1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
9#include <linux/blk-integrity.h>
10#include <linux/compat.h>
11#include <linux/delay.h>
12#include <linux/errno.h>
13#include <linux/hdreg.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/slab.h>
18#include <linux/types.h>
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
22#include <linux/pm_qos.h>
23#include <asm/unaligned.h>
24
25#include "nvme.h"
26#include "fabrics.h"
27#include <linux/nvme-auth.h>
28#include <linux/nvme-keyring.h>
29
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
33#define NVME_MINORS (1U << MINORBITS)
34
35struct nvme_ns_info {
36 struct nvme_ns_ids ids;
37 u32 nsid;
38 __le32 anagrpid;
39 bool is_shared;
40 bool is_readonly;
41 bool is_ready;
42 bool is_removed;
43};
44
45unsigned int admin_timeout = 60;
46module_param(admin_timeout, uint, 0644);
47MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48EXPORT_SYMBOL_GPL(admin_timeout);
49
50unsigned int nvme_io_timeout = 30;
51module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53EXPORT_SYMBOL_GPL(nvme_io_timeout);
54
55static unsigned char shutdown_timeout = 5;
56module_param(shutdown_timeout, byte, 0644);
57MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
59static u8 nvme_max_retries = 5;
60module_param_named(max_retries, nvme_max_retries, byte, 0644);
61MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62
63static unsigned long default_ps_max_latency_us = 100000;
64module_param(default_ps_max_latency_us, ulong, 0644);
65MODULE_PARM_DESC(default_ps_max_latency_us,
66 "max power saving latency for new devices; use PM QOS to change per device");
67
68static bool force_apst;
69module_param(force_apst, bool, 0644);
70MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
72static unsigned long apst_primary_timeout_ms = 100;
73module_param(apst_primary_timeout_ms, ulong, 0644);
74MODULE_PARM_DESC(apst_primary_timeout_ms,
75 "primary APST timeout in ms");
76
77static unsigned long apst_secondary_timeout_ms = 2000;
78module_param(apst_secondary_timeout_ms, ulong, 0644);
79MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 "secondary APST timeout in ms");
81
82static unsigned long apst_primary_latency_tol_us = 15000;
83module_param(apst_primary_latency_tol_us, ulong, 0644);
84MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 "primary APST latency tolerance in us");
86
87static unsigned long apst_secondary_latency_tol_us = 100000;
88module_param(apst_secondary_latency_tol_us, ulong, 0644);
89MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 "secondary APST latency tolerance in us");
91
92/*
93 * nvme_wq - hosts nvme related works that are not reset or delete
94 * nvme_reset_wq - hosts nvme reset works
95 * nvme_delete_wq - hosts nvme delete works
96 *
97 * nvme_wq will host works such as scan, aen handling, fw activation,
98 * keep-alive, periodic reconnects etc. nvme_reset_wq
99 * runs reset works which also flush works hosted on nvme_wq for
100 * serialization purposes. nvme_delete_wq host controller deletion
101 * works which flush reset works for serialization.
102 */
103struct workqueue_struct *nvme_wq;
104EXPORT_SYMBOL_GPL(nvme_wq);
105
106struct workqueue_struct *nvme_reset_wq;
107EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109struct workqueue_struct *nvme_delete_wq;
110EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
112static LIST_HEAD(nvme_subsystems);
113static DEFINE_MUTEX(nvme_subsystems_lock);
114
115static DEFINE_IDA(nvme_instance_ida);
116static dev_t nvme_ctrl_base_chr_devt;
117static struct class *nvme_class;
118static struct class *nvme_subsys_class;
119
120static DEFINE_IDA(nvme_ns_chr_minor_ida);
121static dev_t nvme_ns_chr_devt;
122static struct class *nvme_ns_chr_class;
123
124static void nvme_put_subsystem(struct nvme_subsystem *subsys);
125static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126 unsigned nsid);
127static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
128 struct nvme_command *cmd);
129
130void nvme_queue_scan(struct nvme_ctrl *ctrl)
131{
132 /*
133 * Only new queue scan work when admin and IO queues are both alive
134 */
135 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
136 queue_work(wq: nvme_wq, work: &ctrl->scan_work);
137}
138
139/*
140 * Use this function to proceed with scheduling reset_work for a controller
141 * that had previously been set to the resetting state. This is intended for
142 * code paths that can't be interrupted by other reset attempts. A hot removal
143 * may prevent this from succeeding.
144 */
145int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
146{
147 if (ctrl->state != NVME_CTRL_RESETTING)
148 return -EBUSY;
149 if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work))
150 return -EBUSY;
151 return 0;
152}
153EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
154
155static void nvme_failfast_work(struct work_struct *work)
156{
157 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
158 struct nvme_ctrl, failfast_work);
159
160 if (ctrl->state != NVME_CTRL_CONNECTING)
161 return;
162
163 set_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
164 dev_info(ctrl->device, "failfast expired\n");
165 nvme_kick_requeue_lists(ctrl);
166}
167
168static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169{
170 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
171 return;
172
173 schedule_delayed_work(dwork: &ctrl->failfast_work,
174 delay: ctrl->opts->fast_io_fail_tmo * HZ);
175}
176
177static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
178{
179 if (!ctrl->opts)
180 return;
181
182 cancel_delayed_work_sync(dwork: &ctrl->failfast_work);
183 clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
184}
185
186
187int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188{
189 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING))
190 return -EBUSY;
191 if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work))
192 return -EBUSY;
193 return 0;
194}
195EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196
197int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
198{
199 int ret;
200
201 ret = nvme_reset_ctrl(ctrl);
202 if (!ret) {
203 flush_work(work: &ctrl->reset_work);
204 if (ctrl->state != NVME_CTRL_LIVE)
205 ret = -ENETRESET;
206 }
207
208 return ret;
209}
210
211static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
212{
213 dev_info(ctrl->device,
214 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
215
216 flush_work(work: &ctrl->reset_work);
217 nvme_stop_ctrl(ctrl);
218 nvme_remove_namespaces(ctrl);
219 ctrl->ops->delete_ctrl(ctrl);
220 nvme_uninit_ctrl(ctrl);
221}
222
223static void nvme_delete_ctrl_work(struct work_struct *work)
224{
225 struct nvme_ctrl *ctrl =
226 container_of(work, struct nvme_ctrl, delete_work);
227
228 nvme_do_delete_ctrl(ctrl);
229}
230
231int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232{
233 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING))
234 return -EBUSY;
235 if (!queue_work(wq: nvme_delete_wq, work: &ctrl->delete_work))
236 return -EBUSY;
237 return 0;
238}
239EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240
241void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
242{
243 /*
244 * Keep a reference until nvme_do_delete_ctrl() complete,
245 * since ->delete_ctrl can free the controller.
246 */
247 nvme_get_ctrl(ctrl);
248 if (nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING))
249 nvme_do_delete_ctrl(ctrl);
250 nvme_put_ctrl(ctrl);
251}
252
253static blk_status_t nvme_error_status(u16 status)
254{
255 switch (status & 0x7ff) {
256 case NVME_SC_SUCCESS:
257 return BLK_STS_OK;
258 case NVME_SC_CAP_EXCEEDED:
259 return BLK_STS_NOSPC;
260 case NVME_SC_LBA_RANGE:
261 case NVME_SC_CMD_INTERRUPTED:
262 case NVME_SC_NS_NOT_READY:
263 return BLK_STS_TARGET;
264 case NVME_SC_BAD_ATTRIBUTES:
265 case NVME_SC_ONCS_NOT_SUPPORTED:
266 case NVME_SC_INVALID_OPCODE:
267 case NVME_SC_INVALID_FIELD:
268 case NVME_SC_INVALID_NS:
269 return BLK_STS_NOTSUPP;
270 case NVME_SC_WRITE_FAULT:
271 case NVME_SC_READ_ERROR:
272 case NVME_SC_UNWRITTEN_BLOCK:
273 case NVME_SC_ACCESS_DENIED:
274 case NVME_SC_READ_ONLY:
275 case NVME_SC_COMPARE_FAILED:
276 return BLK_STS_MEDIUM;
277 case NVME_SC_GUARD_CHECK:
278 case NVME_SC_APPTAG_CHECK:
279 case NVME_SC_REFTAG_CHECK:
280 case NVME_SC_INVALID_PI:
281 return BLK_STS_PROTECTION;
282 case NVME_SC_RESERVATION_CONFLICT:
283 return BLK_STS_RESV_CONFLICT;
284 case NVME_SC_HOST_PATH_ERROR:
285 return BLK_STS_TRANSPORT;
286 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
287 return BLK_STS_ZONE_ACTIVE_RESOURCE;
288 case NVME_SC_ZONE_TOO_MANY_OPEN:
289 return BLK_STS_ZONE_OPEN_RESOURCE;
290 default:
291 return BLK_STS_IOERR;
292 }
293}
294
295static void nvme_retry_req(struct request *req)
296{
297 unsigned long delay = 0;
298 u16 crd;
299
300 /* The mask and shift result must be <= 3 */
301 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
302 if (crd)
303 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
304
305 nvme_req(req)->retries++;
306 blk_mq_requeue_request(rq: req, kick_requeue_list: false);
307 blk_mq_delay_kick_requeue_list(q: req->q, msecs: delay);
308}
309
310static void nvme_log_error(struct request *req)
311{
312 struct nvme_ns *ns = req->q->queuedata;
313 struct nvme_request *nr = nvme_req(req);
314
315 if (ns) {
316 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
317 ns->disk ? ns->disk->disk_name : "?",
318 nvme_get_opcode_str(nr->cmd->common.opcode),
319 nr->cmd->common.opcode,
320 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
321 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
322 nvme_get_error_status_str(nr->status),
323 nr->status >> 8 & 7, /* Status Code Type */
324 nr->status & 0xff, /* Status Code */
325 nr->status & NVME_SC_MORE ? "MORE " : "",
326 nr->status & NVME_SC_DNR ? "DNR " : "");
327 return;
328 }
329
330 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
331 dev_name(nr->ctrl->device),
332 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
333 nr->cmd->common.opcode,
334 nvme_get_error_status_str(nr->status),
335 nr->status >> 8 & 7, /* Status Code Type */
336 nr->status & 0xff, /* Status Code */
337 nr->status & NVME_SC_MORE ? "MORE " : "",
338 nr->status & NVME_SC_DNR ? "DNR " : "");
339}
340
341enum nvme_disposition {
342 COMPLETE,
343 RETRY,
344 FAILOVER,
345 AUTHENTICATE,
346};
347
348static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
349{
350 if (likely(nvme_req(req)->status == 0))
351 return COMPLETE;
352
353 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
354 return AUTHENTICATE;
355
356 if (blk_noretry_request(req) ||
357 (nvme_req(req)->status & NVME_SC_DNR) ||
358 nvme_req(req)->retries >= nvme_max_retries)
359 return COMPLETE;
360
361 if (req->cmd_flags & REQ_NVME_MPATH) {
362 if (nvme_is_path_error(status: nvme_req(req)->status) ||
363 blk_queue_dying(req->q))
364 return FAILOVER;
365 } else {
366 if (blk_queue_dying(req->q))
367 return COMPLETE;
368 }
369
370 return RETRY;
371}
372
373static inline void nvme_end_req_zoned(struct request *req)
374{
375 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
376 req_op(req) == REQ_OP_ZONE_APPEND)
377 req->__sector = nvme_lba_to_sect(ns: req->q->queuedata,
378 le64_to_cpu(nvme_req(req)->result.u64));
379}
380
381static inline void nvme_end_req(struct request *req)
382{
383 blk_status_t status = nvme_error_status(status: nvme_req(req)->status);
384
385 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
386 nvme_log_error(req);
387 nvme_end_req_zoned(req);
388 nvme_trace_bio_complete(req);
389 if (req->cmd_flags & REQ_NVME_MPATH)
390 nvme_mpath_end_request(rq: req);
391 blk_mq_end_request(rq: req, error: status);
392}
393
394void nvme_complete_rq(struct request *req)
395{
396 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
397
398 trace_nvme_complete_rq(req);
399 nvme_cleanup_cmd(req);
400
401 /*
402 * Completions of long-running commands should not be able to
403 * defer sending of periodic keep alives, since the controller
404 * may have completed processing such commands a long time ago
405 * (arbitrarily close to command submission time).
406 * req->deadline - req->timeout is the command submission time
407 * in jiffies.
408 */
409 if (ctrl->kas &&
410 req->deadline - req->timeout >= ctrl->ka_last_check_time)
411 ctrl->comp_seen = true;
412
413 switch (nvme_decide_disposition(req)) {
414 case COMPLETE:
415 nvme_end_req(req);
416 return;
417 case RETRY:
418 nvme_retry_req(req);
419 return;
420 case FAILOVER:
421 nvme_failover_req(req);
422 return;
423 case AUTHENTICATE:
424#ifdef CONFIG_NVME_HOST_AUTH
425 queue_work(wq: nvme_wq, work: &ctrl->dhchap_auth_work);
426 nvme_retry_req(req);
427#else
428 nvme_end_req(req);
429#endif
430 return;
431 }
432}
433EXPORT_SYMBOL_GPL(nvme_complete_rq);
434
435void nvme_complete_batch_req(struct request *req)
436{
437 trace_nvme_complete_rq(req);
438 nvme_cleanup_cmd(req);
439 nvme_end_req_zoned(req);
440}
441EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
442
443/*
444 * Called to unwind from ->queue_rq on a failed command submission so that the
445 * multipathing code gets called to potentially failover to another path.
446 * The caller needs to unwind all transport specific resource allocations and
447 * must return propagate the return value.
448 */
449blk_status_t nvme_host_path_error(struct request *req)
450{
451 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
452 blk_mq_set_request_complete(rq: req);
453 nvme_complete_rq(req);
454 return BLK_STS_OK;
455}
456EXPORT_SYMBOL_GPL(nvme_host_path_error);
457
458bool nvme_cancel_request(struct request *req, void *data)
459{
460 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
461 "Cancelling I/O %d", req->tag);
462
463 /* don't abort one completed or idle request */
464 if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT)
465 return true;
466
467 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
468 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
469 blk_mq_complete_request(rq: req);
470 return true;
471}
472EXPORT_SYMBOL_GPL(nvme_cancel_request);
473
474void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
475{
476 if (ctrl->tagset) {
477 blk_mq_tagset_busy_iter(tagset: ctrl->tagset,
478 fn: nvme_cancel_request, priv: ctrl);
479 blk_mq_tagset_wait_completed_request(tagset: ctrl->tagset);
480 }
481}
482EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
483
484void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
485{
486 if (ctrl->admin_tagset) {
487 blk_mq_tagset_busy_iter(tagset: ctrl->admin_tagset,
488 fn: nvme_cancel_request, priv: ctrl);
489 blk_mq_tagset_wait_completed_request(tagset: ctrl->admin_tagset);
490 }
491}
492EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
493
494bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
495 enum nvme_ctrl_state new_state)
496{
497 enum nvme_ctrl_state old_state;
498 unsigned long flags;
499 bool changed = false;
500
501 spin_lock_irqsave(&ctrl->lock, flags);
502
503 old_state = ctrl->state;
504 switch (new_state) {
505 case NVME_CTRL_LIVE:
506 switch (old_state) {
507 case NVME_CTRL_NEW:
508 case NVME_CTRL_RESETTING:
509 case NVME_CTRL_CONNECTING:
510 changed = true;
511 fallthrough;
512 default:
513 break;
514 }
515 break;
516 case NVME_CTRL_RESETTING:
517 switch (old_state) {
518 case NVME_CTRL_NEW:
519 case NVME_CTRL_LIVE:
520 changed = true;
521 fallthrough;
522 default:
523 break;
524 }
525 break;
526 case NVME_CTRL_CONNECTING:
527 switch (old_state) {
528 case NVME_CTRL_NEW:
529 case NVME_CTRL_RESETTING:
530 changed = true;
531 fallthrough;
532 default:
533 break;
534 }
535 break;
536 case NVME_CTRL_DELETING:
537 switch (old_state) {
538 case NVME_CTRL_LIVE:
539 case NVME_CTRL_RESETTING:
540 case NVME_CTRL_CONNECTING:
541 changed = true;
542 fallthrough;
543 default:
544 break;
545 }
546 break;
547 case NVME_CTRL_DELETING_NOIO:
548 switch (old_state) {
549 case NVME_CTRL_DELETING:
550 case NVME_CTRL_DEAD:
551 changed = true;
552 fallthrough;
553 default:
554 break;
555 }
556 break;
557 case NVME_CTRL_DEAD:
558 switch (old_state) {
559 case NVME_CTRL_DELETING:
560 changed = true;
561 fallthrough;
562 default:
563 break;
564 }
565 break;
566 default:
567 break;
568 }
569
570 if (changed) {
571 ctrl->state = new_state;
572 wake_up_all(&ctrl->state_wq);
573 }
574
575 spin_unlock_irqrestore(lock: &ctrl->lock, flags);
576 if (!changed)
577 return false;
578
579 if (ctrl->state == NVME_CTRL_LIVE) {
580 if (old_state == NVME_CTRL_CONNECTING)
581 nvme_stop_failfast_work(ctrl);
582 nvme_kick_requeue_lists(ctrl);
583 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
584 old_state == NVME_CTRL_RESETTING) {
585 nvme_start_failfast_work(ctrl);
586 }
587 return changed;
588}
589EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
590
591/*
592 * Returns true for sink states that can't ever transition back to live.
593 */
594static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
595{
596 switch (ctrl->state) {
597 case NVME_CTRL_NEW:
598 case NVME_CTRL_LIVE:
599 case NVME_CTRL_RESETTING:
600 case NVME_CTRL_CONNECTING:
601 return false;
602 case NVME_CTRL_DELETING:
603 case NVME_CTRL_DELETING_NOIO:
604 case NVME_CTRL_DEAD:
605 return true;
606 default:
607 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
608 return true;
609 }
610}
611
612/*
613 * Waits for the controller state to be resetting, or returns false if it is
614 * not possible to ever transition to that state.
