if (qp->active)
2456 tasklet_schedule(t: &qp->rxc_db_work);
2457
2458 db_bits &= ~BIT_ULL(qp_num);
2459 }
2460}
2461
2462static const struct ntb_ctx_ops ntb_transport_ops = {
2463 .link_event = ntb_transport_event_callback,
2464 .db_event = ntb_transport_doorbell_callback,
2465};
2466
2467static struct ntb_client ntb_transport_client = {
2468 .ops = {
2469 .probe = ntb_transport_probe,
2470 .remove = ntb_transport_free,
2471 },
2472};
2473
2474static int __init ntb_transport_init(void)
2475{
2476 int rc;
2477
2478 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2479
2480 if (debugfs_initialized())
2481 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2482
2483 rc = bus_register(bus: &ntb_transport_bus);
2484 if (rc)
2485 goto err_bus;
2486
2487 rc = ntb_register_client(&ntb_transport_client);
2488 if (rc)
2489 goto err_client;
2490
2491 return 0;
2492
2493err_client:
2494 bus_unregister(bus: &ntb_transport_bus);
2495err_bus:
2496 debugfs_remove_recursive(dentry: nt_debugfs_dir);
2497 return rc;
2498}
2499module_init(ntb_transport_init);
2500
2501static void __exit ntb_transport_exit(void)
2502{
2503 ntb_unregister_client(client: &ntb_transport_client);
2504 bus_unregister(bus: &ntb_transport_bus);
2505 debugfs_remove_recursive(dentry: nt_debugfs_dir);
2506}
2507module_exit(ntb_transport_exit);
2508

source code of linux/drivers/ntb/ntb_transport.c