1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6#include <linux/module.h>
7#include <linux/slab.h>
8#include <linux/blk-mq.h>
9#include <linux/parser.h>
10#include <linux/random.h>
11#include <uapi/scsi/fc/fc_fs.h>
12#include <uapi/scsi/fc/fc_els.h>
13
14#include "nvmet.h"
15#include <linux/nvme-fc-driver.h>
16#include <linux/nvme-fc.h>
17#include "../host/fc.h"
18
19
20/* *************************** Data Structures/Defines ****************** */
21
22
23#define NVMET_LS_CTX_COUNT 256
24
25struct nvmet_fc_tgtport;
26struct nvmet_fc_tgt_assoc;
27
28struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46} __aligned(sizeof(unsigned long long));
47
48struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57};
58
59
60/* desired maximum for a single sequence - if sg list allows it */
61#define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68};
69
70struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94};
95
96struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114};
115
116struct nvmet_fc_port_entry {
117 struct nvmet_fc_tgtport *tgtport;
118 struct nvmet_port *port;
119 u64 node_name;
120 u64 port_name;
121 struct list_head pe_list;
122};
123
124struct nvmet_fc_defer_fcp_req {
125 struct list_head req_list;
126 struct nvmefc_tgt_fcp_req *fcp_req;
127};
128
129struct nvmet_fc_tgt_queue {
130 bool ninetypercent;
131 u16 qid;
132 u16 sqsize;
133 u16 ersp_ratio;
134 __le16 sqhd;
135 atomic_t connected;
136 atomic_t sqtail;
137 atomic_t zrspcnt;
138 atomic_t rsn;
139 spinlock_t qlock;
140 struct nvmet_cq nvme_cq;
141 struct nvmet_sq nvme_sq;
142 struct nvmet_fc_tgt_assoc *assoc;
143 struct list_head fod_list;
144 struct list_head pending_cmd_list;
145 struct list_head avail_defer_list;
146 struct workqueue_struct *work_q;
147 struct kref ref;
148 struct rcu_head rcu;
149 /* array of fcp_iods */
150 struct nvmet_fc_fcp_iod fod[] __counted_by(sqsize);
151} __aligned(sizeof(unsigned long long));
152
153struct nvmet_fc_hostport {
154 struct nvmet_fc_tgtport *tgtport;
155 void *hosthandle;
156 struct list_head host_list;
157 struct kref ref;
158 u8 invalid;
159};
160
161struct nvmet_fc_tgt_assoc {
162 u64 association_id;
163 u32 a_id;
164 atomic_t terminating;
165 struct nvmet_fc_tgtport *tgtport;
166 struct nvmet_fc_hostport *hostport;
167 struct nvmet_fc_ls_iod *rcv_disconn;
168 struct list_head a_list;
169 struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1];
170 struct kref ref;
171 struct work_struct del_work;
172 struct rcu_head rcu;
173};
174
175
176static inline int
177nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
178{
179 return (iodptr - iodptr->tgtport->iod);
180}
181
182static inline int
183nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
184{
185 return (fodptr - fodptr->queue->fod);
186}
187
188
189/*
190 * Association and Connection IDs:
191 *
192 * Association ID will have random number in upper 6 bytes and zero
193 * in lower 2 bytes
194 *
195 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
196 *
197 * note: Association ID = Connection ID for queue 0
198 */
199#define BYTES_FOR_QID sizeof(u16)
200#define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
201#define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
202
203static inline u64
204nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
205{
206 return (assoc->association_id | qid);
207}
208
209static inline u64
210nvmet_fc_getassociationid(u64 connectionid)
211{
212 return connectionid & ~NVMET_FC_QUEUEID_MASK;
213}
214
215static inline u16
216nvmet_fc_getqueueid(u64 connectionid)
217{
218 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
219}
220
221static inline struct nvmet_fc_tgtport *
222targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
223{
224 return container_of(targetport, struct nvmet_fc_tgtport,
225 fc_target_port);
226}
227
228static inline struct nvmet_fc_fcp_iod *
229nvmet_req_to_fod(struct nvmet_req *nvme_req)
230{
231 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
232}
233
234
235/* *************************** Globals **************************** */
236
237
238static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
239
240static LIST_HEAD(nvmet_fc_target_list);
241static DEFINE_IDA(nvmet_fc_tgtport_cnt);
242static LIST_HEAD(nvmet_fc_portentry_list);
243
244
245static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
246static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
247static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
248static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
249static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
250static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
251static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
252static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
253static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
254 struct nvmet_fc_fcp_iod *fod);
255static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
256static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
257 struct nvmet_fc_ls_iod *iod);
258
259
260/* *********************** FC-NVME DMA Handling **************************** */
261
262/*
263 * The fcloop device passes in a NULL device pointer. Real LLD's will
264 * pass in a valid device pointer. If NULL is passed to the dma mapping
265 * routines, depending on the platform, it may or may not succeed, and
266 * may crash.
267 *
268 * As such:
269 * Wrapper all the dma routines and check the dev pointer.
270 *
271 * If simple mappings (return just a dma address, we'll noop them,
272 * returning a dma address of 0.
273 *
274 * On more complex mappings (dma_map_sg), a pseudo routine fills
275 * in the scatter list, setting all dma addresses to 0.
276 */
277
278static inline dma_addr_t
279fc_dma_map_single(struct device *dev, void *ptr, size_t size,
280 enum dma_data_direction dir)
281{
282 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
283}
284
285static inline int
286fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
287{
288 return dev ? dma_mapping_error(dev, dma_addr) : 0;
289}
290
291static inline void
292fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
293 enum dma_data_direction dir)
294{
295 if (dev)
296 dma_unmap_single(dev, addr, size, dir);
297}
298
299static inline void
300fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
301 enum dma_data_direction dir)
302{
303 if (dev)
304 dma_sync_single_for_cpu(dev, addr, size, dir);
305}
306
307static inline void
308fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
309 enum dma_data_direction dir)
310{
311 if (dev)
312 dma_sync_single_for_device(dev, addr, size, dir);
313}
314
315/* pseudo dma_map_sg call */
316static int
317fc_map_sg(struct scatterlist *sg, int nents)
318{
319 struct scatterlist *s;
320 int i;
321
322 WARN_ON(nents == 0 || sg[0].length == 0);
323
324 for_each_sg(sg, s, nents, i) {
325 s->dma_address = 0L;
326#ifdef CONFIG_NEED_SG_DMA_LENGTH
327 s->dma_length = s->length;
328#endif
329 }
330 return nents;
331}
332
333static inline int
334fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
335 enum dma_data_direction dir)
336{
337 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
338}
339
340static inline void
341fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
342 enum dma_data_direction dir)
343{
344 if (dev)
345 dma_unmap_sg(dev, sg, nents, dir);
346}
347
348
349/* ********************** FC-NVME LS XMT Handling ************************* */
350
351
352static void
353__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
354{
355 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
356 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
357 unsigned long flags;
358
359 spin_lock_irqsave(&tgtport->lock, flags);
360
361 if (!lsop->req_queued) {
362 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
363 return;
364 }
365
366 list_del(entry: &lsop->lsreq_list);
367
368 lsop->req_queued = false;
369
370 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
371
372 fc_dma_unmap_single(dev: tgtport->dev, addr: lsreq->rqstdma,
373 size: (lsreq->rqstlen + lsreq->rsplen),
374 dir: DMA_BIDIRECTIONAL);
375
376 nvmet_fc_tgtport_put(tgtport);
377}
378
379static int
380__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
381 struct nvmet_fc_ls_req_op *lsop,
382 void (*done)(struct nvmefc_ls_req *req, int status))
383{
384 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
385 unsigned long flags;
386 int ret = 0;
387
388 if (!tgtport->ops->ls_req)
389 return -EOPNOTSUPP;
390
391 if (!nvmet_fc_tgtport_get(tgtport))
392 return -ESHUTDOWN;
393
394 lsreq->done = done;
395 lsop->req_queued = false;
396 INIT_LIST_HEAD(list: &lsop->lsreq_list);
397
398 lsreq->rqstdma = fc_dma_map_single(dev: tgtport->dev, ptr: lsreq->rqstaddr,
399 size: lsreq->rqstlen + lsreq->rsplen,
400 dir: DMA_BIDIRECTIONAL);
401 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: lsreq->rqstdma)) {
402 ret = -EFAULT;
403 goto out_puttgtport;
404 }
405 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
406
407 spin_lock_irqsave(&tgtport->lock, flags);
408
409 list_add_tail(new: &lsop->lsreq_list, head: &tgtport->ls_req_list);
410
411 lsop->req_queued = true;
412
413 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
414
415 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
416 lsreq);
417 if (ret)
418 goto out_unlink;
419
420 return 0;
421
422out_unlink:
423 lsop->ls_error = ret;
424 spin_lock_irqsave(&tgtport->lock, flags);
425 lsop->req_queued = false;
426 list_del(entry: &lsop->lsreq_list);
427 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
428 fc_dma_unmap_single(dev: tgtport->dev, addr: lsreq->rqstdma,
429 size: (lsreq->rqstlen + lsreq->rsplen),
430 dir: DMA_BIDIRECTIONAL);
431out_puttgtport:
432 nvmet_fc_tgtport_put(tgtport);
433
434 return ret;
435}
436
437static int
438nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
439 struct nvmet_fc_ls_req_op *lsop,
440 void (*done)(struct nvmefc_ls_req *req, int status))
441{
442 /* don't wait for completion */
443
444 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
445}
446
447static void
448nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
449{
450 struct nvmet_fc_ls_req_op *lsop =
451 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
452
453 __nvmet_fc_finish_ls_req(lsop);
454
455 /* fc-nvme target doesn't care about success or failure of cmd */
456
457 kfree(objp: lsop);
458}
459
460/*
461 * This routine sends a FC-NVME LS to disconnect (aka terminate)
462 * the FC-NVME Association. Terminating the association also
463 * terminates the FC-NVME connections (per queue, both admin and io
464 * queues) that are part of the association. E.g. things are torn
465 * down, and the related FC-NVME Association ID and Connection IDs
466 * become invalid.
