1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/random.h>
9#include <linux/rculist.h>
10#include <linux/pci-p2pdma.h>
11#include <linux/scatterlist.h>
12
13#include <generated/utsrelease.h>
14
15#define CREATE_TRACE_POINTS
16#include "trace.h"
17
18#include "nvmet.h"
19
20struct kmem_cache *nvmet_bvec_cache;
21struct workqueue_struct *buffered_io_wq;
22struct workqueue_struct *zbd_wq;
23static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24static DEFINE_IDA(cntlid_ida);
25
26struct workqueue_struct *nvmet_wq;
27EXPORT_SYMBOL_GPL(nvmet_wq);
28
29/*
30 * This read/write semaphore is used to synchronize access to configuration
31 * information on a target system that will result in discovery log page
32 * information change for at least one host.
33 * The full list of resources to protected by this semaphore is:
34 *
35 * - subsystems list
36 * - per-subsystem allowed hosts list
37 * - allow_any_host subsystem attribute
38 * - nvmet_genctr
39 * - the nvmet_transports array
40 *
41 * When updating any of those lists/structures write lock should be obtained,
42 * while when reading (popolating discovery log page or checking host-subsystem
43 * link) read lock is obtained to allow concurrent reads.
44 */
45DECLARE_RWSEM(nvmet_config_sem);
46
47u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
48u64 nvmet_ana_chgcnt;
49DECLARE_RWSEM(nvmet_ana_sem);
50
51inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
52{
53 switch (errno) {
54 case 0:
55 return NVME_SC_SUCCESS;
56 case -ENOSPC:
57 req->error_loc = offsetof(struct nvme_rw_command, length);
58 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
59 case -EREMOTEIO:
60 req->error_loc = offsetof(struct nvme_rw_command, slba);
61 return NVME_SC_LBA_RANGE | NVME_SC_DNR;
62 case -EOPNOTSUPP:
63 req->error_loc = offsetof(struct nvme_common_command, opcode);
64 switch (req->cmd->common.opcode) {
65 case nvme_cmd_dsm:
66 case nvme_cmd_write_zeroes:
67 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
68 default:
69 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70 }
71 break;
72 case -ENODATA:
73 req->error_loc = offsetof(struct nvme_rw_command, nsid);
74 return NVME_SC_ACCESS_DENIED;
75 case -EIO:
76 fallthrough;
77 default:
78 req->error_loc = offsetof(struct nvme_common_command, opcode);
79 return NVME_SC_INTERNAL | NVME_SC_DNR;
80 }
81}
82
83u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
84{
85 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
86 req->sq->qid);
87
88 req->error_loc = offsetof(struct nvme_common_command, opcode);
89 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
90}
91
92static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
93 const char *subsysnqn);
94
95u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
96 size_t len)
97{
98 if (sg_pcopy_from_buffer(sgl: req->sg, nents: req->sg_cnt, buf, buflen: len, skip: off) != len) {
99 req->error_loc = offsetof(struct nvme_common_command, dptr);
100 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
101 }
102 return 0;
103}
104
105u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
106{
107 if (sg_pcopy_to_buffer(sgl: req->sg, nents: req->sg_cnt, buf, buflen: len, skip: off) != len) {
108 req->error_loc = offsetof(struct nvme_common_command, dptr);
109 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
110 }
111 return 0;
112}
113
114u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
115{
116 if (sg_zero_buffer(sgl: req->sg, nents: req->sg_cnt, buflen: len, skip: off) != len) {
117 req->error_loc = offsetof(struct nvme_common_command, dptr);
118 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
119 }
120 return 0;
121}
122
123static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
124{
125 struct nvmet_ns *cur;
126 unsigned long idx;
127 u32 nsid = 0;
128
129 xa_for_each(&subsys->namespaces, idx, cur)
130 nsid = cur->nsid;
131
132 return nsid;
133}
134
135static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
136{
137 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
138}
139
140static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
141{
142 struct nvmet_req *req;
143
144 mutex_lock(&ctrl->lock);
145 while (ctrl->nr_async_event_cmds) {
146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 mutex_unlock(lock: &ctrl->lock);
148 nvmet_req_complete(req, status: NVME_SC_INTERNAL | NVME_SC_DNR);
149 mutex_lock(&ctrl->lock);
150 }
151 mutex_unlock(lock: &ctrl->lock);
152}
153
154static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
155{
156 struct nvmet_async_event *aen;
157 struct nvmet_req *req;
158
159 mutex_lock(&ctrl->lock);
160 while (ctrl->nr_async_event_cmds && !list_empty(head: &ctrl->async_events)) {
161 aen = list_first_entry(&ctrl->async_events,
162 struct nvmet_async_event, entry);
163 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
164 nvmet_set_result(req, result: nvmet_async_event_result(aen));
165
166 list_del(entry: &aen->entry);
167 kfree(objp: aen);
168
169 mutex_unlock(lock: &ctrl->lock);
170 trace_nvmet_async_event(ctrl, result: req->cqe->result.u32);
171 nvmet_req_complete(req, status: 0);
172 mutex_lock(&ctrl->lock);
173 }
174 mutex_unlock(lock: &ctrl->lock);
175}
176
177static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
178{
179 struct nvmet_async_event *aen, *tmp;
180
181 mutex_lock(&ctrl->lock);
182 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
183 list_del(entry: &aen->entry);
184 kfree(objp: aen);
185 }
186 mutex_unlock(lock: &ctrl->lock);
187}
188
189static void nvmet_async_event_work(struct work_struct *work)
190{
191 struct nvmet_ctrl *ctrl =
192 container_of(work, struct nvmet_ctrl, async_event_work);
193
194 nvmet_async_events_process(ctrl);
195}
196
197void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
198 u8 event_info, u8 log_page)
199{
200 struct nvmet_async_event *aen;
201
202 aen = kmalloc(size: sizeof(*aen), GFP_KERNEL);
203 if (!aen)
204 return;
205
206 aen->event_type = event_type;
207 aen->event_info = event_info;
208 aen->log_page = log_page;
209
210 mutex_lock(&ctrl->lock);
211 list_add_tail(new: &aen->entry, head: &ctrl->async_events);
212 mutex_unlock(lock: &ctrl->lock);
213
214 queue_work(wq: nvmet_wq, work: &ctrl->async_event_work);
215}
216
217static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
218{
219 u32 i;
220
221 mutex_lock(&ctrl->lock);
222 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
223 goto out_unlock;
224
225 for (i = 0; i < ctrl->nr_changed_ns; i++) {
226 if (ctrl->changed_ns_list[i] == nsid)
227 goto out_unlock;
228 }
229
230 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
231 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
232 ctrl->nr_changed_ns = U32_MAX;
233 goto out_unlock;
234 }
235