615 */
616bool nvme_wait_reset(struct nvme_ctrl *ctrl)
617{
618 wait_event(ctrl->state_wq,
619 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
620 nvme_state_terminal(ctrl));
621 return ctrl->state == NVME_CTRL_RESETTING;
622}
623EXPORT_SYMBOL_GPL(nvme_wait_reset);
624
625static void nvme_free_ns_head(struct kref *ref)
626{
627 struct nvme_ns_head *head =
628 container_of(ref, struct nvme_ns_head, ref);
629
630 nvme_mpath_remove_disk(head);
631 ida_free(&head->subsys->ns_ida, id: head->instance);
632 cleanup_srcu_struct(ssp: &head->srcu);
633 nvme_put_subsystem(subsys: head->subsys);
634 kfree(objp: head);
635}
636
637bool nvme_tryget_ns_head(struct nvme_ns_head *head)
638{
639 return kref_get_unless_zero(kref: &head->ref);
640}
641
642void nvme_put_ns_head(struct nvme_ns_head *head)
643{
644 kref_put(kref: &head->ref, release: nvme_free_ns_head);
645}
646
647static void nvme_free_ns(struct kref *kref)
648{
649 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
650
651 put_disk(disk: ns->disk);
652 nvme_put_ns_head(head: ns->head);
653 nvme_put_ctrl(ctrl: ns->ctrl);
654 kfree(objp: ns);
655}
656
657static inline bool nvme_get_ns(struct nvme_ns *ns)
658{
659 return kref_get_unless_zero(kref: &ns->kref);
660}
661
662void nvme_put_ns(struct nvme_ns *ns)
663{
664 kref_put(kref: &ns->kref, release: nvme_free_ns);
665}
666EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
667
668static inline void nvme_clear_nvme_request(struct request *req)
669{
670 nvme_req(req)->status = 0;
671 nvme_req(req)->retries = 0;
672 nvme_req(req)->flags = 0;
673 req->rq_flags |= RQF_DONTPREP;
674}
675
676/* initialize a passthrough request */
677void nvme_init_request(struct request *req, struct nvme_command *cmd)
678{
679 if (req->q->queuedata)
680 req->timeout = NVME_IO_TIMEOUT;
681 else /* no queuedata implies admin queue */
682 req->timeout = NVME_ADMIN_TIMEOUT;
683
684 /* passthru commands should let the driver set the SGL flags */
685 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
686
687 req->cmd_flags |= REQ_FAILFAST_DRIVER;
688 if (req->mq_hctx->type == HCTX_TYPE_POLL)
689 req->cmd_flags |= REQ_POLLED;
690 nvme_clear_nvme_request(req);
691 req->rq_flags |= RQF_QUIET;
692 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
693}
694EXPORT_SYMBOL_GPL(nvme_init_request);
695
696/*
697 * For something we're not in a state to send to the device the default action
698 * is to busy it and retry it after the controller state is recovered. However,
699 * if the controller is deleting or if anything is marked for failfast or
700 * nvme multipath it is immediately failed.
701 *
702 * Note: commands used to initialize the controller will be marked for failfast.
703 * Note: nvme cli/ioctl commands are marked for failfast.
704 */
705blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
706 struct request *rq)
707{
708 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
709 ctrl->state != NVME_CTRL_DELETING &&
710 ctrl->state != NVME_CTRL_DEAD &&
711 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
712 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
713 return BLK_STS_RESOURCE;
714 return nvme_host_path_error(rq);
715}
716EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
717
718bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
719 bool queue_live)
720{
721 struct nvme_request *req = nvme_req(req: rq);
722
723 /*
724 * currently we have a problem sending passthru commands
725 * on the admin_q if the controller is not LIVE because we can't
726 * make sure that they are going out after the admin connect,
727 * controller enable and/or other commands in the initialization
728 * sequence. until the controller will be LIVE, fail with
729 * BLK_STS_RESOURCE so that they will be rescheduled.
730 */
731 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
732 return false;
733
734 if (ctrl->ops->flags & NVME_F_FABRICS) {
735 /*
736 * Only allow commands on a live queue, except for the connect
737 * command, which is require to set the queue live in the
738 * appropinquate states.
739 */
740 switch (ctrl->state) {
741 case NVME_CTRL_CONNECTING:
742 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(cmd: req->cmd) &&
743 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
744 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
745 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
746 return true;
747 break;
748 default:
749 break;
750 case NVME_CTRL_DEAD:
751 return false;
752 }
753 }
754
755 return queue_live;
756}
757EXPORT_SYMBOL_GPL(__nvme_check_ready);
758
759static inline void nvme_setup_flush(struct nvme_ns *ns,
760 struct nvme_command *cmnd)
761{
762 memset(cmnd, 0, sizeof(*cmnd));
763 cmnd->common.opcode = nvme_cmd_flush;
764 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
765}
766
767static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
768 struct nvme_command *cmnd)
769{
770 unsigned short segments = blk_rq_nr_discard_segments(rq: req), n = 0;
771 struct nvme_dsm_range *range;
772 struct bio *bio;
773
774 /*
775 * Some devices do not consider the DSM 'Number of Ranges' field when
776 * determining how much data to DMA. Always allocate memory for maximum
777 * number of segments to prevent device reading beyond end of buffer.
778 */
779 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
780
781 range = kzalloc(size: alloc_size, GFP_ATOMIC | __GFP_NOWARN);
782 if (!range) {
783 /*
784 * If we fail allocation our range, fallback to the controller
785 * discard page. If that's also busy, it's safe to return
786 * busy, as we know we can make progress once that's freed.
787 */
788 if (test_and_set_bit_lock(nr: 0, addr: &ns->ctrl->discard_page_busy))
789 return BLK_STS_RESOURCE;
790
791 range = page_address(ns->ctrl->discard_page);
792 }
793
794 if (queue_max_discard_segments(q: req->q) == 1) {
795 u64 slba = nvme_sect_to_lba(ns, sector: blk_rq_pos(rq: req));
796 u32 nlb = blk_rq_sectors(rq: req) >> (ns->lba_shift - 9);
797
798 range[0].cattr = cpu_to_le32(0);
799 range[0].nlb = cpu_to_le32(nlb);
800 range[0].slba = cpu_to_le64(slba);
801 n = 1;
802 } else {
803 __rq_for_each_bio(bio, req) {
804 u64 slba = nvme_sect_to_lba(ns, sector: bio->bi_iter.bi_sector);
805 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
806
807 if (n < segments) {
808 range[n].cattr = cpu_to_le32(0);
809 range[n].nlb = cpu_to_le32(nlb);
810 range[n].slba = cpu_to_le64(slba);
811 }
812 n++;
813 }
814 }
815
816 if (WARN_ON_ONCE(n != segments)) {
817 if (virt_to_page(range) == ns->ctrl->discard_page)
818 clear_bit_unlock(nr: 0, addr: &ns->ctrl->discard_page_busy);
819 else
820 kfree(objp: range);
821 return BLK_STS_IOERR;
822 }
823
824 memset(cmnd, 0, sizeof(*cmnd));
825 cmnd->dsm.opcode = nvme_cmd_dsm;
826 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
827 cmnd->dsm.nr = cpu_to_le32(segments - 1);
828 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
829
830 bvec_set_virt(bv: &req->special_vec, vaddr: range, len: alloc_size);
831 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
832
833 return BLK_STS_OK;
834}
835
836static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
837 struct request *req)
838{
839 u32 upper, lower;
840 u64 ref48;
841
842 /* both rw and write zeroes share the same reftag format */
843 switch (ns->guard_type) {
844 case NVME_NVM_NS_16B_GUARD:
845 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
846 break;
847 case NVME_NVM_NS_64B_GUARD:
848 ref48 = ext_pi_ref_tag(rq: req);
849 lower = lower_32_bits(ref48);
850 upper = upper_32_bits(ref48);
851
852 cmnd->rw.reftag = cpu_to_le32(lower);
853 cmnd->rw.cdw3 = cpu_to_le32(upper);
854 break;
855 default:
856 break;
857 }
858}
859
860static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
861 struct request *req, struct nvme_command *cmnd)
862{
863 memset(cmnd, 0, sizeof(*cmnd));
864
865 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
866 return nvme_setup_discard(ns, req, cmnd);
867
868 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
869 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
870 cmnd->write_zeroes.slba =
871 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
872 cmnd->write_zeroes.length =
873 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
874
875 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
876 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
877
878 if (nvme_ns_has_pi(ns)) {
879 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
880
881 switch (ns->pi_type) {
882 case NVME_NS_DPS_PI_TYPE1:
883 case NVME_NS_DPS_PI_TYPE2:
884 nvme_set_ref_tag(ns, cmnd, req);
885 break;
886 }
887 }
888
889 return BLK_STS_OK;
890}
891
892static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
893 struct request *req, struct nvme_command *cmnd,
894 enum nvme_opcode op)
895{
896 u16 control = 0;
897 u32 dsmgmt = 0;
898
899 if (req->cmd_flags & REQ_FUA)
900 control |= NVME_RW_FUA;
901 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
902 control |= NVME_RW_LR;
903
904 if (req->cmd_flags & REQ_RAHEAD)
905 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
906
907 cmnd->rw.opcode = op;
908 cmnd->rw.flags = 0;
909 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
910 cmnd->rw.cdw2 = 0;
911 cmnd->rw.cdw3 = 0;
912 cmnd->rw.metadata = 0;
913 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
914 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
915 cmnd->rw.reftag = 0;
916 cmnd->rw.apptag = 0;
917 cmnd->rw.appmask = 0;
918
919 if (ns->ms) {
920 /*
921 * If formated with metadata, the block layer always provides a
922 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
923 * we enable the PRACT bit for protection information or set the
924 * namespace capacity to zero to prevent any I/O.
925 */
926 if (!blk_integrity_rq(rq: req)) {
927 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
928 return BLK_STS_NOTSUPP;
929 control |= NVME_RW_PRINFO_PRACT;
930 }
931
932 switch (ns->pi_type) {
933 case NVME_NS_DPS_PI_TYPE3:
934 control |= NVME_RW_PRINFO_PRCHK_GUARD;
935 break;
936 case NVME_NS_DPS_PI_TYPE1:
937 case NVME_NS_DPS_PI_TYPE2:
938 control |= NVME_RW_PRINFO_PRCHK_GUARD |
939 NVME_RW_PRINFO_PRCHK_REF;
940 if (op == nvme_cmd_zone_append)
941 control |= NVME_RW_APPEND_PIREMAP;
942 nvme_set_ref_tag(ns, cmnd, req);
943 break;
944 }
945 }
946
947 cmnd->rw.control = cpu_to_le16(control);
948 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
949 return 0;
950}
951
952void nvme_cleanup_cmd(struct request *req)
953{
954 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
955 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
956
957 if (req->special_vec.bv_page == ctrl->discard_page)
958 clear_bit_unlock(nr: 0, addr: &ctrl->discard_page_busy);
959 else
960 kfree(objp: bvec_virt(bvec: &req->special_vec));
961 }
962}
963EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
964
965blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
966{
967 struct nvme_command *cmd = nvme_req(req)->cmd;
968 blk_status_t ret = BLK_STS_OK;
969
970 if (!(req->rq_flags & RQF_DONTPREP))
971 nvme_clear_nvme_request(req);
972
973 switch (req_op(req)) {
974 case REQ_OP_DRV_IN:
975 case REQ_OP_DRV_OUT:
976 /* these are setup prior to execution in nvme_init_request() */
977 break;
978 case REQ_OP_FLUSH:
979 nvme_setup_flush(ns, cmnd: cmd);
980 break;
981 case REQ_OP_ZONE_RESET_ALL:
982 case REQ_OP_ZONE_RESET:
983 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_RESET);
984 break;
985 case REQ_OP_ZONE_OPEN:
986 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_OPEN);
987 break;
988 case REQ_OP_ZONE_CLOSE:
989 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_CLOSE);
990 break;
991 case REQ_OP_ZONE_FINISH:
992 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_FINISH);
993 break;
994 case REQ_OP_WRITE_ZEROES:
995 ret = nvme_setup_write_zeroes(ns, req, cmnd: cmd);
996 break;
997 case REQ_OP_DISCARD:
998 ret = nvme_setup_discard(ns, req, cmnd: cmd);
999 break;
1000 case REQ_OP_READ:
1001 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_read);
1002 break;
1003 case REQ_OP_WRITE:
1004 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_write);
1005 break;
1006 case REQ_OP_ZONE_APPEND:
1007 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_zone_append);
1008 break;
1009 default:
1010 WARN_ON_ONCE(1);
1011 return BLK_STS_IOERR;
1012 }
1013
1014 cmd->common.command_id = nvme_cid(rq: req);
1015 trace_nvme_setup_cmd(req, cmd);
1016 return ret;
1017}
1018EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1019
1020/*
1021 * Return values:
1022 * 0: success
1023 * >0: nvme controller's cqe status response
1024 * <0: kernel error in lieu of controller response
1025 */
1026int nvme_execute_rq(struct request *rq, bool at_head)
1027{
1028 blk_status_t status;
1029
1030 status = blk_execute_rq(rq, at_head);
1031 if (nvme_req(req: rq)->flags & NVME_REQ_CANCELLED)
1032 return -EINTR;
1033 if (nvme_req(req: rq)->status)
1034 return nvme_req(req: rq)->status;
1035 return blk_status_to_errno(status);
1036}
1037EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1038
1039/*
1040 * Returns 0 on success. If the result is negative, it's a Linux error code;
1041 * if the result is positive, it's an NVM Express status code
1042 */
1043int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1044 union nvme_result *result, void *buffer, unsigned bufflen,
1045 int qid, int at_head, blk_mq_req_flags_t flags)
1046{
1047 struct request *req;
1048 int ret;
1049
1050 if (qid == NVME_QID_ANY)
1051 req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd), flags);
1052 else
1053 req = blk_mq_alloc_request_hctx(q, opf: nvme_req_op(cmd), flags,
1054 hctx_idx: qid - 1);
1055
1056 if (IS_ERR(ptr: req))
1057 return PTR_ERR(ptr: req);
1058 nvme_init_request(req, cmd);
1059
1060 if (buffer && bufflen) {
1061 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1062 if (ret)
1063 goto out;
1064 }
1065
1066 ret = nvme_execute_rq(req, at_head);
1067 if (result && ret >= 0)
1068 *result = nvme_req(req)->result;
1069 out:
1070 blk_mq_free_request(rq: req);
1071 return ret;
1072}
1073EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1074
1075int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1076 void *buffer, unsigned bufflen)
1077{
1078 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1079 NVME_QID_ANY, 0, 0);
1080}
1081EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1082
1083u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1084{
1085 u32 effects = 0;
1086
1087 if (ns) {
1088 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1089 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1090 dev_warn_once(ctrl->device,
1091 "IO command:%02x has unusual effects:%08x\n",
1092 opcode, effects);
1093
1094 /*
1095 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1096 * which would deadlock when done on an I/O command. Note that
1097 * We already warn about an unusual effect above.
1098 */
1099 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1100 } else {
1101 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1102 }
1103
1104 return effects;
1105}
1106EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1107
1108u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1109{
1110 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1111
1112 /*
1113 * For simplicity, IO to all namespaces is quiesced even if the command
1114 * effects say only one namespace is affected.
1115 */
1116 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1117 mutex_lock(&ctrl->scan_lock);
1118 mutex_lock(&ctrl->subsys->lock);
1119 nvme_mpath_start_freeze(subsys: ctrl->subsys);
1120 nvme_mpath_wait_freeze(subsys: ctrl->subsys);
1121 nvme_start_freeze(ctrl);
1122 nvme_wait_freeze(ctrl);
1123 }
1124 return effects;
1125}
1126EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1127
1128void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1129 struct nvme_command *cmd, int status)
1130{
1131 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1132 nvme_unfreeze(ctrl);
1133 nvme_mpath_unfreeze(subsys: ctrl->subsys);
1134 mutex_unlock(lock: &ctrl->subsys->lock);
1135 mutex_unlock(lock: &ctrl->scan_lock);
1136 }
1137 if (effects & NVME_CMD_EFFECTS_CCC) {
1138 if (!test_and_set_bit(nr: NVME_CTRL_DIRTY_CAPABILITY,
1139 addr: &ctrl->flags)) {
1140 dev_info(ctrl->device,
1141"controller capabilities changed, reset may be required to take effect.\n");
1142 }
1143 }
1144 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1145 nvme_queue_scan(ctrl);
1146 flush_work(work: &ctrl->scan_work);
1147 }
1148 if (ns)
1149 return;
1150
1151 switch (cmd->common.opcode) {
1152 case nvme_admin_set_features:
1153 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1154 case NVME_FEAT_KATO:
1155 /*
1156 * Keep alive commands interval on the host should be
1157 * updated when KATO is modified by Set Features
1158 * commands.
1159 */
1160 if (!status)
1161 nvme_update_keep_alive(ctrl, cmd);
1162 break;
1163 default:
1164 break;
1165 }
1166 break;
1167 default:
1168 break;
1169 }
1170}
1171EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1172
1173/*
1174 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1175 *
1176 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1177 * accounting for transport roundtrip times [..].
1178 */
1179static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1180{
1181 unsigned long delay = ctrl->kato * HZ / 2;
1182
1183 /*
1184 * When using Traffic Based Keep Alive, we need to run
1185 * nvme_keep_alive_work at twice the normal frequency, as one
1186 * command completion can postpone sending a keep alive command
1187 * by up to twice the delay between runs.
1188 */
1189 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1190 delay /= 2;
1191 return delay;
1192}
1193
1194static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1195{
1196 queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work,
1197 delay: nvme_keep_alive_work_period(ctrl));
1198}
1199
1200static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1201 blk_status_t status)
1202{
1203 struct nvme_ctrl *ctrl = rq->end_io_data;
1204 unsigned long flags;
1205 bool startka = false;
1206 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1207 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1208
1209 /*
1210 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1211 * at the desired frequency.