467 *
468 * The behavior of the fc-nvme target is such that it's
469 * understanding of the association and connections will implicitly
470 * be torn down. The action is implicit as it may be due to a loss of
471 * connectivity with the fc-nvme host, so the target may never get a
472 * response even if it tried. As such, the action of this routine
473 * is to asynchronously send the LS, ignore any results of the LS, and
474 * continue on with terminating the association. If the fc-nvme host
475 * is present and receives the LS, it too can tear down.
476 */
477static void
478nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
479{
480 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
481 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
482 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
483 struct nvmet_fc_ls_req_op *lsop;
484 struct nvmefc_ls_req *lsreq;
485 int ret;
486
487 /*
488 * If ls_req is NULL or no hosthandle, it's an older lldd and no
489 * message is normal. Otherwise, send unless the hostport has
490 * already been invalidated by the lldd.
491 */
492 if (!tgtport->ops->ls_req || !assoc->hostport ||
493 assoc->hostport->invalid)
494 return;
495
496 lsop = kzalloc(size: (sizeof(*lsop) +
497 sizeof(*discon_rqst) + sizeof(*discon_acc) +
498 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
499 if (!lsop) {
500 dev_info(tgtport->dev,
501 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
502 tgtport->fc_target_port.port_num, assoc->a_id);
503 return;
504 }
505
506 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
507 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
508 lsreq = &lsop->ls_req;
509 if (tgtport->ops->lsrqst_priv_sz)
510 lsreq->private = (void *)&discon_acc[1];
511 else
512 lsreq->private = NULL;
513
514 lsop->tgtport = tgtport;
515 lsop->hosthandle = assoc->hostport->hosthandle;
516
517 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
518 association_id: assoc->association_id);
519
520 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
521 done: nvmet_fc_disconnect_assoc_done);
522 if (ret) {
523 dev_info(tgtport->dev,
524 "{%d:%d} XMT Disconnect Association failed: %d\n",
525 tgtport->fc_target_port.port_num, assoc->a_id, ret);
526 kfree(objp: lsop);
527 }
528}
529
530
531/* *********************** FC-NVME Port Management ************************ */
532
533
534static int
535nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
536{
537 struct nvmet_fc_ls_iod *iod;
538 int i;
539
540 iod = kcalloc(NVMET_LS_CTX_COUNT, size: sizeof(struct nvmet_fc_ls_iod),
541 GFP_KERNEL);
542 if (!iod)
543 return -ENOMEM;
544
545 tgtport->iod = iod;
546
547 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
548 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
549 iod->tgtport = tgtport;
550 list_add_tail(new: &iod->ls_rcv_list, head: &tgtport->ls_rcv_list);
551
552 iod->rqstbuf = kzalloc(size: sizeof(union nvmefc_ls_requests) +
553 sizeof(union nvmefc_ls_responses),
554 GFP_KERNEL);
555 if (!iod->rqstbuf)
556 goto out_fail;
557
558 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
559
560 iod->rspdma = fc_dma_map_single(dev: tgtport->dev, ptr: iod->rspbuf,
561 size: sizeof(*iod->rspbuf),
562 dir: DMA_TO_DEVICE);
563 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: iod->rspdma))
564 goto out_fail;
565 }
566
567 return 0;
568
569out_fail:
570 kfree(objp: iod->rqstbuf);
571 list_del(entry: &iod->ls_rcv_list);
572 for (iod--, i--; i >= 0; iod--, i--) {
573 fc_dma_unmap_single(dev: tgtport->dev, addr: iod->rspdma,
574 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
575 kfree(objp: iod->rqstbuf);
576 list_del(entry: &iod->ls_rcv_list);
577 }
578
579 kfree(objp: iod);
580
581 return -EFAULT;
582}
583
584static void
585nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
586{
587 struct nvmet_fc_ls_iod *iod = tgtport->iod;
588 int i;
589
590 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
591 fc_dma_unmap_single(dev: tgtport->dev,
592 addr: iod->rspdma, size: sizeof(*iod->rspbuf),
593 dir: DMA_TO_DEVICE);
594 kfree(objp: iod->rqstbuf);
595 list_del(entry: &iod->ls_rcv_list);
596 }
597 kfree(objp: tgtport->iod);
598}
599
600static struct nvmet_fc_ls_iod *
601nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
602{
603 struct nvmet_fc_ls_iod *iod;
604 unsigned long flags;
605
606 spin_lock_irqsave(&tgtport->lock, flags);
607 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
608 struct nvmet_fc_ls_iod, ls_rcv_list);
609 if (iod)
610 list_move_tail(list: &iod->ls_rcv_list, head: &tgtport->ls_busylist);
611 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
612 return iod;
613}
614
615
616static void
617nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
618 struct nvmet_fc_ls_iod *iod)
619{
620 unsigned long flags;
621
622 spin_lock_irqsave(&tgtport->lock, flags);
623 list_move(list: &iod->ls_rcv_list, head: &tgtport->ls_rcv_list);
624 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
625}
626
627static void
628nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
629 struct nvmet_fc_tgt_queue *queue)
630{
631 struct nvmet_fc_fcp_iod *fod = queue->fod;
632 int i;
633
634 for (i = 0; i < queue->sqsize; fod++, i++) {
635 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
636 fod->tgtport = tgtport;
637 fod->queue = queue;
638 fod->active = false;
639 fod->abort = false;
640 fod->aborted = false;
641 fod->fcpreq = NULL;
642 list_add_tail(new: &fod->fcp_list, head: &queue->fod_list);
643 spin_lock_init(&fod->flock);
644
645 fod->rspdma = fc_dma_map_single(dev: tgtport->dev, ptr: &fod->rspiubuf,
646 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
647 if (fc_dma_mapping_error(dev: tgtport->dev, dma_addr: fod->rspdma)) {
648 list_del(entry: &fod->fcp_list);
649 for (fod--, i--; i >= 0; fod--, i--) {
650 fc_dma_unmap_single(dev: tgtport->dev, addr: fod->rspdma,
651 size: sizeof(fod->rspiubuf),
652 dir: DMA_TO_DEVICE);
653 fod->rspdma = 0L;
654 list_del(entry: &fod->fcp_list);
655 }
656
657 return;
658 }
659 }
660}
661
662static void
663nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
664 struct nvmet_fc_tgt_queue *queue)
665{
666 struct nvmet_fc_fcp_iod *fod = queue->fod;
667 int i;
668
669 for (i = 0; i < queue->sqsize; fod++, i++) {
670 if (fod->rspdma)
671 fc_dma_unmap_single(dev: tgtport->dev, addr: fod->rspdma,
672 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
673 }
674}
675
676static struct nvmet_fc_fcp_iod *
677nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
678{
679 struct nvmet_fc_fcp_iod *fod;
680
681 lockdep_assert_held(&queue->qlock);
682
683 fod = list_first_entry_or_null(&queue->fod_list,
684 struct nvmet_fc_fcp_iod, fcp_list);
685 if (fod) {
686 list_del(entry: &fod->fcp_list);
687 fod->active = true;
688 /*
689 * no queue reference is taken, as it was taken by the
690 * queue lookup just prior to the allocation. The iod
691 * will "inherit" that reference.
692 */
693 }
694 return fod;
695}
696
697
698static void
699nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
700 struct nvmet_fc_tgt_queue *queue,
701 struct nvmefc_tgt_fcp_req *fcpreq)
702{
703 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
704
705 /*
706 * put all admin cmds on hw queue id 0. All io commands go to
707 * the respective hw queue based on a modulo basis
708 */
709 fcpreq->hwqid = queue->qid ?
710 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
711
712 nvmet_fc_handle_fcp_rqst(tgtport, fod);
713}
714
715static void
716nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
717{
718 struct nvmet_fc_fcp_iod *fod =
719 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
720
721 /* Submit deferred IO for processing */
722 nvmet_fc_queue_fcp_req(tgtport: fod->tgtport, queue: fod->queue, fcpreq: fod->fcpreq);
723
724}
725
726static void
727nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
728 struct nvmet_fc_fcp_iod *fod)
729{
730 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
731 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
732 struct nvmet_fc_defer_fcp_req *deferfcp;
733 unsigned long flags;
734
735 fc_dma_sync_single_for_cpu(dev: tgtport->dev, addr: fod->rspdma,
736 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
737
738 fcpreq->nvmet_fc_private = NULL;
739
740 fod->active = false;
741 fod->abort = false;
742 fod->aborted = false;
743 fod->writedataactive = false;
744 fod->fcpreq = NULL;
745
746 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
747
748 /* release the queue lookup reference on the completed IO */
749 nvmet_fc_tgt_q_put(queue);
750
751 spin_lock_irqsave(&queue->qlock, flags);
752 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
753 struct nvmet_fc_defer_fcp_req, req_list);
754 if (!deferfcp) {
755 list_add_tail(new: &fod->fcp_list, head: &fod->queue->fod_list);
756 spin_unlock_irqrestore(lock: &queue->qlock, flags);
757 return;
758 }
759
760 /* Re-use the fod for the next pending cmd that was deferred */
761 list_del(entry: &deferfcp->req_list);
762
763 fcpreq = deferfcp->fcp_req;
764
765 /* deferfcp can be reused for another IO at a later date */
766 list_add_tail(new: &deferfcp->req_list, head: &queue->avail_defer_list);
767
768 spin_unlock_irqrestore(lock: &queue->qlock, flags);
769
770 /* Save NVME CMD IO in fod */
771 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
772
773 /* Setup new fcpreq to be processed */
774 fcpreq->rspaddr = NULL;
775 fcpreq->rsplen = 0;
776 fcpreq->nvmet_fc_private = fod;
777 fod->fcpreq = fcpreq;
778 fod->active = true;
779
780 /* inform LLDD IO is now being processed */
781 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
782
783 /*
784 * Leave the queue lookup get reference taken when
785 * fod was originally allocated.
