1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/acpi.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/blk-integrity.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kstrtox.h>
18#include <linux/memremap.h>
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/once.h>
23#include <linux/pci.h>
24#include <linux/suspend.h>
25#include <linux/t10-pi.h>
26#include <linux/types.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/io-64-nonatomic-hi-lo.h>
29#include <linux/sed-opal.h>
30#include <linux/pci-p2pdma.h>
31
32#include "trace.h"
33#include "nvme.h"
34
35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ 8192
45#define NVME_MAX_SEGS 128
46#define NVME_MAX_NR_ALLOCATIONS 5
47
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0444);
50
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0444);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66#define NVME_PCI_MIN_QUEUE_SIZE 2
67#define NVME_PCI_MAX_QUEUE_SIZE 4095
68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72};
73
74static unsigned int io_queue_depth = 1024;
75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79{
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(s: val, base: 10, res: &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87}
88
89static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92};
93
94static unsigned int write_queues;
95module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100static unsigned int poll_queues;
101module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104static bool noacpi;
105module_param(noacpi, bool, 0444);
106MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108struct nvme_dev;
109struct nvme_queue;
110
111static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112static void nvme_delete_io_queues(struct nvme_dev *dev);
113static void nvme_update_attrs(struct nvme_dev *dev);
114
115/*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 dma_addr_t host_mem_descs_dma;
157 struct nvme_host_mem_buf_desc *host_mem_descs;
158 void **host_mem_desc_bufs;
159 unsigned int nr_allocated_queues;
160 unsigned int nr_write_queues;
161 unsigned int nr_poll_queues;
162};
163
164static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165{
166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 NVME_PCI_MAX_QUEUE_SIZE);
168}
169
170static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171{
172 return qid * 2 * stride;
173}
174
175static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176{
177 return (qid * 2 + 1) * stride;
178}
179
180static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181{
182 return container_of(ctrl, struct nvme_dev, ctrl);
183}
184
185/*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208#define NVMEQ_ENABLED 0
209#define NVMEQ_SQ_CMB 1
210#define NVMEQ_DELETE_ERROR 2
211#define NVMEQ_POLLED 3
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
216 struct completion delete_done;
217};
218
219union nvme_descriptor {
220 struct nvme_sgl_desc *sg_list;
221 __le64 *prp_list;
222};
223
224/*
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
229 */
230struct nvme_iod {
231 struct nvme_request req;
232 struct nvme_command cmd;
233 bool aborted;
234 s8 nr_allocations; /* PRP list pool allocations. 0 means small
235 pool in use */
236 unsigned int dma_len; /* length of single DMA segment mapping */
237 dma_addr_t first_dma;
238 dma_addr_t meta_dma;
239 struct sg_table sgt;
240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241};
242
243static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244{
245 return dev->nr_allocated_queues * 8 * dev->db_stride;
246}
247
248static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249{
250 unsigned int mem_size = nvme_dbbuf_size(dev);
251
252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 return;
254
255 if (dev->dbbuf_dbs) {
256 /*
257 * Clear the dbbuf memory so the driver doesn't observe stale
258 * values from the previous instantiation.
259 */
260 memset(dev->dbbuf_dbs, 0, mem_size);
261 memset(dev->dbbuf_eis, 0, mem_size);
262 return;
263 }
264
265 dev->dbbuf_dbs = dma_alloc_coherent(dev: dev->dev, size: mem_size,
266 dma_handle: &dev->dbbuf_dbs_dma_addr,
267 GFP_KERNEL);
268 if (!dev->dbbuf_dbs)
269 goto fail;
270 dev->dbbuf_eis = dma_alloc_coherent(dev: dev->dev, size: mem_size,
271 dma_handle: &dev->dbbuf_eis_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_eis)
274 goto fail_free_dbbuf_dbs;
275 return;
276
277fail_free_dbbuf_dbs:
278 dma_free_coherent(dev: dev->dev, size: mem_size, cpu_addr: dev->dbbuf_dbs,
279 dma_handle: dev->dbbuf_dbs_dma_addr);
280 dev->dbbuf_dbs = NULL;
281fail:
282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283}
284
285static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286{
287 unsigned int mem_size = nvme_dbbuf_size(dev);
288
289 if (dev->dbbuf_dbs) {
290 dma_free_coherent(dev: dev->dev, size: mem_size,
291 cpu_addr: dev->dbbuf_dbs, dma_handle: dev->dbbuf_dbs_dma_addr);
292 dev->dbbuf_dbs = NULL;
293 }
294 if (dev->dbbuf_eis) {
295 dma_free_coherent(dev: dev->dev, size: mem_size,
296 cpu_addr: dev->dbbuf_eis, dma_handle: dev->dbbuf_eis_dma_addr);
297 dev->dbbuf_eis = NULL;
298 }
299}
300
301static void nvme_dbbuf_init(struct nvme_dev *dev,
302 struct nvme_queue *nvmeq, int qid)
303{
304 if (!dev->dbbuf_dbs || !qid)
305 return;
306
307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, stride: dev->db_stride)];
308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, stride: dev->db_stride)];
309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, stride: dev->db_stride)];
310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, stride: dev->db_stride)];
311}
312
313static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314{
315 if (!nvmeq->qid)
316 return;
317
318 nvmeq->dbbuf_sq_db = NULL;
319 nvmeq->dbbuf_cq_db = NULL;
320 nvmeq->dbbuf_sq_ei = NULL;
321 nvmeq->dbbuf_cq_ei = NULL;
322}
323
324static void nvme_dbbuf_set(struct nvme_dev *dev)
325{
326 struct nvme_command c = { };
327 unsigned int i;
328
329 if (!dev->dbbuf_dbs)
330 return;
331
332 c.dbbuf.opcode = nvme_admin_dbbuf;
333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336 if (nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0)) {
337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 /* Free memory and continue on */
339 nvme_dbbuf_dma_free(dev);
340
341 for (i = 1; i <= dev->online_queues; i++)
342 nvme_dbbuf_free(nvmeq: &dev->queues[i]);
343 }
344}
345
346static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347{
348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349}
350
351/* Update dbbuf and return true if an MMIO is required */
352static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 volatile __le32 *dbbuf_ei)
354{
355 if (dbbuf_db) {
356 u16 old_value, event_idx;
357
358 /*
359 * Ensure that the queue is written before updating
360 * the doorbell in memory
361 */
362 wmb();
363
364 old_value = le32_to_cpu(*dbbuf_db);
365 *dbbuf_db = cpu_to_le32(value);
366
367 /*
368 * Ensure that the doorbell is updated before reading the event
369 * index from memory. The controller needs to provide similar
370 * ordering to ensure the envent index is updated before reading
371 * the doorbell.
372 */
373 mb();
374
375 event_idx = le32_to_cpu(*dbbuf_ei);
376 if (!nvme_dbbuf_need_event(event_idx, new_idx: value, old: old_value))
377 return false;
378 }
379
380 return true;
381}
382
383/*
384 * Will slightly overestimate the number of pages needed. This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
388static int nvme_pci_npages_prp(void)
389{
390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393}
394
395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397{
398 struct nvme_dev *dev = to_nvme_dev(ctrl: data);
399 struct nvme_queue *nvmeq = &dev->queues[0];
400
401 WARN_ON(hctx_idx != 0);
402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404 hctx->driver_data = nvmeq;
405 return 0;
406}
407
408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 unsigned int hctx_idx)
410{
411 struct nvme_dev *dev = to_nvme_dev(ctrl: data);
412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417}
418
419static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 struct request *req, unsigned int hctx_idx,
421 unsigned int numa_node)
422{
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
424
425 nvme_req(req)->ctrl = set->driver_data;
426 nvme_req(req)->cmd = &iod->cmd;
427 return 0;
428}
429
430static int queue_irq_offset(struct nvme_dev *dev)
431{
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
434 return 1;
435
436 return 0;
437}
438
439static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440{
441 struct nvme_dev *dev = to_nvme_dev(ctrl: set->driver_data);
442 int i, qoff, offset;
443
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
447
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
451 continue;
452 }
453
454 /*
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
457 */
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(qmap: map, to_pci_dev(dev->dev), offset);
461 else
462 blk_mq_map_queues(qmap: map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
465 }
466}
467
468/*
469 * Write sq tail if we are asked to, or if the next command would wrap.
470 */
471static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472{
473 if (!write_sq) {
474 u16 next_tail = nvmeq->sq_tail + 1;
475
476 if (next_tail == nvmeq->q_depth)
477 next_tail = 0;
478 if (next_tail != nvmeq->last_sq_tail)
479 return;
480 }
481
482 if (nvme_dbbuf_update_and_check_event(value: nvmeq->sq_tail,
483 dbbuf_db: nvmeq->dbbuf_sq_db, dbbuf_ei: nvmeq->dbbuf_sq_ei))
484 writel(val: nvmeq->sq_tail, addr: nvmeq->q_db);
485 nvmeq->last_sq_tail = nvmeq->sq_tail;
486}
487
488static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 struct nvme_command *cmd)
490{
491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 absolute_pointer(cmd), sizeof(*cmd));
493 if (++nvmeq->sq_tail == nvmeq->q_depth)
494 nvmeq->sq_tail = 0;
495}
496
497static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498{
499 struct nvme_queue *nvmeq = hctx->driver_data;
500
501 spin_lock(lock: &nvmeq->sq_lock);
502 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 nvme_write_sq_db(nvmeq, write_sq: true);
504 spin_unlock(lock: &nvmeq->sq_lock);
505}
506
507static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 int nseg)
509{
510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 unsigned int avg_seg_size;
512
513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515 if (!nvme_ctrl_sgl_supported(ctrl: &dev->ctrl))
516 return false;
517 if (!nvmeq->qid)
518 return false;
519 if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 return false;
521 return true;
522}
523
524static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525{
526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
528 dma_addr_t dma_addr = iod->first_dma;
529 int i;
530
531 for (i = 0; i < iod->nr_allocations; i++) {
532 __le64 *prp_list = iod->list[i].prp_list;
533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535 dma_pool_free(pool: dev->prp_page_pool, vaddr: prp_list, addr: dma_addr);
536 dma_addr = next_dma_addr;
537 }
538}
539
540static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541{
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
543
544 if (iod->dma_len) {
545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 rq_dma_dir(req));
547 return;
548 }
549
550 WARN_ON_ONCE(!iod->sgt.nents);
551
552 dma_unmap_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req), attrs: 0);
553
554 if (iod->nr_allocations == 0)
555 dma_pool_free(pool: dev->prp_small_pool, vaddr: iod->list[0].sg_list,
556 addr: iod->first_dma);
557 else if (iod->nr_allocations == 1)
558 dma_pool_free(pool: dev->prp_page_pool, vaddr: iod->list[0].sg_list,
559 addr: iod->first_dma);
560 else
561 nvme_free_prps(dev, req);
562 mempool_free(element: iod->sgt.sgl, pool: dev->iod_mempool);
563}
564
565static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566{
567 int i;
568 struct scatterlist *sg;
569
570 for_each_sg(sgl, sg, nents, i) {
571 dma_addr_t phys = sg_phys(sg);
572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 "dma_address:%pad dma_length:%d\n",
574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 sg_dma_len(sg));
576 }
577}
578
579static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 struct request *req, struct nvme_rw_command *cmnd)
581{
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
583 struct dma_pool *pool;
584 int length = blk_rq_payload_bytes(rq: req);
585 struct scatterlist *sg = iod->sgt.sgl;
586 int dma_len = sg_dma_len(sg);
587 u64 dma_addr = sg_dma_address(sg);
588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 __le64 *prp_list;
590 dma_addr_t prp_dma;
591 int nprps, i;
592
593 length -= (NVME_CTRL_PAGE_SIZE - offset);
594 if (length <= 0) {
595 iod->first_dma = 0;
596 goto done;
597 }
598
599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 if (dma_len) {
601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 } else {
603 sg = sg_next(sg);
604 dma_addr = sg_dma_address(sg);
605 dma_len = sg_dma_len(sg);
606 }
607
608 if (length <= NVME_CTRL_PAGE_SIZE) {
609 iod->first_dma = dma_addr;
610 goto done;
611 }
612
613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 if (nprps <= (256 / 8)) {
615 pool = dev->prp_small_pool;
616 iod->nr_allocations = 0;
617 } else {
618 pool = dev->prp_page_pool;
619 iod->nr_allocations = 1;
620 }
621
622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &prp_dma);