1212 */
1213 if (rtt <= delay) {
1214 delay -= rtt;
1215 } else {
1216 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1217 jiffies_to_msecs(rtt));
1218 delay = 0;
1219 }
1220
1221 blk_mq_free_request(rq);
1222
1223 if (status) {
1224 dev_err(ctrl->device,
1225 "failed nvme_keep_alive_end_io error=%d\n",
1226 status);
1227 return RQ_END_IO_NONE;
1228 }
1229
1230 ctrl->ka_last_check_time = jiffies;
1231 ctrl->comp_seen = false;
1232 spin_lock_irqsave(&ctrl->lock, flags);
1233 if (ctrl->state == NVME_CTRL_LIVE ||
1234 ctrl->state == NVME_CTRL_CONNECTING)
1235 startka = true;
1236 spin_unlock_irqrestore(lock: &ctrl->lock, flags);
1237 if (startka)
1238 queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay);
1239 return RQ_END_IO_NONE;
1240}
1241
1242static void nvme_keep_alive_work(struct work_struct *work)
1243{
1244 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1245 struct nvme_ctrl, ka_work);
1246 bool comp_seen = ctrl->comp_seen;
1247 struct request *rq;
1248
1249 ctrl->ka_last_check_time = jiffies;
1250
1251 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1252 dev_dbg(ctrl->device,
1253 "reschedule traffic based keep-alive timer\n");
1254 ctrl->comp_seen = false;
1255 nvme_queue_keep_alive_work(ctrl);
1256 return;
1257 }
1258
1259 rq = blk_mq_alloc_request(q: ctrl->admin_q, opf: nvme_req_op(cmd: &ctrl->ka_cmd),
1260 flags: BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1261 if (IS_ERR(ptr: rq)) {
1262 /* allocation failure, reset the controller */
1263 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1264 nvme_reset_ctrl(ctrl);
1265 return;
1266 }
1267 nvme_init_request(rq, &ctrl->ka_cmd);
1268
1269 rq->timeout = ctrl->kato * HZ;
1270 rq->end_io = nvme_keep_alive_end_io;
1271 rq->end_io_data = ctrl;
1272 blk_execute_rq_nowait(rq, at_head: false);
1273}
1274
1275static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1276{
1277 if (unlikely(ctrl->kato == 0))
1278 return;
1279
1280 nvme_queue_keep_alive_work(ctrl);
1281}
1282
1283void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1284{
1285 if (unlikely(ctrl->kato == 0))
1286 return;
1287
1288 cancel_delayed_work_sync(dwork: &ctrl->ka_work);
1289}
1290EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1291
1292static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1293 struct nvme_command *cmd)
1294{
1295 unsigned int new_kato =
1296 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1297
1298 dev_info(ctrl->device,
1299 "keep alive interval updated from %u ms to %u ms\n",
1300 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1301
1302 nvme_stop_keep_alive(ctrl);
1303 ctrl->kato = new_kato;
1304 nvme_start_keep_alive(ctrl);
1305}
1306
1307/*
1308 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1309 * flag, thus sending any new CNS opcodes has a big chance of not working.
1310 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1311 * (but not for any later version).
1312 */
1313static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1314{
1315 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1316 return ctrl->vs < NVME_VS(1, 2, 0);
1317 return ctrl->vs < NVME_VS(1, 1, 0);
1318}
1319
1320static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1321{
1322 struct nvme_command c = { };
1323 int error;
1324
1325 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1326 c.identify.opcode = nvme_admin_identify;
1327 c.identify.cns = NVME_ID_CNS_CTRL;
1328
1329 *id = kmalloc(size: sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1330 if (!*id)
1331 return -ENOMEM;
1332
1333 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1334 sizeof(struct nvme_id_ctrl));
1335 if (error)
1336 kfree(objp: *id);
1337 return error;
1338}
1339
1340static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1341 struct nvme_ns_id_desc *cur, bool *csi_seen)
1342{
1343 const char *warn_str = "ctrl returned bogus length:";
1344 void *data = cur;
1345
1346 switch (cur->nidt) {
1347 case NVME_NIDT_EUI64:
1348 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1349 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1350 warn_str, cur->nidl);
1351 return -1;
1352 }
1353 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1354 return NVME_NIDT_EUI64_LEN;
1355 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1356 return NVME_NIDT_EUI64_LEN;
1357 case NVME_NIDT_NGUID:
1358 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1359 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1360 warn_str, cur->nidl);
1361 return -1;
1362 }
1363 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1364 return NVME_NIDT_NGUID_LEN;
1365 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1366 return NVME_NIDT_NGUID_LEN;
1367 case NVME_NIDT_UUID:
1368 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1369 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1370 warn_str, cur->nidl);
1371 return -1;
1372 }
1373 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1374 return NVME_NIDT_UUID_LEN;
1375 uuid_copy(dst: &ids->uuid, src: data + sizeof(*cur));
1376 return NVME_NIDT_UUID_LEN;
1377 case NVME_NIDT_CSI:
1378 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1379 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1380 warn_str, cur->nidl);
1381 return -1;
1382 }
1383 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1384 *csi_seen = true;
1385 return NVME_NIDT_CSI_LEN;
1386 default:
1387 /* Skip unknown types */
1388 return cur->nidl;
1389 }
1390}
1391
1392static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1393 struct nvme_ns_info *info)
1394{
1395 struct nvme_command c = { };
1396 bool csi_seen = false;
1397 int status, pos, len;
1398 void *data;
1399
1400 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1401 return 0;
1402 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1403 return 0;
1404
1405 c.identify.opcode = nvme_admin_identify;
1406 c.identify.nsid = cpu_to_le32(info->nsid);
1407 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1408
1409 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1410 if (!data)
1411 return -ENOMEM;
1412
1413 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1414 NVME_IDENTIFY_DATA_SIZE);
1415 if (status) {
1416 dev_warn(ctrl->device,
1417 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1418 info->nsid, status);
1419 goto free_data;
1420 }
1421
1422 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1423 struct nvme_ns_id_desc *cur = data + pos;
1424
1425 if (cur->nidl == 0)
1426 break;
1427
1428 len = nvme_process_ns_desc(ctrl, ids: &info->ids, cur, csi_seen: &csi_seen);
1429 if (len < 0)
1430 break;
1431
1432 len += sizeof(*cur);
1433 }
1434
1435 if (nvme_multi_css(ctrl) && !csi_seen) {
1436 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1437 info->nsid);
1438 status = -EINVAL;
1439 }
1440
1441free_data:
1442 kfree(objp: data);
1443 return status;
1444}
1445
1446static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1447 struct nvme_id_ns **id)
1448{
1449 struct nvme_command c = { };
1450 int error;
1451
1452 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1453 c.identify.opcode = nvme_admin_identify;
1454 c.identify.nsid = cpu_to_le32(nsid);
1455 c.identify.cns = NVME_ID_CNS_NS;
1456
1457 *id = kmalloc(size: sizeof(**id), GFP_KERNEL);
1458 if (!*id)
1459 return -ENOMEM;
1460
1461 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1462 if (error) {
1463 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1464 kfree(objp: *id);
1465 }
1466 return error;
1467}
1468
1469static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1470 struct nvme_ns_info *info)
1471{
1472 struct nvme_ns_ids *ids = &info->ids;
1473 struct nvme_id_ns *id;
1474 int ret;
1475
1476 ret = nvme_identify_ns(ctrl, nsid: info->nsid, id: &id);
1477 if (ret)
1478 return ret;
1479
1480 if (id->ncap == 0) {
1481 /* namespace not allocated or attached */
1482 info->is_removed = true;
1483 return -ENODEV;
1484 }
1485
1486 info->anagrpid = id->anagrpid;
1487 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1488 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1489 info->is_ready = true;
1490 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1491 dev_info(ctrl->device,
1492 "Ignoring bogus Namespace Identifiers\n");
1493 } else {
1494 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1495 !memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64)))
1496 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1497 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1498 !memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid)))
1499 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1500 }
1501 kfree(objp: id);
1502 return 0;
1503}
1504
1505static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1506 struct nvme_ns_info *info)
1507{
1508 struct nvme_id_ns_cs_indep *id;
1509 struct nvme_command c = {
1510 .identify.opcode = nvme_admin_identify,
1511 .identify.nsid = cpu_to_le32(info->nsid),
1512 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1513 };
1514 int ret;
1515
1516 id = kmalloc(size: sizeof(*id), GFP_KERNEL);
1517 if (!id)
1518 return -ENOMEM;
1519
1520 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1521 if (!ret) {
1522 info->anagrpid = id->anagrpid;
1523 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1524 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1525 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1526 }
1527 kfree(objp: id);
1528 return ret;
1529}
1530
1531static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1532 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1533{
1534 union nvme_result res = { 0 };
1535 struct nvme_command c = { };
1536 int ret;
1537
1538 c.features.opcode = op;
1539 c.features.fid = cpu_to_le32(fid);
1540 c.features.dword11 = cpu_to_le32(dword11);
1541
1542 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1543 buffer, buflen, NVME_QID_ANY, 0, 0);
1544 if (ret >= 0 && result)
1545 *result = le32_to_cpu(res.u32);
1546 return ret;
1547}
1548
1549int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1550 unsigned int dword11, void *buffer, size_t buflen,
1551 u32 *result)
1552{
1553 return nvme_features(dev, op: nvme_admin_set_features, fid, dword11, buffer,
1554 buflen, result);
1555}
1556EXPORT_SYMBOL_GPL(nvme_set_features);
1557
1558int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1559 unsigned int dword11, void *buffer, size_t buflen,
1560 u32 *result)
1561{
1562 return nvme_features(dev, op: nvme_admin_get_features, fid, dword11, buffer,
1563 buflen, result);
1564}
1565EXPORT_SYMBOL_GPL(nvme_get_features);
1566
1567int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1568{
1569 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1570 u32 result;
1571 int status, nr_io_queues;
1572
1573 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1574 &result);
1575 if (status < 0)
1576 return status;
1577
1578 /*
1579 * Degraded controllers might return an error when setting the queue
1580 * count. We still want to be able to bring them online and offer
1581 * access to the admin queue, as that might be only way to fix them up.
1582 */
1583 if (status > 0) {
1584 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1585 *count = 0;
1586 } else {
1587 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1588 *count = min(*count, nr_io_queues);
1589 }
1590
1591 return 0;
1592}
1593EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1594
1595#define NVME_AEN_SUPPORTED \
1596 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1597 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1598
1599static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1600{
1601 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1602 int status;
1603
1604 if (!supported_aens)
1605 return;
1606
1607 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1608 NULL, 0, &result);
1609 if (status)
1610 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1611 supported_aens);
1612
1613 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
1614}
1615
1616static int nvme_ns_open(struct nvme_ns *ns)
1617{
1618
1619 /* should never be called due to GENHD_FL_HIDDEN */
1620 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1621 goto fail;
1622 if (!nvme_get_ns(ns))
1623 goto fail;
1624 if (!try_module_get(module: ns->ctrl->ops->module))
1625 goto fail_put_ns;
1626
1627 return 0;
1628
1629fail_put_ns:
1630 nvme_put_ns(ns);
1631fail:
1632 return -ENXIO;
1633}
1634
1635static void nvme_ns_release(struct nvme_ns *ns)
1636{
1637
1638 module_put(module: ns->ctrl->ops->module);
1639 nvme_put_ns(ns);
1640}
1641
1642static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1643{
1644 return nvme_ns_open(ns: disk->private_data);
1645}
1646
1647static void nvme_release(struct gendisk *disk)
1648{
1649 nvme_ns_release(ns: disk->private_data);
1650}
1651
1652int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1653{
1654 /* some standard values */
1655 geo->heads = 1 << 6;
1656 geo->sectors = 1 << 5;
1657 geo->cylinders = get_capacity(disk: bdev->bd_disk) >> 11;
1658 return 0;
1659}
1660
1661#ifdef CONFIG_BLK_DEV_INTEGRITY
1662static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1663 u32 max_integrity_segments)
1664{
1665 struct blk_integrity integrity = { };
1666
1667 switch (ns->pi_type) {
1668 case NVME_NS_DPS_PI_TYPE3:
1669 switch (ns->guard_type) {
1670 case NVME_NVM_NS_16B_GUARD:
1671 integrity.profile = &t10_pi_type3_crc;
1672 integrity.tag_size = sizeof(u16) + sizeof(u32);
1673 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1674 break;
1675 case NVME_NVM_NS_64B_GUARD:
1676 integrity.profile = &ext_pi_type3_crc64;
1677 integrity.tag_size = sizeof(u16) + 6;
1678 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1679 break;
1680 default:
1681 integrity.profile = NULL;
1682 break;
1683 }
1684 break;
1685 case NVME_NS_DPS_PI_TYPE1:
1686 case NVME_NS_DPS_PI_TYPE2:
1687 switch (ns->guard_type) {
1688 case NVME_NVM_NS_16B_GUARD:
1689 integrity.profile = &t10_pi_type1_crc;
1690 integrity.tag_size = sizeof(u16);
1691 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1692 break;
1693 case NVME_NVM_NS_64B_GUARD:
1694 integrity.profile = &ext_pi_type1_crc64;
1695 integrity.tag_size = sizeof(u16);
1696 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1697 break;
1698 default:
1699 integrity.profile = NULL;
1700 break;
1701 }
1702 break;
1703 default:
1704 integrity.profile = NULL;
1705 break;
1706 }
1707
1708 integrity.tuple_size = ns->ms;
1709 blk_integrity_register(disk, &integrity);
1710 blk_queue_max_integrity_segments(q: disk->queue, segs: max_integrity_segments);
1711}
1712#else
1713static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1714 u32 max_integrity_segments)
1715{
1716}
1717#endif /* CONFIG_BLK_DEV_INTEGRITY */
1718
1719static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1720{
1721 struct nvme_ctrl *ctrl = ns->ctrl;
1722 struct request_queue *queue = disk->queue;
1723 u32 size = queue_logical_block_size(q: queue);
1724
1725 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1726 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, lba: ctrl->dmrsl);
1727
1728 if (ctrl->max_discard_sectors == 0) {
1729 blk_queue_max_discard_sectors(q: queue, max_discard_sectors: 0);
1730 return;
1731 }
1732
1733 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1734 NVME_DSM_MAX_RANGES);
1735
1736 queue->limits.discard_granularity = size;
1737
1738 /* If discard is already enabled, don't reset queue limits */
1739 if (queue->limits.max_discard_sectors)
1740 return;
1741
1742 blk_queue_max_discard_sectors(q: queue, max_discard_sectors: ctrl->max_discard_sectors);
1743 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1744
1745 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1746 blk_queue_max_write_zeroes_sectors(q: queue, UINT_MAX);
1747}
1748
1749static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1750{
1751 return uuid_equal(u1: &a->uuid, u2: &b->uuid) &&
1752 memcmp(p: &a->nguid, q: &b->nguid, size: sizeof(a->nguid)) == 0 &&
1753 memcmp(p: &a->eui64, q: &b->eui64, size: sizeof(a->eui64)) == 0 &&
1754 a->csi == b->csi;
1755}
1756
1757static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1758{
1759 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1760 unsigned lbaf = nvme_lbaf_index(flbas: id->flbas);
1761 struct nvme_ctrl *ctrl = ns->ctrl;
1762 struct nvme_command c = { };
1763 struct nvme_id_ns_nvm *nvm;
1764 int ret = 0;
1765 u32 elbaf;
1766
1767 ns->pi_size = 0;
1768 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1769 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1770 ns->pi_size = sizeof(struct t10_pi_tuple);
1771 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1772 goto set_pi;
1773 }
1774
1775 nvm = kzalloc(size: sizeof(*nvm), GFP_KERNEL);
1776 if (!nvm)
1777 return -ENOMEM;
1778
1779 c.identify.opcode = nvme_admin_identify;
1780 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1781 c.identify.cns = NVME_ID_CNS_CS_NS;
1782 c.identify.csi = NVME_CSI_NVM;
1783
1784 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1785 if (ret)
1786 goto free_data;
1787
1788 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1789
1790 /* no support for storage tag formats right now */
1791 if (nvme_elbaf_sts(elbaf))
1792 goto free_data;
1793
1794 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1795 switch (ns->guard_type) {
1796 case NVME_NVM_NS_64B_GUARD:
1797 ns->pi_size = sizeof(struct crc64_pi_tuple);
1798 break;
1799 case NVME_NVM_NS_16B_GUARD:
1800 ns->pi_size = sizeof(struct t10_pi_tuple);
1801 break;
1802 default:
1803 break;
1804 }
1805
1806free_data:
1807 kfree(objp: nvm);
1808set_pi:
1809 if (ns->pi_size && (first || ns->ms == ns->pi_size))
1810 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1811 else
1812 ns->pi_type = 0;
1813
1814 return ret;
1815}
1816
1817static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1818{
1819 struct nvme_ctrl *ctrl = ns->ctrl;
1820
1821 if (nvme_init_ms(ns, id))
1822 return;
1823
1824 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1825 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1826 return;
1827
1828 if (ctrl->ops->flags & NVME_F_FABRICS) {
1829 /*
1830 * The NVMe over Fabrics specification only supports metadata as
1831 * part of the extended data LBA. We rely on HCA/HBA support to
1832 * remap the separate metadata buffer from the block layer.
1833 */
1834 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1835 return;
1836
1837 ns->features |= NVME_NS_EXT_LBAS;
1838
1839 /*
1840 * The current fabrics transport drivers support namespace
1841 * metadata formats only if nvme_ns_has_pi() returns true.
1842 * Suppress support for all other formats so the namespace will
1843 * have a 0 capacity and not be usable through the block stack.
1844 *
1845 * Note, this check will need to be modified if any drivers
1846 * gain the ability to use other metadata formats.
1847 */
1848 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1849 ns->features |= NVME_NS_METADATA_SUPPORTED;
1850 } else {
1851 /*
1852 * For PCIe controllers, we can't easily remap the separate
1853 * metadata buffer from the block layer and thus require a
1854 * separate metadata buffer for block layer metadata/PI support.
1855 * We allow extended LBAs for the passthrough interface, though.
1856 */
1857 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1858 ns->features |= NVME_NS_EXT_LBAS;
1859 else
1860 ns->features |= NVME_NS_METADATA_SUPPORTED;
1861 }
1862}
1863
1864static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1865 struct request_queue *q)
1866{
1867 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1868
1869 if (ctrl->max_hw_sectors) {
1870 u32 max_segments =
1871 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1872
1873 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1874 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1875 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1876 }
1877 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1878 blk_queue_dma_alignment(q, 3);
1879 blk_queue_write_cache(q, enabled: vwc, fua: vwc);
1880}
1881
1882static void nvme_update_disk_info(struct gendisk *disk,
1883 struct nvme_ns *ns, struct nvme_id_ns *id)
1884{
1885 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1886 u32 bs = 1U << ns->lba_shift;
1887 u32 atomic_bs, phys_bs, io_opt = 0;
1888
1889 /*
1890 * The block layer can't support LBA sizes larger than the page size
1891 * yet, so catch this early and don't allow block I/O.
1892 */
1893 if (ns->lba_shift > PAGE_SHIFT) {
1894 capacity = 0;
1895 bs = (1 << 9);
1896 }
1897
1898 blk_integrity_unregister(disk);
1899
1900 atomic_bs = phys_bs = bs;
1901 if (id->nabo == 0) {
1902 /*
1903 * Bit 1 indicates whether NAWUPF is defined for this namespace
1904 * and whether it should be used instead of AWUPF. If NAWUPF ==
1905 * 0 then AWUPF must be used instead.