236 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
237out_unlock:
238 mutex_unlock(lock: &ctrl->lock);
239}
240
241void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
242{
243 struct nvmet_ctrl *ctrl;
244
245 lockdep_assert_held(&subsys->lock);
246
247 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
248 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
249 if (nvmet_aen_bit_disabled(ctrl, bn: NVME_AEN_BIT_NS_ATTR))
250 continue;
251 nvmet_add_async_event(ctrl, event_type: NVME_AER_TYPE_NOTICE,
252 event_info: NVME_AER_NOTICE_NS_CHANGED,
253 log_page: NVME_LOG_CHANGED_NS);
254 }
255}
256
257void nvmet_send_ana_event(struct nvmet_subsys *subsys,
258 struct nvmet_port *port)
259{
260 struct nvmet_ctrl *ctrl;
261
262 mutex_lock(&subsys->lock);
263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
264 if (port && ctrl->port != port)
265 continue;
266 if (nvmet_aen_bit_disabled(ctrl, bn: NVME_AEN_BIT_ANA_CHANGE))
267 continue;
268 nvmet_add_async_event(ctrl, event_type: NVME_AER_TYPE_NOTICE,
269 event_info: NVME_AER_NOTICE_ANA, log_page: NVME_LOG_ANA);
270 }
271 mutex_unlock(lock: &subsys->lock);
272}
273
274void nvmet_port_send_ana_event(struct nvmet_port *port)
275{
276 struct nvmet_subsys_link *p;
277
278 down_read(sem: &nvmet_config_sem);
279 list_for_each_entry(p, &port->subsystems, entry)
280 nvmet_send_ana_event(subsys: p->subsys, port);
281 up_read(sem: &nvmet_config_sem);
282}
283
284int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
285{
286 int ret = 0;
287
288 down_write(sem: &nvmet_config_sem);
289 if (nvmet_transports[ops->type])
290 ret = -EINVAL;
291 else
292 nvmet_transports[ops->type] = ops;
293 up_write(sem: &nvmet_config_sem);
294
295 return ret;
296}
297EXPORT_SYMBOL_GPL(nvmet_register_transport);
298
299void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
300{
301 down_write(sem: &nvmet_config_sem);
302 nvmet_transports[ops->type] = NULL;
303 up_write(sem: &nvmet_config_sem);
304}
305EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
306
307void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
308{
309 struct nvmet_ctrl *ctrl;
310
311 mutex_lock(&subsys->lock);
312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
313 if (ctrl->port == port)
314 ctrl->ops->delete_ctrl(ctrl);
315 }
316 mutex_unlock(lock: &subsys->lock);
317}
318
319int nvmet_enable_port(struct nvmet_port *port)
320{
321 const struct nvmet_fabrics_ops *ops;
322 int ret;
323
324 lockdep_assert_held(&nvmet_config_sem);
325
326 ops = nvmet_transports[port->disc_addr.trtype];
327 if (!ops) {
328 up_write(sem: &nvmet_config_sem);
329 request_module("nvmet-transport-%d", port->disc_addr.trtype);
330 down_write(sem: &nvmet_config_sem);
331 ops = nvmet_transports[port->disc_addr.trtype];
332 if (!ops) {
333 pr_err("transport type %d not supported\n",
334 port->disc_addr.trtype);
335 return -EINVAL;
336 }
337 }
338
339 if (!try_module_get(module: ops->owner))
340 return -EINVAL;
341
342 /*
343 * If the user requested PI support and the transport isn't pi capable,
344 * don't enable the port.
345 */
346 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
347 pr_err("T10-PI is not supported by transport type %d\n",
348 port->disc_addr.trtype);
349 ret = -EINVAL;
350 goto out_put;
351 }
352
353 ret = ops->add_port(port);
354 if (ret)
355 goto out_put;
356
357 /* If the transport didn't set inline_data_size, then disable it. */
358 if (port->inline_data_size < 0)
359 port->inline_data_size = 0;
360
361 port->enabled = true;
362 port->tr_ops = ops;
363 return 0;
364
365out_put:
366 module_put(module: ops->owner);
367 return ret;
368}
369
370void nvmet_disable_port(struct nvmet_port *port)
371{
372 const struct nvmet_fabrics_ops *ops;
373
374 lockdep_assert_held(&nvmet_config_sem);
375
376 port->enabled = false;
377 port->tr_ops = NULL;
378
379 ops = nvmet_transports[port->disc_addr.trtype];
380 ops->remove_port(port);
381 module_put(module: ops->owner);
382}
383
384static void nvmet_keep_alive_timer(struct work_struct *work)
385{
386 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
387 struct nvmet_ctrl, ka_work);
388 bool reset_tbkas = ctrl->reset_tbkas;
389
390 ctrl->reset_tbkas = false;
391 if (reset_tbkas) {
392 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
393 ctrl->cntlid);
394 queue_delayed_work(wq: nvmet_wq, dwork: &ctrl->ka_work, delay: ctrl->kato * HZ);
395 return;
396 }
397
398 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
399 ctrl->cntlid, ctrl->kato);
400
401 nvmet_ctrl_fatal_error(ctrl);
402}
403
404void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
405{
406 if (unlikely(ctrl->kato == 0))
407 return;
408
409 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
410 ctrl->cntlid, ctrl->kato);
411
412 queue_delayed_work(wq: nvmet_wq, dwork: &ctrl->ka_work, delay: ctrl->kato * HZ);
413}
414
415void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
416{
417 if (unlikely(ctrl->kato == 0))
418 return;
419
420 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
421
422 cancel_delayed_work_sync(dwork: &ctrl->ka_work);
423}
424
425u16 nvmet_req_find_ns(struct nvmet_req *req)
426{
427 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
428
429 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, index: nsid);
430 if (unlikely(!req->ns)) {
431 req->error_loc = offsetof(struct nvme_common_command, nsid);
432 return NVME_SC_INVALID_NS | NVME_SC_DNR;
433 }
434
435 percpu_ref_get(ref: &req->ns->ref);
436 return NVME_SC_SUCCESS;
437}
438
439static void nvmet_destroy_namespace(struct percpu_ref *ref)
440{
441 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
442
443 complete(&ns->disable_done);
444}
445
446void nvmet_put_namespace(struct nvmet_ns *ns)
447{
448 percpu_ref_put(ref: &ns->ref);
449}
450
451static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
452{
453 nvmet_bdev_ns_disable(ns);
454 nvmet_file_ns_disable(ns);
455}
456
457static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
458{
459 int ret;
460 struct pci_dev *p2p_dev;
461
462 if (!ns->use_p2pmem)
463 return 0;
464
465 if (!ns->bdev) {
466 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
467 return -EINVAL;
468 }
469
470 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
471 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
472 ns->device_path);
473 return -EINVAL;
474 }
475
476 if (ns->p2p_dev) {
477 ret = pci_p2pdma_distance(provider: ns->p2p_dev, client: nvmet_ns_dev(ns), verbose: true);
478 if (ret < 0)
479 return -EINVAL;
480 } else {
481 /*
482 * Right now we just check that there is p2pmem available so
483 * we can report an error to the user right away if there
484 * is not. We'll find the actual device to use once we
485 * setup the controller when the port's device is available.