623 if (!prp_list) {
624 iod->nr_allocations = -1;
625 return BLK_STS_RESOURCE;
626 }
627 iod->list[0].prp_list = prp_list;
628 iod->first_dma = prp_dma;
629 i = 0;
630 for (;;) {
631 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 __le64 *old_prp_list = prp_list;
633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &prp_dma);
634 if (!prp_list)
635 goto free_prps;
636 iod->list[iod->nr_allocations++].prp_list = prp_list;
637 prp_list[0] = old_prp_list[i - 1];
638 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 i = 1;
640 }
641 prp_list[i++] = cpu_to_le64(dma_addr);
642 dma_len -= NVME_CTRL_PAGE_SIZE;
643 dma_addr += NVME_CTRL_PAGE_SIZE;
644 length -= NVME_CTRL_PAGE_SIZE;
645 if (length <= 0)
646 break;
647 if (dma_len > 0)
648 continue;
649 if (unlikely(dma_len < 0))
650 goto bad_sgl;
651 sg = sg_next(sg);
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
654 }
655done:
656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 return BLK_STS_OK;
659free_prps:
660 nvme_free_prps(dev, req);
661 return BLK_STS_RESOURCE;
662bad_sgl:
663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 "Invalid SGL for payload:%d nents:%d\n",
665 blk_rq_payload_bytes(req), iod->sgt.nents);
666 return BLK_STS_IOERR;
667}
668
669static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 struct scatterlist *sg)
671{
672 sge->addr = cpu_to_le64(sg_dma_address(sg));
673 sge->length = cpu_to_le32(sg_dma_len(sg));
674 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675}
676
677static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 dma_addr_t dma_addr, int entries)
679{
680 sge->addr = cpu_to_le64(dma_addr);
681 sge->length = cpu_to_le32(entries * sizeof(*sge));
682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683}
684
685static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 struct request *req, struct nvme_rw_command *cmd)
687{
688 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
689 struct dma_pool *pool;
690 struct nvme_sgl_desc *sg_list;
691 struct scatterlist *sg = iod->sgt.sgl;
692 unsigned int entries = iod->sgt.nents;
693 dma_addr_t sgl_dma;
694 int i = 0;
695
696 /* setting the transfer type as SGL */
697 cmd->flags = NVME_CMD_SGL_METABUF;
698
699 if (entries == 1) {
700 nvme_pci_sgl_set_data(sge: &cmd->dptr.sgl, sg);
701 return BLK_STS_OK;
702 }
703
704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 pool = dev->prp_small_pool;
706 iod->nr_allocations = 0;
707 } else {
708 pool = dev->prp_page_pool;
709 iod->nr_allocations = 1;
710 }
711
712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &sgl_dma);
713 if (!sg_list) {
714 iod->nr_allocations = -1;
715 return BLK_STS_RESOURCE;
716 }
717
718 iod->list[0].sg_list = sg_list;
719 iod->first_dma = sgl_dma;
720
721 nvme_pci_sgl_set_seg(sge: &cmd->dptr.sgl, dma_addr: sgl_dma, entries);
722 do {
723 nvme_pci_sgl_set_data(sge: &sg_list[i++], sg);
724 sg = sg_next(sg);
725 } while (--entries > 0);
726
727 return BLK_STS_OK;
728}
729
730static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 struct request *req, struct nvme_rw_command *cmnd,
732 struct bio_vec *bv)
733{
734 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->first_dma))
740 return BLK_STS_RESOURCE;
741 iod->dma_len = bv->bv_len;
742
743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 if (bv->bv_len > first_prp_len)
745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 else
747 cmnd->dptr.prp2 = 0;
748 return BLK_STS_OK;
749}
750
751static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 struct request *req, struct nvme_rw_command *cmnd,
753 struct bio_vec *bv)
754{
755 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
756
757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->first_dma))
759 return BLK_STS_RESOURCE;
760 iod->dma_len = bv->bv_len;
761
762 cmnd->flags = NVME_CMD_SGL_METABUF;
763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 return BLK_STS_OK;
767}
768
769static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 struct nvme_command *cmnd)
771{
772 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
773 blk_status_t ret = BLK_STS_RESOURCE;
774 int rc;
775
776 if (blk_rq_nr_phys_segments(rq: req) == 1) {
777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 struct bio_vec bv = req_bvec(rq: req);
779
780 if (!is_pci_p2pdma_page(page: bv.bv_page)) {
781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 return nvme_setup_prp_simple(dev, req,
783 cmnd: &cmnd->rw, bv: &bv);
784
785 if (nvmeq->qid && sgl_threshold &&
786 nvme_ctrl_sgl_supported(ctrl: &dev->ctrl))
787 return nvme_setup_sgl_simple(dev, req,
788 cmnd: &cmnd->rw, bv: &bv);
789 }
790 }
791
792 iod->dma_len = 0;
793 iod->sgt.sgl = mempool_alloc(pool: dev->iod_mempool, GFP_ATOMIC);
794 if (!iod->sgt.sgl)
795 return BLK_STS_RESOURCE;
796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(rq: req));
797 iod->sgt.orig_nents = blk_rq_map_sg(q: req->q, rq: req, sglist: iod->sgt.sgl);
798 if (!iod->sgt.orig_nents)
799 goto out_free_sg;
800
801 rc = dma_map_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req),
802 DMA_ATTR_NO_WARN);
803 if (rc) {
804 if (rc == -EREMOTEIO)
805 ret = BLK_STS_TARGET;
806 goto out_free_sg;
807 }
808
809 if (nvme_pci_use_sgls(dev, req, nseg: iod->sgt.nents))
810 ret = nvme_pci_setup_sgls(dev, req, cmd: &cmnd->rw);
811 else
812 ret = nvme_pci_setup_prps(dev, req, cmnd: &cmnd->rw);
813 if (ret != BLK_STS_OK)
814 goto out_unmap_sg;
815 return BLK_STS_OK;
816
817out_unmap_sg:
818 dma_unmap_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req), attrs: 0);
819out_free_sg:
820 mempool_free(element: iod->sgt.sgl, pool: dev->iod_mempool);
821 return ret;
822}
823
824static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 struct nvme_command *cmnd)
826{
827 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
828
829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 rq_dma_dir(req), 0);
831 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->meta_dma))
832 return BLK_STS_IOERR;
833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 return BLK_STS_OK;
835}
836
837static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838{
839 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
840 blk_status_t ret;
841
842 iod->aborted = false;
843 iod->nr_allocations = -1;
844 iod->sgt.nents = 0;
845
846 ret = nvme_setup_cmd(ns: req->q->queuedata, req);
847 if (ret)
848 return ret;
849
850 if (blk_rq_nr_phys_segments(rq: req)) {
851 ret = nvme_map_data(dev, req, cmnd: &iod->cmd);
852 if (ret)
853 goto out_free_cmd;
854 }
855
856 if (blk_integrity_rq(rq: req)) {
857 ret = nvme_map_metadata(dev, req, cmnd: &iod->cmd);
858 if (ret)
859 goto out_unmap_data;
860 }
861
862 nvme_start_request(rq: req);
863 return BLK_STS_OK;
864out_unmap_data:
865 nvme_unmap_data(dev, req);
866out_free_cmd:
867 nvme_cleanup_cmd(req);
868 return ret;
869}
870
871/*
872 * NOTE: ns is NULL when called on the admin queue.
873 */
874static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 const struct blk_mq_queue_data *bd)
876{
877 struct nvme_queue *nvmeq = hctx->driver_data;
878 struct nvme_dev *dev = nvmeq->dev;
879 struct request *req = bd->rq;
880 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
881 blk_status_t ret;
882
883 /*
884 * We should not need to do this, but we're still using this to
885 * ensure we can drain requests on a dying queue.
886 */
887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 return BLK_STS_IOERR;
889
890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 return nvme_fail_nonready_command(ctrl: &dev->ctrl, req);
892
893 ret = nvme_prep_rq(dev, req);
894 if (unlikely(ret))
895 return ret;
896 spin_lock(lock: &nvmeq->sq_lock);
897 nvme_sq_copy_cmd(nvmeq, cmd: &iod->cmd);
898 nvme_write_sq_db(nvmeq, write_sq: bd->last);
899 spin_unlock(lock: &nvmeq->sq_lock);
900 return BLK_STS_OK;
901}
902
903static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904{
905 spin_lock(lock: &nvmeq->sq_lock);
906 while (!rq_list_empty(*rqlist)) {
907 struct request *req = rq_list_pop(rqlist);
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
909
910 nvme_sq_copy_cmd(nvmeq, cmd: &iod->cmd);
911 }
912 nvme_write_sq_db(nvmeq, write_sq: true);
913 spin_unlock(lock: &nvmeq->sq_lock);
914}
915
916static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917{
918 /*
919 * We should not need to do this, but we're still using this to
920 * ensure we can drain requests on a dying queue.
921 */
922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 return false;
924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 return false;
926
927 return nvme_prep_rq(dev: nvmeq->dev, req) == BLK_STS_OK;
928}
929
930static void nvme_queue_rqs(struct request **rqlist)
931{
932 struct request *req, *next, *prev = NULL;
933 struct request *requeue_list = NULL;
934
935 rq_list_for_each_safe(rqlist, req, next) {
936 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
937
938 if (!nvme_prep_rq_batch(nvmeq, req)) {
939 /* detach 'req' and add to remainder list */
940 rq_list_move(src: rqlist, dst: &requeue_list, rq: req, prev);
941
942 req = prev;
943 if (!req)
944 continue;
945 }
946
947 if (!next || req->mq_hctx != next->mq_hctx) {
948 /* detach rest of list, and submit */
949 req->rq_next = NULL;
950 nvme_submit_cmds(nvmeq, rqlist);
951 *rqlist = next;
952 prev = NULL;
953 } else
954 prev = req;
955 }
956
957 *rqlist = requeue_list;
958}
959
960static __always_inline void nvme_pci_unmap_rq(struct request *req)
961{
962 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
963 struct nvme_dev *dev = nvmeq->dev;
964
965 if (blk_integrity_rq(rq: req)) {
966 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
967
968 dma_unmap_page(dev->dev, iod->meta_dma,
969 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
970 }
971
972 if (blk_rq_nr_phys_segments(rq: req))
973 nvme_unmap_data(dev, req);
974}
975
976static void nvme_pci_complete_rq(struct request *req)
977{
978 nvme_pci_unmap_rq(req);
979 nvme_complete_rq(req);
980}
981
982static void nvme_pci_complete_batch(struct io_comp_batch *iob)
983{
984 nvme_complete_batch(iob, fn: nvme_pci_unmap_rq);
985}
986
987/* We read the CQE phase first to check if the rest of the entry is valid */
988static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
989{
990 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
991
992 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
993}
994
995static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
996{
997 u16 head = nvmeq->cq_head;
998
999 if (nvme_dbbuf_update_and_check_event(value: head, dbbuf_db: nvmeq->dbbuf_cq_db,
1000 dbbuf_ei: nvmeq->dbbuf_cq_ei))
1001 writel(val: head, addr: nvmeq->q_db + nvmeq->dev->db_stride);
1002}
1003
1004static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1005{
1006 if (!nvmeq->qid)
1007 return nvmeq->dev->admin_tagset.tags[0];
1008 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1009}
1010
1011static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1012 struct io_comp_batch *iob, u16 idx)
1013{
1014 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1015 __u16 command_id = READ_ONCE(cqe->command_id);
1016 struct request *req;
1017
1018 /*
1019 * AEN requests are special as they don't time out and can
1020 * survive any kind of queue freeze and often don't respond to
1021 * aborts. We don't even bother to allocate a struct request
1022 * for them but rather special case them here.
1023 */
1024 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1025 nvme_complete_async_event(ctrl: &nvmeq->dev->ctrl,
1026 status: cqe->status, res: &cqe->result);
1027 return;
1028 }
1029
1030 req = nvme_find_rq(tags: nvme_queue_tagset(nvmeq), command_id);
1031 if (unlikely(!req)) {
1032 dev_warn(nvmeq->dev->ctrl.device,
1033 "invalid id %d completed on queue %d\n",
1034 command_id, le16_to_cpu(cqe->sq_id));
1035 return;
1036 }
1037
1038 trace_nvme_sq(req, sq_head: cqe->sq_head, sq_tail: nvmeq->sq_tail);
1039 if (!nvme_try_complete_req(req, status: cqe->status, result: cqe->result) &&
1040 !blk_mq_add_to_batch(req, iob, ioerror: nvme_req(req)->status,
1041 complete: nvme_pci_complete_batch))
1042 nvme_pci_complete_rq(req);
1043}
1044
1045static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1046{
1047 u32 tmp = nvmeq->cq_head + 1;
1048
1049 if (tmp == nvmeq->q_depth) {
1050 nvmeq->cq_head = 0;
1051 nvmeq->cq_phase ^= 1;
1052 } else {
1053 nvmeq->cq_head = tmp;
1054 }
1055}
1056
1057static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1058 struct io_comp_batch *iob)
1059{
1060 int found = 0;
1061
1062 while (nvme_cqe_pending(nvmeq)) {
1063 found++;
1064 /*
1065 * load-load control dependency between phase and the rest of
1066 * the cqe requires a full read memory barrier
1067 */
1068 dma_rmb();
1069 nvme_handle_cqe(nvmeq, iob, idx: nvmeq->cq_head);
1070 nvme_update_cq_head(nvmeq);
1071 }
1072
1073 if (found)
1074 nvme_ring_cq_doorbell(nvmeq);
1075 return found;
1076}
1077
1078static irqreturn_t nvme_irq(int irq, void *data)
1079{
1080 struct nvme_queue *nvmeq = data;
1081 DEFINE_IO_COMP_BATCH(iob);
1082
1083 if (nvme_poll_cq(nvmeq, iob: &iob)) {
1084 if (!rq_list_empty(iob.req_list))
1085 nvme_pci_complete_batch(iob: &iob);
1086 return IRQ_HANDLED;
1087 }
1088 return IRQ_NONE;
1089}
1090
1091static irqreturn_t nvme_irq_check(int irq, void *data)
1092{
1093 struct nvme_queue *nvmeq = data;
1094
1095 if (nvme_cqe_pending(nvmeq))
1096 return IRQ_WAKE_THREAD;
1097 return IRQ_NONE;
1098}
1099
1100/*
1101 * Poll for completions for any interrupt driven queue
1102 * Can be called from any context.