1906 */
1907 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1908 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1909 else
1910 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1911 }
1912
1913 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1914 /* NPWG = Namespace Preferred Write Granularity */
1915 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1916 /* NOWS = Namespace Optimal Write Size */
1917 io_opt = bs * (1 + le16_to_cpu(id->nows));
1918 }
1919
1920 blk_queue_logical_block_size(disk->queue, bs);
1921 /*
1922 * Linux filesystems assume writing a single physical block is
1923 * an atomic operation. Hence limit the physical block size to the
1924 * value of the Atomic Write Unit Power Fail parameter.
1925 */
1926 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1927 blk_queue_io_min(q: disk->queue, min: phys_bs);
1928 blk_queue_io_opt(q: disk->queue, opt: io_opt);
1929
1930 /*
1931 * Register a metadata profile for PI, or the plain non-integrity NVMe
1932 * metadata masquerading as Type 0 if supported, otherwise reject block
1933 * I/O to namespaces with metadata except when the namespace supports
1934 * PI, as it can strip/insert in that case.
1935 */
1936 if (ns->ms) {
1937 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1938 (ns->features & NVME_NS_METADATA_SUPPORTED))
1939 nvme_init_integrity(disk, ns,
1940 max_integrity_segments: ns->ctrl->max_integrity_segments);
1941 else if (!nvme_ns_has_pi(ns))
1942 capacity = 0;
1943 }
1944
1945 set_capacity_and_notify(disk, size: capacity);
1946
1947 nvme_config_discard(disk, ns);
1948 blk_queue_max_write_zeroes_sectors(q: disk->queue,
1949 max_write_same_sectors: ns->ctrl->max_zeroes_sectors);
1950}
1951
1952static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1953{
1954 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1955}
1956
1957static inline bool nvme_first_scan(struct gendisk *disk)
1958{
1959 /* nvme_alloc_ns() scans the disk prior to adding it */
1960 return !disk_live(disk);
1961}
1962
1963static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1964{
1965 struct nvme_ctrl *ctrl = ns->ctrl;
1966 u32 iob;
1967
1968 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1969 is_power_of_2(n: ctrl->max_hw_sectors))
1970 iob = ctrl->max_hw_sectors;
1971 else
1972 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1973
1974 if (!iob)
1975 return;
1976
1977 if (!is_power_of_2(n: iob)) {
1978 if (nvme_first_scan(disk: ns->disk))
1979 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1980 ns->disk->disk_name, iob);
1981 return;
1982 }
1983
1984 if (blk_queue_is_zoned(q: ns->disk->queue)) {
1985 if (nvme_first_scan(disk: ns->disk))
1986 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1987 ns->disk->disk_name);
1988 return;
1989 }
1990
1991 blk_queue_chunk_sectors(ns->queue, iob);
1992}
1993
1994static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1995 struct nvme_ns_info *info)
1996{
1997 blk_mq_freeze_queue(q: ns->disk->queue);
1998 nvme_set_queue_limits(ctrl: ns->ctrl, q: ns->queue);
1999 set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info));
2000 blk_mq_unfreeze_queue(q: ns->disk->queue);
2001
2002 if (nvme_ns_head_multipath(head: ns->head)) {
2003 blk_mq_freeze_queue(q: ns->head->disk->queue);
2004 set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info));
2005 nvme_mpath_revalidate_paths(ns);
2006 blk_stack_limits(t: &ns->head->disk->queue->limits,
2007 b: &ns->queue->limits, offset: 0);
2008 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2009 blk_mq_unfreeze_queue(q: ns->head->disk->queue);
2010 }
2011
2012 /* Hide the block-interface for these devices */
2013 ns->disk->flags |= GENHD_FL_HIDDEN;
2014 set_bit(NVME_NS_READY, addr: &ns->flags);
2015
2016 return 0;
2017}
2018
2019static int nvme_update_ns_info_block(struct nvme_ns *ns,
2020 struct nvme_ns_info *info)
2021{
2022 struct nvme_id_ns *id;
2023 unsigned lbaf;
2024 int ret;
2025
2026 ret = nvme_identify_ns(ctrl: ns->ctrl, nsid: info->nsid, id: &id);
2027 if (ret)
2028 return ret;
2029
2030 blk_mq_freeze_queue(q: ns->disk->queue);
2031 lbaf = nvme_lbaf_index(flbas: id->flbas);
2032 ns->lba_shift = id->lbaf[lbaf].ds;
2033 nvme_set_queue_limits(ctrl: ns->ctrl, q: ns->queue);
2034
2035 nvme_configure_metadata(ns, id);
2036 nvme_set_chunk_sectors(ns, id);
2037 nvme_update_disk_info(disk: ns->disk, ns, id);
2038
2039 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2040 ret = nvme_update_zone_info(ns, lbaf);
2041 if (ret) {
2042 blk_mq_unfreeze_queue(q: ns->disk->queue);
2043 goto out;
2044 }
2045 }
2046
2047 /*
2048 * Only set the DEAC bit if the device guarantees that reads from
2049 * deallocated data return zeroes. While the DEAC bit does not
2050 * require that, it must be a no-op if reads from deallocated data
2051 * do not return zeroes.
2052 */
2053 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2054 ns->features |= NVME_NS_DEAC;
2055 set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info));
2056 set_bit(NVME_NS_READY, addr: &ns->flags);
2057 blk_mq_unfreeze_queue(q: ns->disk->queue);
2058
2059 if (blk_queue_is_zoned(q: ns->queue)) {
2060 ret = nvme_revalidate_zones(ns);
2061 if (ret && !nvme_first_scan(disk: ns->disk))
2062 goto out;
2063 }
2064
2065 if (nvme_ns_head_multipath(head: ns->head)) {
2066 blk_mq_freeze_queue(q: ns->head->disk->queue);
2067 nvme_update_disk_info(disk: ns->head->disk, ns, id);
2068 set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info));
2069 nvme_mpath_revalidate_paths(ns);
2070 blk_stack_limits(t: &ns->head->disk->queue->limits,
2071 b: &ns->queue->limits, offset: 0);
2072 disk_update_readahead(disk: ns->head->disk);
2073 blk_mq_unfreeze_queue(q: ns->head->disk->queue);
2074 }
2075
2076 ret = 0;
2077out:
2078 /*
2079 * If probing fails due an unsupported feature, hide the block device,
2080 * but still allow other access.
2081 */
2082 if (ret == -ENODEV) {
2083 ns->disk->flags |= GENHD_FL_HIDDEN;
2084 set_bit(NVME_NS_READY, addr: &ns->flags);
2085 ret = 0;
2086 }
2087 kfree(objp: id);
2088 return ret;
2089}
2090
2091static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2092{
2093 switch (info->ids.csi) {
2094 case NVME_CSI_ZNS:
2095 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2096 dev_info(ns->ctrl->device,
2097 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2098 info->nsid);
2099 return nvme_update_ns_info_generic(ns, info);
2100 }
2101 return nvme_update_ns_info_block(ns, info);
2102 case NVME_CSI_NVM:
2103 return nvme_update_ns_info_block(ns, info);
2104 default:
2105 dev_info(ns->ctrl->device,
2106 "block device for nsid %u not supported (csi %u)\n",
2107 info->nsid, info->ids.csi);
2108 return nvme_update_ns_info_generic(ns, info);
2109 }
2110}
2111
2112#ifdef CONFIG_BLK_SED_OPAL
2113static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2114 bool send)
2115{
2116 struct nvme_ctrl *ctrl = data;
2117 struct nvme_command cmd = { };
2118
2119 if (send)
2120 cmd.common.opcode = nvme_admin_security_send;
2121 else
2122 cmd.common.opcode = nvme_admin_security_recv;
2123 cmd.common.nsid = 0;
2124 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2125 cmd.common.cdw11 = cpu_to_le32(len);
2126
2127 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2128 NVME_QID_ANY, 1, 0);
2129}
2130
2131static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2132{
2133 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2134 if (!ctrl->opal_dev)
2135 ctrl->opal_dev = init_opal_dev(data: ctrl, send_recv: &nvme_sec_submit);
2136 else if (was_suspended)
2137 opal_unlock_from_suspend(dev: ctrl->opal_dev);
2138 } else {
2139 free_opal_dev(dev: ctrl->opal_dev);
2140 ctrl->opal_dev = NULL;
2141 }
2142}
2143#else
2144static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2145{
2146}
2147#endif /* CONFIG_BLK_SED_OPAL */
2148
2149#ifdef CONFIG_BLK_DEV_ZONED
2150static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2151 unsigned int nr_zones, report_zones_cb cb, void *data)
2152{
2153 return nvme_ns_report_zones(ns: disk->private_data, sector, nr_zones, cb,
2154 data);
2155}
2156#else
2157#define nvme_report_zones NULL
2158#endif /* CONFIG_BLK_DEV_ZONED */
2159
2160const struct block_device_operations nvme_bdev_ops = {
2161 .owner = THIS_MODULE,
2162 .ioctl = nvme_ioctl,
2163 .compat_ioctl = blkdev_compat_ptr_ioctl,
2164 .open = nvme_open,
2165 .release = nvme_release,
2166 .getgeo = nvme_getgeo,
2167 .report_zones = nvme_report_zones,
2168 .pr_ops = &nvme_pr_ops,
2169};
2170
2171static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2172 u32 timeout, const char *op)
2173{
2174 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2175 u32 csts;
2176 int ret;
2177
2178 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2179 if (csts == ~0)
2180 return -ENODEV;
2181 if ((csts & mask) == val)
2182 break;
2183
2184 usleep_range(min: 1000, max: 2000);
2185 if (fatal_signal_pending(current))
2186 return -EINTR;
2187 if (time_after(jiffies, timeout_jiffies)) {
2188 dev_err(ctrl->device,
2189 "Device not ready; aborting %s, CSTS=0x%x\n",
2190 op, csts);
2191 return -ENODEV;
2192 }
2193 }
2194
2195 return ret;
2196}
2197
2198int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2199{
2200 int ret;
2201
2202 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2203 if (shutdown)
2204 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2205 else
2206 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2207
2208 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2209 if (ret)
2210 return ret;
2211
2212 if (shutdown) {
2213 return nvme_wait_ready(ctrl, mask: NVME_CSTS_SHST_MASK,
2214 val: NVME_CSTS_SHST_CMPLT,
2215 timeout: ctrl->shutdown_timeout, op: "shutdown");
2216 }
2217 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2218 msleep(NVME_QUIRK_DELAY_AMOUNT);
2219 return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: 0,
2220 timeout: (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, op: "reset");
2221}
2222EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2223
2224int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2225{
2226 unsigned dev_page_min;
2227 u32 timeout;
2228 int ret;
2229
2230 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2231 if (ret) {
2232 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2233 return ret;
2234 }
2235 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2236
2237 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2238 dev_err(ctrl->device,
2239 "Minimum device page size %u too large for host (%u)\n",
2240 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2241 return -ENODEV;
2242 }
2243
2244 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2245 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2246 else
2247 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2248
2249 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2250 ctrl->ctrl_config |= NVME_CC_CRIME;
2251
2252 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2253 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2254 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2255 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2256 if (ret)
2257 return ret;
2258
2259 /* Flush write to device (required if transport is PCI) */
2260 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2261 if (ret)
2262 return ret;
2263
2264 /* CAP value may change after initial CC write */
2265 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2266 if (ret)
2267 return ret;
2268
2269 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2270 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2271 u32 crto, ready_timeout;
2272
2273 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2274 if (ret) {
2275 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2276 ret);
2277 return ret;
2278 }
2279
2280 /*
2281 * CRTO should always be greater or equal to CAP.TO, but some
2282 * devices are known to get this wrong. Use the larger of the
2283 * two values.
2284 */
2285 if (ctrl->ctrl_config & NVME_CC_CRIME)
2286 ready_timeout = NVME_CRTO_CRIMT(crto);
2287 else
2288 ready_timeout = NVME_CRTO_CRWMT(crto);
2289
2290 if (ready_timeout < timeout)
2291 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2292 crto, ctrl->cap);
2293 else
2294 timeout = ready_timeout;
2295 }
2296
2297 ctrl->ctrl_config |= NVME_CC_ENABLE;
2298 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2299 if (ret)
2300 return ret;
2301 return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: NVME_CSTS_RDY,
2302 timeout: (timeout + 1) / 2, op: "initialisation");
2303}
2304EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2305
2306static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2307{
2308 __le64 ts;
2309 int ret;
2310
2311 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2312 return 0;
2313
2314 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2315 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2316 NULL);
2317 if (ret)
2318 dev_warn_once(ctrl->device,
2319 "could not set timestamp (%d)\n", ret);
2320 return ret;
2321}
2322
2323static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2324{
2325 struct nvme_feat_host_behavior *host;
2326 u8 acre = 0, lbafee = 0;
2327 int ret;
2328
2329 /* Don't bother enabling the feature if retry delay is not reported */
2330 if (ctrl->crdt[0])
2331 acre = NVME_ENABLE_ACRE;
2332 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2333 lbafee = NVME_ENABLE_LBAFEE;
2334
2335 if (!acre && !lbafee)
2336 return 0;
2337
2338 host = kzalloc(size: sizeof(*host), GFP_KERNEL);
2339 if (!host)
2340 return 0;
2341
2342 host->acre = acre;
2343 host->lbafee = lbafee;
2344 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2345 host, sizeof(*host), NULL);
2346 kfree(objp: host);
2347 return ret;
2348}
2349
2350/*
2351 * The function checks whether the given total (exlat + enlat) latency of
2352 * a power state allows the latter to be used as an APST transition target.
2353 * It does so by comparing the latency to the primary and secondary latency
2354 * tolerances defined by module params. If there's a match, the corresponding
2355 * timeout value is returned and the matching tolerance index (1 or 2) is
2356 * reported.
2357 */
2358static bool nvme_apst_get_transition_time(u64 total_latency,
2359 u64 *transition_time, unsigned *last_index)
2360{
2361 if (total_latency <= apst_primary_latency_tol_us) {
2362 if (*last_index == 1)
2363 return false;
2364 *last_index = 1;
2365 *transition_time = apst_primary_timeout_ms;
2366 return true;
2367 }
2368 if (apst_secondary_timeout_ms &&
2369 total_latency <= apst_secondary_latency_tol_us) {
2370 if (*last_index <= 2)
2371 return false;
2372 *last_index = 2;
2373 *transition_time = apst_secondary_timeout_ms;
2374 return true;
2375 }
2376 return false;
2377}
2378
2379/*
2380 * APST (Autonomous Power State Transition) lets us program a table of power
2381 * state transitions that the controller will perform automatically.
2382 *
2383 * Depending on module params, one of the two supported techniques will be used:
2384 *
2385 * - If the parameters provide explicit timeouts and tolerances, they will be
2386 * used to build a table with up to 2 non-operational states to transition to.
2387 * The default parameter values were selected based on the values used by
2388 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2389 * regeneration of the APST table in the event of switching between external
2390 * and battery power, the timeouts and tolerances reflect a compromise
2391 * between values used by Microsoft for AC and battery scenarios.
2392 * - If not, we'll configure the table with a simple heuristic: we are willing
2393 * to spend at most 2% of the time transitioning between power states.
2394 * Therefore, when running in any given state, we will enter the next
2395 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2396 * microseconds, as long as that state's exit latency is under the requested
2397 * maximum latency.
2398 *
2399 * We will not autonomously enter any non-operational state for which the total
2400 * latency exceeds ps_max_latency_us.
2401 *
2402 * Users can set ps_max_latency_us to zero to turn off APST.
2403 */
2404static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2405{
2406 struct nvme_feat_auto_pst *table;
2407 unsigned apste = 0;
2408 u64 max_lat_us = 0;
2409 __le64 target = 0;
2410 int max_ps = -1;
2411 int state;
2412 int ret;
2413 unsigned last_lt_index = UINT_MAX;
2414
2415 /*
2416 * If APST isn't supported or if we haven't been initialized yet,
2417 * then don't do anything.
2418 */
2419 if (!ctrl->apsta)
2420 return 0;
2421
2422 if (ctrl->npss > 31) {
2423 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2424 return 0;
2425 }
2426
2427 table = kzalloc(size: sizeof(*table), GFP_KERNEL);
2428 if (!table)
2429 return 0;
2430
2431 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2432 /* Turn off APST. */
2433 dev_dbg(ctrl->device, "APST disabled\n");
2434 goto done;
2435 }
2436
2437 /*
2438 * Walk through all states from lowest- to highest-power.
2439 * According to the spec, lower-numbered states use more power. NPSS,
2440 * despite the name, is the index of the lowest-power state, not the
2441 * number of states.
2442 */
2443 for (state = (int)ctrl->npss; state >= 0; state--) {
2444 u64 total_latency_us, exit_latency_us, transition_ms;
2445
2446 if (target)
2447 table->entries[state] = target;
2448
2449 /*
2450 * Don't allow transitions to the deepest state if it's quirked
2451 * off.
2452 */
2453 if (state == ctrl->npss &&
2454 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2455 continue;
2456
2457 /*
2458 * Is this state a useful non-operational state for higher-power
2459 * states to autonomously transition to?
2460 */
2461 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2462 continue;
2463
2464 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2465 if (exit_latency_us > ctrl->ps_max_latency_us)
2466 continue;
2467
2468 total_latency_us = exit_latency_us +
2469 le32_to_cpu(ctrl->psd[state].entry_lat);
2470
2471 /*
2472 * This state is good. It can be used as the APST idle target
2473 * for higher power states.
2474 */
2475 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2476 if (!nvme_apst_get_transition_time(total_latency: total_latency_us,
2477 transition_time: &transition_ms, last_index: &last_lt_index))
2478 continue;
2479 } else {
2480 transition_ms = total_latency_us + 19;
2481 do_div(transition_ms, 20);
2482 if (transition_ms > (1 << 24) - 1)
2483 transition_ms = (1 << 24) - 1;
2484 }
2485
2486 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2487 if (max_ps == -1)
2488 max_ps = state;
2489 if (total_latency_us > max_lat_us)
2490 max_lat_us = total_latency_us;
2491 }
2492
2493 if (max_ps == -1)
2494 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2495 else
2496 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2497 max_ps, max_lat_us, (int)sizeof(*table), table);
2498 apste = 1;
2499
2500done:
2501 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2502 table, sizeof(*table), NULL);
2503 if (ret)
2504 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2505 kfree(objp: table);
2506 return ret;
2507}
2508
2509static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2510{
2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2512 u64 latency;
2513
2514 switch (val) {
2515 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2516 case PM_QOS_LATENCY_ANY:
2517 latency = U64_MAX;
2518 break;
2519
2520 default:
2521 latency = val;
2522 }
2523
2524 if (ctrl->ps_max_latency_us != latency) {
2525 ctrl->ps_max_latency_us = latency;
2526 if (ctrl->state == NVME_CTRL_LIVE)
2527 nvme_configure_apst(ctrl);
2528 }
2529}
2530
2531struct nvme_core_quirk_entry {
2532 /*
2533 * NVMe model and firmware strings are padded with spaces. For
2534 * simplicity, strings in the quirk table are padded with NULLs
2535 * instead.