786 */
787
788 queue_work(wq: queue->work_q, work: &fod->defer_work);
789}
790
791static struct nvmet_fc_tgt_queue *
792nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
793 u16 qid, u16 sqsize)
794{
795 struct nvmet_fc_tgt_queue *queue;
796 int ret;
797
798 if (qid > NVMET_NR_QUEUES)
799 return NULL;
800
801 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
802 if (!queue)
803 return NULL;
804
805 if (!nvmet_fc_tgt_a_get(assoc))
806 goto out_free_queue;
807
808 queue->work_q = alloc_workqueue(fmt: "ntfc%d.%d.%d", flags: 0, max_active: 0,
809 assoc->tgtport->fc_target_port.port_num,
810 assoc->a_id, qid);
811 if (!queue->work_q)
812 goto out_a_put;
813
814 queue->qid = qid;
815 queue->sqsize = sqsize;
816 queue->assoc = assoc;
817 INIT_LIST_HEAD(list: &queue->fod_list);
818 INIT_LIST_HEAD(list: &queue->avail_defer_list);
819 INIT_LIST_HEAD(list: &queue->pending_cmd_list);
820 atomic_set(v: &queue->connected, i: 0);
821 atomic_set(v: &queue->sqtail, i: 0);
822 atomic_set(v: &queue->rsn, i: 1);
823 atomic_set(v: &queue->zrspcnt, i: 0);
824 spin_lock_init(&queue->qlock);
825 kref_init(kref: &queue->ref);
826
827 nvmet_fc_prep_fcp_iodlist(tgtport: assoc->tgtport, queue);
828
829 ret = nvmet_sq_init(sq: &queue->nvme_sq);
830 if (ret)
831 goto out_fail_iodlist;
832
833 WARN_ON(assoc->queues[qid]);
834 rcu_assign_pointer(assoc->queues[qid], queue);
835
836 return queue;
837
838out_fail_iodlist:
839 nvmet_fc_destroy_fcp_iodlist(tgtport: assoc->tgtport, queue);
840 destroy_workqueue(wq: queue->work_q);
841out_a_put:
842 nvmet_fc_tgt_a_put(assoc);
843out_free_queue:
844 kfree(objp: queue);
845 return NULL;
846}
847
848
849static void
850nvmet_fc_tgt_queue_free(struct kref *ref)
851{
852 struct nvmet_fc_tgt_queue *queue =
853 container_of(ref, struct nvmet_fc_tgt_queue, ref);
854
855 rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
856
857 nvmet_fc_destroy_fcp_iodlist(tgtport: queue->assoc->tgtport, queue);
858
859 nvmet_fc_tgt_a_put(assoc: queue->assoc);
860
861 destroy_workqueue(wq: queue->work_q);
862
863 kfree_rcu(queue, rcu);
864}
865
866static void
867nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
868{
869 kref_put(kref: &queue->ref, release: nvmet_fc_tgt_queue_free);
870}
871
872static int
873nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
874{
875 return kref_get_unless_zero(kref: &queue->ref);
876}
877
878
879static void
880nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
881{
882 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
883 struct nvmet_fc_fcp_iod *fod = queue->fod;
884 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
885 unsigned long flags;
886 int i;
887 bool disconnect;
888
889 disconnect = atomic_xchg(v: &queue->connected, new: 0);
890
891 /* if not connected, nothing to do */
892 if (!disconnect)
893 return;
894
895 spin_lock_irqsave(&queue->qlock, flags);
896 /* abort outstanding io's */
897 for (i = 0; i < queue->sqsize; fod++, i++) {
898 if (fod->active) {
899 spin_lock(lock: &fod->flock);
900 fod->abort = true;
901 /*
902 * only call lldd abort routine if waiting for
903 * writedata. other outstanding ops should finish
904 * on their own.
905 */
906 if (fod->writedataactive) {
907 fod->aborted = true;
908 spin_unlock(lock: &fod->flock);
909 tgtport->ops->fcp_abort(
910 &tgtport->fc_target_port, fod->fcpreq);
911 } else
912 spin_unlock(lock: &fod->flock);
913 }
914 }
915
916 /* Cleanup defer'ed IOs in queue */
917 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
918 req_list) {
919 list_del(entry: &deferfcp->req_list);
920 kfree(objp: deferfcp);
921 }
922
923 for (;;) {
924 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
925 struct nvmet_fc_defer_fcp_req, req_list);
926 if (!deferfcp)
927 break;
928
929 list_del(entry: &deferfcp->req_list);
930 spin_unlock_irqrestore(lock: &queue->qlock, flags);
931
932 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
933 deferfcp->fcp_req);
934
935 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
936 deferfcp->fcp_req);
937
938 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
939 deferfcp->fcp_req);
940
941 /* release the queue lookup reference */
942 nvmet_fc_tgt_q_put(queue);
943
944 kfree(objp: deferfcp);
945
946 spin_lock_irqsave(&queue->qlock, flags);
947 }
948 spin_unlock_irqrestore(lock: &queue->qlock, flags);
949
950 flush_workqueue(queue->work_q);
951
952 nvmet_sq_destroy(sq: &queue->nvme_sq);
953
954 nvmet_fc_tgt_q_put(queue);
955}
956
957static struct nvmet_fc_tgt_queue *
958nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
959 u64 connection_id)
960{
961 struct nvmet_fc_tgt_assoc *assoc;
962 struct nvmet_fc_tgt_queue *queue;
963 u64 association_id = nvmet_fc_getassociationid(connectionid: connection_id);
964 u16 qid = nvmet_fc_getqueueid(connectionid: connection_id);
965
966 if (qid > NVMET_NR_QUEUES)
967 return NULL;
968
969 rcu_read_lock();
970 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
971 if (association_id == assoc->association_id) {
972 queue = rcu_dereference(assoc->queues[qid]);
973 if (queue &&
974 (!atomic_read(v: &queue->connected) ||
975 !nvmet_fc_tgt_q_get(queue)))
976 queue = NULL;
977 rcu_read_unlock();
978 return queue;
979 }
980 }
981 rcu_read_unlock();
982 return NULL;
983}
984
985static void
986nvmet_fc_hostport_free(struct kref *ref)
987{
988 struct nvmet_fc_hostport *hostport =
989 container_of(ref, struct nvmet_fc_hostport, ref);
990 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
991 unsigned long flags;
992
993 spin_lock_irqsave(&tgtport->lock, flags);
994 list_del(entry: &hostport->host_list);
995 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
996 if (tgtport->ops->host_release && hostport->invalid)
997 tgtport->ops->host_release(hostport->hosthandle);
998 kfree(objp: hostport);
999 nvmet_fc_tgtport_put(tgtport);
1000}
1001
1002static void
1003nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1004{
1005 kref_put(kref: &hostport->ref, release: nvmet_fc_hostport_free);
1006}
1007
1008static int
1009nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1010{
1011 return kref_get_unless_zero(kref: &hostport->ref);
1012}
1013
1014static void
1015nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1016{
1017 /* if LLDD not implemented, leave as NULL */
1018 if (!hostport || !hostport->hosthandle)
1019 return;
1020
1021 nvmet_fc_hostport_put(hostport);
1022}
1023
1024static struct nvmet_fc_hostport *
1025nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1026{
1027 struct nvmet_fc_hostport *host;
1028
1029 lockdep_assert_held(&tgtport->lock);
1030
1031 list_for_each_entry(host, &tgtport->host_list, host_list) {
1032 if (host->hosthandle == hosthandle && !host->invalid) {
1033 if (nvmet_fc_hostport_get(hostport: host))
1034 return (host);
1035 }
1036 }
1037
1038 return NULL;
1039}
1040
1041static struct nvmet_fc_hostport *
1042nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1043{
1044 struct nvmet_fc_hostport *newhost, *match = NULL;
1045 unsigned long flags;
1046
1047 /* if LLDD not implemented, leave as NULL */
1048 if (!hosthandle)
1049 return NULL;
1050
1051 /*
1052 * take reference for what will be the newly allocated hostport if
1053 * we end up using a new allocation
1054 */
1055 if (!nvmet_fc_tgtport_get(tgtport))
1056 return ERR_PTR(error: -EINVAL);
1057
1058 spin_lock_irqsave(&tgtport->lock, flags);
1059 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1060 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1061
1062 if (match) {
1063 /* no new allocation - release reference */
1064 nvmet_fc_tgtport_put(tgtport);
1065 return match;
1066 }
1067
1068 newhost = kzalloc(size: sizeof(*newhost), GFP_KERNEL);
1069 if (!newhost) {
1070 /* no new allocation - release reference */
1071 nvmet_fc_tgtport_put(tgtport);
1072 return ERR_PTR(error: -ENOMEM);
1073 }
1074
1075 spin_lock_irqsave(&tgtport->lock, flags);
1076 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1077 if (match) {
1078 /* new allocation not needed */
1079 kfree(objp: newhost);
1080 newhost = match;
1081 /* no new allocation - release reference */
1082 nvmet_fc_tgtport_put(tgtport);