1103 */
1104static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1105{
1106 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1107
1108 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1109
1110 disable_irq(irq: pci_irq_vector(dev: pdev, nr: nvmeq->cq_vector));
1111 nvme_poll_cq(nvmeq, NULL);
1112 enable_irq(irq: pci_irq_vector(dev: pdev, nr: nvmeq->cq_vector));
1113}
1114
1115static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1116{
1117 struct nvme_queue *nvmeq = hctx->driver_data;
1118 bool found;
1119
1120 if (!nvme_cqe_pending(nvmeq))
1121 return 0;
1122
1123 spin_lock(lock: &nvmeq->cq_poll_lock);
1124 found = nvme_poll_cq(nvmeq, iob);
1125 spin_unlock(lock: &nvmeq->cq_poll_lock);
1126
1127 return found;
1128}
1129
1130static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1131{
1132 struct nvme_dev *dev = to_nvme_dev(ctrl);
1133 struct nvme_queue *nvmeq = &dev->queues[0];
1134 struct nvme_command c = { };
1135
1136 c.common.opcode = nvme_admin_async_event;
1137 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1138
1139 spin_lock(lock: &nvmeq->sq_lock);
1140 nvme_sq_copy_cmd(nvmeq, cmd: &c);
1141 nvme_write_sq_db(nvmeq, write_sq: true);
1142 spin_unlock(lock: &nvmeq->sq_lock);
1143}
1144
1145static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1146{
1147 struct nvme_command c = { };
1148
1149 c.delete_queue.opcode = opcode;
1150 c.delete_queue.qid = cpu_to_le16(id);
1151
1152 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1153}
1154
1155static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156 struct nvme_queue *nvmeq, s16 vector)
1157{
1158 struct nvme_command c = { };
1159 int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162 flags |= NVME_CQ_IRQ_ENABLED;
1163
1164 /*
1165 * Note: we (ab)use the fact that the prp fields survive if no data
1166 * is attached to the request.
1167 */
1168 c.create_cq.opcode = nvme_admin_create_cq;
1169 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170 c.create_cq.cqid = cpu_to_le16(qid);
1171 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172 c.create_cq.cq_flags = cpu_to_le16(flags);
1173 c.create_cq.irq_vector = cpu_to_le16(vector);
1174
1175 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1176}
1177
1178static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179 struct nvme_queue *nvmeq)
1180{
1181 struct nvme_ctrl *ctrl = &dev->ctrl;
1182 struct nvme_command c = { };
1183 int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185 /*
1186 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187 * set. Since URGENT priority is zeroes, it makes all queues
1188 * URGENT.
1189 */
1190 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191 flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193 /*
1194 * Note: we (ab)use the fact that the prp fields survive if no data
1195 * is attached to the request.
1196 */
1197 c.create_sq.opcode = nvme_admin_create_sq;
1198 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199 c.create_sq.sqid = cpu_to_le16(qid);
1200 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201 c.create_sq.sq_flags = cpu_to_le16(flags);
1202 c.create_sq.cqid = cpu_to_le16(qid);
1203
1204 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1205}
1206
1207static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208{
1209 return adapter_delete_queue(dev, opcode: nvme_admin_delete_cq, id: cqid);
1210}
1211
1212static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213{
1214 return adapter_delete_queue(dev, opcode: nvme_admin_delete_sq, id: sqid);
1215}
1216
1217static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1218{
1219 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1220
1221 dev_warn(nvmeq->dev->ctrl.device,
1222 "Abort status: 0x%x", nvme_req(req)->status);
1223 atomic_inc(v: &nvmeq->dev->ctrl.abort_limit);
1224 blk_mq_free_request(rq: req);
1225 return RQ_END_IO_NONE;
1226}
1227
1228static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229{
1230 /* If true, indicates loss of adapter communication, possibly by a
1231 * NVMe Subsystem reset.
1232 */
1233 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1234
1235 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1236 switch (dev->ctrl.state) {
1237 case NVME_CTRL_RESETTING:
1238 case NVME_CTRL_CONNECTING:
1239 return false;
1240 default:
1241 break;
1242 }
1243
1244 /* We shouldn't reset unless the controller is on fatal error state
1245 * _or_ if we lost the communication with it.
1246 */
1247 if (!(csts & NVME_CSTS_CFS) && !nssro)
1248 return false;
1249
1250 return true;
1251}
1252
1253static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1254{
1255 /* Read a config register to help see what died. */
1256 u16 pci_status;
1257 int result;
1258
1259 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1260 val: &pci_status);
1261 if (result == PCIBIOS_SUCCESSFUL)
1262 dev_warn(dev->ctrl.device,
1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1264 csts, pci_status);
1265 else
1266 dev_warn(dev->ctrl.device,
1267 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1268 csts, result);
1269
1270 if (csts != ~0)
1271 return;
1272
1273 dev_warn(dev->ctrl.device,
1274 "Does your device have a faulty power saving mode enabled?\n");
1275 dev_warn(dev->ctrl.device,
1276 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1277}
1278
1279static enum blk_eh_timer_return nvme_timeout(struct request *req)
1280{
1281 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
1282 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1283 struct nvme_dev *dev = nvmeq->dev;
1284 struct request *abort_req;
1285 struct nvme_command cmd = { };
1286 u32 csts = readl(addr: dev->bar + NVME_REG_CSTS);
1287
1288 /* If PCI error recovery process is happening, we cannot reset or
1289 * the recovery mechanism will surely fail.
1290 */
1291 mb();
1292 if (pci_channel_offline(to_pci_dev(dev->dev)))
1293 return BLK_EH_RESET_TIMER;
1294
1295 /*
1296 * Reset immediately if the controller is failed
1297 */
1298 if (nvme_should_reset(dev, csts)) {
1299 nvme_warn_reset(dev, csts);
1300 goto disable;
1301 }
1302
1303 /*
1304 * Did we miss an interrupt?
1305 */
1306 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1307 nvme_poll(hctx: req->mq_hctx, NULL);
1308 else
1309 nvme_poll_irqdisable(nvmeq);
1310
1311 if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT) {
1312 dev_warn(dev->ctrl.device,
1313 "I/O %d QID %d timeout, completion polled\n",
1314 req->tag, nvmeq->qid);
1315 return BLK_EH_DONE;
1316 }
1317
1318 /*
1319 * Shutdown immediately if controller times out while starting. The
1320 * reset work will see the pci device disabled when it gets the forced
1321 * cancellation error. All outstanding requests are completed on
1322 * shutdown, so we return BLK_EH_DONE.
1323 */
1324 switch (dev->ctrl.state) {
1325 case NVME_CTRL_CONNECTING:
1326 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
1327 fallthrough;
1328 case NVME_CTRL_DELETING:
1329 dev_warn_ratelimited(dev->ctrl.device,
1330 "I/O %d QID %d timeout, disable controller\n",
1331 req->tag, nvmeq->qid);
1332 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1333 nvme_dev_disable(dev, shutdown: true);
1334 return BLK_EH_DONE;
1335 case NVME_CTRL_RESETTING:
1336 return BLK_EH_RESET_TIMER;
1337 default:
1338 break;
1339 }
1340
1341 /*
1342 * Shutdown the controller immediately and schedule a reset if the
1343 * command was already aborted once before and still hasn't been
1344 * returned to the driver, or if this is the admin queue.
1345 */
1346 if (!nvmeq->qid || iod->aborted) {
1347 dev_warn(dev->ctrl.device,
1348 "I/O %d QID %d timeout, reset controller\n",
1349 req->tag, nvmeq->qid);
1350 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1351 goto disable;
1352 }
1353
1354 if (atomic_dec_return(v: &dev->ctrl.abort_limit) < 0) {
1355 atomic_inc(v: &dev->ctrl.abort_limit);
1356 return BLK_EH_RESET_TIMER;
1357 }
1358 iod->aborted = true;
1359
1360 cmd.abort.opcode = nvme_admin_abort_cmd;
1361 cmd.abort.cid = nvme_cid(rq: req);
1362 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1363
1364 dev_warn(nvmeq->dev->ctrl.device,
1365 "I/O %d (%s) QID %d timeout, aborting\n",
1366 req->tag,
1367 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1368 nvmeq->qid);
1369
1370 abort_req = blk_mq_alloc_request(q: dev->ctrl.admin_q, opf: nvme_req_op(cmd: &cmd),
1371 flags: BLK_MQ_REQ_NOWAIT);
1372 if (IS_ERR(ptr: abort_req)) {
1373 atomic_inc(v: &dev->ctrl.abort_limit);
1374 return BLK_EH_RESET_TIMER;
1375 }
1376 nvme_init_request(req: abort_req, cmd: &cmd);
1377
1378 abort_req->end_io = abort_endio;
1379 abort_req->end_io_data = NULL;
1380 blk_execute_rq_nowait(rq: abort_req, at_head: false);
1381
1382 /*
1383 * The aborted req will be completed on receiving the abort req.
1384 * We enable the timer again. If hit twice, it'll cause a device reset,
1385 * as the device then is in a faulty state.
1386 */
1387 return BLK_EH_RESET_TIMER;
1388
1389disable:
1390 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_RESETTING))
1391 return BLK_EH_DONE;
1392
1393 nvme_dev_disable(dev, shutdown: false);
1394 if (nvme_try_sched_reset(ctrl: &dev->ctrl))
1395 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
1396 return BLK_EH_DONE;
1397}
1398
1399static void nvme_free_queue(struct nvme_queue *nvmeq)
1400{
1401 dma_free_coherent(dev: nvmeq->dev->dev, CQ_SIZE(nvmeq),
1402 cpu_addr: (void *)nvmeq->cqes, dma_handle: nvmeq->cq_dma_addr);
1403 if (!nvmeq->sq_cmds)
1404 return;
1405
1406 if (test_and_clear_bit(NVMEQ_SQ_CMB, addr: &nvmeq->flags)) {
1407 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1408 addr: nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1409 } else {
1410 dma_free_coherent(dev: nvmeq->dev->dev, SQ_SIZE(nvmeq),
1411 cpu_addr: nvmeq->sq_cmds, dma_handle: nvmeq->sq_dma_addr);
1412 }
1413}
1414
1415static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1416{
1417 int i;
1418
1419 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1420 dev->ctrl.queue_count--;
1421 nvme_free_queue(nvmeq: &dev->queues[i]);
1422 }
1423}
1424
1425static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1426{
1427 struct nvme_queue *nvmeq = &dev->queues[qid];
1428
1429 if (!test_and_clear_bit(NVMEQ_ENABLED, addr: &nvmeq->flags))
1430 return;
1431
1432 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1433 mb();
1434
1435 nvmeq->dev->online_queues--;
1436 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1437 nvme_quiesce_admin_queue(ctrl: &nvmeq->dev->ctrl);
1438 if (!test_and_clear_bit(NVMEQ_POLLED, addr: &nvmeq->flags))
1439 pci_free_irq(to_pci_dev(dev->dev), nr: nvmeq->cq_vector, dev_id: nvmeq);
1440}
1441
1442static void nvme_suspend_io_queues(struct nvme_dev *dev)
1443{
1444 int i;
1445
1446 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1447 nvme_suspend_queue(dev, qid: i);
1448}
1449
1450/*
1451 * Called only on a device that has been disabled and after all other threads
1452 * that can check this device's completion queues have synced, except
1453 * nvme_poll(). This is the last chance for the driver to see a natural
1454 * completion before nvme_cancel_request() terminates all incomplete requests.