2536 */
2537 u16 vid;
2538 const char *mn;
2539 const char *fr;
2540 unsigned long quirks;
2541};
2542
2543static const struct nvme_core_quirk_entry core_quirks[] = {
2544 {
2545 /*
2546 * This Toshiba device seems to die using any APST states. See:
2547 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2548 */
2549 .vid = 0x1179,
2550 .mn = "THNSF5256GPUK TOSHIBA",
2551 .quirks = NVME_QUIRK_NO_APST,
2552 },
2553 {
2554 /*
2555 * This LiteON CL1-3D*-Q11 firmware version has a race
2556 * condition associated with actions related to suspend to idle
2557 * LiteON has resolved the problem in future firmware
2558 */
2559 .vid = 0x14a4,
2560 .fr = "22301111",
2561 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2562 },
2563 {
2564 /*
2565 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2566 * aborts I/O during any load, but more easily reproducible
2567 * with discards (fstrim).
2568 *
2569 * The device is left in a state where it is also not possible
2570 * to use "nvme set-feature" to disable APST, but booting with
2571 * nvme_core.default_ps_max_latency=0 works.
2572 */
2573 .vid = 0x1e0f,
2574 .mn = "KCD6XVUL6T40",
2575 .quirks = NVME_QUIRK_NO_APST,
2576 },
2577 {
2578 /*
2579 * The external Samsung X5 SSD fails initialization without a
2580 * delay before checking if it is ready and has a whole set of
2581 * other problems. To make this even more interesting, it
2582 * shares the PCI ID with internal Samsung 970 Evo Plus that
2583 * does not need or want these quirks.
2584 */
2585 .vid = 0x144d,
2586 .mn = "Samsung Portable SSD X5",
2587 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2588 NVME_QUIRK_NO_DEEPEST_PS |
2589 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2590 }
2591};
2592
2593/* match is null-terminated but idstr is space-padded. */
2594static bool string_matches(const char *idstr, const char *match, size_t len)
2595{
2596 size_t matchlen;
2597
2598 if (!match)
2599 return true;
2600
2601 matchlen = strlen(match);
2602 WARN_ON_ONCE(matchlen > len);
2603
2604 if (memcmp(p: idstr, q: match, size: matchlen))
2605 return false;
2606
2607 for (; matchlen < len; matchlen++)
2608 if (idstr[matchlen] != ' ')
2609 return false;
2610
2611 return true;
2612}
2613
2614static bool quirk_matches(const struct nvme_id_ctrl *id,
2615 const struct nvme_core_quirk_entry *q)
2616{
2617 return q->vid == le16_to_cpu(id->vid) &&
2618 string_matches(idstr: id->mn, match: q->mn, len: sizeof(id->mn)) &&
2619 string_matches(idstr: id->fr, match: q->fr, len: sizeof(id->fr));
2620}
2621
2622static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2623 struct nvme_id_ctrl *id)
2624{
2625 size_t nqnlen;
2626 int off;
2627
2628 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2629 nqnlen = strnlen(p: id->subnqn, NVMF_NQN_SIZE);
2630 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2631 strscpy(p: subsys->subnqn, q: id->subnqn, NVMF_NQN_SIZE);
2632 return;
2633 }
2634
2635 if (ctrl->vs >= NVME_VS(1, 2, 1))
2636 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2637 }
2638
2639 /*
2640 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2641 * Base Specification 2.0. It is slightly different from the format
2642 * specified there due to historic reasons, and we can't change it now.
2643 */
2644 off = snprintf(buf: subsys->subnqn, NVMF_NQN_SIZE,
2645 fmt: "nqn.2014.08.org.nvmexpress:%04x%04x",
2646 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2647 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2648 off += sizeof(id->sn);
2649 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2650 off += sizeof(id->mn);
2651 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2652}
2653
2654static void nvme_release_subsystem(struct device *dev)
2655{
2656 struct nvme_subsystem *subsys =
2657 container_of(dev, struct nvme_subsystem, dev);
2658
2659 if (subsys->instance >= 0)
2660 ida_free(&nvme_instance_ida, id: subsys->instance);
2661 kfree(objp: subsys);
2662}
2663
2664static void nvme_destroy_subsystem(struct kref *ref)
2665{
2666 struct nvme_subsystem *subsys =
2667 container_of(ref, struct nvme_subsystem, ref);
2668
2669 mutex_lock(&nvme_subsystems_lock);
2670 list_del(entry: &subsys->entry);
2671 mutex_unlock(lock: &nvme_subsystems_lock);
2672
2673 ida_destroy(ida: &subsys->ns_ida);
2674 device_del(dev: &subsys->dev);
2675 put_device(dev: &subsys->dev);
2676}
2677
2678static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2679{
2680 kref_put(kref: &subsys->ref, release: nvme_destroy_subsystem);
2681}
2682
2683static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2684{
2685 struct nvme_subsystem *subsys;
2686
2687 lockdep_assert_held(&nvme_subsystems_lock);
2688
2689 /*
2690 * Fail matches for discovery subsystems. This results
2691 * in each discovery controller bound to a unique subsystem.
2692 * This avoids issues with validating controller values
2693 * that can only be true when there is a single unique subsystem.
2694 * There may be multiple and completely independent entities
2695 * that provide discovery controllers.
2696 */
2697 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2698 return NULL;
2699
2700 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2701 if (strcmp(subsys->subnqn, subsysnqn))
2702 continue;
2703 if (!kref_get_unless_zero(kref: &subsys->ref))
2704 continue;
2705 return subsys;
2706 }
2707
2708 return NULL;
2709}
2710
2711static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2712{
2713 return ctrl->opts && ctrl->opts->discovery_nqn;
2714}
2715
2716static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2717 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2718{
2719 struct nvme_ctrl *tmp;
2720
2721 lockdep_assert_held(&nvme_subsystems_lock);
2722
2723 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2724 if (nvme_state_terminal(ctrl: tmp))
2725 continue;
2726
2727 if (tmp->cntlid == ctrl->cntlid) {
2728 dev_err(ctrl->device,
2729 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2730 ctrl->cntlid, dev_name(tmp->device),
2731 subsys->subnqn);
2732 return false;
2733 }
2734
2735 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2736 nvme_discovery_ctrl(ctrl))
2737 continue;
2738
2739 dev_err(ctrl->device,
2740 "Subsystem does not support multiple controllers\n");
2741 return false;
2742 }
2743
2744 return true;
2745}
2746
2747static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2748{
2749 struct nvme_subsystem *subsys, *found;
2750 int ret;
2751
2752 subsys = kzalloc(size: sizeof(*subsys), GFP_KERNEL);
2753 if (!subsys)
2754 return -ENOMEM;
2755
2756 subsys->instance = -1;
2757 mutex_init(&subsys->lock);
2758 kref_init(kref: &subsys->ref);
2759 INIT_LIST_HEAD(list: &subsys->ctrls);
2760 INIT_LIST_HEAD(list: &subsys->nsheads);
2761 nvme_init_subnqn(subsys, ctrl, id);
2762 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2763 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2764 subsys->vendor_id = le16_to_cpu(id->vid);
2765 subsys->cmic = id->cmic;
2766
2767 /* Versions prior to 1.4 don't necessarily report a valid type */
2768 if (id->cntrltype == NVME_CTRL_DISC ||
2769 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2770 subsys->subtype = NVME_NQN_DISC;
2771 else
2772 subsys->subtype = NVME_NQN_NVME;
2773
2774 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2775 dev_err(ctrl->device,
2776 "Subsystem %s is not a discovery controller",
2777 subsys->subnqn);
2778 kfree(objp: subsys);
2779 return -EINVAL;
2780 }
2781 subsys->awupf = le16_to_cpu(id->awupf);
2782 nvme_mpath_default_iopolicy(subsys);
2783
2784 subsys->dev.class = nvme_subsys_class;
2785 subsys->dev.release = nvme_release_subsystem;
2786 subsys->dev.groups = nvme_subsys_attrs_groups;
2787 dev_set_name(dev: &subsys->dev, name: "nvme-subsys%d", ctrl->instance);
2788 device_initialize(dev: &subsys->dev);
2789
2790 mutex_lock(&nvme_subsystems_lock);
2791 found = __nvme_find_get_subsystem(subsysnqn: subsys->subnqn);
2792 if (found) {
2793 put_device(dev: &subsys->dev);
2794 subsys = found;
2795
2796 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2797 ret = -EINVAL;
2798 goto out_put_subsystem;
2799 }
2800 } else {
2801 ret = device_add(dev: &subsys->dev);
2802 if (ret) {
2803 dev_err(ctrl->device,
2804 "failed to register subsystem device.\n");
2805 put_device(dev: &subsys->dev);
2806 goto out_unlock;
2807 }
2808 ida_init(ida: &subsys->ns_ida);
2809 list_add_tail(new: &subsys->entry, head: &nvme_subsystems);
2810 }
2811
2812 ret = sysfs_create_link(kobj: &subsys->dev.kobj, target: &ctrl->device->kobj,
2813 name: dev_name(dev: ctrl->device));
2814 if (ret) {
2815 dev_err(ctrl->device,
2816 "failed to create sysfs link from subsystem.\n");
2817 goto out_put_subsystem;
2818 }
2819
2820 if (!found)
2821 subsys->instance = ctrl->instance;
2822 ctrl->subsys = subsys;
2823 list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls);
2824 mutex_unlock(lock: &nvme_subsystems_lock);
2825 return 0;
2826
2827out_put_subsystem:
2828 nvme_put_subsystem(subsys);
2829out_unlock:
2830 mutex_unlock(lock: &nvme_subsystems_lock);
2831 return ret;
2832}
2833
2834int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2835 void *log, size_t size, u64 offset)
2836{
2837 struct nvme_command c = { };
2838 u32 dwlen = nvme_bytes_to_numd(len: size);
2839
2840 c.get_log_page.opcode = nvme_admin_get_log_page;
2841 c.get_log_page.nsid = cpu_to_le32(nsid);
2842 c.get_log_page.lid = log_page;
2843 c.get_log_page.lsp = lsp;
2844 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2845 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2846 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2847 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2848 c.get_log_page.csi = csi;
2849
2850 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2851}
2852
2853static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2854 struct nvme_effects_log **log)
2855{
2856 struct nvme_effects_log *cel = xa_load(&ctrl->cels, index: csi);
2857 int ret;
2858
2859 if (cel)
2860 goto out;
2861
2862 cel = kzalloc(size: sizeof(*cel), GFP_KERNEL);
2863 if (!cel)
2864 return -ENOMEM;
2865
2866 ret = nvme_get_log(ctrl, nsid: 0x00, log_page: NVME_LOG_CMD_EFFECTS, lsp: 0, csi,
2867 log: cel, size: sizeof(*cel), offset: 0);
2868 if (ret) {
2869 kfree(objp: cel);
2870 return ret;
2871 }
2872
2873 xa_store(&ctrl->cels, index: csi, entry: cel, GFP_KERNEL);
2874out:
2875 *log = cel;
2876 return 0;
2877}
2878
2879static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2880{
2881 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2882
2883 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2884 return UINT_MAX;
2885 return val;
2886}
2887
2888static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2889{
2890 struct nvme_command c = { };
2891 struct nvme_id_ctrl_nvm *id;
2892 int ret;
2893
2894 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2895 ctrl->max_discard_sectors = UINT_MAX;
2896 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2897 } else {
2898 ctrl->max_discard_sectors = 0;
2899 ctrl->max_discard_segments = 0;
2900 }
2901
2902 /*
2903 * Even though NVMe spec explicitly states that MDTS is not applicable
2904 * to the write-zeroes, we are cautious and limit the size to the
2905 * controllers max_hw_sectors value, which is based on the MDTS field
2906 * and possibly other limiting factors.
2907 */
2908 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2909 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2910 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2911 else
2912 ctrl->max_zeroes_sectors = 0;
2913
2914 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2915 nvme_ctrl_limited_cns(ctrl) ||
2916 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2917 return 0;
2918
2919 id = kzalloc(size: sizeof(*id), GFP_KERNEL);
2920 if (!id)
2921 return -ENOMEM;
2922
2923 c.identify.opcode = nvme_admin_identify;
2924 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2925 c.identify.csi = NVME_CSI_NVM;
2926
2927 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2928 if (ret)
2929 goto free_data;
2930
2931 if (id->dmrl)
2932 ctrl->max_discard_segments = id->dmrl;
2933 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2934 if (id->wzsl)
2935 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, units: id->wzsl);
2936
2937free_data:
2938 if (ret > 0)
2939 set_bit(nr: NVME_CTRL_SKIP_ID_CNS_CS, addr: &ctrl->flags);
2940 kfree(objp: id);
2941 return ret;
2942}
2943
2944static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2945{
2946 struct nvme_effects_log *log = ctrl->effects;
2947
2948 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2949 NVME_CMD_EFFECTS_NCC |
2950 NVME_CMD_EFFECTS_CSE_MASK);
2951 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2952 NVME_CMD_EFFECTS_CSE_MASK);
2953
2954 /*
2955 * The spec says the result of a security receive command depends on
2956 * the previous security send command. As such, many vendors log this
2957 * command as one to submitted only when no other commands to the same
2958 * namespace are outstanding. The intention is to tell the host to
2959 * prevent mixing security send and receive.
2960 *
2961 * This driver can only enforce such exclusive access against IO
2962 * queues, though. We are not readily able to enforce such a rule for
2963 * two commands to the admin queue, which is the only queue that
2964 * matters for this command.
2965 *
2966 * Rather than blindly freezing the IO queues for this effect that
2967 * doesn't even apply to IO, mask it off.
2968 */
2969 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2970
2971 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2972 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2973 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2974}
2975
2976static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2977{
2978 int ret = 0;
2979
2980 if (ctrl->effects)
2981 return 0;
2982
2983 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2984 ret = nvme_get_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects);
2985 if (ret < 0)
2986 return ret;
2987 }
2988
2989 if (!ctrl->effects) {
2990 ctrl->effects = kzalloc(size: sizeof(*ctrl->effects), GFP_KERNEL);
2991 if (!ctrl->effects)
2992 return -ENOMEM;
2993 xa_store(&ctrl->cels, index: NVME_CSI_NVM, entry: ctrl->effects, GFP_KERNEL);
2994 }
2995
2996 nvme_init_known_nvm_effects(ctrl);
2997 return 0;
2998}
2999
3000static int nvme_init_identify(struct nvme_ctrl *ctrl)
3001{
3002 struct nvme_id_ctrl *id;
3003 u32 max_hw_sectors;
3004 bool prev_apst_enabled;
3005 int ret;
3006
3007 ret = nvme_identify_ctrl(dev: ctrl, id: &id);
3008 if (ret) {
3009 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3010 return -EIO;
3011 }
3012
3013 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3014 ctrl->cntlid = le16_to_cpu(id->cntlid);
3015
3016 if (!ctrl->identified) {
3017 unsigned int i;
3018
3019 /*
3020 * Check for quirks. Quirk can depend on firmware version,
3021 * so, in principle, the set of quirks present can change
3022 * across a reset. As a possible future enhancement, we
3023 * could re-scan for quirks every time we reinitialize
3024 * the device, but we'd have to make sure that the driver
3025 * behaves intelligently if the quirks change.
3026 */
3027 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3028 if (quirk_matches(id, q: &core_quirks[i]))
3029 ctrl->quirks |= core_quirks[i].quirks;
3030 }
3031
3032 ret = nvme_init_subsystem(ctrl, id);
3033 if (ret)
3034 goto out_free;
3035
3036 ret = nvme_init_effects(ctrl, id);
3037 if (ret)
3038 goto out_free;
3039 }
3040 memcpy(ctrl->subsys->firmware_rev, id->fr,
3041 sizeof(ctrl->subsys->firmware_rev));
3042
3043 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3044 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3045 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3046 }
3047
3048 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3049 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3050 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3051
3052 ctrl->oacs = le16_to_cpu(id->oacs);
3053 ctrl->oncs = le16_to_cpu(id->oncs);
3054 ctrl->mtfa = le16_to_cpu(id->mtfa);
3055 ctrl->oaes = le32_to_cpu(id->oaes);
3056 ctrl->wctemp = le16_to_cpu(id->wctemp);
3057 ctrl->cctemp = le16_to_cpu(id->cctemp);
3058
3059 atomic_set(v: &ctrl->abort_limit, i: id->acl + 1);
3060 ctrl->vwc = id->vwc;
3061 if (id->mdts)
3062 max_hw_sectors = nvme_mps_to_sectors(ctrl, units: id->mdts);
3063 else
3064 max_hw_sectors = UINT_MAX;
3065 ctrl->max_hw_sectors =
3066 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3067
3068 nvme_set_queue_limits(ctrl, q: ctrl->admin_q);
3069 ctrl->sgls = le32_to_cpu(id->sgls);
3070 ctrl->kas = le16_to_cpu(id->kas);
3071 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3072 ctrl->ctratt = le32_to_cpu(id->ctratt);
3073
3074 ctrl->cntrltype = id->cntrltype;
3075 ctrl->dctype = id->dctype;
3076
3077 if (id->rtd3e) {
3078 /* us -> s */
3079 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3080
3081 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3082 shutdown_timeout, 60);
3083
3084 if (ctrl->shutdown_timeout != shutdown_timeout)
3085 dev_info(ctrl->device,
3086 "Shutdown timeout set to %u seconds\n",
3087 ctrl->shutdown_timeout);
3088 } else
3089 ctrl->shutdown_timeout = shutdown_timeout;
3090
3091 ctrl->npss = id->npss;
3092 ctrl->apsta = id->apsta;
3093 prev_apst_enabled = ctrl->apst_enabled;
3094 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3095 if (force_apst && id->apsta) {
3096 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3097 ctrl->apst_enabled = true;
3098 } else {
3099 ctrl->apst_enabled = false;
3100 }
3101 } else {
3102 ctrl->apst_enabled = id->apsta;
3103 }
3104 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3105
3106 if (ctrl->ops->flags & NVME_F_FABRICS) {
3107 ctrl->icdoff = le16_to_cpu(id->icdoff);
3108 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3109 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3110 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3111
3112 /*
3113 * In fabrics we need to verify the cntlid matches the
3114 * admin connect
3115 */
3116 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3117 dev_err(ctrl->device,
3118 "Mismatching cntlid: Connect %u vs Identify "
3119 "%u, rejecting\n",
3120 ctrl->cntlid, le16_to_cpu(id->cntlid));
3121 ret = -EINVAL;
3122 goto out_free;
3123 }
3124
3125 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3126 dev_err(ctrl->device,
3127 "keep-alive support is mandatory for fabrics\n");
3128 ret = -EINVAL;
3129 goto out_free;
3130 }
3131 } else {
3132 ctrl->hmpre = le32_to_cpu(id->hmpre);
3133 ctrl->hmmin = le32_to_cpu(id->hmmin);
3134 ctrl->hmminds = le32_to_cpu(id->hmminds);
3135 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3136 }
3137
3138 ret = nvme_mpath_init_identify(ctrl, id);
3139 if (ret < 0)
3140 goto out_free;
3141
3142 if (ctrl->apst_enabled && !prev_apst_enabled)
3143 dev_pm_qos_expose_latency_tolerance(dev: ctrl->device);
3144 else if (!ctrl->apst_enabled && prev_apst_enabled)
3145 dev_pm_qos_hide_latency_tolerance(dev: ctrl->device);
3146
3147out_free:
3148 kfree(objp: id);
3149 return ret;
3150}
3151
3152/*
3153 * Initialize the cached copies of the Identify data and various controller
3154 * register in our nvme_ctrl structure. This should be called as soon as
3155 * the admin queue is fully up and running.