1083 } else {
1084 newhost->tgtport = tgtport;
1085 newhost->hosthandle = hosthandle;
1086 INIT_LIST_HEAD(list: &newhost->host_list);
1087 kref_init(kref: &newhost->ref);
1088
1089 list_add_tail(new: &newhost->host_list, head: &tgtport->host_list);
1090 }
1091 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1092
1093 return newhost;
1094}
1095
1096static void
1097nvmet_fc_delete_assoc(struct work_struct *work)
1098{
1099 struct nvmet_fc_tgt_assoc *assoc =
1100 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1101
1102 nvmet_fc_delete_target_assoc(assoc);
1103 nvmet_fc_tgt_a_put(assoc);
1104}
1105
1106static struct nvmet_fc_tgt_assoc *
1107nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1108{
1109 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1110 unsigned long flags;
1111 u64 ran;
1112 int idx;
1113 bool needrandom = true;
1114
1115 assoc = kzalloc(size: sizeof(*assoc), GFP_KERNEL);
1116 if (!assoc)
1117 return NULL;
1118
1119 idx = ida_alloc(ida: &tgtport->assoc_cnt, GFP_KERNEL);
1120 if (idx < 0)
1121 goto out_free_assoc;
1122
1123 if (!nvmet_fc_tgtport_get(tgtport))
1124 goto out_ida;
1125
1126 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1127 if (IS_ERR(ptr: assoc->hostport))
1128 goto out_put;
1129
1130 assoc->tgtport = tgtport;
1131 assoc->a_id = idx;
1132 INIT_LIST_HEAD(list: &assoc->a_list);
1133 kref_init(kref: &assoc->ref);
1134 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1135 atomic_set(v: &assoc->terminating, i: 0);
1136
1137 while (needrandom) {
1138 get_random_bytes(buf: &ran, len: sizeof(ran) - BYTES_FOR_QID);
1139 ran = ran << BYTES_FOR_QID_SHIFT;
1140
1141 spin_lock_irqsave(&tgtport->lock, flags);
1142 needrandom = false;
1143 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1144 if (ran == tmpassoc->association_id) {
1145 needrandom = true;
1146 break;
1147 }
1148 }
1149 if (!needrandom) {
1150 assoc->association_id = ran;
1151 list_add_tail_rcu(new: &assoc->a_list, head: &tgtport->assoc_list);
1152 }
1153 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1154 }
1155
1156 return assoc;
1157
1158out_put:
1159 nvmet_fc_tgtport_put(tgtport);
1160out_ida:
1161 ida_free(&tgtport->assoc_cnt, id: idx);
1162out_free_assoc:
1163 kfree(objp: assoc);
1164 return NULL;
1165}
1166
1167static void
1168nvmet_fc_target_assoc_free(struct kref *ref)
1169{
1170 struct nvmet_fc_tgt_assoc *assoc =
1171 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1172 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1173 struct nvmet_fc_ls_iod *oldls;
1174 unsigned long flags;
1175
1176 /* Send Disconnect now that all i/o has completed */
1177 nvmet_fc_xmt_disconnect_assoc(assoc);
1178
1179 nvmet_fc_free_hostport(hostport: assoc->hostport);
1180 spin_lock_irqsave(&tgtport->lock, flags);
1181 list_del_rcu(entry: &assoc->a_list);
1182 oldls = assoc->rcv_disconn;
1183 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1184 /* if pending Rcv Disconnect Association LS, send rsp now */
1185 if (oldls)
1186 nvmet_fc_xmt_ls_rsp(tgtport, iod: oldls);
1187 ida_free(&tgtport->assoc_cnt, id: assoc->a_id);
1188 dev_info(tgtport->dev,
1189 "{%d:%d} Association freed\n",
1190 tgtport->fc_target_port.port_num, assoc->a_id);
1191 kfree_rcu(assoc, rcu);
1192 nvmet_fc_tgtport_put(tgtport);
1193}
1194
1195static void
1196nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1197{
1198 kref_put(kref: &assoc->ref, release: nvmet_fc_target_assoc_free);
1199}
1200
1201static int
1202nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1203{
1204 return kref_get_unless_zero(kref: &assoc->ref);
1205}
1206
1207static void
1208nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1209{
1210 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1211 struct nvmet_fc_tgt_queue *queue;
1212 int i, terminating;
1213
1214 terminating = atomic_xchg(v: &assoc->terminating, new: 1);
1215
1216 /* if already terminating, do nothing */
1217 if (terminating)
1218 return;
1219
1220
1221 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1222 rcu_read_lock();
1223 queue = rcu_dereference(assoc->queues[i]);
1224 if (!queue) {
1225 rcu_read_unlock();
1226 continue;
1227 }
1228
1229 if (!nvmet_fc_tgt_q_get(queue)) {
1230 rcu_read_unlock();
1231 continue;
1232 }
1233 rcu_read_unlock();
1234 nvmet_fc_delete_target_queue(queue);
1235 nvmet_fc_tgt_q_put(queue);
1236 }
1237
1238 dev_info(tgtport->dev,
1239 "{%d:%d} Association deleted\n",
1240 tgtport->fc_target_port.port_num, assoc->a_id);
1241
1242 nvmet_fc_tgt_a_put(assoc);
1243}
1244
1245static struct nvmet_fc_tgt_assoc *
1246nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1247 u64 association_id)
1248{
1249 struct nvmet_fc_tgt_assoc *assoc;
1250 struct nvmet_fc_tgt_assoc *ret = NULL;
1251
1252 rcu_read_lock();
1253 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1254 if (association_id == assoc->association_id) {
1255 ret = assoc;
1256 if (!nvmet_fc_tgt_a_get(assoc))
1257 ret = NULL;
1258 break;
1259 }
1260 }
1261 rcu_read_unlock();
1262
1263 return ret;
1264}
1265
1266static void
1267nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1268 struct nvmet_fc_port_entry *pe,
1269 struct nvmet_port *port)
1270{
1271 lockdep_assert_held(&nvmet_fc_tgtlock);
1272
1273 pe->tgtport = tgtport;
1274 tgtport->pe = pe;
1275
1276 pe->port = port;
1277 port->priv = pe;
1278
1279 pe->node_name = tgtport->fc_target_port.node_name;
1280 pe->port_name = tgtport->fc_target_port.port_name;
1281 INIT_LIST_HEAD(list: &pe->pe_list);
1282
1283 list_add_tail(new: &pe->pe_list, head: &nvmet_fc_portentry_list);
1284}
1285
1286static void
1287nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1288{
1289 unsigned long flags;
1290
1291 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1292 if (pe->tgtport)
1293 pe->tgtport->pe = NULL;
1294 list_del(entry: &pe->pe_list);
1295 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1296}
1297
1298/*
1299 * called when a targetport deregisters. Breaks the relationship
1300 * with the nvmet port, but leaves the port_entry in place so that
1301 * re-registration can resume operation.
1302 */
1303static void
1304nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1305{
1306 struct nvmet_fc_port_entry *pe;
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1310 pe = tgtport->pe;
1311 if (pe)
1312 pe->tgtport = NULL;
1313 tgtport->pe = NULL;
1314 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1315}
1316
1317/*
1318 * called when a new targetport is registered. Looks in the
1319 * existing nvmet port_entries to see if the nvmet layer is
1320 * configured for the targetport's wwn's. (the targetport existed,
1321 * nvmet configured, the lldd unregistered the tgtport, and is now
1322 * reregistering the same targetport). If so, set the nvmet port
1323 * port entry on the targetport.
1324 */
1325static void
1326nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1327{
1328 struct nvmet_fc_port_entry *pe;
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1332 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1333 if (tgtport->fc_target_port.node_name == pe->node_name &&
1334 tgtport->fc_target_port.port_name == pe->port_name) {
1335 WARN_ON(pe->tgtport);
1336 tgtport->pe = pe;
1337 pe->tgtport = tgtport;
1338 break;
1339 }
1340 }
1341 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1342}
1343
1344/**
1345 * nvmet_fc_register_targetport - transport entry point called by an
1346 * LLDD to register the existence of a local
1347 * NVME subystem FC port.
1348 * @pinfo: pointer to information about the port to be registered
1349 * @template: LLDD entrypoints and operational parameters for the port
1350 * @dev: physical hardware device node port corresponds to. Will be
1351 * used for DMA mappings
1352 * @portptr: pointer to a local port pointer. Upon success, the routine
1353 * will allocate a nvme_fc_local_port structure and place its
1354 * address in the local port pointer. Upon failure, local port
1355 * pointer will be set to NULL.
1356 *
1357 * Returns:
1358 * a completion status. Must be 0 upon success; a negative errno
1359 * (ex: -ENXIO) upon failure.