1455 */
1456static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1457{
1458 int i;
1459
1460 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1461 spin_lock(lock: &dev->queues[i].cq_poll_lock);
1462 nvme_poll_cq(nvmeq: &dev->queues[i], NULL);
1463 spin_unlock(lock: &dev->queues[i].cq_poll_lock);
1464 }
1465}
1466
1467static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1468 int entry_size)
1469{
1470 int q_depth = dev->q_depth;
1471 unsigned q_size_aligned = roundup(q_depth * entry_size,
1472 NVME_CTRL_PAGE_SIZE);
1473
1474 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1475 u64 mem_per_q = div_u64(dividend: dev->cmb_size, divisor: nr_io_queues);
1476
1477 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1478 q_depth = div_u64(dividend: mem_per_q, divisor: entry_size);
1479
1480 /*
1481 * Ensure the reduced q_depth is above some threshold where it
1482 * would be better to map queues in system memory with the
1483 * original depth
1484 */
1485 if (q_depth < 64)
1486 return -ENOMEM;
1487 }
1488
1489 return q_depth;
1490}
1491
1492static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1493 int qid)
1494{
1495 struct pci_dev *pdev = to_pci_dev(dev->dev);
1496
1497 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1498 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1499 if (nvmeq->sq_cmds) {
1500 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1501 addr: nvmeq->sq_cmds);
1502 if (nvmeq->sq_dma_addr) {
1503 set_bit(NVMEQ_SQ_CMB, addr: &nvmeq->flags);
1504 return 0;
1505 }
1506
1507 pci_free_p2pmem(pdev, addr: nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1508 }
1509 }
1510
1511 nvmeq->sq_cmds = dma_alloc_coherent(dev: dev->dev, SQ_SIZE(nvmeq),
1512 dma_handle: &nvmeq->sq_dma_addr, GFP_KERNEL);
1513 if (!nvmeq->sq_cmds)
1514 return -ENOMEM;
1515 return 0;
1516}
1517
1518static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1519{
1520 struct nvme_queue *nvmeq = &dev->queues[qid];
1521
1522 if (dev->ctrl.queue_count > qid)
1523 return 0;
1524
1525 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1526 nvmeq->q_depth = depth;
1527 nvmeq->cqes = dma_alloc_coherent(dev: dev->dev, CQ_SIZE(nvmeq),
1528 dma_handle: &nvmeq->cq_dma_addr, GFP_KERNEL);
1529 if (!nvmeq->cqes)
1530 goto free_nvmeq;
1531
1532 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1533 goto free_cqdma;
1534
1535 nvmeq->dev = dev;
1536 spin_lock_init(&nvmeq->sq_lock);
1537 spin_lock_init(&nvmeq->cq_poll_lock);
1538 nvmeq->cq_head = 0;
1539 nvmeq->cq_phase = 1;
1540 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1541 nvmeq->qid = qid;
1542 dev->ctrl.queue_count++;
1543
1544 return 0;
1545
1546 free_cqdma:
1547 dma_free_coherent(dev: dev->dev, CQ_SIZE(nvmeq), cpu_addr: (void *)nvmeq->cqes,
1548 dma_handle: nvmeq->cq_dma_addr);
1549 free_nvmeq:
1550 return -ENOMEM;
1551}
1552
1553static int queue_request_irq(struct nvme_queue *nvmeq)
1554{
1555 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1556 int nr = nvmeq->dev->ctrl.instance;
1557
1558 if (use_threaded_interrupts) {
1559 return pci_request_irq(dev: pdev, nr: nvmeq->cq_vector, handler: nvme_irq_check,
1560 thread_fn: nvme_irq, dev_id: nvmeq, fmt: "nvme%dq%d", nr, nvmeq->qid);
1561 } else {
1562 return pci_request_irq(dev: pdev, nr: nvmeq->cq_vector, handler: nvme_irq,
1563 NULL, dev_id: nvmeq, fmt: "nvme%dq%d", nr, nvmeq->qid);
1564 }
1565}
1566
1567static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1568{
1569 struct nvme_dev *dev = nvmeq->dev;
1570
1571 nvmeq->sq_tail = 0;
1572 nvmeq->last_sq_tail = 0;
1573 nvmeq->cq_head = 0;
1574 nvmeq->cq_phase = 1;
1575 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1576 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1577 nvme_dbbuf_init(dev, nvmeq, qid);
1578 dev->online_queues++;
1579 wmb(); /* ensure the first interrupt sees the initialization */
1580}
1581
1582/*
1583 * Try getting shutdown_lock while setting up IO queues.
1584 */
1585static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1586{
1587 /*
1588 * Give up if the lock is being held by nvme_dev_disable.
1589 */
1590 if (!mutex_trylock(lock: &dev->shutdown_lock))
1591 return -ENODEV;
1592
1593 /*
1594 * Controller is in wrong state, fail early.
1595 */
1596 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1597 mutex_unlock(lock: &dev->shutdown_lock);
1598 return -ENODEV;
1599 }
1600
1601 return 0;
1602}
1603
1604static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1605{
1606 struct nvme_dev *dev = nvmeq->dev;
1607 int result;
1608 u16 vector = 0;
1609
1610 clear_bit(NVMEQ_DELETE_ERROR, addr: &nvmeq->flags);
1611
1612 /*
1613 * A queue's vector matches the queue identifier unless the controller
1614 * has only one vector available.
1615 */
1616 if (!polled)
1617 vector = dev->num_vecs == 1 ? 0 : qid;
1618 else
1619 set_bit(NVMEQ_POLLED, addr: &nvmeq->flags);
1620
1621 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1622 if (result)
1623 return result;
1624
1625 result = adapter_alloc_sq(dev, qid, nvmeq);
1626 if (result < 0)
1627 return result;
1628 if (result)
1629 goto release_cq;
1630
1631 nvmeq->cq_vector = vector;
1632
1633 result = nvme_setup_io_queues_trylock(dev);
1634 if (result)
1635 return result;
1636 nvme_init_queue(nvmeq, qid);
1637 if (!polled) {
1638 result = queue_request_irq(nvmeq);
1639 if (result < 0)
1640 goto release_sq;
1641 }
1642
1643 set_bit(NVMEQ_ENABLED, addr: &nvmeq->flags);
1644 mutex_unlock(lock: &dev->shutdown_lock);
1645 return result;
1646
1647release_sq:
1648 dev->online_queues--;
1649 mutex_unlock(lock: &dev->shutdown_lock);
1650 adapter_delete_sq(dev, sqid: qid);
1651release_cq:
1652 adapter_delete_cq(dev, cqid: qid);
1653 return result;
1654}
1655
1656static const struct blk_mq_ops nvme_mq_admin_ops = {
1657 .queue_rq = nvme_queue_rq,
1658 .complete = nvme_pci_complete_rq,
1659 .init_hctx = nvme_admin_init_hctx,
1660 .init_request = nvme_pci_init_request,
1661 .timeout = nvme_timeout,
1662};
1663
1664static const struct blk_mq_ops nvme_mq_ops = {
1665 .queue_rq = nvme_queue_rq,
1666 .queue_rqs = nvme_queue_rqs,
1667 .complete = nvme_pci_complete_rq,
1668 .commit_rqs = nvme_commit_rqs,
1669 .init_hctx = nvme_init_hctx,
1670 .init_request = nvme_pci_init_request,
1671 .map_queues = nvme_pci_map_queues,
1672 .timeout = nvme_timeout,
1673 .poll = nvme_poll,
1674};
1675
1676static void nvme_dev_remove_admin(struct nvme_dev *dev)
1677{
1678 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1679 /*
1680 * If the controller was reset during removal, it's possible
1681 * user requests may be waiting on a stopped queue. Start the
1682 * queue to flush these to completion.
1683 */
1684 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
1685 nvme_remove_admin_tag_set(ctrl: &dev->ctrl);
1686 }
1687}
1688
1689static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1690{
1691 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1692}
1693
1694static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1695{
1696 struct pci_dev *pdev = to_pci_dev(dev->dev);
1697
1698 if (size <= dev->bar_mapped_size)
1699 return 0;
1700 if (size > pci_resource_len(pdev, 0))
1701 return -ENOMEM;
1702 if (dev->bar)
1703 iounmap(addr: dev->bar);
1704 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1705 if (!dev->bar) {
1706 dev->bar_mapped_size = 0;
1707 return -ENOMEM;
1708 }
1709 dev->bar_mapped_size = size;
1710 dev->dbs = dev->bar + NVME_REG_DBS;
1711
1712 return 0;
1713}
1714
1715static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1716{
1717 int result;
1718 u32 aqa;
1719 struct nvme_queue *nvmeq;
1720
1721 result = nvme_remap_bar(dev, size: db_bar_size(dev, nr_io_queues: 0));
1722 if (result < 0)
1723 return result;
1724
1725 dev->subsystem = readl(addr: dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1726 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1727
1728 if (dev->subsystem &&
1729 (readl(addr: dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1730 writel(val: NVME_CSTS_NSSRO, addr: dev->bar + NVME_REG_CSTS);
1731
1732 /*
1733 * If the device has been passed off to us in an enabled state, just
1734 * clear the enabled bit. The spec says we should set the 'shutdown
1735 * notification bits', but doing so may cause the device to complete
1736 * commands to the admin queue ... and we don't know what memory that
1737 * might be pointing at!
1738 */
1739 result = nvme_disable_ctrl(ctrl: &dev->ctrl, shutdown: false);
1740 if (result < 0)
1741 return result;
1742
1743 result = nvme_alloc_queue(dev, qid: 0, NVME_AQ_DEPTH);
1744 if (result)
1745 return result;
1746
1747 dev->ctrl.numa_node = dev_to_node(dev: dev->dev);
1748
1749 nvmeq = &dev->queues[0];
1750 aqa = nvmeq->q_depth - 1;
1751 aqa |= aqa << 16;
1752
1753 writel(val: aqa, addr: dev->bar + NVME_REG_AQA);
1754 lo_hi_writeq(val: nvmeq->sq_dma_addr, addr: dev->bar + NVME_REG_ASQ);
1755 lo_hi_writeq(val: nvmeq->cq_dma_addr, addr: dev->bar + NVME_REG_ACQ);
1756
1757 result = nvme_enable_ctrl(ctrl: &dev->ctrl);
1758 if (result)
1759 return result;
1760
1761 nvmeq->cq_vector = 0;
1762 nvme_init_queue(nvmeq, qid: 0);
1763 result = queue_request_irq(nvmeq);
1764 if (result) {
1765 dev->online_queues--;
1766 return result;
1767 }
1768
1769 set_bit(NVMEQ_ENABLED, addr: &nvmeq->flags);
1770 return result;
1771}
1772
1773static int nvme_create_io_queues(struct nvme_dev *dev)
1774{
1775 unsigned i, max, rw_queues;
1776 int ret = 0;
1777
1778 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1779 if (nvme_alloc_queue(dev, qid: i, depth: dev->q_depth)) {
1780 ret = -ENOMEM;
1781 break;
1782 }
1783 }
1784
1785 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1786 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1787 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1788 dev->io_queues[HCTX_TYPE_READ];
1789 } else {
1790 rw_queues = max;
1791 }
1792
1793 for (i = dev->online_queues; i <= max; i++) {
1794 bool polled = i > rw_queues;
1795
1796 ret = nvme_create_queue(nvmeq: &dev->queues[i], qid: i, polled);
1797 if (ret)
1798 break;
1799 }
1800
1801 /*
1802 * Ignore failing Create SQ/CQ commands, we can continue with less
1803 * than the desired amount of queues, and even a controller without
1804 * I/O queues can still be used to issue admin commands. This might
1805 * be useful to upgrade a buggy firmware for example.