486 */
487
488 p2p_dev = pci_p2pmem_find(client: nvmet_ns_dev(ns));
489 if (!p2p_dev) {
490 pr_err("no peer-to-peer memory is available for %s\n",
491 ns->device_path);
492 return -EINVAL;
493 }
494
495 pci_dev_put(dev: p2p_dev);
496 }
497
498 return 0;
499}
500
501/*
502 * Note: ctrl->subsys->lock should be held when calling this function
503 */
504static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
505 struct nvmet_ns *ns)
506{
507 struct device *clients[2];
508 struct pci_dev *p2p_dev;
509 int ret;
510
511 if (!ctrl->p2p_client || !ns->use_p2pmem)
512 return;
513
514 if (ns->p2p_dev) {
515 ret = pci_p2pdma_distance(provider: ns->p2p_dev, client: ctrl->p2p_client, verbose: true);
516 if (ret < 0)
517 return;
518
519 p2p_dev = pci_dev_get(dev: ns->p2p_dev);
520 } else {
521 clients[0] = ctrl->p2p_client;
522 clients[1] = nvmet_ns_dev(ns);
523
524 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
525 if (!p2p_dev) {
526 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
527 dev_name(ctrl->p2p_client), ns->device_path);
528 return;
529 }
530 }
531
532 ret = radix_tree_insert(&ctrl->p2p_ns_map, index: ns->nsid, p2p_dev);
533 if (ret < 0)
534 pci_dev_put(dev: p2p_dev);
535
536 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
537 ns->nsid);
538}
539
540bool nvmet_ns_revalidate(struct nvmet_ns *ns)
541{
542 loff_t oldsize = ns->size;
543
544 if (ns->bdev)
545 nvmet_bdev_ns_revalidate(ns);
546 else
547 nvmet_file_ns_revalidate(ns);
548
549 return oldsize != ns->size;
550}
551
552int nvmet_ns_enable(struct nvmet_ns *ns)
553{
554 struct nvmet_subsys *subsys = ns->subsys;
555 struct nvmet_ctrl *ctrl;
556 int ret;
557
558 mutex_lock(&subsys->lock);
559 ret = 0;
560
561 if (nvmet_is_passthru_subsys(subsys)) {
562 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
563 goto out_unlock;
564 }
565
566 if (ns->enabled)
567 goto out_unlock;
568
569 ret = -EMFILE;
570 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
571 goto out_unlock;
572
573 ret = nvmet_bdev_ns_enable(ns);
574 if (ret == -ENOTBLK)
575 ret = nvmet_file_ns_enable(ns);
576 if (ret)
577 goto out_unlock;
578
579 ret = nvmet_p2pmem_ns_enable(ns);
580 if (ret)
581 goto out_dev_disable;
582
583 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
584 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
585
586 ret = percpu_ref_init(ref: &ns->ref, release: nvmet_destroy_namespace,
587 flags: 0, GFP_KERNEL);
588 if (ret)
589 goto out_dev_put;
590
591 if (ns->nsid > subsys->max_nsid)
592 subsys->max_nsid = ns->nsid;
593
594 ret = xa_insert(xa: &subsys->namespaces, index: ns->nsid, entry: ns, GFP_KERNEL);
595 if (ret)
596 goto out_restore_subsys_maxnsid;
597
598 subsys->nr_namespaces++;
599
600 nvmet_ns_changed(subsys, nsid: ns->nsid);
601 ns->enabled = true;
602 ret = 0;
603out_unlock:
604 mutex_unlock(lock: &subsys->lock);
605 return ret;
606
607out_restore_subsys_maxnsid:
608 subsys->max_nsid = nvmet_max_nsid(subsys);
609 percpu_ref_exit(ref: &ns->ref);
610out_dev_put:
611 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
612 pci_dev_put(dev: radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
613out_dev_disable:
614 nvmet_ns_dev_disable(ns);
615 goto out_unlock;
616}
617
618void nvmet_ns_disable(struct nvmet_ns *ns)
619{
620 struct nvmet_subsys *subsys = ns->subsys;
621 struct nvmet_ctrl *ctrl;
622
623 mutex_lock(&subsys->lock);
624 if (!ns->enabled)
625 goto out_unlock;
626
627 ns->enabled = false;
628 xa_erase(&ns->subsys->namespaces, index: ns->nsid);
629 if (ns->nsid == subsys->max_nsid)
630 subsys->max_nsid = nvmet_max_nsid(subsys);
631
632 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
633 pci_dev_put(dev: radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
634
635 mutex_unlock(lock: &subsys->lock);
636
637 /*
638 * Now that we removed the namespaces from the lookup list, we
639 * can kill the per_cpu ref and wait for any remaining references
640 * to be dropped, as well as a RCU grace period for anyone only
641 * using the namepace under rcu_read_lock(). Note that we can't
642 * use call_rcu here as we need to ensure the namespaces have
643 * been fully destroyed before unloading the module.