3156 */
3157int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3158{
3159 int ret;
3160
3161 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3162 if (ret) {
3163 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3164 return ret;
3165 }
3166
3167 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3168
3169 if (ctrl->vs >= NVME_VS(1, 1, 0))
3170 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3171
3172 ret = nvme_init_identify(ctrl);
3173 if (ret)
3174 return ret;
3175
3176 ret = nvme_configure_apst(ctrl);
3177 if (ret < 0)
3178 return ret;
3179
3180 ret = nvme_configure_timestamp(ctrl);
3181 if (ret < 0)
3182 return ret;
3183
3184 ret = nvme_configure_host_options(ctrl);
3185 if (ret < 0)
3186 return ret;
3187
3188 nvme_configure_opal(ctrl, was_suspended);
3189
3190 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3191 /*
3192 * Do not return errors unless we are in a controller reset,
3193 * the controller works perfectly fine without hwmon.
3194 */
3195 ret = nvme_hwmon_init(ctrl);
3196 if (ret == -EINTR)
3197 return ret;
3198 }
3199
3200 clear_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, addr: &ctrl->flags);
3201 ctrl->identified = true;
3202
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3206
3207static int nvme_dev_open(struct inode *inode, struct file *file)
3208{
3209 struct nvme_ctrl *ctrl =
3210 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3211
3212 switch (ctrl->state) {
3213 case NVME_CTRL_LIVE:
3214 break;
3215 default:
3216 return -EWOULDBLOCK;
3217 }
3218
3219 nvme_get_ctrl(ctrl);
3220 if (!try_module_get(module: ctrl->ops->module)) {
3221 nvme_put_ctrl(ctrl);
3222 return -EINVAL;
3223 }
3224
3225 file->private_data = ctrl;
3226 return 0;
3227}
3228
3229static int nvme_dev_release(struct inode *inode, struct file *file)
3230{
3231 struct nvme_ctrl *ctrl =
3232 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3233
3234 module_put(module: ctrl->ops->module);
3235 nvme_put_ctrl(ctrl);
3236 return 0;
3237}
3238
3239static const struct file_operations nvme_dev_fops = {
3240 .owner = THIS_MODULE,
3241 .open = nvme_dev_open,
3242 .release = nvme_dev_release,
3243 .unlocked_ioctl = nvme_dev_ioctl,
3244 .compat_ioctl = compat_ptr_ioctl,
3245 .uring_cmd = nvme_dev_uring_cmd,
3246};
3247
3248static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3249 unsigned nsid)
3250{
3251 struct nvme_ns_head *h;
3252
3253 lockdep_assert_held(&ctrl->subsys->lock);
3254
3255 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3256 /*
3257 * Private namespaces can share NSIDs under some conditions.
3258 * In that case we can't use the same ns_head for namespaces
3259 * with the same NSID.
3260 */
3261 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, head: h))
3262 continue;
3263 if (!list_empty(head: &h->list) && nvme_tryget_ns_head(head: h))
3264 return h;
3265 }
3266
3267 return NULL;
3268}
3269
3270static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3271 struct nvme_ns_ids *ids)
3272{
3273 bool has_uuid = !uuid_is_null(uuid: &ids->uuid);
3274 bool has_nguid = memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid));
3275 bool has_eui64 = memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64));
3276 struct nvme_ns_head *h;
3277
3278 lockdep_assert_held(&subsys->lock);
3279
3280 list_for_each_entry(h, &subsys->nsheads, entry) {
3281 if (has_uuid && uuid_equal(u1: &ids->uuid, u2: &h->ids.uuid))
3282 return -EINVAL;
3283 if (has_nguid &&
3284 memcmp(p: &ids->nguid, q: &h->ids.nguid, size: sizeof(ids->nguid)) == 0)
3285 return -EINVAL;
3286 if (has_eui64 &&
3287 memcmp(p: &ids->eui64, q: &h->ids.eui64, size: sizeof(ids->eui64)) == 0)
3288 return -EINVAL;
3289 }
3290
3291 return 0;
3292}
3293
3294static void nvme_cdev_rel(struct device *dev)
3295{
3296 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3297}
3298
3299void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3300{
3301 cdev_device_del(cdev, dev: cdev_device);
3302 put_device(dev: cdev_device);
3303}
3304
3305int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3306 const struct file_operations *fops, struct module *owner)
3307{
3308 int minor, ret;
3309
3310 minor = ida_alloc(ida: &nvme_ns_chr_minor_ida, GFP_KERNEL);
3311 if (minor < 0)
3312 return minor;
3313 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3314 cdev_device->class = nvme_ns_chr_class;
3315 cdev_device->release = nvme_cdev_rel;
3316 device_initialize(dev: cdev_device);
3317 cdev_init(cdev, fops);
3318 cdev->owner = owner;
3319 ret = cdev_device_add(cdev, dev: cdev_device);
3320 if (ret)
3321 put_device(dev: cdev_device);
3322
3323 return ret;
3324}
3325
3326static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3327{
3328 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3329}
3330
3331static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3332{
3333 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3334 return 0;
3335}
3336
3337static const struct file_operations nvme_ns_chr_fops = {
3338 .owner = THIS_MODULE,
3339 .open = nvme_ns_chr_open,
3340 .release = nvme_ns_chr_release,
3341 .unlocked_ioctl = nvme_ns_chr_ioctl,
3342 .compat_ioctl = compat_ptr_ioctl,
3343 .uring_cmd = nvme_ns_chr_uring_cmd,
3344 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3345};
3346
3347static int nvme_add_ns_cdev(struct nvme_ns *ns)
3348{
3349 int ret;
3350
3351 ns->cdev_device.parent = ns->ctrl->device;
3352 ret = dev_set_name(dev: &ns->cdev_device, name: "ng%dn%d",
3353 ns->ctrl->instance, ns->head->instance);
3354 if (ret)
3355 return ret;
3356
3357 return nvme_cdev_add(cdev: &ns->cdev, cdev_device: &ns->cdev_device, fops: &nvme_ns_chr_fops,
3358 owner: ns->ctrl->ops->module);
3359}
3360
3361static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3362 struct nvme_ns_info *info)
3363{
3364 struct nvme_ns_head *head;
3365 size_t size = sizeof(*head);
3366 int ret = -ENOMEM;
3367
3368#ifdef CONFIG_NVME_MULTIPATH
3369 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3370#endif
3371
3372 head = kzalloc(size, GFP_KERNEL);
3373 if (!head)
3374 goto out;
3375 ret = ida_alloc_min(ida: &ctrl->subsys->ns_ida, min: 1, GFP_KERNEL);
3376 if (ret < 0)
3377 goto out_free_head;
3378 head->instance = ret;
3379 INIT_LIST_HEAD(list: &head->list);
3380 ret = init_srcu_struct(&head->srcu);
3381 if (ret)
3382 goto out_ida_remove;
3383 head->subsys = ctrl->subsys;
3384 head->ns_id = info->nsid;
3385 head->ids = info->ids;
3386 head->shared = info->is_shared;
3387 kref_init(kref: &head->ref);
3388
3389 if (head->ids.csi) {
3390 ret = nvme_get_effects_log(ctrl, csi: head->ids.csi, log: &head->effects);
3391 if (ret)
3392 goto out_cleanup_srcu;
3393 } else
3394 head->effects = ctrl->effects;
3395
3396 ret = nvme_mpath_alloc_disk(ctrl, head);
3397 if (ret)
3398 goto out_cleanup_srcu;
3399
3400 list_add_tail(new: &head->entry, head: &ctrl->subsys->nsheads);
3401
3402 kref_get(kref: &ctrl->subsys->ref);
3403
3404 return head;
3405out_cleanup_srcu:
3406 cleanup_srcu_struct(ssp: &head->srcu);
3407out_ida_remove:
3408 ida_free(&ctrl->subsys->ns_ida, id: head->instance);
3409out_free_head:
3410 kfree(objp: head);
3411out:
3412 if (ret > 0)
3413 ret = blk_status_to_errno(status: nvme_error_status(status: ret));
3414 return ERR_PTR(error: ret);
3415}
3416
3417static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3418 struct nvme_ns_ids *ids)
3419{
3420 struct nvme_subsystem *s;
3421 int ret = 0;
3422
3423 /*
3424 * Note that this check is racy as we try to avoid holding the global
3425 * lock over the whole ns_head creation. But it is only intended as
3426 * a sanity check anyway.
3427 */
3428 mutex_lock(&nvme_subsystems_lock);
3429 list_for_each_entry(s, &nvme_subsystems, entry) {
3430 if (s == this)
3431 continue;
3432 mutex_lock(&s->lock);
3433 ret = nvme_subsys_check_duplicate_ids(subsys: s, ids);
3434 mutex_unlock(lock: &s->lock);
3435 if (ret)
3436 break;
3437 }
3438 mutex_unlock(lock: &nvme_subsystems_lock);
3439
3440 return ret;
3441}
3442
3443static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3444{
3445 struct nvme_ctrl *ctrl = ns->ctrl;
3446 struct nvme_ns_head *head = NULL;
3447 int ret;
3448
3449 ret = nvme_global_check_duplicate_ids(this: ctrl->subsys, ids: &info->ids);
3450 if (ret) {
3451 /*
3452 * We've found two different namespaces on two different
3453 * subsystems that report the same ID. This is pretty nasty
3454 * for anything that actually requires unique device
3455 * identification. In the kernel we need this for multipathing,
3456 * and in user space the /dev/disk/by-id/ links rely on it.
3457 *
3458 * If the device also claims to be multi-path capable back off
3459 * here now and refuse the probe the second device as this is a
3460 * recipe for data corruption. If not this is probably a
3461 * cheap consumer device if on the PCIe bus, so let the user
3462 * proceed and use the shiny toy, but warn that with changing
3463 * probing order (which due to our async probing could just be
3464 * device taking longer to startup) the other device could show
3465 * up at any time.
3466 */
3467 nvme_print_device_info(ctrl);
3468 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3469 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3470 info->is_shared)) {
3471 dev_err(ctrl->device,
3472 "ignoring nsid %d because of duplicate IDs\n",
3473 info->nsid);
3474 return ret;
3475 }
3476
3477 dev_err(ctrl->device,
3478 "clearing duplicate IDs for nsid %d\n", info->nsid);
3479 dev_err(ctrl->device,
3480 "use of /dev/disk/by-id/ may cause data corruption\n");
3481 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3482 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3483 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3484 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3485 }
3486
3487 mutex_lock(&ctrl->subsys->lock);
3488 head = nvme_find_ns_head(ctrl, nsid: info->nsid);
3489 if (!head) {
3490 ret = nvme_subsys_check_duplicate_ids(subsys: ctrl->subsys, ids: &info->ids);
3491 if (ret) {
3492 dev_err(ctrl->device,
3493 "duplicate IDs in subsystem for nsid %d\n",
3494 info->nsid);
3495 goto out_unlock;
3496 }
3497 head = nvme_alloc_ns_head(ctrl, info);
3498 if (IS_ERR(ptr: head)) {
3499 ret = PTR_ERR(ptr: head);
3500 goto out_unlock;
3501 }
3502 } else {
3503 ret = -EINVAL;
3504 if (!info->is_shared || !head->shared) {
3505 dev_err(ctrl->device,
3506 "Duplicate unshared namespace %d\n",
3507 info->nsid);
3508 goto out_put_ns_head;
3509 }
3510 if (!nvme_ns_ids_equal(a: &head->ids, b: &info->ids)) {
3511 dev_err(ctrl->device,
3512 "IDs don't match for shared namespace %d\n",
3513 info->nsid);
3514 goto out_put_ns_head;
3515 }
3516
3517 if (!multipath) {
3518 dev_warn(ctrl->device,
3519 "Found shared namespace %d, but multipathing not supported.\n",
3520 info->nsid);
3521 dev_warn_once(ctrl->device,
3522 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3523 }
3524 }
3525
3526 list_add_tail_rcu(new: &ns->siblings, head: &head->list);
3527 ns->head = head;
3528 mutex_unlock(lock: &ctrl->subsys->lock);
3529 return 0;
3530
3531out_put_ns_head:
3532 nvme_put_ns_head(head);
3533out_unlock:
3534 mutex_unlock(lock: &ctrl->subsys->lock);
3535 return ret;
3536}
3537
3538struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3539{
3540 struct nvme_ns *ns, *ret = NULL;
3541
3542 down_read(sem: &ctrl->namespaces_rwsem);
3543 list_for_each_entry(ns, &ctrl->namespaces, list) {
3544 if (ns->head->ns_id == nsid) {
3545 if (!nvme_get_ns(ns))
3546 continue;
3547 ret = ns;
3548 break;
3549 }
3550 if (ns->head->ns_id > nsid)
3551 break;
3552 }
3553 up_read(sem: &ctrl->namespaces_rwsem);
3554 return ret;
3555}
3556EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3557
3558/*
3559 * Add the namespace to the controller list while keeping the list ordered.
3560 */
3561static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3562{
3563 struct nvme_ns *tmp;
3564
3565 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3566 if (tmp->head->ns_id < ns->head->ns_id) {
3567 list_add(new: &ns->list, head: &tmp->list);
3568 return;
3569 }
3570 }
3571 list_add(new: &ns->list, head: &ns->ctrl->namespaces);
3572}
3573
3574static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3575{
3576 struct nvme_ns *ns;
3577 struct gendisk *disk;
3578 int node = ctrl->numa_node;
3579
3580 ns = kzalloc_node(size: sizeof(*ns), GFP_KERNEL, node);
3581 if (!ns)
3582 return;
3583
3584 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3585 if (IS_ERR(ptr: disk))
3586 goto out_free_ns;
3587 disk->fops = &nvme_bdev_ops;
3588 disk->private_data = ns;
3589
3590 ns->disk = disk;
3591 ns->queue = disk->queue;
3592
3593 if (ctrl->opts && ctrl->opts->data_digest)
3594 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q: ns->queue);
3595
3596 blk_queue_flag_set(QUEUE_FLAG_NONROT, q: ns->queue);
3597 if (ctrl->ops->supports_pci_p2pdma &&
3598 ctrl->ops->supports_pci_p2pdma(ctrl))
3599 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, q: ns->queue);
3600
3601 ns->ctrl = ctrl;
3602 kref_init(kref: &ns->kref);
3603
3604 if (nvme_init_ns_head(ns, info))
3605 goto out_cleanup_disk;
3606
3607 /*
3608 * If multipathing is enabled, the device name for all disks and not
3609 * just those that represent shared namespaces needs to be based on the
3610 * subsystem instance. Using the controller instance for private
3611 * namespaces could lead to naming collisions between shared and private
3612 * namespaces if they don't use a common numbering scheme.
3613 *
3614 * If multipathing is not enabled, disk names must use the controller
3615 * instance as shared namespaces will show up as multiple block
3616 * devices.
3617 */
3618 if (nvme_ns_head_multipath(head: ns->head)) {
3619 sprintf(buf: disk->disk_name, fmt: "nvme%dc%dn%d", ctrl->subsys->instance,
3620 ctrl->instance, ns->head->instance);
3621 disk->flags |= GENHD_FL_HIDDEN;
3622 } else if (multipath) {
3623 sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->subsys->instance,
3624 ns->head->instance);
3625 } else {
3626 sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->instance,
3627 ns->head->instance);
3628 }
3629
3630 if (nvme_update_ns_info(ns, info))
3631 goto out_unlink_ns;
3632
3633 down_write(sem: &ctrl->namespaces_rwsem);
3634 nvme_ns_add_to_ctrl_list(ns);
3635 up_write(sem: &ctrl->namespaces_rwsem);
3636 nvme_get_ctrl(ctrl);
3637
3638 if (device_add_disk(parent: ctrl->device, disk: ns->disk, groups: nvme_ns_id_attr_groups))
3639 goto out_cleanup_ns_from_list;
3640
3641 if (!nvme_ns_head_multipath(head: ns->head))
3642 nvme_add_ns_cdev(ns);
3643
3644 nvme_mpath_add_disk(ns, anagrpid: info->anagrpid);
3645 nvme_fault_inject_init(fault_inj: &ns->fault_inject, dev_name: ns->disk->disk_name);
3646
3647 return;
3648
3649 out_cleanup_ns_from_list:
3650 nvme_put_ctrl(ctrl);
3651 down_write(sem: &ctrl->namespaces_rwsem);
3652 list_del_init(entry: &ns->list);
3653 up_write(sem: &ctrl->namespaces_rwsem);
3654 out_unlink_ns:
3655 mutex_lock(&ctrl->subsys->lock);
3656 list_del_rcu(entry: &ns->siblings);
3657 if (list_empty(head: &ns->head->list))
3658 list_del_init(entry: &ns->head->entry);
3659 mutex_unlock(lock: &ctrl->subsys->lock);
3660 nvme_put_ns_head(head: ns->head);
3661 out_cleanup_disk:
3662 put_disk(disk);
3663 out_free_ns:
3664 kfree(objp: ns);
3665}
3666
3667static void nvme_ns_remove(struct nvme_ns *ns)
3668{
3669 bool last_path = false;
3670
3671 if (test_and_set_bit(NVME_NS_REMOVING, addr: &ns->flags))
3672 return;
3673
3674 clear_bit(NVME_NS_READY, addr: &ns->flags);
3675 set_capacity(disk: ns->disk, size: 0);
3676 nvme_fault_inject_fini(fault_inject: &ns->fault_inject);
3677
3678 /*
3679 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3680 * this ns going back into current_path.