1806 */
1807 return ret >= 0 ? 0 : ret;
1808}
1809
1810static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811{
1812 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813
1814 return 1ULL << (12 + 4 * szu);
1815}
1816
1817static u32 nvme_cmb_size(struct nvme_dev *dev)
1818{
1819 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820}
1821
1822static void nvme_map_cmb(struct nvme_dev *dev)
1823{
1824 u64 size, offset;
1825 resource_size_t bar_size;
1826 struct pci_dev *pdev = to_pci_dev(dev->dev);
1827 int bar;
1828
1829 if (dev->cmb_size)
1830 return;
1831
1832 if (NVME_CAP_CMBS(dev->ctrl.cap))
1833 writel(val: NVME_CMBMSC_CRE, addr: dev->bar + NVME_REG_CMBMSC);
1834
1835 dev->cmbsz = readl(addr: dev->bar + NVME_REG_CMBSZ);
1836 if (!dev->cmbsz)
1837 return;
1838 dev->cmbloc = readl(addr: dev->bar + NVME_REG_CMBLOC);
1839
1840 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842 bar = NVME_CMB_BIR(dev->cmbloc);
1843 bar_size = pci_resource_len(pdev, bar);
1844
1845 if (offset > bar_size)
1846 return;
1847
1848 /*
1849 * Tell the controller about the host side address mapping the CMB,
1850 * and enable CMB decoding for the NVMe 1.4+ scheme:
1851 */
1852 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853 hi_lo_writeq(val: NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854 (pci_bus_address(pdev, bar) + offset),
1855 addr: dev->bar + NVME_REG_CMBMSC);
1856 }
1857
1858 /*
1859 * Controllers may support a CMB size larger than their BAR,
1860 * for example, due to being behind a bridge. Reduce the CMB to
1861 * the reported size of the BAR
1862 */
1863 if (size > bar_size - offset)
1864 size = bar_size - offset;
1865
1866 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867 dev_warn(dev->ctrl.device,
1868 "failed to register the CMB\n");
1869 return;
1870 }
1871
1872 dev->cmb_size = size;
1873 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874
1875 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877 pci_p2pmem_publish(pdev, publish: true);
1878
1879 nvme_update_attrs(dev);
1880}
1881
1882static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1883{
1884 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1885 u64 dma_addr = dev->host_mem_descs_dma;
1886 struct nvme_command c = { };
1887 int ret;
1888
1889 c.features.opcode = nvme_admin_set_features;
1890 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1891 c.features.dword11 = cpu_to_le32(bits);
1892 c.features.dword12 = cpu_to_le32(host_mem_size);
1893 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1894 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1895 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1896
1897 ret = nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1898 if (ret) {
1899 dev_warn(dev->ctrl.device,
1900 "failed to set host mem (err %d, flags %#x).\n",
1901 ret, bits);
1902 } else
1903 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1904
1905 return ret;
1906}
1907
1908static void nvme_free_host_mem(struct nvme_dev *dev)
1909{
1910 int i;
1911
1912 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1913 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1914 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1915
1916 dma_free_attrs(dev: dev->dev, size, cpu_addr: dev->host_mem_desc_bufs[i],
1917 le64_to_cpu(desc->addr),
1918 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1919 }
1920
1921 kfree(objp: dev->host_mem_desc_bufs);
1922 dev->host_mem_desc_bufs = NULL;
1923 dma_free_coherent(dev: dev->dev,
1924 size: dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1925 cpu_addr: dev->host_mem_descs, dma_handle: dev->host_mem_descs_dma);
1926 dev->host_mem_descs = NULL;
1927 dev->nr_host_mem_descs = 0;
1928}
1929
1930static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1931 u32 chunk_size)
1932{
1933 struct nvme_host_mem_buf_desc *descs;
1934 u32 max_entries, len;
1935 dma_addr_t descs_dma;
1936 int i = 0;
1937 void **bufs;
1938 u64 size, tmp;
1939
1940 tmp = (preferred + chunk_size - 1);
1941 do_div(tmp, chunk_size);
1942 max_entries = tmp;
1943
1944 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1945 max_entries = dev->ctrl.hmmaxd;
1946
1947 descs = dma_alloc_coherent(dev: dev->dev, size: max_entries * sizeof(*descs),
1948 dma_handle: &descs_dma, GFP_KERNEL);
1949 if (!descs)
1950 goto out;
1951
1952 bufs = kcalloc(n: max_entries, size: sizeof(*bufs), GFP_KERNEL);
1953 if (!bufs)
1954 goto out_free_descs;
1955
1956 for (size = 0; size < preferred && i < max_entries; size += len) {
1957 dma_addr_t dma_addr;
1958
1959 len = min_t(u64, chunk_size, preferred - size);
1960 bufs[i] = dma_alloc_attrs(dev: dev->dev, size: len, dma_handle: &dma_addr, GFP_KERNEL,
1961 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1962 if (!bufs[i])
1963 break;
1964
1965 descs[i].addr = cpu_to_le64(dma_addr);
1966 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1967 i++;
1968 }
1969
1970 if (!size)
1971 goto out_free_bufs;
1972
1973 dev->nr_host_mem_descs = i;
1974 dev->host_mem_size = size;
1975 dev->host_mem_descs = descs;
1976 dev->host_mem_descs_dma = descs_dma;
1977 dev->host_mem_desc_bufs = bufs;
1978 return 0;
1979
1980out_free_bufs:
1981 while (--i >= 0) {
1982 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1983
1984 dma_free_attrs(dev: dev->dev, size, cpu_addr: bufs[i],
1985 le64_to_cpu(descs[i].addr),
1986 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1987 }
1988
1989 kfree(objp: bufs);
1990out_free_descs:
1991 dma_free_coherent(dev: dev->dev, size: max_entries * sizeof(*descs), cpu_addr: descs,
1992 dma_handle: descs_dma);
1993out:
1994 dev->host_mem_descs = NULL;
1995 return -ENOMEM;
1996}
1997
1998static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1999{
2000 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2001 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2002 u64 chunk_size;
2003
2004 /* start big and work our way down */
2005 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2006 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2007 if (!min || dev->host_mem_size >= min)
2008 return 0;
2009 nvme_free_host_mem(dev);
2010 }
2011 }
2012
2013 return -ENOMEM;
2014}
2015
2016static int nvme_setup_host_mem(struct nvme_dev *dev)
2017{
2018 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2019 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2020 u64 min = (u64)dev->ctrl.hmmin * 4096;
2021 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2022 int ret;
2023
2024 if (!dev->ctrl.hmpre)
2025 return 0;
2026
2027 preferred = min(preferred, max);
2028 if (min > max) {
2029 dev_warn(dev->ctrl.device,
2030 "min host memory (%lld MiB) above limit (%d MiB).\n",
2031 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2032 nvme_free_host_mem(dev);
2033 return 0;
2034 }
2035
2036 /*
2037 * If we already have a buffer allocated check if we can reuse it.
2038 */
2039 if (dev->host_mem_descs) {
2040 if (dev->host_mem_size >= min)
2041 enable_bits |= NVME_HOST_MEM_RETURN;
2042 else
2043 nvme_free_host_mem(dev);
2044 }
2045
2046 if (!dev->host_mem_descs) {
2047 if (nvme_alloc_host_mem(dev, min, preferred)) {
2048 dev_warn(dev->ctrl.device,
2049 "failed to allocate host memory buffer.\n");
2050 return 0; /* controller must work without HMB */
2051 }
2052
2053 dev_info(dev->ctrl.device,
2054 "allocated %lld MiB host memory buffer.\n",
2055 dev->host_mem_size >> ilog2(SZ_1M));
2056 }
2057
2058 ret = nvme_set_host_mem(dev, bits: enable_bits);
2059 if (ret)
2060 nvme_free_host_mem(dev);
2061 return ret;
2062}
2063
2064static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2065 char *buf)
2066{
2067 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2068
2069 return sysfs_emit(buf, fmt: "cmbloc : x%08x\ncmbsz : x%08x\n",
2070 ndev->cmbloc, ndev->cmbsz);
2071}
2072static DEVICE_ATTR_RO(cmb);
2073
2074static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2075 char *buf)
2076{
2077 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2078
2079 return sysfs_emit(buf, fmt: "%u\n", ndev->cmbloc);
2080}
2081static DEVICE_ATTR_RO(cmbloc);
2082
2083static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2084 char *buf)
2085{
2086 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2087
2088 return sysfs_emit(buf, fmt: "%u\n", ndev->cmbsz);
2089}
2090static DEVICE_ATTR_RO(cmbsz);
2091
2092static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2093 char *buf)
2094{
2095 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2096
2097 return sysfs_emit(buf, fmt: "%d\n", ndev->hmb);
2098}
2099
2100static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2101 const char *buf, size_t count)
2102{
2103 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2104 bool new;
2105 int ret;
2106
2107 if (kstrtobool(s: buf, res: &new) < 0)
2108 return -EINVAL;
2109
2110 if (new == ndev->hmb)
2111 return count;
2112
2113 if (new) {
2114 ret = nvme_setup_host_mem(dev: ndev);
2115 } else {
2116 ret = nvme_set_host_mem(dev: ndev, bits: 0);
2117 if (!ret)
2118 nvme_free_host_mem(dev: ndev);
2119 }
2120
2121 if (ret < 0)
2122 return ret;
2123
2124 return count;
2125}
2126static DEVICE_ATTR_RW(hmb);
2127
2128static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2129 struct attribute *a, int n)
2130{
2131 struct nvme_ctrl *ctrl =
2132 dev_get_drvdata(container_of(kobj, struct device, kobj));
2133 struct nvme_dev *dev = to_nvme_dev(ctrl);
2134
2135 if (a == &dev_attr_cmb.attr ||
2136 a == &dev_attr_cmbloc.attr ||
2137 a == &dev_attr_cmbsz.attr) {
2138 if (!dev->cmbsz)
2139 return 0;
2140 }
2141 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2142 return 0;
2143
2144 return a->mode;
2145}
2146
2147static struct attribute *nvme_pci_attrs[] = {
2148 &dev_attr_cmb.attr,
2149 &dev_attr_cmbloc.attr,
2150 &dev_attr_cmbsz.attr,
2151 &dev_attr_hmb.attr,
2152 NULL,
2153};
2154
2155static const struct attribute_group nvme_pci_dev_attrs_group = {
2156 .attrs = nvme_pci_attrs,
2157 .is_visible = nvme_pci_attrs_are_visible,
2158};
2159
2160static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2161 &nvme_dev_attrs_group,
2162 &nvme_pci_dev_attrs_group,
2163 NULL,
2164};
2165
2166static void nvme_update_attrs(struct nvme_dev *dev)
2167{
2168 sysfs_update_group(kobj: &dev->ctrl.device->kobj, grp: &nvme_pci_dev_attrs_group);
2169}
2170
2171/*
2172 * nirqs is the number of interrupts available for write and read
2173 * queues. The core already reserved an interrupt for the admin queue.
2174 */
2175static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2176{
2177 struct nvme_dev *dev = affd->priv;
2178 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2179
2180 /*
2181 * If there is no interrupt available for queues, ensure that
2182 * the default queue is set to 1. The affinity set size is
2183 * also set to one, but the irq core ignores it for this case.
2184 *
2185 * If only one interrupt is available or 'write_queue' == 0, combine
2186 * write and read queues.
2187 *
2188 * If 'write_queues' > 0, ensure it leaves room for at least one read
2189 * queue.
2190 */
2191 if (!nrirqs) {
2192 nrirqs = 1;
2193 nr_read_queues = 0;
2194 } else if (nrirqs == 1 || !nr_write_queues) {
2195 nr_read_queues = 0;
2196 } else if (nr_write_queues >= nrirqs) {
2197 nr_read_queues = 1;
2198 } else {
2199 nr_read_queues = nrirqs - nr_write_queues;
2200 }
2201
2202 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2203 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2204 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2205 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2206 affd->nr_sets = nr_read_queues ? 2 : 1;
2207}
2208
2209static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2210{
2211 struct pci_dev *pdev = to_pci_dev(dev->dev);
2212 struct irq_affinity affd = {
2213 .pre_vectors = 1,
2214 .calc_sets = nvme_calc_irq_sets,
2215 .priv = dev,
2216 };
2217 unsigned int irq_queues, poll_queues;
2218
2219 /*
2220 * Poll queues don't need interrupts, but we need at least one I/O queue
2221 * left over for non-polled I/O.
2222 */
2223 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2224 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2225
2226 /*
2227 * Initialize for the single interrupt case, will be updated in
2228 * nvme_calc_irq_sets().
2229 */
2230 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2231 dev->io_queues[HCTX_TYPE_READ] = 0;
2232
2233 /*
2234 * We need interrupts for the admin queue and each non-polled I/O queue,
2235 * but some Apple controllers require all queues to use the first
2236 * vector.
2237 */
2238 irq_queues = 1;
2239 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2240 irq_queues += (nr_io_queues - poll_queues);
2241 return pci_alloc_irq_vectors_affinity(dev: pdev, min_vecs: 1, max_vecs: irq_queues,
2242 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, affd: &affd);
2243}
2244
2245static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2246{
2247 /*
2248 * If tags are shared with admin queue (Apple bug), then
2249 * make sure we only use one IO queue.
2250 */
2251 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2252 return 1;
2253 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2254}
2255
2256static int nvme_setup_io_queues(struct nvme_dev *dev)
2257{
2258 struct nvme_queue *adminq = &dev->queues[0];
2259 struct pci_dev *pdev = to_pci_dev(dev->dev);
2260 unsigned int nr_io_queues;
2261 unsigned long size;
2262 int result;
2263
2264 /*
2265 * Sample the module parameters once at reset time so that we have
2266 * stable values to work with.
2267 */
2268 dev->nr_write_queues = write_queues;
2269 dev->nr_poll_queues = poll_queues;
2270
2271 nr_io_queues = dev->nr_allocated_queues - 1;
2272 result = nvme_set_queue_count(ctrl: &dev->ctrl, count: &nr_io_queues);
2273 if (result < 0)
2274 return result;
2275
2276 if (nr_io_queues == 0)
2277 return 0;
2278
2279 /*
2280 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2281 * from set to unset. If there is a window to it is truely freed,
2282 * pci_free_irq_vectors() jumping into this window will crash.
2283 * And take lock to avoid racing with pci_free_irq_vectors() in
2284 * nvme_dev_disable() path.
2285 */
2286 result = nvme_setup_io_queues_trylock(dev);
2287 if (result)
2288 return result;
2289 if (test_and_clear_bit(NVMEQ_ENABLED, addr: &adminq->flags))
2290 pci_free_irq(dev: pdev, nr: 0, dev_id: adminq);
2291
2292 if (dev->cmb_use_sqes) {
2293 result = nvme_cmb_qdepth(dev, nr_io_queues,
2294 entry_size: sizeof(struct nvme_command));
2295 if (result > 0) {
2296 dev->q_depth = result;
2297 dev->ctrl.sqsize = result - 1;
2298 } else {
2299 dev->cmb_use_sqes = false;
2300 }
2301 }
2302
2303 do {
2304 size = db_bar_size(dev, nr_io_queues);
2305 result = nvme_remap_bar(dev, size);
2306 if (!result)
2307 break;
2308 if (!--nr_io_queues) {
2309 result = -ENOMEM;
2310 goto out_unlock;
2311 }
2312 } while (1);
2313 adminq->q_db = dev->dbs;
2314
2315 retry:
2316 /* Deregister the admin queue's interrupt */
2317 if (test_and_clear_bit(NVMEQ_ENABLED, addr: &adminq->flags))
2318 pci_free_irq(dev: pdev, nr: 0, dev_id: adminq);
2319
2320 /*
2321 * If we enable msix early due to not intx, disable it again before
2322 * setting up the full range we need.