644 */
645 percpu_ref_kill(ref: &ns->ref);
646 synchronize_rcu();
647 wait_for_completion(&ns->disable_done);
648 percpu_ref_exit(ref: &ns->ref);
649
650 mutex_lock(&subsys->lock);
651
652 subsys->nr_namespaces--;
653 nvmet_ns_changed(subsys, nsid: ns->nsid);
654 nvmet_ns_dev_disable(ns);
655out_unlock:
656 mutex_unlock(lock: &subsys->lock);
657}
658
659void nvmet_ns_free(struct nvmet_ns *ns)
660{
661 nvmet_ns_disable(ns);
662
663 down_write(sem: &nvmet_ana_sem);
664 nvmet_ana_group_enabled[ns->anagrpid]--;
665 up_write(sem: &nvmet_ana_sem);
666
667 kfree(objp: ns->device_path);
668 kfree(objp: ns);
669}
670
671struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
672{
673 struct nvmet_ns *ns;
674
675 ns = kzalloc(size: sizeof(*ns), GFP_KERNEL);
676 if (!ns)
677 return NULL;
678
679 init_completion(x: &ns->disable_done);
680
681 ns->nsid = nsid;
682 ns->subsys = subsys;
683
684 down_write(sem: &nvmet_ana_sem);
685 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
686 nvmet_ana_group_enabled[ns->anagrpid]++;
687 up_write(sem: &nvmet_ana_sem);
688
689 uuid_gen(u: &ns->uuid);
690 ns->buffered_io = false;
691 ns->csi = NVME_CSI_NVM;
692
693 return ns;
694}
695
696static void nvmet_update_sq_head(struct nvmet_req *req)
697{
698 if (req->sq->size) {
699 u32 old_sqhd, new_sqhd;
700
701 old_sqhd = READ_ONCE(req->sq->sqhd);
702 do {
703 new_sqhd = (old_sqhd + 1) % req->sq->size;
704 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
705 }
706 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
707}
708
709static void nvmet_set_error(struct nvmet_req *req, u16 status)
710{
711 struct nvmet_ctrl *ctrl = req->sq->ctrl;
712 struct nvme_error_slot *new_error_slot;
713 unsigned long flags;
714
715 req->cqe->status = cpu_to_le16(status << 1);
716
717 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
718 return;
719
720 spin_lock_irqsave(&ctrl->error_lock, flags);
721 ctrl->err_counter++;
722 new_error_slot =
723 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
724
725 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
726 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
727 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
728 new_error_slot->status_field = cpu_to_le16(status << 1);
729 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
730 new_error_slot->lba = cpu_to_le64(req->error_slba);
731 new_error_slot->nsid = req->cmd->common.nsid;
732 spin_unlock_irqrestore(lock: &ctrl->error_lock, flags);
733
734 /* set the more bit for this request */
735 req->cqe->status |= cpu_to_le16(1 << 14);
736}
737
738static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
739{
740 struct nvmet_ns *ns = req->ns;
741
742 if (!req->sq->sqhd_disabled)
743 nvmet_update_sq_head(req);
744 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
745 req->cqe->command_id = req->cmd->common.command_id;
746
747 if (unlikely(status))
748 nvmet_set_error(req, status);
749
750 trace_nvmet_req_complete(req);
751
752 req->ops->queue_response(req);
753 if (ns)
754 nvmet_put_namespace(ns);
755}
756
757void nvmet_req_complete(struct nvmet_req *req, u16 status)
758{
759 struct nvmet_sq *sq = req->sq;
760
761 __nvmet_req_complete(req, status);
762 percpu_ref_put(ref: &sq->ref);
763}
764EXPORT_SYMBOL_GPL(nvmet_req_complete);
765
766void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
767 u16 qid, u16 size)
768{
769 cq->qid = qid;
770 cq->size = size;
771}
772
773void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
774 u16 qid, u16 size)
775{
776 sq->sqhd = 0;
777 sq->qid = qid;
778 sq->size = size;
779
780 ctrl->sqs[qid] = sq;
781}
782
783static void nvmet_confirm_sq(struct percpu_ref *ref)
784{
785 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
786
787 complete(&sq->confirm_done);
788}
789
790void nvmet_sq_destroy(struct nvmet_sq *sq)
791{
792 struct nvmet_ctrl *ctrl = sq->ctrl;
793
794 /*
795 * If this is the admin queue, complete all AERs so that our
796 * queue doesn't have outstanding requests on it.
797 */
798 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
799 nvmet_async_events_failall(ctrl);
800 percpu_ref_kill_and_confirm(ref: &sq->ref, confirm_kill: nvmet_confirm_sq);
801 wait_for_completion(&sq->confirm_done);
802 wait_for_completion(&sq->free_done);
803 percpu_ref_exit(ref: &sq->ref);
804 nvmet_auth_sq_free(sq);
805
806 if (ctrl) {
807 /*
808 * The teardown flow may take some time, and the host may not
809 * send us keep-alive during this period, hence reset the
810 * traffic based keep-alive timer so we don't trigger a
811 * controller teardown as a result of a keep-alive expiration.
812 */
813 ctrl->reset_tbkas = true;
814 sq->ctrl->sqs[sq->qid] = NULL;
815 nvmet_ctrl_put(ctrl);
816 sq->ctrl = NULL; /* allows reusing the queue later */
817 }
818}
819EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
820
821static void nvmet_sq_free(struct percpu_ref *ref)
822{
823 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
824
825 complete(&sq->free_done);
826}
827
828int nvmet_sq_init(struct nvmet_sq *sq)
829{
830 int ret;
831
832 ret = percpu_ref_init(ref: &sq->ref, release: nvmet_sq_free, flags: 0, GFP_KERNEL);
833 if (ret) {
834 pr_err("percpu_ref init failed!\n");
835 return ret;
836 }
837 init_completion(x: &sq->free_done);
838 init_completion(x: &sq->confirm_done);
839 nvmet_auth_sq_init(sq);
840
841 return 0;
842}
843EXPORT_SYMBOL_GPL(nvmet_sq_init);
844
845static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
846 struct nvmet_ns *ns)
847{
848 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
849
850 if (unlikely(state == NVME_ANA_INACCESSIBLE))
851 return NVME_SC_ANA_INACCESSIBLE;
852 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
853 return NVME_SC_ANA_PERSISTENT_LOSS;
854 if (unlikely(state == NVME_ANA_CHANGE))
855 return NVME_SC_ANA_TRANSITION;
856 return 0;
857}
858
859static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
860{
861 if (unlikely(req->ns->readonly)) {
862 switch (req->cmd->common.opcode) {
863 case nvme_cmd_read:
864 case nvme_cmd_flush:
865 break;
866 default:
867 return NVME_SC_NS_WRITE_PROTECTED;
868 }
869 }
870
871 return 0;
872}
873
874static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
875{
876 struct nvme_command *cmd = req->cmd;
877 u16 ret;
878
879 if (nvme_is_fabrics(cmd))
880 return nvmet_parse_fabrics_io_cmd(req);
881
882 if (unlikely(!nvmet_check_auth_status(req)))
883 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
884
885 ret = nvmet_check_ctrl_status(req);
886 if (unlikely(ret))
887 return ret;
888
889 if (nvmet_is_passthru_req(req))
890 return nvmet_parse_passthru_io_cmd(req);
891
892 ret = nvmet_req_find_ns(req);
893 if (unlikely(ret))
894 return ret;
895
896 ret = nvmet_check_ana_state(port: req->port, ns: req->ns);
897 if (unlikely(ret)) {
898 req->error_loc = offsetof(struct nvme_common_command, nsid);
899 return ret;
900 }
901 ret = nvmet_io_cmd_check_access(req);
902 if (unlikely(ret)) {
903 req->error_loc = offsetof(struct nvme_common_command, nsid);
904 return ret;
905 }
906
907 switch (req->ns->csi) {
908 case NVME_CSI_NVM:
909 if (req->ns->file)
910 return nvmet_file_parse_io_cmd(req);
911 return nvmet_bdev_parse_io_cmd(req);
912 case NVME_CSI_ZNS:
913 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
914 return nvmet_bdev_zns_parse_io_cmd(req);
915 return NVME_SC_INVALID_IO_CMD_SET;
916 default:
917 return NVME_SC_INVALID_IO_CMD_SET;
918 }
919}
920
921bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
922 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
923{
924 u8 flags = req->cmd->common.flags;
925 u16 status;
926
927 req->cq = cq;
928 req->sq = sq;
929 req->ops = ops;
930 req->sg = NULL;
931 req->metadata_sg = NULL;
932 req->sg_cnt = 0;
933 req->metadata_sg_cnt = 0;
934 req->transfer_len = 0;
935 req->metadata_len = 0;
936 req->cqe->status = 0;
937 req->cqe->sq_head = 0;
938 req->ns = NULL;
939 req->error_loc = NVMET_NO_ERROR_LOC;
940 req->error_slba = 0;
941
942 /* no support for fused commands yet */
943 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
944 req->error_loc = offsetof(struct nvme_common_command, flags);
945 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
946 goto fail;
947 }
948
949 /*
950 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
951 * contains an address of a single contiguous physical buffer that is
952 * byte aligned.