3681 */
3682 synchronize_srcu(ssp: &ns->head->srcu);
3683
3684 /* wait for concurrent submissions */
3685 if (nvme_mpath_clear_current_path(ns))
3686 synchronize_srcu(ssp: &ns->head->srcu);
3687
3688 mutex_lock(&ns->ctrl->subsys->lock);
3689 list_del_rcu(entry: &ns->siblings);
3690 if (list_empty(head: &ns->head->list)) {
3691 list_del_init(entry: &ns->head->entry);
3692 last_path = true;
3693 }
3694 mutex_unlock(lock: &ns->ctrl->subsys->lock);
3695
3696 /* guarantee not available in head->list */
3697 synchronize_srcu(ssp: &ns->head->srcu);
3698
3699 if (!nvme_ns_head_multipath(head: ns->head))
3700 nvme_cdev_del(cdev: &ns->cdev, cdev_device: &ns->cdev_device);
3701 del_gendisk(gp: ns->disk);
3702
3703 down_write(sem: &ns->ctrl->namespaces_rwsem);
3704 list_del_init(entry: &ns->list);
3705 up_write(sem: &ns->ctrl->namespaces_rwsem);
3706
3707 if (last_path)
3708 nvme_mpath_shutdown_disk(head: ns->head);
3709 nvme_put_ns(ns);
3710}
3711
3712static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3713{
3714 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3715
3716 if (ns) {
3717 nvme_ns_remove(ns);
3718 nvme_put_ns(ns);
3719 }
3720}
3721
3722static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3723{
3724 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3725
3726 if (!nvme_ns_ids_equal(a: &ns->head->ids, b: &info->ids)) {
3727 dev_err(ns->ctrl->device,
3728 "identifiers changed for nsid %d\n", ns->head->ns_id);
3729 goto out;
3730 }
3731
3732 ret = nvme_update_ns_info(ns, info);
3733out:
3734 /*
3735 * Only remove the namespace if we got a fatal error back from the
3736 * device, otherwise ignore the error and just move on.
3737 *
3738 * TODO: we should probably schedule a delayed retry here.
3739 */
3740 if (ret > 0 && (ret & NVME_SC_DNR))
3741 nvme_ns_remove(ns);
3742}
3743
3744static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3745{
3746 struct nvme_ns_info info = { .nsid = nsid };
3747 struct nvme_ns *ns;
3748 int ret;
3749
3750 if (nvme_identify_ns_descs(ctrl, info: &info))
3751 return;
3752
3753 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3754 dev_warn(ctrl->device,
3755 "command set not reported for nsid: %d\n", nsid);
3756 return;
3757 }
3758
3759 /*
3760 * If available try to use the Command Set Idependent Identify Namespace
3761 * data structure to find all the generic information that is needed to
3762 * set up a namespace. If not fall back to the legacy version.
3763 */
3764 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3765 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3766 ret = nvme_ns_info_from_id_cs_indep(ctrl, info: &info);
3767 else
3768 ret = nvme_ns_info_from_identify(ctrl, info: &info);
3769
3770 if (info.is_removed)
3771 nvme_ns_remove_by_nsid(ctrl, nsid);
3772
3773 /*
3774 * Ignore the namespace if it is not ready. We will get an AEN once it
3775 * becomes ready and restart the scan.
3776 */
3777 if (ret || !info.is_ready)
3778 return;
3779
3780 ns = nvme_find_get_ns(ctrl, nsid);
3781 if (ns) {
3782 nvme_validate_ns(ns, info: &info);
3783 nvme_put_ns(ns);
3784 } else {
3785 nvme_alloc_ns(ctrl, info: &info);
3786 }
3787}
3788
3789static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3790 unsigned nsid)
3791{
3792 struct nvme_ns *ns, *next;
3793 LIST_HEAD(rm_list);
3794
3795 down_write(sem: &ctrl->namespaces_rwsem);
3796 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3797 if (ns->head->ns_id > nsid)
3798 list_move_tail(list: &ns->list, head: &rm_list);
3799 }
3800 up_write(sem: &ctrl->namespaces_rwsem);
3801
3802 list_for_each_entry_safe(ns, next, &rm_list, list)
3803 nvme_ns_remove(ns);
3804
3805}
3806
3807static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3808{
3809 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3810 __le32 *ns_list;
3811 u32 prev = 0;
3812 int ret = 0, i;
3813
3814 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3815 if (!ns_list)
3816 return -ENOMEM;
3817
3818 for (;;) {
3819 struct nvme_command cmd = {
3820 .identify.opcode = nvme_admin_identify,
3821 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3822 .identify.nsid = cpu_to_le32(prev),
3823 };
3824
3825 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3826 NVME_IDENTIFY_DATA_SIZE);
3827 if (ret) {
3828 dev_warn(ctrl->device,
3829 "Identify NS List failed (status=0x%x)\n", ret);
3830 goto free;
3831 }
3832
3833 for (i = 0; i < nr_entries; i++) {
3834 u32 nsid = le32_to_cpu(ns_list[i]);
3835
3836 if (!nsid) /* end of the list? */
3837 goto out;
3838 nvme_scan_ns(ctrl, nsid);
3839 while (++prev < nsid)
3840 nvme_ns_remove_by_nsid(ctrl, nsid: prev);
3841 }
3842 }
3843 out:
3844 nvme_remove_invalid_namespaces(ctrl, nsid: prev);
3845 free:
3846 kfree(objp: ns_list);
3847 return ret;
3848}
3849
3850static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3851{
3852 struct nvme_id_ctrl *id;
3853 u32 nn, i;
3854
3855 if (nvme_identify_ctrl(dev: ctrl, id: &id))
3856 return;
3857 nn = le32_to_cpu(id->nn);
3858 kfree(objp: id);
3859
3860 for (i = 1; i <= nn; i++)
3861 nvme_scan_ns(ctrl, nsid: i);
3862
3863 nvme_remove_invalid_namespaces(ctrl, nsid: nn);
3864}
3865
3866static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3867{
3868 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3869 __le32 *log;
3870 int error;
3871
3872 log = kzalloc(size: log_size, GFP_KERNEL);
3873 if (!log)
3874 return;
3875
3876 /*
3877 * We need to read the log to clear the AEN, but we don't want to rely
3878 * on it for the changed namespace information as userspace could have
3879 * raced with us in reading the log page, which could cause us to miss
3880 * updates.
3881 */
3882 error = nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_CHANGED_NS, lsp: 0,
3883 csi: NVME_CSI_NVM, log, size: log_size, offset: 0);
3884 if (error)
3885 dev_warn(ctrl->device,
3886 "reading changed ns log failed: %d\n", error);
3887
3888 kfree(objp: log);
3889}
3890
3891static void nvme_scan_work(struct work_struct *work)
3892{
3893 struct nvme_ctrl *ctrl =
3894 container_of(work, struct nvme_ctrl, scan_work);
3895 int ret;
3896
3897 /* No tagset on a live ctrl means IO queues could not created */
3898 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3899 return;
3900
3901 /*
3902 * Identify controller limits can change at controller reset due to
3903 * new firmware download, even though it is not common we cannot ignore
3904 * such scenario. Controller's non-mdts limits are reported in the unit
3905 * of logical blocks that is dependent on the format of attached
3906 * namespace. Hence re-read the limits at the time of ns allocation.
3907 */
3908 ret = nvme_init_non_mdts_limits(ctrl);
3909 if (ret < 0) {
3910 dev_warn(ctrl->device,
3911 "reading non-mdts-limits failed: %d\n", ret);
3912 return;
3913 }
3914
3915 if (test_and_clear_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events)) {
3916 dev_info(ctrl->device, "rescanning namespaces.\n");
3917 nvme_clear_changed_ns_log(ctrl);
3918 }
3919
3920 mutex_lock(&ctrl->scan_lock);
3921 if (nvme_ctrl_limited_cns(ctrl)) {
3922 nvme_scan_ns_sequential(ctrl);
3923 } else {
3924 /*
3925 * Fall back to sequential scan if DNR is set to handle broken
3926 * devices which should support Identify NS List (as per the VS
3927 * they report) but don't actually support it.
3928 */
3929 ret = nvme_scan_ns_list(ctrl);
3930 if (ret > 0 && ret & NVME_SC_DNR)
3931 nvme_scan_ns_sequential(ctrl);
3932 }
3933 mutex_unlock(lock: &ctrl->scan_lock);
3934}
3935
3936/*
3937 * This function iterates the namespace list unlocked to allow recovery from
3938 * controller failure. It is up to the caller to ensure the namespace list is
3939 * not modified by scan work while this function is executing.
3940 */
3941void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3942{
3943 struct nvme_ns *ns, *next;
3944 LIST_HEAD(ns_list);
3945
3946 /*
3947 * make sure to requeue I/O to all namespaces as these
3948 * might result from the scan itself and must complete
3949 * for the scan_work to make progress
3950 */
3951 nvme_mpath_clear_ctrl_paths(ctrl);
3952
3953 /*
3954 * Unquiesce io queues so any pending IO won't hang, especially
3955 * those submitted from scan work
3956 */
3957 nvme_unquiesce_io_queues(ctrl);
3958
3959 /* prevent racing with ns scanning */
3960 flush_work(work: &ctrl->scan_work);
3961
3962 /*
3963 * The dead states indicates the controller was not gracefully
3964 * disconnected. In that case, we won't be able to flush any data while
3965 * removing the namespaces' disks; fail all the queues now to avoid
3966 * potentially having to clean up the failed sync later.
3967 */
3968 if (ctrl->state == NVME_CTRL_DEAD)
3969 nvme_mark_namespaces_dead(ctrl);
3970
3971 /* this is a no-op when called from the controller reset handler */
3972 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3973
3974 down_write(sem: &ctrl->namespaces_rwsem);
3975 list_splice_init(list: &ctrl->namespaces, head: &ns_list);
3976 up_write(sem: &ctrl->namespaces_rwsem);
3977
3978 list_for_each_entry_safe(ns, next, &ns_list, list)
3979 nvme_ns_remove(ns);
3980}
3981EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3982
3983static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3984{
3985 const struct nvme_ctrl *ctrl =
3986 container_of(dev, struct nvme_ctrl, ctrl_device);
3987 struct nvmf_ctrl_options *opts = ctrl->opts;
3988 int ret;
3989
3990 ret = add_uevent_var(env, format: "NVME_TRTYPE=%s", ctrl->ops->name);
3991 if (ret)
3992 return ret;
3993
3994 if (opts) {
3995 ret = add_uevent_var(env, format: "NVME_TRADDR=%s", opts->traddr);
3996 if (ret)
3997 return ret;
3998
3999 ret = add_uevent_var(env, format: "NVME_TRSVCID=%s",
4000 opts->trsvcid ?: "none");
4001 if (ret)
4002 return ret;
4003
4004 ret = add_uevent_var(env, format: "NVME_HOST_TRADDR=%s",
4005 opts->host_traddr ?: "none");
4006 if (ret)
4007 return ret;
4008
4009 ret = add_uevent_var(env, format: "NVME_HOST_IFACE=%s",
4010 opts->host_iface ?: "none");
4011 }
4012 return ret;
4013}
4014
4015static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4016{
4017 char *envp[2] = { envdata, NULL };
4018
4019 kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp);
4020}
4021
4022static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4023{
4024 char *envp[2] = { NULL, NULL };
4025 u32 aen_result = ctrl->aen_result;
4026
4027 ctrl->aen_result = 0;
4028 if (!aen_result)
4029 return;
4030
4031 envp[0] = kasprintf(GFP_KERNEL, fmt: "NVME_AEN=%#08x", aen_result);
4032 if (!envp[0])
4033 return;
4034 kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp);
4035 kfree(objp: envp[0]);
4036}
4037
4038static void nvme_async_event_work(struct work_struct *work)
4039{
4040 struct nvme_ctrl *ctrl =
4041 container_of(work, struct nvme_ctrl, async_event_work);
4042
4043 nvme_aen_uevent(ctrl);
4044
4045 /*
4046 * The transport drivers must guarantee AER submission here is safe by
4047 * flushing ctrl async_event_work after changing the controller state
4048 * from LIVE and before freeing the admin queue.
4049 */
4050 if (ctrl->state == NVME_CTRL_LIVE)
4051 ctrl->ops->submit_async_event(ctrl);
4052}
4053
4054static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4055{
4056
4057 u32 csts;
4058
4059 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4060 return false;
4061
4062 if (csts == ~0)
4063 return false;
4064
4065 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4066}
4067
4068static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4069{
4070 struct nvme_fw_slot_info_log *log;
4071
4072 log = kmalloc(size: sizeof(*log), GFP_KERNEL);
4073 if (!log)
4074 return;
4075
4076 if (nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_FW_SLOT, lsp: 0, csi: NVME_CSI_NVM,
4077 log, size: sizeof(*log), offset: 0))
4078 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4079 kfree(objp: log);
4080}
4081
4082static void nvme_fw_act_work(struct work_struct *work)
4083{
4084 struct nvme_ctrl *ctrl = container_of(work,
4085 struct nvme_ctrl, fw_act_work);
4086 unsigned long fw_act_timeout;
4087
4088 if (ctrl->mtfa)
4089 fw_act_timeout = jiffies +
4090 msecs_to_jiffies(m: ctrl->mtfa * 100);
4091 else
4092 fw_act_timeout = jiffies +
4093 msecs_to_jiffies(m: admin_timeout * 1000);
4094
4095 nvme_quiesce_io_queues(ctrl);
4096 while (nvme_ctrl_pp_status(ctrl)) {
4097 if (time_after(jiffies, fw_act_timeout)) {
4098 dev_warn(ctrl->device,
4099 "Fw activation timeout, reset controller\n");
4100 nvme_try_sched_reset(ctrl);
4101 return;
4102 }
4103 msleep(msecs: 100);
4104 }
4105
4106 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4107 return;
4108
4109 nvme_unquiesce_io_queues(ctrl);
4110 /* read FW slot information to clear the AER */
4111 nvme_get_fw_slot_info(ctrl);
4112
4113 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
4114}
4115
4116static u32 nvme_aer_type(u32 result)
4117{
4118 return result & 0x7;
4119}
4120
4121static u32 nvme_aer_subtype(u32 result)
4122{
4123 return (result & 0xff00) >> 8;
4124}
4125
4126static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4127{
4128 u32 aer_notice_type = nvme_aer_subtype(result);
4129 bool requeue = true;
4130
4131 switch (aer_notice_type) {
4132 case NVME_AER_NOTICE_NS_CHANGED:
4133 set_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events);
4134 nvme_queue_scan(ctrl);
4135 break;
4136 case NVME_AER_NOTICE_FW_ACT_STARTING:
4137 /*
4138 * We are (ab)using the RESETTING state to prevent subsequent
4139 * recovery actions from interfering with the controller's
4140 * firmware activation.
4141 */
4142 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4143 nvme_auth_stop(ctrl);
4144 requeue = false;
4145 queue_work(wq: nvme_wq, work: &ctrl->fw_act_work);
4146 }
4147 break;
4148#ifdef CONFIG_NVME_MULTIPATH
4149 case NVME_AER_NOTICE_ANA:
4150 if (!ctrl->ana_log_buf)
4151 break;
4152 queue_work(wq: nvme_wq, work: &ctrl->ana_work);
4153 break;
4154#endif
4155 case NVME_AER_NOTICE_DISC_CHANGED:
4156 ctrl->aen_result = result;
4157 break;
4158 default:
4159 dev_warn(ctrl->device, "async event result %08x\n", result);
4160 }
4161 return requeue;
4162}
4163
4164static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4165{
4166 dev_warn(ctrl->device, "resetting controller due to AER\n");
4167 nvme_reset_ctrl(ctrl);
4168}
4169
4170void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4171 volatile union nvme_result *res)
4172{
4173 u32 result = le32_to_cpu(res->u32);
4174 u32 aer_type = nvme_aer_type(result);
4175 u32 aer_subtype = nvme_aer_subtype(result);
4176 bool requeue = true;
4177
4178 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4179 return;
4180
4181 trace_nvme_async_event(ctrl, result);
4182 switch (aer_type) {
4183 case NVME_AER_NOTICE:
4184 requeue = nvme_handle_aen_notice(ctrl, result);
4185 break;
4186 case NVME_AER_ERROR:
4187 /*
4188 * For a persistent internal error, don't run async_event_work
4189 * to submit a new AER. The controller reset will do it.