2323 */
2324 pci_free_irq_vectors(dev: pdev);
2325
2326 result = nvme_setup_irqs(dev, nr_io_queues);
2327 if (result <= 0) {
2328 result = -EIO;
2329 goto out_unlock;
2330 }
2331
2332 dev->num_vecs = result;
2333 result = max(result - 1, 1);
2334 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2335
2336 /*
2337 * Should investigate if there's a performance win from allocating
2338 * more queues than interrupt vectors; it might allow the submission
2339 * path to scale better, even if the receive path is limited by the
2340 * number of interrupts.
2341 */
2342 result = queue_request_irq(nvmeq: adminq);
2343 if (result)
2344 goto out_unlock;
2345 set_bit(NVMEQ_ENABLED, addr: &adminq->flags);
2346 mutex_unlock(lock: &dev->shutdown_lock);
2347
2348 result = nvme_create_io_queues(dev);
2349 if (result || dev->online_queues < 2)
2350 return result;
2351
2352 if (dev->online_queues - 1 < dev->max_qid) {
2353 nr_io_queues = dev->online_queues - 1;
2354 nvme_delete_io_queues(dev);
2355 result = nvme_setup_io_queues_trylock(dev);
2356 if (result)
2357 return result;
2358 nvme_suspend_io_queues(dev);
2359 goto retry;
2360 }
2361 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2362 dev->io_queues[HCTX_TYPE_DEFAULT],
2363 dev->io_queues[HCTX_TYPE_READ],
2364 dev->io_queues[HCTX_TYPE_POLL]);
2365 return 0;
2366out_unlock:
2367 mutex_unlock(lock: &dev->shutdown_lock);
2368 return result;
2369}
2370
2371static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2372 blk_status_t error)
2373{
2374 struct nvme_queue *nvmeq = req->end_io_data;
2375
2376 blk_mq_free_request(rq: req);
2377 complete(&nvmeq->delete_done);
2378 return RQ_END_IO_NONE;
2379}
2380
2381static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2382 blk_status_t error)
2383{
2384 struct nvme_queue *nvmeq = req->end_io_data;
2385
2386 if (error)
2387 set_bit(NVMEQ_DELETE_ERROR, addr: &nvmeq->flags);
2388
2389 return nvme_del_queue_end(req, error);
2390}
2391
2392static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2393{
2394 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2395 struct request *req;
2396 struct nvme_command cmd = { };
2397
2398 cmd.delete_queue.opcode = opcode;
2399 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2400
2401 req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd: &cmd), flags: BLK_MQ_REQ_NOWAIT);
2402 if (IS_ERR(ptr: req))
2403 return PTR_ERR(ptr: req);
2404 nvme_init_request(req, cmd: &cmd);
2405
2406 if (opcode == nvme_admin_delete_cq)
2407 req->end_io = nvme_del_cq_end;
2408 else
2409 req->end_io = nvme_del_queue_end;
2410 req->end_io_data = nvmeq;
2411
2412 init_completion(x: &nvmeq->delete_done);
2413 blk_execute_rq_nowait(rq: req, at_head: false);
2414 return 0;
2415}
2416
2417static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2418{
2419 int nr_queues = dev->online_queues - 1, sent = 0;
2420 unsigned long timeout;
2421
2422 retry:
2423 timeout = NVME_ADMIN_TIMEOUT;
2424 while (nr_queues > 0) {
2425 if (nvme_delete_queue(nvmeq: &dev->queues[nr_queues], opcode))
2426 break;
2427 nr_queues--;
2428 sent++;
2429 }
2430 while (sent) {
2431 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2432
2433 timeout = wait_for_completion_io_timeout(x: &nvmeq->delete_done,
2434 timeout);
2435 if (timeout == 0)
2436 return false;
2437
2438 sent--;
2439 if (nr_queues)
2440 goto retry;
2441 }
2442 return true;
2443}
2444
2445static void nvme_delete_io_queues(struct nvme_dev *dev)
2446{
2447 if (__nvme_delete_io_queues(dev, opcode: nvme_admin_delete_sq))
2448 __nvme_delete_io_queues(dev, opcode: nvme_admin_delete_cq);
2449}
2450
2451static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2452{
2453 if (dev->io_queues[HCTX_TYPE_POLL])
2454 return 3;
2455 if (dev->io_queues[HCTX_TYPE_READ])
2456 return 2;
2457 return 1;
2458}
2459
2460static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2461{
2462 blk_mq_update_nr_hw_queues(set: &dev->tagset, nr_hw_queues: dev->online_queues - 1);
2463 /* free previously allocated queues that are no longer usable */
2464 nvme_free_queues(dev, lowest: dev->online_queues);
2465}
2466
2467static int nvme_pci_enable(struct nvme_dev *dev)
2468{
2469 int result = -ENOMEM;
2470 struct pci_dev *pdev = to_pci_dev(dev->dev);
2471
2472 if (pci_enable_device_mem(dev: pdev))
2473 return result;
2474
2475 pci_set_master(dev: pdev);
2476
2477 if (readl(addr: dev->bar + NVME_REG_CSTS) == -1) {
2478 result = -ENODEV;
2479 goto disable;
2480 }
2481
2482 /*
2483 * Some devices and/or platforms don't advertise or work with INTx
2484 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2485 * adjust this later.
2486 */
2487 result = pci_alloc_irq_vectors(dev: pdev, min_vecs: 1, max_vecs: 1, PCI_IRQ_ALL_TYPES);
2488 if (result < 0)
2489 goto disable;
2490
2491 dev->ctrl.cap = lo_hi_readq(addr: dev->bar + NVME_REG_CAP);
2492
2493 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2494 io_queue_depth);
2495 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2496 dev->dbs = dev->bar + 4096;
2497
2498 /*
2499 * Some Apple controllers require a non-standard SQE size.
2500 * Interestingly they also seem to ignore the CC:IOSQES register
2501 * so we don't bother updating it here.
2502 */
2503 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2504 dev->io_sqes = 7;
2505 else
2506 dev->io_sqes = NVME_NVM_IOSQES;
2507
2508 /*
2509 * Temporary fix for the Apple controller found in the MacBook8,1 and
2510 * some MacBook7,1 to avoid controller resets and data loss.
2511 */
2512 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2513 dev->q_depth = 2;
2514 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2515 "set queue depth=%u to work around controller resets\n",
2516 dev->q_depth);
2517 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2518 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2519 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2520 dev->q_depth = 64;
2521 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2522 "set queue depth=%u\n", dev->q_depth);
2523 }
2524
2525 /*
2526 * Controllers with the shared tags quirk need the IO queue to be
2527 * big enough so that we get 32 tags for the admin queue
2528 */
2529 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2530 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2531 dev->q_depth = NVME_AQ_DEPTH + 2;
2532 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2533 dev->q_depth);
2534 }
2535 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2536
2537 nvme_map_cmb(dev);
2538
2539 pci_save_state(dev: pdev);
2540
2541 result = nvme_pci_configure_admin_queue(dev);
2542 if (result)
2543 goto free_irq;
2544 return result;
2545
2546 free_irq:
2547 pci_free_irq_vectors(dev: pdev);
2548 disable:
2549 pci_disable_device(dev: pdev);
2550 return result;
2551}
2552
2553static void nvme_dev_unmap(struct nvme_dev *dev)
2554{
2555 if (dev->bar)
2556 iounmap(addr: dev->bar);
2557 pci_release_mem_regions(to_pci_dev(dev->dev));
2558}
2559
2560static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2561{
2562 struct pci_dev *pdev = to_pci_dev(dev->dev);
2563 u32 csts;
2564
2565 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2566 return true;
2567 if (pdev->error_state != pci_channel_io_normal)
2568 return true;
2569
2570 csts = readl(addr: dev->bar + NVME_REG_CSTS);
2571 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2572}
2573
2574static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2575{
2576 struct pci_dev *pdev = to_pci_dev(dev->dev);
2577 bool dead;
2578
2579 mutex_lock(&dev->shutdown_lock);
2580 dead = nvme_pci_ctrl_is_dead(dev);
2581 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2582 dev->ctrl.state == NVME_CTRL_RESETTING) {
2583 if (pci_is_enabled(pdev))
2584 nvme_start_freeze(ctrl: &dev->ctrl);
2585 /*
2586 * Give the controller a chance to complete all entered requests
2587 * if doing a safe shutdown.
2588 */
2589 if (!dead && shutdown)
2590 nvme_wait_freeze_timeout(ctrl: &dev->ctrl, NVME_IO_TIMEOUT);
2591 }
2592
2593 nvme_quiesce_io_queues(ctrl: &dev->ctrl);
2594
2595 if (!dead && dev->ctrl.queue_count > 0) {
2596 nvme_delete_io_queues(dev);
2597 nvme_disable_ctrl(ctrl: &dev->ctrl, shutdown);
2598 nvme_poll_irqdisable(nvmeq: &dev->queues[0]);
2599 }
2600 nvme_suspend_io_queues(dev);
2601 nvme_suspend_queue(dev, qid: 0);
2602 pci_free_irq_vectors(dev: pdev);
2603 if (pci_is_enabled(pdev))
2604 pci_disable_device(dev: pdev);
2605 nvme_reap_pending_cqes(dev);
2606
2607 nvme_cancel_tagset(ctrl: &dev->ctrl);
2608 nvme_cancel_admin_tagset(ctrl: &dev->ctrl);
2609
2610 /*
2611 * The driver will not be starting up queues again if shutting down so
2612 * must flush all entered requests to their failed completion to avoid
2613 * deadlocking blk-mq hot-cpu notifier.
2614 */
2615 if (shutdown) {
2616 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2617 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2618 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
2619 }
2620 mutex_unlock(lock: &dev->shutdown_lock);
2621}
2622
2623static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2624{
2625 if (!nvme_wait_reset(ctrl: &dev->ctrl))
2626 return -EBUSY;
2627 nvme_dev_disable(dev, shutdown);
2628 return 0;
2629}
2630
2631static int nvme_setup_prp_pools(struct nvme_dev *dev)
2632{
2633 dev->prp_page_pool = dma_pool_create(name: "prp list page", dev: dev->dev,
2634 NVME_CTRL_PAGE_SIZE,
2635 NVME_CTRL_PAGE_SIZE, allocation: 0);
2636 if (!dev->prp_page_pool)
2637 return -ENOMEM;
2638
2639 /* Optimisation for I/Os between 4k and 128k */
2640 dev->prp_small_pool = dma_pool_create(name: "prp list 256", dev: dev->dev,
2641 size: 256, align: 256, allocation: 0);
2642 if (!dev->prp_small_pool) {
2643 dma_pool_destroy(pool: dev->prp_page_pool);
2644 return -ENOMEM;
2645 }
2646 return 0;
2647}
2648
2649static void nvme_release_prp_pools(struct nvme_dev *dev)
2650{
2651 dma_pool_destroy(pool: dev->prp_page_pool);
2652 dma_pool_destroy(pool: dev->prp_small_pool);
2653}
2654
2655static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2656{
2657 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2658
2659 dev->iod_mempool = mempool_create_node(min_nr: 1,
2660 alloc_fn: mempool_kmalloc, free_fn: mempool_kfree,
2661 pool_data: (void *)alloc_size, GFP_KERNEL,
2662 nid: dev_to_node(dev: dev->dev));
2663 if (!dev->iod_mempool)
2664 return -ENOMEM;
2665 return 0;
2666}
2667
2668static void nvme_free_tagset(struct nvme_dev *dev)
2669{
2670 if (dev->tagset.tags)
2671 nvme_remove_io_tag_set(ctrl: &dev->ctrl);
2672 dev->ctrl.tagset = NULL;
2673}
2674
2675/* pairs with nvme_pci_alloc_dev */
2676static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2677{
2678 struct nvme_dev *dev = to_nvme_dev(ctrl);
2679
2680 nvme_free_tagset(dev);
2681 put_device(dev: dev->dev);
2682 kfree(objp: dev->queues);
2683 kfree(objp: dev);
2684}
2685
2686static void nvme_reset_work(struct work_struct *work)
2687{
2688 struct nvme_dev *dev =
2689 container_of(work, struct nvme_dev, ctrl.reset_work);
2690 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2691 int result;
2692
2693 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2694 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2695 dev->ctrl.state);
2696 result = -ENODEV;
2697 goto out;
2698 }
2699
2700 /*
2701 * If we're called to reset a live controller first shut it down before
2702 * moving on.
2703 */
2704 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2705 nvme_dev_disable(dev, shutdown: false);
2706 nvme_sync_queues(ctrl: &dev->ctrl);
2707
2708 mutex_lock(&dev->shutdown_lock);
2709 result = nvme_pci_enable(dev);
2710 if (result)
2711 goto out_unlock;
2712 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
2713 mutex_unlock(lock: &dev->shutdown_lock);
2714
2715 /*
2716 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2717 * initializing procedure here.