1360 */
1361int
1362nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1363 struct nvmet_fc_target_template *template,
1364 struct device *dev,
1365 struct nvmet_fc_target_port **portptr)
1366{
1367 struct nvmet_fc_tgtport *newrec;
1368 unsigned long flags;
1369 int ret, idx;
1370
1371 if (!template->xmt_ls_rsp || !template->fcp_op ||
1372 !template->fcp_abort ||
1373 !template->fcp_req_release || !template->targetport_delete ||
1374 !template->max_hw_queues || !template->max_sgl_segments ||
1375 !template->max_dif_sgl_segments || !template->dma_boundary) {
1376 ret = -EINVAL;
1377 goto out_regtgt_failed;
1378 }
1379
1380 newrec = kzalloc(size: (sizeof(*newrec) + template->target_priv_sz),
1381 GFP_KERNEL);
1382 if (!newrec) {
1383 ret = -ENOMEM;
1384 goto out_regtgt_failed;
1385 }
1386
1387 idx = ida_alloc(ida: &nvmet_fc_tgtport_cnt, GFP_KERNEL);
1388 if (idx < 0) {
1389 ret = -ENOSPC;
1390 goto out_fail_kfree;
1391 }
1392
1393 if (!get_device(dev) && dev) {
1394 ret = -ENODEV;
1395 goto out_ida_put;
1396 }
1397
1398 newrec->fc_target_port.node_name = pinfo->node_name;
1399 newrec->fc_target_port.port_name = pinfo->port_name;
1400 if (template->target_priv_sz)
1401 newrec->fc_target_port.private = &newrec[1];
1402 else
1403 newrec->fc_target_port.private = NULL;
1404 newrec->fc_target_port.port_id = pinfo->port_id;
1405 newrec->fc_target_port.port_num = idx;
1406 INIT_LIST_HEAD(list: &newrec->tgt_list);
1407 newrec->dev = dev;
1408 newrec->ops = template;
1409 spin_lock_init(&newrec->lock);
1410 INIT_LIST_HEAD(list: &newrec->ls_rcv_list);
1411 INIT_LIST_HEAD(list: &newrec->ls_req_list);
1412 INIT_LIST_HEAD(list: &newrec->ls_busylist);
1413 INIT_LIST_HEAD(list: &newrec->assoc_list);
1414 INIT_LIST_HEAD(list: &newrec->host_list);
1415 kref_init(kref: &newrec->ref);
1416 ida_init(ida: &newrec->assoc_cnt);
1417 newrec->max_sg_cnt = template->max_sgl_segments;
1418
1419 ret = nvmet_fc_alloc_ls_iodlist(tgtport: newrec);
1420 if (ret) {
1421 ret = -ENOMEM;
1422 goto out_free_newrec;
1423 }
1424
1425 nvmet_fc_portentry_rebind_tgt(tgtport: newrec);
1426
1427 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1428 list_add_tail(new: &newrec->tgt_list, head: &nvmet_fc_target_list);
1429 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1430
1431 *portptr = &newrec->fc_target_port;
1432 return 0;
1433
1434out_free_newrec:
1435 put_device(dev);
1436out_ida_put:
1437 ida_free(&nvmet_fc_tgtport_cnt, id: idx);
1438out_fail_kfree:
1439 kfree(objp: newrec);
1440out_regtgt_failed:
1441 *portptr = NULL;
1442 return ret;
1443}
1444EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1445
1446
1447static void
1448nvmet_fc_free_tgtport(struct kref *ref)
1449{
1450 struct nvmet_fc_tgtport *tgtport =
1451 container_of(ref, struct nvmet_fc_tgtport, ref);
1452 struct device *dev = tgtport->dev;
1453 unsigned long flags;
1454
1455 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1456 list_del(entry: &tgtport->tgt_list);
1457 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1458
1459 nvmet_fc_free_ls_iodlist(tgtport);
1460
1461 /* let the LLDD know we've finished tearing it down */
1462 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1463
1464 ida_free(&nvmet_fc_tgtport_cnt,
1465 id: tgtport->fc_target_port.port_num);
1466
1467 ida_destroy(ida: &tgtport->assoc_cnt);
1468
1469 kfree(objp: tgtport);
1470
1471 put_device(dev);
1472}
1473
1474static void
1475nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1476{
1477 kref_put(kref: &tgtport->ref, release: nvmet_fc_free_tgtport);
1478}
1479
1480static int
1481nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1482{
1483 return kref_get_unless_zero(kref: &tgtport->ref);
1484}
1485
1486static void
1487__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1488{
1489 struct nvmet_fc_tgt_assoc *assoc;
1490
1491 rcu_read_lock();
1492 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1493 if (!nvmet_fc_tgt_a_get(assoc))
1494 continue;
1495 if (!queue_work(wq: nvmet_wq, work: &assoc->del_work))
1496 /* already deleting - release local reference */
1497 nvmet_fc_tgt_a_put(assoc);
1498 }
1499 rcu_read_unlock();
1500}
1501
1502/**
1503 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1504 * to remove references to a hosthandle for LS's.
1505 *
1506 * The nvmet-fc layer ensures that any references to the hosthandle
1507 * on the targetport are forgotten (set to NULL). The LLDD will
1508 * typically call this when a login with a remote host port has been
1509 * lost, thus LS's for the remote host port are no longer possible.
1510 *
1511 * If an LS request is outstanding to the targetport/hosthandle (or
1512 * issued concurrently with the call to invalidate the host), the
1513 * LLDD is responsible for terminating/aborting the LS and completing
1514 * the LS request. It is recommended that these terminations/aborts
1515 * occur after calling to invalidate the host handle to avoid additional
1516 * retries by the nvmet-fc transport. The nvmet-fc transport may
1517 * continue to reference host handle while it cleans up outstanding
1518 * NVME associations. The nvmet-fc transport will call the
1519 * ops->host_release() callback to notify the LLDD that all references
1520 * are complete and the related host handle can be recovered.
1521 * Note: if there are no references, the callback may be called before
1522 * the invalidate host call returns.
1523 *
1524 * @target_port: pointer to the (registered) target port that a prior
1525 * LS was received on and which supplied the transport the
1526 * hosthandle.
1527 * @hosthandle: the handle (pointer) that represents the host port
1528 * that no longer has connectivity and that LS's should
1529 * no longer be directed to.
1530 */
1531void
1532nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1533 void *hosthandle)
1534{
1535 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
1536 struct nvmet_fc_tgt_assoc *assoc, *next;
1537 unsigned long flags;
1538 bool noassoc = true;
1539
1540 spin_lock_irqsave(&tgtport->lock, flags);
1541 list_for_each_entry_safe(assoc, next,
1542 &tgtport->assoc_list, a_list) {
1543 if (!assoc->hostport ||
1544 assoc->hostport->hosthandle != hosthandle)
1545 continue;
1546 if (!nvmet_fc_tgt_a_get(assoc))
1547 continue;
1548 assoc->hostport->invalid = 1;
1549 noassoc = false;
1550 if (!queue_work(wq: nvmet_wq, work: &assoc->del_work))
1551 /* already deleting - release local reference */
1552 nvmet_fc_tgt_a_put(assoc);
1553 }
1554 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1555
1556 /* if there's nothing to wait for - call the callback */
1557 if (noassoc && tgtport->ops->host_release)
1558 tgtport->ops->host_release(hosthandle);
1559}
1560EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1561
1562/*
1563 * nvmet layer has called to terminate an association
1564 */
1565static void
1566nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1567{
1568 struct nvmet_fc_tgtport *tgtport, *next;
1569 struct nvmet_fc_tgt_assoc *assoc;
1570 struct nvmet_fc_tgt_queue *queue;
1571 unsigned long flags;
1572 bool found_ctrl = false;
1573
1574 /* this is a bit ugly, but don't want to make locks layered */
1575 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1576 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1577 tgt_list) {
1578 if (!nvmet_fc_tgtport_get(tgtport))
1579 continue;
1580 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1581
1582 rcu_read_lock();
1583 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1584 queue = rcu_dereference(assoc->queues[0]);
1585 if (queue && queue->nvme_sq.ctrl == ctrl) {
1586 if (nvmet_fc_tgt_a_get(assoc))
1587 found_ctrl = true;
1588 break;
1589 }
1590 }
1591 rcu_read_unlock();
1592
1593 nvmet_fc_tgtport_put(tgtport);
1594
1595 if (found_ctrl) {
1596 if (!queue_work(wq: nvmet_wq, work: &assoc->del_work))
1597 /* already deleting - release local reference */
1598 nvmet_fc_tgt_a_put(assoc);
1599 return;
1600 }
1601
1602 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1603 }
1604 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
1605}
1606
1607/**
1608 * nvmet_fc_unregister_targetport - transport entry point called by an
1609 * LLDD to deregister/remove a previously
1610 * registered a local NVME subsystem FC port.
1611 * @target_port: pointer to the (registered) target port that is to be
1612 * deregistered.
1613 *
1614 * Returns:
1615 * a completion status. Must be 0 upon success; a negative errno
1616 * (ex: -ENXIO) upon failure.
1617 */
1618int
1619nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1620{
1621 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
1622
1623 nvmet_fc_portentry_unbind_tgt(tgtport);
1624
1625 /* terminate any outstanding associations */
1626 __nvmet_fc_free_assocs(tgtport);
1627
1628 /*
1629 * should terminate LS's as well. However, LS's will be generated
1630 * at the tail end of association termination, so they likely don't
1631 * exist yet. And even if they did, it's worthwhile to just let
1632 * them finish and targetport ref counting will clean things up.