953 */
954 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
955 req->error_loc = offsetof(struct nvme_common_command, flags);
956 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
957 goto fail;
958 }
959
960 if (unlikely(!req->sq->ctrl))
961 /* will return an error for any non-connect command: */
962 status = nvmet_parse_connect_cmd(req);
963 else if (likely(req->sq->qid != 0))
964 status = nvmet_parse_io_cmd(req);
965 else
966 status = nvmet_parse_admin_cmd(req);
967
968 if (status)
969 goto fail;
970
971 trace_nvmet_req_init(req, cmd: req->cmd);
972
973 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
974 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
975 goto fail;
976 }
977
978 if (sq->ctrl)
979 sq->ctrl->reset_tbkas = true;
980
981 return true;
982
983fail:
984 __nvmet_req_complete(req, status);
985 return false;
986}
987EXPORT_SYMBOL_GPL(nvmet_req_init);
988
989void nvmet_req_uninit(struct nvmet_req *req)
990{
991 percpu_ref_put(ref: &req->sq->ref);
992 if (req->ns)
993 nvmet_put_namespace(ns: req->ns);
994}
995EXPORT_SYMBOL_GPL(nvmet_req_uninit);
996
997bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
998{
999 if (unlikely(len != req->transfer_len)) {
1000 req->error_loc = offsetof(struct nvme_common_command, dptr);
1001 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1002 return false;
1003 }
1004
1005 return true;
1006}
1007EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1008
1009bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1010{
1011 if (unlikely(data_len > req->transfer_len)) {
1012 req->error_loc = offsetof(struct nvme_common_command, dptr);
1013 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1014 return false;
1015 }
1016
1017 return true;
1018}
1019
1020static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1021{
1022 return req->transfer_len - req->metadata_len;
1023}
1024
1025static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1026 struct nvmet_req *req)
1027{
1028 req->sg = pci_p2pmem_alloc_sgl(pdev: p2p_dev, nents: &req->sg_cnt,
1029 length: nvmet_data_transfer_len(req));
1030 if (!req->sg)
1031 goto out_err;
1032
1033 if (req->metadata_len) {
1034 req->metadata_sg = pci_p2pmem_alloc_sgl(pdev: p2p_dev,
1035 nents: &req->metadata_sg_cnt, length: req->metadata_len);
1036 if (!req->metadata_sg)
1037 goto out_free_sg;
1038 }
1039
1040 req->p2p_dev = p2p_dev;
1041
1042 return 0;
1043out_free_sg:
1044 pci_p2pmem_free_sgl(pdev: req->p2p_dev, sgl: req->sg);
1045out_err:
1046 return -ENOMEM;
1047}
1048
1049static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1050{
1051 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1052 !req->sq->ctrl || !req->sq->qid || !req->ns)
1053 return NULL;
1054 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1055}
1056
1057int nvmet_req_alloc_sgls(struct nvmet_req *req)
1058{
1059 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1060
1061 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1062 return 0;
1063
1064 req->sg = sgl_alloc(length: nvmet_data_transfer_len(req), GFP_KERNEL,
1065 nent_p: &req->sg_cnt);
1066 if (unlikely(!req->sg))
1067 goto out;
1068
1069 if (req->metadata_len) {
1070 req->metadata_sg = sgl_alloc(length: req->metadata_len, GFP_KERNEL,
1071 nent_p: &req->metadata_sg_cnt);
1072 if (unlikely(!req->metadata_sg))
1073 goto out_free;
1074 }
1075
1076 return 0;
1077out_free:
1078 sgl_free(sgl: req->sg);
1079out:
1080 return -ENOMEM;
1081}
1082EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1083
1084void nvmet_req_free_sgls(struct nvmet_req *req)
1085{
1086 if (req->p2p_dev) {
1087 pci_p2pmem_free_sgl(pdev: req->p2p_dev, sgl: req->sg);
1088 if (req->metadata_sg)
1089 pci_p2pmem_free_sgl(pdev: req->p2p_dev, sgl: req->metadata_sg);
1090 req->p2p_dev = NULL;
1091 } else {
1092 sgl_free(sgl: req->sg);
1093 if (req->metadata_sg)
1094 sgl_free(sgl: req->metadata_sg);
1095 }
1096
1097 req->sg = NULL;
1098 req->metadata_sg = NULL;
1099 req->sg_cnt = 0;
1100 req->metadata_sg_cnt = 0;
1101}
1102EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1103
1104static inline bool nvmet_cc_en(u32 cc)
1105{
1106 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1107}
1108
1109static inline u8 nvmet_cc_css(u32 cc)
1110{
1111 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1112}
1113
1114static inline u8 nvmet_cc_mps(u32 cc)
1115{
1116 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1117}
1118
1119static inline u8 nvmet_cc_ams(u32 cc)
1120{
1121 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1122}
1123
1124static inline u8 nvmet_cc_shn(u32 cc)
1125{
1126 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1127}
1128
1129static inline u8 nvmet_cc_iosqes(u32 cc)
1130{
1131 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1132}
1133
1134static inline u8 nvmet_cc_iocqes(u32 cc)
1135{
1136 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1137}
1138
1139static inline bool nvmet_css_supported(u8 cc_css)
1140{
1141 switch (cc_css << NVME_CC_CSS_SHIFT) {
1142 case NVME_CC_CSS_NVM:
1143 case NVME_CC_CSS_CSI:
1144 return true;
1145 default:
1146 return false;
1147 }
1148}
1149
1150static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1151{
1152 lockdep_assert_held(&ctrl->lock);
1153
1154 /*
1155 * Only I/O controllers should verify iosqes,iocqes.