2718 */
2719 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_CONNECTING)) {
2720 dev_warn(dev->ctrl.device,
2721 "failed to mark controller CONNECTING\n");
2722 result = -EBUSY;
2723 goto out;
2724 }
2725
2726 result = nvme_init_ctrl_finish(ctrl: &dev->ctrl, was_suspended: was_suspend);
2727 if (result)
2728 goto out;
2729
2730 nvme_dbbuf_dma_alloc(dev);
2731
2732 result = nvme_setup_host_mem(dev);
2733 if (result < 0)
2734 goto out;
2735
2736 result = nvme_setup_io_queues(dev);
2737 if (result)
2738 goto out;
2739
2740 /*
2741 * Freeze and update the number of I/O queues as thos might have
2742 * changed. If there are no I/O queues left after this reset, keep the
2743 * controller around but remove all namespaces.
2744 */
2745 if (dev->online_queues > 1) {
2746 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2747 nvme_wait_freeze(ctrl: &dev->ctrl);
2748 nvme_pci_update_nr_queues(dev);
2749 nvme_dbbuf_set(dev);
2750 nvme_unfreeze(ctrl: &dev->ctrl);
2751 } else {
2752 dev_warn(dev->ctrl.device, "IO queues lost\n");
2753 nvme_mark_namespaces_dead(ctrl: &dev->ctrl);
2754 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2755 nvme_remove_namespaces(ctrl: &dev->ctrl);
2756 nvme_free_tagset(dev);
2757 }
2758
2759 /*
2760 * If only admin queue live, keep it to do further investigation or
2761 * recovery.
2762 */
2763 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_LIVE)) {
2764 dev_warn(dev->ctrl.device,
2765 "failed to mark controller live state\n");
2766 result = -ENODEV;
2767 goto out;
2768 }
2769
2770 nvme_start_ctrl(ctrl: &dev->ctrl);
2771 return;
2772
2773 out_unlock:
2774 mutex_unlock(lock: &dev->shutdown_lock);
2775 out:
2776 /*
2777 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2778 * may be holding this pci_dev's device lock.
2779 */
2780 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2781 result);
2782 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
2783 nvme_dev_disable(dev, shutdown: true);
2784 nvme_sync_queues(ctrl: &dev->ctrl);
2785 nvme_mark_namespaces_dead(ctrl: &dev->ctrl);
2786 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2787 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DEAD);
2788}
2789
2790static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2791{
2792 *val = readl(addr: to_nvme_dev(ctrl)->bar + off);
2793 return 0;
2794}
2795
2796static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2797{
2798 writel(val, addr: to_nvme_dev(ctrl)->bar + off);
2799 return 0;
2800}
2801
2802static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2803{
2804 *val = lo_hi_readq(addr: to_nvme_dev(ctrl)->bar + off);
2805 return 0;
2806}
2807
2808static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2809{
2810 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2811
2812 return snprintf(buf, size, fmt: "%s\n", dev_name(dev: &pdev->dev));
2813}
2814
2815static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2816{
2817 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2818 struct nvme_subsystem *subsys = ctrl->subsys;
2819
2820 dev_err(ctrl->device,
2821 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2822 pdev->vendor, pdev->device,
2823 nvme_strlen(subsys->model, sizeof(subsys->model)),
2824 subsys->model, nvme_strlen(subsys->firmware_rev,
2825 sizeof(subsys->firmware_rev)),
2826 subsys->firmware_rev);
2827}
2828
2829static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2830{
2831 struct nvme_dev *dev = to_nvme_dev(ctrl);
2832
2833 return dma_pci_p2pdma_supported(dev: dev->dev);
2834}
2835
2836static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2837 .name = "pcie",
2838 .module = THIS_MODULE,
2839 .flags = NVME_F_METADATA_SUPPORTED,
2840 .dev_attr_groups = nvme_pci_dev_attr_groups,
2841 .reg_read32 = nvme_pci_reg_read32,
2842 .reg_write32 = nvme_pci_reg_write32,
2843 .reg_read64 = nvme_pci_reg_read64,
2844 .free_ctrl = nvme_pci_free_ctrl,
2845 .submit_async_event = nvme_pci_submit_async_event,
2846 .get_address = nvme_pci_get_address,
2847 .print_device_info = nvme_pci_print_device_info,
2848 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2849};
2850
2851static int nvme_dev_map(struct nvme_dev *dev)
2852{
2853 struct pci_dev *pdev = to_pci_dev(dev->dev);
2854
2855 if (pci_request_mem_regions(pdev, name: "nvme"))
2856 return -ENODEV;
2857
2858 if (nvme_remap_bar(dev, size: NVME_REG_DBS + 4096))
2859 goto release;
2860
2861 return 0;
2862 release:
2863 pci_release_mem_regions(pdev);
2864 return -ENODEV;
2865}
2866
2867static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2868{
2869 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2870 /*
2871 * Several Samsung devices seem to drop off the PCIe bus
2872 * randomly when APST is on and uses the deepest sleep state.
2873 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2874 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2875 * 950 PRO 256GB", but it seems to be restricted to two Dell
2876 * laptops.
2877 */
2878 if (dmi_match(f: DMI_SYS_VENDOR, str: "Dell Inc.") &&
2879 (dmi_match(f: DMI_PRODUCT_NAME, str: "XPS 15 9550") ||
2880 dmi_match(f: DMI_PRODUCT_NAME, str: "Precision 5510")))
2881 return NVME_QUIRK_NO_DEEPEST_PS;
2882 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2883 /*
2884 * Samsung SSD 960 EVO drops off the PCIe bus after system
2885 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2886 * within few minutes after bootup on a Coffee Lake board -
2887 * ASUS PRIME Z370-A
2888 */
2889 if (dmi_match(f: DMI_BOARD_VENDOR, str: "ASUSTeK COMPUTER INC.") &&
2890 (dmi_match(f: DMI_BOARD_NAME, str: "PRIME B350M-A") ||
2891 dmi_match(f: DMI_BOARD_NAME, str: "PRIME Z370-A")))
2892 return NVME_QUIRK_NO_APST;
2893 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2894 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2895 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2896 /*
2897 * Forcing to use host managed nvme power settings for
2898 * lowest idle power with quick resume latency on
2899 * Samsung and Toshiba SSDs based on suspend behavior
2900 * on Coffee Lake board for LENOVO C640
2901 */
2902 if ((dmi_match(f: DMI_BOARD_VENDOR, str: "LENOVO")) &&
2903 dmi_match(f: DMI_BOARD_NAME, str: "LNVNB161216"))
2904 return NVME_QUIRK_SIMPLE_SUSPEND;
2905 }
2906
2907 return 0;
2908}
2909
2910static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2911 const struct pci_device_id *id)
2912{
2913 unsigned long quirks = id->driver_data;
2914 int node = dev_to_node(dev: &pdev->dev);
2915 struct nvme_dev *dev;
2916 int ret = -ENOMEM;
2917
2918 dev = kzalloc_node(size: sizeof(*dev), GFP_KERNEL, node);
2919 if (!dev)
2920 return ERR_PTR(error: -ENOMEM);
2921 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2922 mutex_init(&dev->shutdown_lock);
2923
2924 dev->nr_write_queues = write_queues;
2925 dev->nr_poll_queues = poll_queues;
2926 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2927 dev->queues = kcalloc_node(n: dev->nr_allocated_queues,
2928 size: sizeof(struct nvme_queue), GFP_KERNEL, node);
2929 if (!dev->queues)
2930 goto out_free_dev;
2931
2932 dev->dev = get_device(dev: &pdev->dev);
2933
2934 quirks |= check_vendor_combination_bug(pdev);
2935 if (!noacpi && acpi_storage_d3(dev: &pdev->dev)) {
2936 /*
2937 * Some systems use a bios work around to ask for D3 on
2938 * platforms that support kernel managed suspend.
2939 */
2940 dev_info(&pdev->dev,
2941 "platform quirk: setting simple suspend\n");
2942 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2943 }
2944 ret = nvme_init_ctrl(ctrl: &dev->ctrl, dev: &pdev->dev, ops: &nvme_pci_ctrl_ops,
2945 quirks);
2946 if (ret)
2947 goto out_put_device;
2948
2949 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2950 dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(48));
2951 else
2952 dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(64));
2953 dma_set_min_align_mask(dev: &pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2954 dma_set_max_seg_size(dev: &pdev->dev, size: 0xffffffff);
2955
2956 /*
2957 * Limit the max command size to prevent iod->sg allocations going
2958 * over a single page.
2959 */
2960 dev->ctrl.max_hw_sectors = min_t(u32,
2961 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2962 dev->ctrl.max_segments = NVME_MAX_SEGS;
2963
2964 /*
2965 * There is no support for SGLs for metadata (yet), so we are limited to
2966 * a single integrity segment for the separate metadata pointer.
2967 */
2968 dev->ctrl.max_integrity_segments = 1;
2969 return dev;
2970
2971out_put_device:
2972 put_device(dev: dev->dev);
2973 kfree(objp: dev->queues);
2974out_free_dev:
2975 kfree(objp: dev);
2976 return ERR_PTR(error: ret);
2977}
2978
2979static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2980{
2981 struct nvme_dev *dev;
2982 int result = -ENOMEM;
2983
2984 dev = nvme_pci_alloc_dev(pdev, id);
2985 if (IS_ERR(ptr: dev))
2986 return PTR_ERR(ptr: dev);
2987
2988 result = nvme_dev_map(dev);
2989 if (result)
2990 goto out_uninit_ctrl;
2991
2992 result = nvme_setup_prp_pools(dev);
2993 if (result)
2994 goto out_dev_unmap;
2995
2996 result = nvme_pci_alloc_iod_mempool(dev);
2997 if (result)
2998 goto out_release_prp_pools;
2999
3000 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3001
3002 result = nvme_pci_enable(dev);
3003 if (result)
3004 goto out_release_iod_mempool;
3005
3006 result = nvme_alloc_admin_tag_set(ctrl: &dev->ctrl, set: &dev->admin_tagset,
3007 ops: &nvme_mq_admin_ops, cmd_size: sizeof(struct nvme_iod));
3008 if (result)
3009 goto out_disable;
3010
3011 /*
3012 * Mark the controller as connecting before sending admin commands to
3013 * allow the timeout handler to do the right thing.
3014 */
3015 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_CONNECTING)) {
3016 dev_warn(dev->ctrl.device,
3017 "failed to mark controller CONNECTING\n");
3018 result = -EBUSY;
3019 goto out_disable;
3020 }
3021
3022 result = nvme_init_ctrl_finish(ctrl: &dev->ctrl, was_suspended: false);
3023 if (result)
3024 goto out_disable;
3025
3026 nvme_dbbuf_dma_alloc(dev);
3027
3028 result = nvme_setup_host_mem(dev);
3029 if (result < 0)
3030 goto out_disable;
3031
3032 result = nvme_setup_io_queues(dev);
3033 if (result)
3034 goto out_disable;
3035
3036 if (dev->online_queues > 1) {
3037 nvme_alloc_io_tag_set(ctrl: &dev->ctrl, set: &dev->tagset, ops: &nvme_mq_ops,
3038 nr_maps: nvme_pci_nr_maps(dev), cmd_size: sizeof(struct nvme_iod));
3039 nvme_dbbuf_set(dev);
3040 }
3041
3042 if (!dev->ctrl.tagset)
3043 dev_warn(dev->ctrl.device, "IO queues not created\n");
3044
3045 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_LIVE)) {
3046 dev_warn(dev->ctrl.device,
3047 "failed to mark controller live state\n");
3048 result = -ENODEV;
3049 goto out_disable;
3050 }
3051
3052 pci_set_drvdata(pdev, data: dev);
3053
3054 nvme_start_ctrl(ctrl: &dev->ctrl);
3055 nvme_put_ctrl(ctrl: &dev->ctrl);
3056 flush_work(work: &dev->ctrl.scan_work);
3057 return 0;
3058
3059out_disable:
3060 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
3061 nvme_dev_disable(dev, shutdown: true);
3062 nvme_free_host_mem(dev);
3063 nvme_dev_remove_admin(dev);
3064 nvme_dbbuf_dma_free(dev);
3065 nvme_free_queues(dev, lowest: 0);
3066out_release_iod_mempool:
3067 mempool_destroy(pool: dev->iod_mempool);
3068out_release_prp_pools:
3069 nvme_release_prp_pools(dev);
3070out_dev_unmap:
3071 nvme_dev_unmap(dev);
3072out_uninit_ctrl:
3073 nvme_uninit_ctrl(ctrl: &dev->ctrl);
3074 nvme_put_ctrl(ctrl: &dev->ctrl);
3075 return result;
3076}
3077
3078static void nvme_reset_prepare(struct pci_dev *pdev)
3079{
3080 struct nvme_dev *dev = pci_get_drvdata(pdev);
3081
3082 /*
3083 * We don't need to check the return value from waiting for the reset
3084 * state as pci_dev device lock is held, making it impossible to race
3085 * with ->remove().