1633 */
1634
1635 nvmet_fc_tgtport_put(tgtport);
1636
1637 return 0;
1638}
1639EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1640
1641
1642/* ********************** FC-NVME LS RCV Handling ************************* */
1643
1644
1645static void
1646nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1647 struct nvmet_fc_ls_iod *iod)
1648{
1649 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1650 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1651 struct nvmet_fc_tgt_queue *queue;
1652 int ret = 0;
1653
1654 memset(acc, 0, sizeof(*acc));
1655
1656 /*
1657 * FC-NVME spec changes. There are initiators sending different
1658 * lengths as padding sizes for Create Association Cmd descriptor
1659 * was incorrect.
1660 * Accept anything of "minimum" length. Assume format per 1.15
1661 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1662 * trailing pad length is.
1663 */
1664 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1665 ret = VERR_CR_ASSOC_LEN;
1666 else if (be32_to_cpu(rqst->desc_list_len) <
1667 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1668 ret = VERR_CR_ASSOC_RQST_LEN;
1669 else if (rqst->assoc_cmd.desc_tag !=
1670 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1671 ret = VERR_CR_ASSOC_CMD;
1672 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1673 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1674 ret = VERR_CR_ASSOC_CMD_LEN;
1675 else if (!rqst->assoc_cmd.ersp_ratio ||
1676 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1677 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1678 ret = VERR_ERSP_RATIO;
1679
1680 else {
1681 /* new association w/ admin queue */
1682 iod->assoc = nvmet_fc_alloc_target_assoc(
1683 tgtport, hosthandle: iod->hosthandle);
1684 if (!iod->assoc)
1685 ret = VERR_ASSOC_ALLOC_FAIL;
1686 else {
1687 queue = nvmet_fc_alloc_target_queue(assoc: iod->assoc, qid: 0,
1688 be16_to_cpu(rqst->assoc_cmd.sqsize));
1689 if (!queue) {
1690 ret = VERR_QUEUE_ALLOC_FAIL;
1691 nvmet_fc_tgt_a_put(assoc: iod->assoc);
1692 }
1693 }
1694 }
1695
1696 if (ret) {
1697 dev_err(tgtport->dev,
1698 "Create Association LS failed: %s\n",
1699 validation_errors[ret]);
1700 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1701 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1702 reason: FCNVME_RJT_RC_LOGIC,
1703 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1704 return;
1705 }
1706
1707 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1708 atomic_set(v: &queue->connected, i: 1);
1709 queue->sqhd = 0; /* best place to init value */
1710
1711 dev_info(tgtport->dev,
1712 "{%d:%d} Association created\n",
1713 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1714
1715 /* format a response */
1716
1717 iod->lsrsp->rsplen = sizeof(*acc);
1718
1719 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1720 desc_len: fcnvme_lsdesc_len(
1721 sz: sizeof(struct fcnvme_ls_cr_assoc_acc)),
1722 rqst_ls_cmd: FCNVME_LS_CREATE_ASSOCIATION);
1723 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1724 acc->associd.desc_len =
1725 fcnvme_lsdesc_len(
1726 sz: sizeof(struct fcnvme_lsdesc_assoc_id));
1727 acc->associd.association_id =
1728 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1729 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1730 acc->connectid.desc_len =
1731 fcnvme_lsdesc_len(
1732 sz: sizeof(struct fcnvme_lsdesc_conn_id));
1733 acc->connectid.connection_id = acc->associd.association_id;
1734}
1735
1736static void
1737nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1738 struct nvmet_fc_ls_iod *iod)
1739{
1740 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1741 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1742 struct nvmet_fc_tgt_queue *queue;
1743 int ret = 0;
1744
1745 memset(acc, 0, sizeof(*acc));
1746
1747 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1748 ret = VERR_CR_CONN_LEN;
1749 else if (rqst->desc_list_len !=
1750 fcnvme_lsdesc_len(
1751 sz: sizeof(struct fcnvme_ls_cr_conn_rqst)))
1752 ret = VERR_CR_CONN_RQST_LEN;
1753 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1754 ret = VERR_ASSOC_ID;
1755 else if (rqst->associd.desc_len !=
1756 fcnvme_lsdesc_len(
1757 sz: sizeof(struct fcnvme_lsdesc_assoc_id)))
1758 ret = VERR_ASSOC_ID_LEN;
1759 else if (rqst->connect_cmd.desc_tag !=
1760 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1761 ret = VERR_CR_CONN_CMD;
1762 else if (rqst->connect_cmd.desc_len !=
1763 fcnvme_lsdesc_len(
1764 sz: sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1765 ret = VERR_CR_CONN_CMD_LEN;
1766 else if (!rqst->connect_cmd.ersp_ratio ||
1767 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1768 be16_to_cpu(rqst->connect_cmd.sqsize)))
1769 ret = VERR_ERSP_RATIO;
1770
1771 else {
1772 /* new io queue */
1773 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1774 be64_to_cpu(rqst->associd.association_id));
1775 if (!iod->assoc)
1776 ret = VERR_NO_ASSOC;
1777 else {
1778 queue = nvmet_fc_alloc_target_queue(assoc: iod->assoc,
1779 be16_to_cpu(rqst->connect_cmd.qid),
1780 be16_to_cpu(rqst->connect_cmd.sqsize));
1781 if (!queue)
1782 ret = VERR_QUEUE_ALLOC_FAIL;
1783
1784 /* release get taken in nvmet_fc_find_target_assoc */
1785 nvmet_fc_tgt_a_put(assoc: iod->assoc);
1786 }
1787 }
1788
1789 if (ret) {
1790 dev_err(tgtport->dev,
1791 "Create Connection LS failed: %s\n",
1792 validation_errors[ret]);
1793 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1794 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1795 reason: (ret == VERR_NO_ASSOC) ?
1796 FCNVME_RJT_RC_INV_ASSOC :
1797 FCNVME_RJT_RC_LOGIC,
1798 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1799 return;
1800 }
1801
1802 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1803 atomic_set(v: &queue->connected, i: 1);
1804 queue->sqhd = 0; /* best place to init value */
1805
1806 /* format a response */
1807
1808 iod->lsrsp->rsplen = sizeof(*acc);
1809
1810 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1811 desc_len: fcnvme_lsdesc_len(sz: sizeof(struct fcnvme_ls_cr_conn_acc)),
1812 rqst_ls_cmd: FCNVME_LS_CREATE_CONNECTION);
1813 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1814 acc->connectid.desc_len =
1815 fcnvme_lsdesc_len(
1816 sz: sizeof(struct fcnvme_lsdesc_conn_id));
1817 acc->connectid.connection_id =
1818 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1819 be16_to_cpu(rqst->connect_cmd.qid)));
1820}
1821
1822/*
1823 * Returns true if the LS response is to be transmit
1824 * Returns false if the LS response is to be delayed
1825 */
1826static int
1827nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1828 struct nvmet_fc_ls_iod *iod)
1829{
1830 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1831 &iod->rqstbuf->rq_dis_assoc;
1832 struct fcnvme_ls_disconnect_assoc_acc *acc =
1833 &iod->rspbuf->rsp_dis_assoc;
1834 struct nvmet_fc_tgt_assoc *assoc = NULL;
1835 struct nvmet_fc_ls_iod *oldls = NULL;
1836 unsigned long flags;
1837 int ret = 0;
1838
1839 memset(acc, 0, sizeof(*acc));
1840
1841 ret = nvmefc_vldt_lsreq_discon_assoc(rqstlen: iod->rqstdatalen, rqst);
1842 if (!ret) {
1843 /* match an active association - takes an assoc ref if !NULL */
1844 assoc = nvmet_fc_find_target_assoc(tgtport,
1845 be64_to_cpu(rqst->associd.association_id));
1846 iod->assoc = assoc;
1847 if (!assoc)
1848 ret = VERR_NO_ASSOC;
1849 }
1850
1851 if (ret || !assoc) {
1852 dev_err(tgtport->dev,
1853 "Disconnect LS failed: %s\n",
1854 validation_errors[ret]);
1855 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: acc,
1856 buflen: sizeof(*acc), ls_cmd: rqst->w0.ls_cmd,
1857 reason: (ret == VERR_NO_ASSOC) ?
1858 FCNVME_RJT_RC_INV_ASSOC :
1859 FCNVME_RJT_RC_LOGIC,
1860 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1861 return true;
1862 }
1863
1864 /* format a response */
1865
1866 iod->lsrsp->rsplen = sizeof(*acc);
1867
1868 nvme_fc_format_rsp_hdr(buf: acc, ls_cmd: FCNVME_LS_ACC,
1869 desc_len: fcnvme_lsdesc_len(
1870 sz: sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1871 rqst_ls_cmd: FCNVME_LS_DISCONNECT_ASSOC);
1872
1873 /* release get taken in nvmet_fc_find_target_assoc */
1874 nvmet_fc_tgt_a_put(assoc);
1875
1876 /*
1877 * The rules for LS response says the response cannot
1878 * go back until ABTS's have been sent for all outstanding
1879 * I/O and a Disconnect Association LS has been sent.
1880 * So... save off the Disconnect LS to send the response
1881 * later. If there was a prior LS already saved, replace
1882 * it with the newer one and send a can't perform reject
1883 * on the older one.