1156 * Strictly speaking, the spec says a discovery controller
1157 * should verify iosqes,iocqes are zeroed, however that
1158 * would break backwards compatibility, so don't enforce it.
1159 */
1160 if (!nvmet_is_disc_subsys(subsys: ctrl->subsys) &&
1161 (nvmet_cc_iosqes(cc: ctrl->cc) != NVME_NVM_IOSQES ||
1162 nvmet_cc_iocqes(cc: ctrl->cc) != NVME_NVM_IOCQES)) {
1163 ctrl->csts = NVME_CSTS_CFS;
1164 return;
1165 }
1166
1167 if (nvmet_cc_mps(cc: ctrl->cc) != 0 ||
1168 nvmet_cc_ams(cc: ctrl->cc) != 0 ||
1169 !nvmet_css_supported(cc_css: nvmet_cc_css(cc: ctrl->cc))) {
1170 ctrl->csts = NVME_CSTS_CFS;
1171 return;
1172 }
1173
1174 ctrl->csts = NVME_CSTS_RDY;
1175
1176 /*
1177 * Controllers that are not yet enabled should not really enforce the
1178 * keep alive timeout, but we still want to track a timeout and cleanup
1179 * in case a host died before it enabled the controller. Hence, simply
1180 * reset the keep alive timer when the controller is enabled.
1181 */
1182 if (ctrl->kato)
1183 mod_delayed_work(wq: nvmet_wq, dwork: &ctrl->ka_work, delay: ctrl->kato * HZ);
1184}
1185
1186static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1187{
1188 lockdep_assert_held(&ctrl->lock);
1189
1190 /* XXX: tear down queues? */
1191 ctrl->csts &= ~NVME_CSTS_RDY;
1192 ctrl->cc = 0;
1193}
1194
1195void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1196{
1197 u32 old;
1198
1199 mutex_lock(&ctrl->lock);
1200 old = ctrl->cc;
1201 ctrl->cc = new;
1202
1203 if (nvmet_cc_en(cc: new) && !nvmet_cc_en(cc: old))
1204 nvmet_start_ctrl(ctrl);
1205 if (!nvmet_cc_en(cc: new) && nvmet_cc_en(cc: old))
1206 nvmet_clear_ctrl(ctrl);
1207 if (nvmet_cc_shn(cc: new) && !nvmet_cc_shn(cc: old)) {
1208 nvmet_clear_ctrl(ctrl);
1209 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1210 }
1211 if (!nvmet_cc_shn(cc: new) && nvmet_cc_shn(cc: old))
1212 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1213 mutex_unlock(lock: &ctrl->lock);
1214}
1215
1216static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1217{
1218 /* command sets supported: NVMe command set: */
1219 ctrl->cap = (1ULL << 37);
1220 /* Controller supports one or more I/O Command Sets */
1221 ctrl->cap |= (1ULL << 43);
1222 /* CC.EN timeout in 500msec units: */
1223 ctrl->cap |= (15ULL << 24);
1224 /* maximum queue entries supported: */
1225 if (ctrl->ops->get_max_queue_size)
1226 ctrl->cap |= ctrl->ops->get_max_queue_size(ctrl) - 1;
1227 else
1228 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1229
1230 if (nvmet_is_passthru_subsys(subsys: ctrl->subsys))
1231 nvmet_passthrough_override_cap(ctrl);
1232}
1233
1234struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1235 const char *hostnqn, u16 cntlid,
1236 struct nvmet_req *req)
1237{
1238 struct nvmet_ctrl *ctrl = NULL;
1239 struct nvmet_subsys *subsys;
1240
1241 subsys = nvmet_find_get_subsys(port: req->port, subsysnqn);
1242 if (!subsys) {
1243 pr_warn("connect request for invalid subsystem %s!\n",
1244 subsysnqn);
1245 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1246 goto out;
1247 }
1248
1249 mutex_lock(&subsys->lock);
1250 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1251 if (ctrl->cntlid == cntlid) {
1252 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1253 pr_warn("hostnqn mismatch.\n");
1254 continue;
1255 }
1256 if (!kref_get_unless_zero(kref: &ctrl->ref))
1257 continue;
1258
1259 /* ctrl found */
1260 goto found;
1261 }
1262 }
1263
1264 ctrl = NULL; /* ctrl not found */
1265 pr_warn("could not find controller %d for subsys %s / host %s\n",
1266 cntlid, subsysnqn, hostnqn);
1267 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1268
1269found:
1270 mutex_unlock(lock: &subsys->lock);
1271 nvmet_subsys_put(subsys);
1272out:
1273 return ctrl;
1274}
1275
1276u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1277{
1278 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1279 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1280 req->cmd->common.opcode, req->sq->qid);
1281 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1282 }
1283
1284 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1285 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1286 req->cmd->common.opcode, req->sq->qid);
1287 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1288 }
1289
1290 if (unlikely(!nvmet_check_auth_status(req))) {
1291 pr_warn("qid %d not authenticated\n", req->sq->qid);
1292 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1293 }
1294 return 0;
1295}
1296
1297bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1298{
1299 struct nvmet_host_link *p;
1300
1301 lockdep_assert_held(&nvmet_config_sem);
1302
1303 if (subsys->allow_any_host)
1304 return true;
1305
1306 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1307 return true;
1308
1309 list_for_each_entry(p, &subsys->hosts, entry) {
1310 if (!strcmp(nvmet_host_name(host: p->host), hostnqn))
1311 return true;
1312 }
1313
1314 return false;
1315}
1316
1317/*
1318 * Note: ctrl->subsys->lock should be held when calling this function
1319 */
1320static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1321 struct nvmet_req *req)
1322{
1323 struct nvmet_ns *ns;
1324 unsigned long idx;
1325
1326 if (!req->p2p_client)
1327 return;
1328
1329 ctrl->p2p_client = get_device(dev: req->p2p_client);
1330
1331 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1332 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1333}
1334
1335/*
1336 * Note: ctrl->subsys->lock should be held when calling this function