3086 */
3087 nvme_disable_prepare_reset(dev, shutdown: false);
3088 nvme_sync_queues(ctrl: &dev->ctrl);
3089}
3090
3091static void nvme_reset_done(struct pci_dev *pdev)
3092{
3093 struct nvme_dev *dev = pci_get_drvdata(pdev);
3094
3095 if (!nvme_try_sched_reset(ctrl: &dev->ctrl))
3096 flush_work(work: &dev->ctrl.reset_work);
3097}
3098
3099static void nvme_shutdown(struct pci_dev *pdev)
3100{
3101 struct nvme_dev *dev = pci_get_drvdata(pdev);
3102
3103 nvme_disable_prepare_reset(dev, shutdown: true);
3104}
3105
3106/*
3107 * The driver's remove may be called on a device in a partially initialized
3108 * state. This function must not have any dependencies on the device state in
3109 * order to proceed.
3110 */
3111static void nvme_remove(struct pci_dev *pdev)
3112{
3113 struct nvme_dev *dev = pci_get_drvdata(pdev);
3114
3115 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
3116 pci_set_drvdata(pdev, NULL);
3117
3118 if (!pci_device_is_present(pdev)) {
3119 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DEAD);
3120 nvme_dev_disable(dev, shutdown: true);
3121 }
3122
3123 flush_work(work: &dev->ctrl.reset_work);
3124 nvme_stop_ctrl(ctrl: &dev->ctrl);
3125 nvme_remove_namespaces(ctrl: &dev->ctrl);
3126 nvme_dev_disable(dev, shutdown: true);
3127 nvme_free_host_mem(dev);
3128 nvme_dev_remove_admin(dev);
3129 nvme_dbbuf_dma_free(dev);
3130 nvme_free_queues(dev, lowest: 0);
3131 mempool_destroy(pool: dev->iod_mempool);
3132 nvme_release_prp_pools(dev);
3133 nvme_dev_unmap(dev);
3134 nvme_uninit_ctrl(ctrl: &dev->ctrl);
3135}
3136
3137#ifdef CONFIG_PM_SLEEP
3138static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3139{
3140 return nvme_get_features(dev: ctrl, fid: NVME_FEAT_POWER_MGMT, dword11: 0, NULL, buflen: 0, result: ps);
3141}
3142
3143static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3144{
3145 return nvme_set_features(dev: ctrl, fid: NVME_FEAT_POWER_MGMT, dword11: ps, NULL, buflen: 0, NULL);
3146}
3147
3148static int nvme_resume(struct device *dev)
3149{
3150 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3151 struct nvme_ctrl *ctrl = &ndev->ctrl;
3152
3153 if (ndev->last_ps == U32_MAX ||
3154 nvme_set_power_state(ctrl, ps: ndev->last_ps) != 0)
3155 goto reset;
3156 if (ctrl->hmpre && nvme_setup_host_mem(dev: ndev))
3157 goto reset;
3158
3159 return 0;
3160reset:
3161 return nvme_try_sched_reset(ctrl);
3162}
3163
3164static int nvme_suspend(struct device *dev)
3165{
3166 struct pci_dev *pdev = to_pci_dev(dev);
3167 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3168 struct nvme_ctrl *ctrl = &ndev->ctrl;
3169 int ret = -EBUSY;
3170
3171 ndev->last_ps = U32_MAX;
3172
3173 /*
3174 * The platform does not remove power for a kernel managed suspend so
3175 * use host managed nvme power settings for lowest idle power if
3176 * possible. This should have quicker resume latency than a full device
3177 * shutdown. But if the firmware is involved after the suspend or the
3178 * device does not support any non-default power states, shut down the
3179 * device fully.
3180 *
3181 * If ASPM is not enabled for the device, shut down the device and allow
3182 * the PCI bus layer to put it into D3 in order to take the PCIe link
3183 * down, so as to allow the platform to achieve its minimum low-power
3184 * state (which may not be possible if the link is up).
3185 */
3186 if (pm_suspend_via_firmware() || !ctrl->npss ||
3187 !pcie_aspm_enabled(pdev) ||
3188 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3189 return nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3190
3191 nvme_start_freeze(ctrl);
3192 nvme_wait_freeze(ctrl);
3193 nvme_sync_queues(ctrl);
3194
3195 if (ctrl->state != NVME_CTRL_LIVE)
3196 goto unfreeze;
3197
3198 /*
3199 * Host memory access may not be successful in a system suspend state,
3200 * but the specification allows the controller to access memory in a
3201 * non-operational power state.
3202 */
3203 if (ndev->hmb) {
3204 ret = nvme_set_host_mem(dev: ndev, bits: 0);
3205 if (ret < 0)
3206 goto unfreeze;
3207 }
3208
3209 ret = nvme_get_power_state(ctrl, ps: &ndev->last_ps);
3210 if (ret < 0)
3211 goto unfreeze;
3212
3213 /*
3214 * A saved state prevents pci pm from generically controlling the
3215 * device's power. If we're using protocol specific settings, we don't
3216 * want pci interfering.
3217 */
3218 pci_save_state(dev: pdev);
3219
3220 ret = nvme_set_power_state(ctrl, ps: ctrl->npss);
3221 if (ret < 0)
3222 goto unfreeze;
3223
3224 if (ret) {
3225 /* discard the saved state */
3226 pci_load_saved_state(dev: pdev, NULL);
3227
3228 /*
3229 * Clearing npss forces a controller reset on resume. The
3230 * correct value will be rediscovered then.
3231 */
3232 ret = nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3233 ctrl->npss = 0;
3234 }
3235unfreeze:
3236 nvme_unfreeze(ctrl);
3237 return ret;
3238}
3239
3240static int nvme_simple_suspend(struct device *dev)
3241{
3242 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3243
3244 return nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3245}
3246
3247static int nvme_simple_resume(struct device *dev)
3248{
3249 struct pci_dev *pdev = to_pci_dev(dev);
3250 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3251
3252 return nvme_try_sched_reset(ctrl: &ndev->ctrl);
3253}
3254
3255static const struct dev_pm_ops nvme_dev_pm_ops = {
3256 .suspend = nvme_suspend,
3257 .resume = nvme_resume,
3258 .freeze = nvme_simple_suspend,
3259 .thaw = nvme_simple_resume,
3260 .poweroff = nvme_simple_suspend,
3261 .restore = nvme_simple_resume,
3262};
3263#endif /* CONFIG_PM_SLEEP */
3264
3265static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3266 pci_channel_state_t state)
3267{
3268 struct nvme_dev *dev = pci_get_drvdata(pdev);
3269
3270 /*
3271 * A frozen channel requires a reset. When detected, this method will
3272 * shutdown the controller to quiesce. The controller will be restarted
3273 * after the slot reset through driver's slot_reset callback.
3274 */
3275 switch (state) {
3276 case pci_channel_io_normal:
3277 return PCI_ERS_RESULT_CAN_RECOVER;
3278 case pci_channel_io_frozen:
3279 dev_warn(dev->ctrl.device,
3280 "frozen state error detected, reset controller\n");
3281 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_RESETTING)) {
3282 nvme_dev_disable(dev, shutdown: true);
3283 return PCI_ERS_RESULT_DISCONNECT;
3284 }
3285 nvme_dev_disable(dev, shutdown: false);
3286 return PCI_ERS_RESULT_NEED_RESET;
3287 case pci_channel_io_perm_failure:
3288 dev_warn(dev->ctrl.device,
3289 "failure state error detected, request disconnect\n");
3290 return PCI_ERS_RESULT_DISCONNECT;
3291 }
3292 return PCI_ERS_RESULT_NEED_RESET;
3293}
3294
3295static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3296{
3297 struct nvme_dev *dev = pci_get_drvdata(pdev);
3298
3299 dev_info(dev->ctrl.device, "restart after slot reset\n");
3300 pci_restore_state(dev: pdev);
3301 if (!nvme_try_sched_reset(ctrl: &dev->ctrl))
3302 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
3303 return PCI_ERS_RESULT_RECOVERED;
3304}
3305
3306static void nvme_error_resume(struct pci_dev *pdev)
3307{
3308 struct nvme_dev *dev = pci_get_drvdata(pdev);
3309
3310 flush_work(work: &dev->ctrl.reset_work);
3311}
3312
3313static const struct pci_error_handlers nvme_err_handler = {
3314 .error_detected = nvme_error_detected,
3315 .slot_reset = nvme_slot_reset,
3316 .resume = nvme_error_resume,
3317 .reset_prepare = nvme_reset_prepare,
3318 .reset_done = nvme_reset_done,
3319};
3320
3321static const struct pci_device_id nvme_id_table[] = {
3322 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3323 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3324 NVME_QUIRK_DEALLOCATE_ZEROES, },
3325 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3326 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3327 NVME_QUIRK_DEALLOCATE_ZEROES, },
3328 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3329 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3330 NVME_QUIRK_DEALLOCATE_ZEROES |
3331 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3332 NVME_QUIRK_BOGUS_NID, },
3333 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3334 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3335 NVME_QUIRK_DEALLOCATE_ZEROES, },
3336 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3337 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3338 NVME_QUIRK_MEDIUM_PRIO_SQ |
3339 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3340 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3341 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3342 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3343 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3344 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3345 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3346 NVME_QUIRK_BOGUS_NID, },
3347 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3348 .driver_data = NVME_QUIRK_BOGUS_NID, },
3349 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3350 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3351 NVME_QUIRK_BOGUS_NID, },
3352 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3353 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3354 NVME_QUIRK_NO_NS_DESC_LIST, },
3355 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3357 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3358 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3359 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3360 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3361 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3362 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3363 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3364 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3365 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3366 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3367 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3368 .driver_data = NVME_QUIRK_BOGUS_NID, },
3369 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3370 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3371 NVME_QUIRK_BOGUS_NID, },
3372 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3373 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3374 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3375 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3376 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3377 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3378 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3379 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3380 .driver_data = NVME_QUIRK_BOGUS_NID, },
3381 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3382 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3383 NVME_QUIRK_BOGUS_NID, },
3384 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3385 .driver_data = NVME_QUIRK_BOGUS_NID, },
3386 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3387 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3388 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3389 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3390 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3391 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3392 .driver_data = NVME_QUIRK_BOGUS_NID, },
3393 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3394 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3396 .driver_data = NVME_QUIRK_BOGUS_NID, },
3397 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3398 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3400 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3401 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3402 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3403 NVME_QUIRK_BOGUS_NID, },
3404 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3405 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3406 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3407 .driver_data = NVME_QUIRK_BOGUS_NID, },
3408 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3409 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3411 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3412 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3413 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3414 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3415 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3416 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3417 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3418 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3419 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3421 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3422 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3423 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3424 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3425 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3426 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3427 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3429 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3431 .driver_data = NVME_QUIRK_BOGUS_NID, },
3432 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3433 .driver_data = NVME_QUIRK_BOGUS_NID, },
3434 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3435 .driver_data = NVME_QUIRK_BOGUS_NID, },
3436 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3437 .driver_data = NVME_QUIRK_BOGUS_NID, },
3438 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3439 .driver_data = NVME_QUIRK_BOGUS_NID, },
3440 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3441 .driver_data = NVME_QUIRK_BOGUS_NID, },
3442 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3443 .driver_data = NVME_QUIRK_BOGUS_NID, },
3444 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3445 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3446 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3447 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3448 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3449 .driver_data = NVME_QUIRK_BOGUS_NID, },
3450 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3451 .driver_data = NVME_QUIRK_BOGUS_NID, },
3452 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3453 .driver_data = NVME_QUIRK_BOGUS_NID, },
3454 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3455 .driver_data = NVME_QUIRK_BOGUS_NID |
3456 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3457 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3458 .driver_data = NVME_QUIRK_BOGUS_NID, },
3459 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3460 .driver_data = NVME_QUIRK_BOGUS_NID, },
3461 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3462 .driver_data = NVME_QUIRK_BOGUS_NID, },
3463 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3464 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3465 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3466 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3467 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3468 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3469 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3470 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3471 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3472 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3473 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3474 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3475 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3476 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3477 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3478 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3479 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3480 NVME_QUIRK_128_BYTES_SQES |
3481 NVME_QUIRK_SHARED_TAGS |
3482 NVME_QUIRK_SKIP_CID_GEN |
3483 NVME_QUIRK_IDENTIFY_CNS },
3484 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3485 { 0, }
3486};
3487MODULE_DEVICE_TABLE(pci, nvme_id_table);
3488
3489static struct pci_driver nvme_driver = {
3490 .name = "nvme",
3491 .id_table = nvme_id_table,
3492 .probe = nvme_probe,
3493 .remove = nvme_remove,
3494 .shutdown = nvme_shutdown,
3495 .driver = {
3496 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3497#ifdef CONFIG_PM_SLEEP
3498 .pm = &nvme_dev_pm_ops,
3499#endif
3500 },
3501 .sriov_configure = pci_sriov_configure_simple,
3502 .err_handler = &nvme_err_handler,
3503};
3504
3505static int __init nvme_init(void)
3506{
3507 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3508 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3509 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3510 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3511 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3512 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3513 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3514
3515 return pci_register_driver(&nvme_driver);
3516}
3517
3518static void __exit nvme_exit(void)
3519{
3520 pci_unregister_driver(dev: &nvme_driver);
3521 flush_workqueue(nvme_wq);
3522}
3523
3524MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3525MODULE_LICENSE("GPL");
3526MODULE_VERSION("1.0");
3527module_init(nvme_init);
3528module_exit(nvme_exit);
3529

source code of linux/drivers/nvme/host/pci.c