1884 */
1885 spin_lock_irqsave(&tgtport->lock, flags);
1886 oldls = assoc->rcv_disconn;
1887 assoc->rcv_disconn = iod;
1888 spin_unlock_irqrestore(lock: &tgtport->lock, flags);
1889
1890 nvmet_fc_delete_target_assoc(assoc);
1891
1892 if (oldls) {
1893 dev_info(tgtport->dev,
1894 "{%d:%d} Multiple Disconnect Association LS's "
1895 "received\n",
1896 tgtport->fc_target_port.port_num, assoc->a_id);
1897 /* overwrite good response with bogus failure */
1898 oldls->lsrsp->rsplen = nvme_fc_format_rjt(buf: oldls->rspbuf,
1899 buflen: sizeof(*iod->rspbuf),
1900 /* ok to use rqst, LS is same */
1901 ls_cmd: rqst->w0.ls_cmd,
1902 reason: FCNVME_RJT_RC_UNAB,
1903 explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1904 nvmet_fc_xmt_ls_rsp(tgtport, iod: oldls);
1905 }
1906
1907 return false;
1908}
1909
1910
1911/* *********************** NVME Ctrl Routines **************************** */
1912
1913
1914static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1915
1916static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1917
1918static void
1919nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1920{
1921 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1922 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1923
1924 fc_dma_sync_single_for_cpu(dev: tgtport->dev, addr: iod->rspdma,
1925 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
1926 nvmet_fc_free_ls_iod(tgtport, iod);
1927 nvmet_fc_tgtport_put(tgtport);
1928}
1929
1930static void
1931nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1932 struct nvmet_fc_ls_iod *iod)
1933{
1934 int ret;
1935
1936 fc_dma_sync_single_for_device(dev: tgtport->dev, addr: iod->rspdma,
1937 size: sizeof(*iod->rspbuf), dir: DMA_TO_DEVICE);
1938
1939 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1940 if (ret)
1941 nvmet_fc_xmt_ls_rsp_done(lsrsp: iod->lsrsp);
1942}
1943
1944/*
1945 * Actual processing routine for received FC-NVME LS Requests from the LLD
1946 */
1947static void
1948nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1949 struct nvmet_fc_ls_iod *iod)
1950{
1951 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1952 bool sendrsp = true;
1953
1954 iod->lsrsp->nvme_fc_private = iod;
1955 iod->lsrsp->rspbuf = iod->rspbuf;
1956 iod->lsrsp->rspdma = iod->rspdma;
1957 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1958 /* Be preventative. handlers will later set to valid length */
1959 iod->lsrsp->rsplen = 0;
1960
1961 iod->assoc = NULL;
1962
1963 /*
1964 * handlers:
1965 * parse request input, execute the request, and format the
1966 * LS response
1967 */
1968 switch (w0->ls_cmd) {
1969 case FCNVME_LS_CREATE_ASSOCIATION:
1970 /* Creates Association and initial Admin Queue/Connection */
1971 nvmet_fc_ls_create_association(tgtport, iod);
1972 break;
1973 case FCNVME_LS_CREATE_CONNECTION:
1974 /* Creates an IO Queue/Connection */
1975 nvmet_fc_ls_create_connection(tgtport, iod);
1976 break;
1977 case FCNVME_LS_DISCONNECT_ASSOC:
1978 /* Terminate a Queue/Connection or the Association */
1979 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1980 break;
1981 default:
1982 iod->lsrsp->rsplen = nvme_fc_format_rjt(buf: iod->rspbuf,
1983 buflen: sizeof(*iod->rspbuf), ls_cmd: w0->ls_cmd,
1984 reason: FCNVME_RJT_RC_INVAL, explanation: FCNVME_RJT_EXP_NONE, vendor: 0);
1985 }
1986
1987 if (sendrsp)
1988 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1989}
1990
1991/*
1992 * Actual processing routine for received FC-NVME LS Requests from the LLD
1993 */
1994static void
1995nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1996{
1997 struct nvmet_fc_ls_iod *iod =
1998 container_of(work, struct nvmet_fc_ls_iod, work);
1999 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2000
2001 nvmet_fc_handle_ls_rqst(tgtport, iod);
2002}
2003
2004
2005/**
2006 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2007 * upon the reception of a NVME LS request.
2008 *
2009 * The nvmet-fc layer will copy payload to an internal structure for
2010 * processing. As such, upon completion of the routine, the LLDD may
2011 * immediately free/reuse the LS request buffer passed in the call.
2012 *
2013 * If this routine returns error, the LLDD should abort the exchange.
2014 *
2015 * @target_port: pointer to the (registered) target port the LS was
2016 * received on.
2017 * @hosthandle: pointer to the host specific data, gets stored in iod.
2018 * @lsrsp: pointer to a lsrsp structure to be used to reference
2019 * the exchange corresponding to the LS.
2020 * @lsreqbuf: pointer to the buffer containing the LS Request
2021 * @lsreqbuf_len: length, in bytes, of the received LS request
2022 */
2023int
2024nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2025 void *hosthandle,
2026 struct nvmefc_ls_rsp *lsrsp,
2027 void *lsreqbuf, u32 lsreqbuf_len)
2028{
2029 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
2030 struct nvmet_fc_ls_iod *iod;
2031 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2032
2033 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2034 dev_info(tgtport->dev,
2035 "RCV %s LS failed: payload too large (%d)\n",
2036 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2037 nvmefc_ls_names[w0->ls_cmd] : "",
2038 lsreqbuf_len);
2039 return -E2BIG;
2040 }
2041
2042 if (!nvmet_fc_tgtport_get(tgtport)) {
2043 dev_info(tgtport->dev,
2044 "RCV %s LS failed: target deleting\n",
2045 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2046 nvmefc_ls_names[w0->ls_cmd] : "");
2047 return -ESHUTDOWN;
2048 }
2049
2050 iod = nvmet_fc_alloc_ls_iod(tgtport);
2051 if (!iod) {
2052 dev_info(tgtport->dev,
2053 "RCV %s LS failed: context allocation failed\n",
2054 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2055 nvmefc_ls_names[w0->ls_cmd] : "");
2056 nvmet_fc_tgtport_put(tgtport);
2057 return -ENOENT;
2058 }
2059
2060 iod->lsrsp = lsrsp;
2061 iod->fcpreq = NULL;
2062 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2063 iod->rqstdatalen = lsreqbuf_len;
2064 iod->hosthandle = hosthandle;
2065
2066 queue_work(wq: nvmet_wq, work: &iod->work);
2067
2068 return 0;
2069}
2070EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2071
2072
2073/*
2074 * **********************
2075 * Start of FCP handling
2076 * **********************
2077 */
2078
2079static int
2080nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2081{
2082 struct scatterlist *sg;
2083 unsigned int nent;
2084
2085 sg = sgl_alloc(length: fod->req.transfer_len, GFP_KERNEL, nent_p: &nent);
2086 if (!sg)
2087 goto out;
2088
2089 fod->data_sg = sg;
2090 fod->data_sg_cnt = nent;
2091 fod->data_sg_cnt = fc_dma_map_sg(dev: fod->tgtport->dev, sg, nents: nent,
2092 dir: ((fod->io_dir == NVMET_FCP_WRITE) ?
2093 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2094 /* note: write from initiator perspective */
2095 fod->next_sg = fod->data_sg;
2096
2097 return 0;
2098
2099out:
2100 return NVME_SC_INTERNAL;
2101}
2102
2103static void
2104nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2105{
2106 if (!fod->data_sg || !fod->data_sg_cnt)
2107 return;
2108
2109 fc_dma_unmap_sg(dev: fod->tgtport->dev, sg: fod->data_sg, nents: fod->data_sg_cnt,
2110 dir: ((fod->io_dir == NVMET_FCP_WRITE) ?
2111 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2112 sgl_free(sgl: fod->data_sg);
2113 fod->data_sg = NULL;
2114 fod->data_sg_cnt = 0;
2115}
2116
2117
2118static bool
2119queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2120{
2121 u32 sqtail, used;
2122
2123 /* egad, this is ugly. And sqtail is just a best guess */
2124 sqtail = atomic_read(v: &q->sqtail) % q->sqsize;
2125
2126 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2127 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2128}
2129
2130/*
2131 * Prep RSP payload.
2132 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2133 */
2134static void
2135nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2136 struct nvmet_fc_fcp_iod *fod)
2137{
2138 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2139 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2140 struct nvme_completion *cqe = &ersp->cqe;
2141 u32 *cqewd = (u32 *)cqe;
2142 bool send_ersp = false;
2143 u32 rsn, rspcnt, xfr_length;
2144
2145 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2146 xfr_length = fod->req.transfer_len;
2147 else
2148 xfr_length = fod->offset;
2149
2150 /*
2151 * check to see if we can send a 0's rsp.
2152 * Note: to send a 0's response, the NVME-FC host transport will
2153 * recreate the CQE. The host transport knows: sq id, SQHD (last
2154 * seen in an ersp), and command_id. Thus it will create a
2155 * zero-filled CQE with those known fields filled in. Transport
2156 * must send an ersp for any condition where the cqe won't match
2157 * this.
2158 *
2159 * Here are the FC-NVME mandated cases where we must send an ersp:
2160 * every N responses, where N=ersp_ratio
2161 * force fabric commands to send ersp's (not in FC-NVME but good
2162 * practice)
2163 * normal cmds: any time status is non-zero, or status is zero
2164 * but words 0 or 1 are non-zero.