1337 */
1338static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1339{
1340 struct radix_tree_iter iter;
1341 void __rcu **slot;
1342
1343 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1344 pci_dev_put(dev: radix_tree_deref_slot(slot));
1345
1346 put_device(dev: ctrl->p2p_client);
1347}
1348
1349static void nvmet_fatal_error_handler(struct work_struct *work)
1350{
1351 struct nvmet_ctrl *ctrl =
1352 container_of(work, struct nvmet_ctrl, fatal_err_work);
1353
1354 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1355 ctrl->ops->delete_ctrl(ctrl);
1356}
1357
1358u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1359 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1360{
1361 struct nvmet_subsys *subsys;
1362 struct nvmet_ctrl *ctrl;
1363 int ret;
1364 u16 status;
1365
1366 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1367 subsys = nvmet_find_get_subsys(port: req->port, subsysnqn);
1368 if (!subsys) {
1369 pr_warn("connect request for invalid subsystem %s!\n",
1370 subsysnqn);
1371 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1372 req->error_loc = offsetof(struct nvme_common_command, dptr);
1373 goto out;
1374 }
1375
1376 down_read(sem: &nvmet_config_sem);
1377 if (!nvmet_host_allowed(subsys, hostnqn)) {
1378 pr_info("connect by host %s for subsystem %s not allowed\n",
1379 hostnqn, subsysnqn);
1380 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1381 up_read(sem: &nvmet_config_sem);
1382 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1383 req->error_loc = offsetof(struct nvme_common_command, dptr);
1384 goto out_put_subsystem;
1385 }
1386 up_read(sem: &nvmet_config_sem);
1387
1388 status = NVME_SC_INTERNAL;
1389 ctrl = kzalloc(size: sizeof(*ctrl), GFP_KERNEL);
1390 if (!ctrl)
1391 goto out_put_subsystem;
1392 mutex_init(&ctrl->lock);
1393
1394 ctrl->port = req->port;
1395 ctrl->ops = req->ops;
1396
1397#ifdef CONFIG_NVME_TARGET_PASSTHRU
1398 /* By default, set loop targets to clear IDS by default */
1399 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1400 subsys->clear_ids = 1;
1401#endif
1402
1403 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1404 INIT_LIST_HEAD(list: &ctrl->async_events);
1405 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1406 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1407 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1408
1409 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1410 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1411
1412 kref_init(kref: &ctrl->ref);
1413 ctrl->subsys = subsys;
1414 nvmet_init_cap(ctrl);
1415 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1416
1417 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1418 size: sizeof(__le32), GFP_KERNEL);
1419 if (!ctrl->changed_ns_list)
1420 goto out_free_ctrl;
1421
1422 ctrl->sqs = kcalloc(n: subsys->max_qid + 1,
1423 size: sizeof(struct nvmet_sq *),
1424 GFP_KERNEL);
1425 if (!ctrl->sqs)
1426 goto out_free_changed_ns_list;
1427
1428 if (subsys->cntlid_min > subsys->cntlid_max)
1429 goto out_free_sqs;
1430
1431 ret = ida_alloc_range(&cntlid_ida,
1432 min: subsys->cntlid_min, max: subsys->cntlid_max,
1433 GFP_KERNEL);
1434 if (ret < 0) {
1435 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1436 goto out_free_sqs;
1437 }
1438 ctrl->cntlid = ret;
1439
1440 /*
1441 * Discovery controllers may use some arbitrary high value
1442 * in order to cleanup stale discovery sessions
1443 */
1444 if (nvmet_is_disc_subsys(subsys: ctrl->subsys) && !kato)
1445 kato = NVMET_DISC_KATO_MS;
1446
1447 /* keep-alive timeout in seconds */
1448 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1449
1450 ctrl->err_counter = 0;
1451 spin_lock_init(&ctrl->error_lock);
1452
1453 nvmet_start_keep_alive_timer(ctrl);
1454
1455 mutex_lock(&subsys->lock);
1456 list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls);
1457 nvmet_setup_p2p_ns_map(ctrl, req);
1458 mutex_unlock(lock: &subsys->lock);
1459
1460 *ctrlp = ctrl;
1461 return 0;
1462
1463out_free_sqs:
1464 kfree(objp: ctrl->sqs);
1465out_free_changed_ns_list:
1466 kfree(objp: ctrl->changed_ns_list);
1467out_free_ctrl:
1468 kfree(objp: ctrl);
1469out_put_subsystem:
1470 nvmet_subsys_put(subsys);
1471out:
1472 return status;
1473}
1474
1475static void nvmet_ctrl_free(struct kref *ref)
1476{
1477 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1478 struct nvmet_subsys *subsys = ctrl->subsys;
1479
1480 mutex_lock(&subsys->lock);
1481 nvmet_release_p2p_ns_map(ctrl);
1482 list_del(entry: &ctrl->subsys_entry);
1483 mutex_unlock(lock: &subsys->lock);
1484
1485 nvmet_stop_keep_alive_timer(ctrl);
1486
1487 flush_work(work: &ctrl->async_event_work);
1488 cancel_work_sync(work: &ctrl->fatal_err_work);
1489
1490 nvmet_destroy_auth(ctrl);
1491
1492 ida_free(&cntlid_ida, id: ctrl->cntlid);
1493
1494 nvmet_async_events_free(ctrl);
1495 kfree(objp: ctrl->sqs);
1496 kfree(objp: ctrl->changed_ns_list);
1497 kfree(objp: ctrl);
1498
1499 nvmet_subsys_put(subsys);
1500}
1501
1502void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1503{
1504 kref_put(kref: &ctrl->ref, release: nvmet_ctrl_free);
1505}
1506
1507void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1508{
1509 mutex_lock(&ctrl->lock);
1510 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1511 ctrl->csts |= NVME_CSTS_CFS;
1512 queue_work(wq: nvmet_wq, work: &ctrl->fatal_err_work);
1513 }
1514 mutex_unlock(lock: &ctrl->lock);
1515}
1516EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1517