4190 */
4191 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4192 nvme_handle_aer_persistent_error(ctrl);
4193 return;
4194 }
4195 fallthrough;
4196 case NVME_AER_SMART:
4197 case NVME_AER_CSS:
4198 case NVME_AER_VS:
4199 ctrl->aen_result = result;
4200 break;
4201 default:
4202 break;
4203 }
4204
4205 if (requeue)
4206 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
4207}
4208EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4209
4210int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4211 const struct blk_mq_ops *ops, unsigned int cmd_size)
4212{
4213 int ret;
4214
4215 memset(set, 0, sizeof(*set));
4216 set->ops = ops;
4217 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4218 if (ctrl->ops->flags & NVME_F_FABRICS)
4219 set->reserved_tags = NVMF_RESERVED_TAGS;
4220 set->numa_node = ctrl->numa_node;
4221 set->flags = BLK_MQ_F_NO_SCHED;
4222 if (ctrl->ops->flags & NVME_F_BLOCKING)
4223 set->flags |= BLK_MQ_F_BLOCKING;
4224 set->cmd_size = cmd_size;
4225 set->driver_data = ctrl;
4226 set->nr_hw_queues = 1;
4227 set->timeout = NVME_ADMIN_TIMEOUT;
4228 ret = blk_mq_alloc_tag_set(set);
4229 if (ret)
4230 return ret;
4231
4232 ctrl->admin_q = blk_mq_init_queue(set);
4233 if (IS_ERR(ptr: ctrl->admin_q)) {
4234 ret = PTR_ERR(ptr: ctrl->admin_q);
4235 goto out_free_tagset;
4236 }
4237
4238 if (ctrl->ops->flags & NVME_F_FABRICS) {
4239 ctrl->fabrics_q = blk_mq_init_queue(set);
4240 if (IS_ERR(ptr: ctrl->fabrics_q)) {
4241 ret = PTR_ERR(ptr: ctrl->fabrics_q);
4242 goto out_cleanup_admin_q;
4243 }
4244 }
4245
4246 ctrl->admin_tagset = set;
4247 return 0;
4248
4249out_cleanup_admin_q:
4250 blk_mq_destroy_queue(ctrl->admin_q);
4251 blk_put_queue(ctrl->admin_q);
4252out_free_tagset:
4253 blk_mq_free_tag_set(set);
4254 ctrl->admin_q = NULL;
4255 ctrl->fabrics_q = NULL;
4256 return ret;
4257}
4258EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4259
4260void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4261{
4262 blk_mq_destroy_queue(ctrl->admin_q);
4263 blk_put_queue(ctrl->admin_q);
4264 if (ctrl->ops->flags & NVME_F_FABRICS) {
4265 blk_mq_destroy_queue(ctrl->fabrics_q);
4266 blk_put_queue(ctrl->fabrics_q);
4267 }
4268 blk_mq_free_tag_set(set: ctrl->admin_tagset);
4269}
4270EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4271
4272int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4273 const struct blk_mq_ops *ops, unsigned int nr_maps,
4274 unsigned int cmd_size)
4275{
4276 int ret;
4277
4278 memset(set, 0, sizeof(*set));
4279 set->ops = ops;
4280 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4281 /*
4282 * Some Apple controllers requires tags to be unique across admin and
4283 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4284 */
4285 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4286 set->reserved_tags = NVME_AQ_DEPTH;
4287 else if (ctrl->ops->flags & NVME_F_FABRICS)
4288 set->reserved_tags = NVMF_RESERVED_TAGS;
4289 set->numa_node = ctrl->numa_node;
4290 set->flags = BLK_MQ_F_SHOULD_MERGE;
4291 if (ctrl->ops->flags & NVME_F_BLOCKING)
4292 set->flags |= BLK_MQ_F_BLOCKING;
4293 set->cmd_size = cmd_size,
4294 set->driver_data = ctrl;
4295 set->nr_hw_queues = ctrl->queue_count - 1;
4296 set->timeout = NVME_IO_TIMEOUT;
4297 set->nr_maps = nr_maps;
4298 ret = blk_mq_alloc_tag_set(set);
4299 if (ret)
4300 return ret;
4301
4302 if (ctrl->ops->flags & NVME_F_FABRICS) {
4303 ctrl->connect_q = blk_mq_init_queue(set);
4304 if (IS_ERR(ptr: ctrl->connect_q)) {
4305 ret = PTR_ERR(ptr: ctrl->connect_q);
4306 goto out_free_tag_set;
4307 }
4308 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4309 q: ctrl->connect_q);
4310 }
4311
4312 ctrl->tagset = set;
4313 return 0;
4314
4315out_free_tag_set:
4316 blk_mq_free_tag_set(set);
4317 ctrl->connect_q = NULL;
4318 return ret;
4319}
4320EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4321
4322void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4323{
4324 if (ctrl->ops->flags & NVME_F_FABRICS) {
4325 blk_mq_destroy_queue(ctrl->connect_q);
4326 blk_put_queue(ctrl->connect_q);
4327 }
4328 blk_mq_free_tag_set(set: ctrl->tagset);
4329}
4330EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4331
4332void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4333{
4334 nvme_mpath_stop(ctrl);
4335 nvme_auth_stop(ctrl);
4336 nvme_stop_keep_alive(ctrl);
4337 nvme_stop_failfast_work(ctrl);
4338 flush_work(work: &ctrl->async_event_work);
4339 cancel_work_sync(work: &ctrl->fw_act_work);
4340 if (ctrl->ops->stop_ctrl)
4341 ctrl->ops->stop_ctrl(ctrl);
4342}
4343EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4344
4345void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4346{
4347 nvme_start_keep_alive(ctrl);
4348
4349 nvme_enable_aen(ctrl);
4350
4351 /*
4352 * persistent discovery controllers need to send indication to userspace
4353 * to re-read the discovery log page to learn about possible changes
4354 * that were missed. We identify persistent discovery controllers by
4355 * checking that they started once before, hence are reconnecting back.
4356 */
4357 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4358 nvme_discovery_ctrl(ctrl))
4359 nvme_change_uevent(ctrl, envdata: "NVME_EVENT=rediscover");
4360
4361 if (ctrl->queue_count > 1) {
4362 nvme_queue_scan(ctrl);
4363 nvme_unquiesce_io_queues(ctrl);
4364 nvme_mpath_update(ctrl);
4365 }
4366
4367 nvme_change_uevent(ctrl, envdata: "NVME_EVENT=connected");
4368 set_bit(nr: NVME_CTRL_STARTED_ONCE, addr: &ctrl->flags);
4369}
4370EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4371
4372void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4373{
4374 nvme_hwmon_exit(ctrl);
4375 nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject);
4376 dev_pm_qos_hide_latency_tolerance(dev: ctrl->device);
4377 cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device);
4378 nvme_put_ctrl(ctrl);
4379}
4380EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4381
4382static void nvme_free_cels(struct nvme_ctrl *ctrl)
4383{
4384 struct nvme_effects_log *cel;
4385 unsigned long i;
4386
4387 xa_for_each(&ctrl->cels, i, cel) {
4388 xa_erase(&ctrl->cels, index: i);
4389 kfree(objp: cel);
4390 }
4391
4392 xa_destroy(&ctrl->cels);
4393}
4394
4395static void nvme_free_ctrl(struct device *dev)
4396{
4397 struct nvme_ctrl *ctrl =
4398 container_of(dev, struct nvme_ctrl, ctrl_device);
4399 struct nvme_subsystem *subsys = ctrl->subsys;
4400
4401 if (!subsys || ctrl->instance != subsys->instance)
4402 ida_free(&nvme_instance_ida, id: ctrl->instance);
4403 key_put(key: ctrl->tls_key);
4404 nvme_free_cels(ctrl);
4405 nvme_mpath_uninit(ctrl);
4406 nvme_auth_stop(ctrl);
4407 nvme_auth_free(ctrl);
4408 __free_page(ctrl->discard_page);
4409 free_opal_dev(dev: ctrl->opal_dev);
4410
4411 if (subsys) {
4412 mutex_lock(&nvme_subsystems_lock);
4413 list_del(entry: &ctrl->subsys_entry);
4414 sysfs_remove_link(kobj: &subsys->dev.kobj, name: dev_name(dev: ctrl->device));
4415 mutex_unlock(lock: &nvme_subsystems_lock);
4416 }
4417
4418 ctrl->ops->free_ctrl(ctrl);
4419
4420 if (subsys)
4421 nvme_put_subsystem(subsys);
4422}
4423
4424/*
4425 * Initialize a NVMe controller structures. This needs to be called during
4426 * earliest initialization so that we have the initialized structured around
4427 * during probing.
4428 */
4429int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4430 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4431{
4432 int ret;
4433
4434 ctrl->state = NVME_CTRL_NEW;
4435 clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
4436 spin_lock_init(&ctrl->lock);
4437 mutex_init(&ctrl->scan_lock);
4438 INIT_LIST_HEAD(list: &ctrl->namespaces);
4439 xa_init(xa: &ctrl->cels);
4440 init_rwsem(&ctrl->namespaces_rwsem);
4441 ctrl->dev = dev;
4442 ctrl->ops = ops;
4443 ctrl->quirks = quirks;
4444 ctrl->numa_node = NUMA_NO_NODE;
4445 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4446 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4447 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4448 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4449 init_waitqueue_head(&ctrl->state_wq);
4450
4451 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4452 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4453 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4454 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4455
4456 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4457 PAGE_SIZE);
4458 ctrl->discard_page = alloc_page(GFP_KERNEL);
4459 if (!ctrl->discard_page) {
4460 ret = -ENOMEM;
4461 goto out;
4462 }
4463
4464 ret = ida_alloc(ida: &nvme_instance_ida, GFP_KERNEL);
4465 if (ret < 0)
4466 goto out;
4467 ctrl->instance = ret;
4468
4469 device_initialize(dev: &ctrl->ctrl_device);
4470 ctrl->device = &ctrl->ctrl_device;
4471 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4472 ctrl->instance);
4473 ctrl->device->class = nvme_class;
4474 ctrl->device->parent = ctrl->dev;
4475 if (ops->dev_attr_groups)
4476 ctrl->device->groups = ops->dev_attr_groups;
4477 else
4478 ctrl->device->groups = nvme_dev_attr_groups;
4479 ctrl->device->release = nvme_free_ctrl;
4480 dev_set_drvdata(dev: ctrl->device, data: ctrl);
4481 ret = dev_set_name(dev: ctrl->device, name: "nvme%d", ctrl->instance);
4482 if (ret)
4483 goto out_release_instance;
4484
4485 nvme_get_ctrl(ctrl);
4486 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4487 ctrl->cdev.owner = ops->module;
4488 ret = cdev_device_add(cdev: &ctrl->cdev, dev: ctrl->device);
4489 if (ret)
4490 goto out_free_name;
4491
4492 /*
4493 * Initialize latency tolerance controls. The sysfs files won't
4494 * be visible to userspace unless the device actually supports APST.
4495 */
4496 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4497 dev_pm_qos_update_user_latency_tolerance(dev: ctrl->device,
4498 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4499
4500 nvme_fault_inject_init(fault_inj: &ctrl->fault_inject, dev_name: dev_name(dev: ctrl->device));
4501 nvme_mpath_init_ctrl(ctrl);
4502 ret = nvme_auth_init_ctrl(ctrl);
4503 if (ret)
4504 goto out_free_cdev;
4505
4506 return 0;
4507out_free_cdev:
4508 nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject);
4509 dev_pm_qos_hide_latency_tolerance(dev: ctrl->device);
4510 cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device);
4511out_free_name:
4512 nvme_put_ctrl(ctrl);
4513 kfree_const(x: ctrl->device->kobj.name);
4514out_release_instance:
4515 ida_free(&nvme_instance_ida, id: ctrl->instance);
4516out:
4517 if (ctrl->discard_page)
4518 __free_page(ctrl->discard_page);
4519 return ret;
4520}
4521EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4522
4523/* let I/O to all namespaces fail in preparation for surprise removal */
4524void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4525{
4526 struct nvme_ns *ns;
4527
4528 down_read(sem: &ctrl->namespaces_rwsem);
4529 list_for_each_entry(ns, &ctrl->namespaces, list)
4530 blk_mark_disk_dead(disk: ns->disk);
4531 up_read(sem: &ctrl->namespaces_rwsem);
4532}
4533EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4534
4535void nvme_unfreeze(struct nvme_ctrl *ctrl)
4536{
4537 struct nvme_ns *ns;
4538
4539 down_read(sem: &ctrl->namespaces_rwsem);
4540 list_for_each_entry(ns, &ctrl->namespaces, list)
4541 blk_mq_unfreeze_queue(q: ns->queue);
4542 up_read(sem: &ctrl->namespaces_rwsem);
4543}
4544EXPORT_SYMBOL_GPL(nvme_unfreeze);
4545
4546int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4547{
4548 struct nvme_ns *ns;
4549
4550 down_read(sem: &ctrl->namespaces_rwsem);
4551 list_for_each_entry(ns, &ctrl->namespaces, list) {
4552 timeout = blk_mq_freeze_queue_wait_timeout(q: ns->queue, timeout);
4553 if (timeout <= 0)
4554 break;
4555 }
4556 up_read(sem: &ctrl->namespaces_rwsem);
4557 return timeout;
4558}
4559EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4560
4561void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4562{
4563 struct nvme_ns *ns;
4564
4565 down_read(sem: &ctrl->namespaces_rwsem);
4566 list_for_each_entry(ns, &ctrl->namespaces, list)
4567 blk_mq_freeze_queue_wait(q: ns->queue);
4568 up_read(sem: &ctrl->namespaces_rwsem);
4569}
4570EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4571
4572void nvme_start_freeze(struct nvme_ctrl *ctrl)
4573{
4574 struct nvme_ns *ns;
4575
4576 down_read(sem: &ctrl->namespaces_rwsem);
4577 list_for_each_entry(ns, &ctrl->namespaces, list)
4578 blk_freeze_queue_start(q: ns->queue);
4579 up_read(sem: &ctrl->namespaces_rwsem);
4580}
4581EXPORT_SYMBOL_GPL(nvme_start_freeze);
4582
4583void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4584{
4585 if (!ctrl->tagset)
4586 return;
4587 if (!test_and_set_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags))
4588 blk_mq_quiesce_tagset(set: ctrl->tagset);
4589 else
4590 blk_mq_wait_quiesce_done(set: ctrl->tagset);
4591}
4592EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4593
4594void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4595{
4596 if (!ctrl->tagset)
4597 return;
4598 if (test_and_clear_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags))
4599 blk_mq_unquiesce_tagset(set: ctrl->tagset);
4600}
4601EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4602
4603void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4604{
4605 if (!test_and_set_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags))
4606 blk_mq_quiesce_queue(q: ctrl->admin_q);
4607 else
4608 blk_mq_wait_quiesce_done(set: ctrl->admin_q->tag_set);
4609}
4610EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4611
4612void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4613{
4614 if (test_and_clear_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags))
4615 blk_mq_unquiesce_queue(q: ctrl->admin_q);
4616}
4617EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4618
4619void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4620{
4621 struct nvme_ns *ns;
4622
4623 down_read(sem: &ctrl->namespaces_rwsem);
4624 list_for_each_entry(ns, &ctrl->namespaces, list)
4625 blk_sync_queue(q: ns->queue);
4626 up_read(sem: &ctrl->namespaces_rwsem);
4627}
4628EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4629
4630void nvme_sync_queues(struct nvme_ctrl *ctrl)
4631{
4632 nvme_sync_io_queues(ctrl);
4633 if (ctrl->admin_q)
4634 blk_sync_queue(q: ctrl->admin_q);
4635}
4636EXPORT_SYMBOL_GPL(nvme_sync_queues);
4637
4638struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4639{
4640 if (file->f_op != &nvme_dev_fops)
4641 return NULL;
4642 return file->private_data;
4643}
4644EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4645
4646/*
4647 * Check we didn't inadvertently grow the command structure sizes:
4648 */
4649static inline void _nvme_check_size(void)
4650{
4651 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4652 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4653 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4654 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4655 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4656 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4657 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4658 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4659 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4660 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4661 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4662 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4663 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4664 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4665 NVME_IDENTIFY_DATA_SIZE);
4666 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4667 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4668 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4669 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4670 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4671 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4672 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4673 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4674 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4675}
4676
4677
4678static int __init nvme_core_init(void)
4679{
4680 int result = -ENOMEM;
4681
4682 _nvme_check_size();
4683
4684 nvme_wq = alloc_workqueue(fmt: "nvme-wq",
4685 flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0);
4686 if (!nvme_wq)
4687 goto out;
4688
4689 nvme_reset_wq = alloc_workqueue(fmt: "nvme-reset-wq",
4690 flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0);
4691 if (!nvme_reset_wq)
4692 goto destroy_wq;
4693
4694 nvme_delete_wq = alloc_workqueue(fmt: "nvme-delete-wq",
4695 flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0);
4696 if (!nvme_delete_wq)
4697 goto destroy_reset_wq;
4698
4699 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4700 NVME_MINORS, "nvme");
4701 if (result < 0)
4702 goto destroy_delete_wq;
4703
4704 nvme_class = class_create(name: "nvme");
4705 if (IS_ERR(ptr: nvme_class)) {
4706 result = PTR_ERR(ptr: nvme_class);
4707 goto unregister_chrdev;
4708 }
4709 nvme_class->dev_uevent = nvme_class_uevent;
4710
4711 nvme_subsys_class = class_create(name: "nvme-subsystem");
4712 if (IS_ERR(ptr: nvme_subsys_class)) {
4713 result = PTR_ERR(ptr: nvme_subsys_class);
4714 goto destroy_class;
4715 }
4716
4717 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4718 "nvme-generic");
4719 if (result < 0)
4720 goto destroy_subsys_class;
4721
4722 nvme_ns_chr_class = class_create(name: "nvme-generic");
4723 if (IS_ERR(ptr: nvme_ns_chr_class)) {
4724 result = PTR_ERR(ptr: nvme_ns_chr_class);
4725 goto unregister_generic_ns;
4726 }
4727 result = nvme_keyring_init();
4728 if (result)
4729 goto destroy_ns_chr;
4730 result = nvme_init_auth();
4731 if (result)
4732 goto keyring_exit;
4733 return 0;
4734
4735keyring_exit:
4736 nvme_keyring_exit();
4737destroy_ns_chr:
4738 class_destroy(cls: nvme_ns_chr_class);
4739unregister_generic_ns:
4740 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4741destroy_subsys_class:
4742 class_destroy(cls: nvme_subsys_class);
4743destroy_class:
4744 class_destroy(cls: nvme_class);
4745unregister_chrdev:
4746 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4747destroy_delete_wq:
4748 destroy_workqueue(wq: nvme_delete_wq);
4749destroy_reset_wq:
4750 destroy_workqueue(wq: nvme_reset_wq);
4751destroy_wq:
4752 destroy_workqueue(wq: nvme_wq);
4753out:
4754 return result;
4755}
4756
4757static void __exit nvme_core_exit(void)
4758{
4759 nvme_exit_auth();
4760 nvme_keyring_exit();
4761 class_destroy(cls: nvme_ns_chr_class);
4762 class_destroy(cls: nvme_subsys_class);
4763 class_destroy(cls: nvme_class);
4764 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4765 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4766 destroy_workqueue(wq: nvme_delete_wq);
4767 destroy_workqueue(wq: nvme_reset_wq);
4768 destroy_workqueue(wq: nvme_wq);
4769 ida_destroy(ida: &nvme_ns_chr_minor_ida);
4770 ida_destroy(ida: &nvme_instance_ida);
4771}
4772
4773MODULE_LICENSE("GPL");
4774MODULE_VERSION("1.0");
4775module_init(nvme_core_init);
4776module_exit(nvme_core_exit);
4777

source code of linux/drivers/nvme/host/core.c