1518static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1519 const char *subsysnqn)
1520{
1521 struct nvmet_subsys_link *p;
1522
1523 if (!port)
1524 return NULL;
1525
1526 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1527 if (!kref_get_unless_zero(kref: &nvmet_disc_subsys->ref))
1528 return NULL;
1529 return nvmet_disc_subsys;
1530 }
1531
1532 down_read(sem: &nvmet_config_sem);
1533 list_for_each_entry(p, &port->subsystems, entry) {
1534 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1535 NVMF_NQN_SIZE)) {
1536 if (!kref_get_unless_zero(kref: &p->subsys->ref))
1537 break;
1538 up_read(sem: &nvmet_config_sem);
1539 return p->subsys;
1540 }
1541 }
1542 up_read(sem: &nvmet_config_sem);
1543 return NULL;
1544}
1545
1546struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1547 enum nvme_subsys_type type)
1548{
1549 struct nvmet_subsys *subsys;
1550 char serial[NVMET_SN_MAX_SIZE / 2];
1551 int ret;
1552
1553 subsys = kzalloc(size: sizeof(*subsys), GFP_KERNEL);
1554 if (!subsys)
1555 return ERR_PTR(error: -ENOMEM);
1556
1557 subsys->ver = NVMET_DEFAULT_VS;
1558 /* generate a random serial number as our controllers are ephemeral: */
1559 get_random_bytes(buf: &serial, len: sizeof(serial));
1560 bin2hex(dst: subsys->serial, src: &serial, count: sizeof(serial));
1561
1562 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1563 if (!subsys->model_number) {
1564 ret = -ENOMEM;
1565 goto free_subsys;
1566 }
1567
1568 subsys->ieee_oui = 0;
1569
1570 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1571 if (!subsys->firmware_rev) {
1572 ret = -ENOMEM;
1573 goto free_mn;
1574 }
1575
1576 switch (type) {
1577 case NVME_NQN_NVME:
1578 subsys->max_qid = NVMET_NR_QUEUES;
1579 break;
1580 case NVME_NQN_DISC:
1581 case NVME_NQN_CURR:
1582 subsys->max_qid = 0;
1583 break;
1584 default:
1585 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1586 ret = -EINVAL;
1587 goto free_fr;
1588 }
1589 subsys->type = type;
1590 subsys->subsysnqn = kstrndup(s: subsysnqn, NVMF_NQN_SIZE,
1591 GFP_KERNEL);
1592 if (!subsys->subsysnqn) {
1593 ret = -ENOMEM;
1594 goto free_fr;
1595 }
1596 subsys->cntlid_min = NVME_CNTLID_MIN;
1597 subsys->cntlid_max = NVME_CNTLID_MAX;
1598 kref_init(kref: &subsys->ref);
1599
1600 mutex_init(&subsys->lock);
1601 xa_init(xa: &subsys->namespaces);
1602 INIT_LIST_HEAD(list: &subsys->ctrls);
1603 INIT_LIST_HEAD(list: &subsys->hosts);
1604
1605 return subsys;
1606
1607free_fr:
1608 kfree(objp: subsys->firmware_rev);
1609free_mn:
1610 kfree(objp: subsys->model_number);
1611free_subsys:
1612 kfree(objp: subsys);
1613 return ERR_PTR(error: ret);
1614}
1615
1616static void nvmet_subsys_free(struct kref *ref)
1617{
1618 struct nvmet_subsys *subsys =
1619 container_of(ref, struct nvmet_subsys, ref);
1620
1621 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1622
1623 xa_destroy(&subsys->namespaces);
1624 nvmet_passthru_subsys_free(subsys);
1625
1626 kfree(objp: subsys->subsysnqn);
1627 kfree(objp: subsys->model_number);
1628 kfree(objp: subsys->firmware_rev);
1629 kfree(objp: subsys);
1630}
1631
1632void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1633{
1634 struct nvmet_ctrl *ctrl;
1635
1636 mutex_lock(&subsys->lock);
1637 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1638 ctrl->ops->delete_ctrl(ctrl);
1639 mutex_unlock(lock: &subsys->lock);
1640}
1641
1642void nvmet_subsys_put(struct nvmet_subsys *subsys)
1643{
1644 kref_put(kref: &subsys->ref, release: nvmet_subsys_free);
1645}
1646
1647static int __init nvmet_init(void)
1648{
1649 int error = -ENOMEM;
1650
1651 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1652
1653 nvmet_bvec_cache = kmem_cache_create(name: "nvmet-bvec",
1654 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), align: 0,
1655 SLAB_HWCACHE_ALIGN, NULL);
1656 if (!nvmet_bvec_cache)
1657 return -ENOMEM;
1658
1659 zbd_wq = alloc_workqueue(fmt: "nvmet-zbd-wq", flags: WQ_MEM_RECLAIM, max_active: 0);
1660 if (!zbd_wq)
1661 goto out_destroy_bvec_cache;
1662
1663 buffered_io_wq = alloc_workqueue(fmt: "nvmet-buffered-io-wq",
1664 flags: WQ_MEM_RECLAIM, max_active: 0);
1665 if (!buffered_io_wq)
1666 goto out_free_zbd_work_queue;
1667
1668 nvmet_wq = alloc_workqueue(fmt: "nvmet-wq", flags: WQ_MEM_RECLAIM, max_active: 0);
1669 if (!nvmet_wq)
1670 goto out_free_buffered_work_queue;
1671
1672 error = nvmet_init_discovery();
1673 if (error)
1674 goto out_free_nvmet_work_queue;
1675
1676 error = nvmet_init_configfs();
1677 if (error)
1678 goto out_exit_discovery;
1679 return 0;
1680
1681out_exit_discovery:
1682 nvmet_exit_discovery();
1683out_free_nvmet_work_queue:
1684 destroy_workqueue(wq: nvmet_wq);
1685out_free_buffered_work_queue:
1686 destroy_workqueue(wq: buffered_io_wq);
1687out_free_zbd_work_queue:
1688 destroy_workqueue(wq: zbd_wq);
1689out_destroy_bvec_cache:
1690 kmem_cache_destroy(s: nvmet_bvec_cache);
1691 return error;
1692}
1693
1694static void __exit nvmet_exit(void)
1695{
1696 nvmet_exit_configfs();
1697 nvmet_exit_discovery();
1698 ida_destroy(ida: &cntlid_ida);
1699 destroy_workqueue(wq: nvmet_wq);
1700 destroy_workqueue(wq: buffered_io_wq);
1701 destroy_workqueue(wq: zbd_wq);
1702 kmem_cache_destroy(s: nvmet_bvec_cache);
1703
1704 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1705 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1706}
1707
1708module_init(nvmet_init);
1709module_exit(nvmet_exit);
1710
1711MODULE_LICENSE("GPL v2");
1712

source code of linux/drivers/nvme/target/core.c