2165 * the SQ is 90% or more full
2166 * the cmd is a fused command
2167 * transferred data length not equal to cmd iu length
2168 */
2169 rspcnt = atomic_inc_return(v: &fod->queue->zrspcnt);
2170 if (!(rspcnt % fod->queue->ersp_ratio) ||
2171 nvme_is_fabrics(cmd: (struct nvme_command *) sqe) ||
2172 xfr_length != fod->req.transfer_len ||
2173 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2174 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2175 queue_90percent_full(q: fod->queue, le16_to_cpu(cqe->sq_head)))
2176 send_ersp = true;
2177
2178 /* re-set the fields */
2179 fod->fcpreq->rspaddr = ersp;
2180 fod->fcpreq->rspdma = fod->rspdma;
2181
2182 if (!send_ersp) {
2183 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2184 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2185 } else {
2186 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2187 rsn = atomic_inc_return(v: &fod->queue->rsn);
2188 ersp->rsn = cpu_to_be32(rsn);
2189 ersp->xfrd_len = cpu_to_be32(xfr_length);
2190 fod->fcpreq->rsplen = sizeof(*ersp);
2191 }
2192
2193 fc_dma_sync_single_for_device(dev: tgtport->dev, addr: fod->rspdma,
2194 size: sizeof(fod->rspiubuf), dir: DMA_TO_DEVICE);
2195}
2196
2197static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2198
2199static void
2200nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2201 struct nvmet_fc_fcp_iod *fod)
2202{
2203 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2204
2205 /* data no longer needed */
2206 nvmet_fc_free_tgt_pgs(fod);
2207
2208 /*
2209 * if an ABTS was received or we issued the fcp_abort early
2210 * don't call abort routine again.
2211 */
2212 /* no need to take lock - lock was taken earlier to get here */
2213 if (!fod->aborted)
2214 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2215
2216 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2217}
2218
2219static void
2220nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2221 struct nvmet_fc_fcp_iod *fod)
2222{
2223 int ret;
2224
2225 fod->fcpreq->op = NVMET_FCOP_RSP;
2226 fod->fcpreq->timeout = 0;
2227
2228 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2229
2230 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2231 if (ret)
2232 nvmet_fc_abort_op(tgtport, fod);
2233}
2234
2235static void
2236nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2237 struct nvmet_fc_fcp_iod *fod, u8 op)
2238{
2239 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2240 struct scatterlist *sg = fod->next_sg;
2241 unsigned long flags;
2242 u32 remaininglen = fod->req.transfer_len - fod->offset;
2243 u32 tlen = 0;
2244 int ret;
2245
2246 fcpreq->op = op;
2247 fcpreq->offset = fod->offset;
2248 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2249
2250 /*
2251 * for next sequence:
2252 * break at a sg element boundary
2253 * attempt to keep sequence length capped at
2254 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2255 * be longer if a single sg element is larger
2256 * than that amount. This is done to avoid creating
2257 * a new sg list to use for the tgtport api.
2258 */
2259 fcpreq->sg = sg;
2260 fcpreq->sg_cnt = 0;
2261 while (tlen < remaininglen &&
2262 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2263 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2264 fcpreq->sg_cnt++;
2265 tlen += sg_dma_len(sg);
2266 sg = sg_next(sg);
2267 }
2268 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2269 fcpreq->sg_cnt++;
2270 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2271 sg = sg_next(sg);
2272 }
2273 if (tlen < remaininglen)
2274 fod->next_sg = sg;
2275 else
2276 fod->next_sg = NULL;
2277
2278 fcpreq->transfer_length = tlen;
2279 fcpreq->transferred_length = 0;
2280 fcpreq->fcp_error = 0;
2281 fcpreq->rsplen = 0;
2282
2283 /*
2284 * If the last READDATA request: check if LLDD supports
2285 * combined xfr with response.
2286 */
2287 if ((op == NVMET_FCOP_READDATA) &&
2288 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2289 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2290 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2291 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2292 }
2293
2294 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2295 if (ret) {
2296 /*
2297 * should be ok to set w/o lock as its in the thread of
2298 * execution (not an async timer routine) and doesn't
2299 * contend with any clearing action
2300 */
2301 fod->abort = true;
2302
2303 if (op == NVMET_FCOP_WRITEDATA) {
2304 spin_lock_irqsave(&fod->flock, flags);
2305 fod->writedataactive = false;
2306 spin_unlock_irqrestore(lock: &fod->flock, flags);
2307 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2308 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2309 fcpreq->fcp_error = ret;
2310 fcpreq->transferred_length = 0;
2311 nvmet_fc_xmt_fcp_op_done(fcpreq: fod->fcpreq);
2312 }
2313 }
2314}
2315
2316static inline bool
2317__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2318{
2319 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2320 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2321
2322 /* if in the middle of an io and we need to tear down */
2323 if (abort) {
2324 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2325 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2326 return true;
2327 }
2328
2329 nvmet_fc_abort_op(tgtport, fod);
2330 return true;
2331 }
2332
2333 return false;
2334}
2335
2336/*
2337 * actual done handler for FCP operations when completed by the lldd
2338 */
2339static void
2340nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2341{
2342 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2343 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2344 unsigned long flags;
2345 bool abort;
2346
2347 spin_lock_irqsave(&fod->flock, flags);
2348 abort = fod->abort;
2349 fod->writedataactive = false;
2350 spin_unlock_irqrestore(lock: &fod->flock, flags);
2351
2352 switch (fcpreq->op) {
2353
2354 case NVMET_FCOP_WRITEDATA:
2355 if (__nvmet_fc_fod_op_abort(fod, abort))
2356 return;
2357 if (fcpreq->fcp_error ||
2358 fcpreq->transferred_length != fcpreq->transfer_length) {
2359 spin_lock_irqsave(&fod->flock, flags);
2360 fod->abort = true;
2361 spin_unlock_irqrestore(lock: &fod->flock, flags);
2362
2363 nvmet_req_complete(req: &fod->req, status: NVME_SC_INTERNAL);
2364 return;
2365 }
2366
2367 fod->offset += fcpreq->transferred_length;
2368 if (fod->offset != fod->req.transfer_len) {
2369 spin_lock_irqsave(&fod->flock, flags);
2370 fod->writedataactive = true;
2371 spin_unlock_irqrestore(lock: &fod->flock, flags);
2372
2373 /* transfer the next chunk */
2374 nvmet_fc_transfer_fcp_data(tgtport, fod,
2375 op: NVMET_FCOP_WRITEDATA);
2376 return;
2377 }
2378
2379 /* data transfer complete, resume with nvmet layer */
2380 fod->req.execute(&fod->req);
2381 break;
2382
2383 case NVMET_FCOP_READDATA:
2384 case NVMET_FCOP_READDATA_RSP:
2385 if (__nvmet_fc_fod_op_abort(fod, abort))
2386 return;
2387 if (fcpreq->fcp_error ||
2388 fcpreq->transferred_length != fcpreq->transfer_length) {
2389 nvmet_fc_abort_op(tgtport, fod);
2390 return;
2391 }
2392
2393 /* success */
2394
2395 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2396 /* data no longer needed */
2397 nvmet_fc_free_tgt_pgs(fod);
2398 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2399 return;
2400 }
2401
2402 fod->offset += fcpreq->transferred_length;
2403 if (fod->offset != fod->req.transfer_len) {
2404 /* transfer the next chunk */
2405 nvmet_fc_transfer_fcp_data(tgtport, fod,
2406 op: NVMET_FCOP_READDATA);
2407 return;
2408 }
2409
2410 /* data transfer complete, send response */
2411
2412 /* data no longer needed */
2413 nvmet_fc_free_tgt_pgs(fod);
2414
2415 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2416
2417 break;
2418
2419 case NVMET_FCOP_RSP:
2420 if (__nvmet_fc_fod_op_abort(fod, abort))
2421 return;
2422 nvmet_fc_free_fcp_iod(queue: fod->queue, fod);
2423 break;
2424
2425 default:
2426 break;
2427 }
2428}
2429
2430static void
2431nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2432{
2433 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2434
2435 nvmet_fc_fod_op_done(fod);
2436}
2437
2438/*
2439 * actual completion handler after execution by the nvmet layer
2440 */
2441static void
2442__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2443 struct nvmet_fc_fcp_iod *fod, int status)
2444{
2445 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2446 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2447 unsigned long flags;
2448 bool abort;
2449
2450 spin_lock_irqsave(&fod->flock, flags);
2451 abort = fod->abort;
2452 spin_unlock_irqrestore(lock: &fod->flock, flags);
2453
2454 /* if we have a CQE, snoop the last sq_head value */
2455 if (!status)
2456 fod->queue->sqhd = cqe->sq_head;
2457
2458 if (abort) {
2459 nvmet_fc_abort_op(tgtport, fod);
2460 return;
2461 }
2462
2463 /* if an error handling the cmd post initial parsing */
2464 if (status) {
2465 /* fudge up a failed CQE status for our transport error */
2466 memset(cqe, 0, sizeof(*cqe));
2467 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2468 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2469 cqe->command_id = sqe->command_id;
2470 cqe->status = cpu_to_le16(status);
2471 } else {
2472
2473 /*
2474 * try to push the data even if the SQE status is non-zero.
2475 * There may be a status where data still was intended to
2476 * be moved
2477 */
2478 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2479 /* push the data over before sending rsp */
2480 nvmet_fc_transfer_fcp_data(tgtport, fod,
2481 op: NVMET_FCOP_READDATA);
2482 return;
2483 }
2484
2485 /* writes & no data - fall thru */
2486 }
2487
2488 /* data no longer needed */
2489 nvmet_fc_free_tgt_pgs(fod);
2490
2491 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2492}
2493
2494
2495static void
2496nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2497{
2498 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2499 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2500
2501 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, status: 0);
2502}
2503
2504
2505/*
2506 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2507 */
2508static void
2509nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2510 struct nvmet_fc_fcp_iod *fod)
2511{
2512 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2513 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2514 int ret;
2515
2516 /*
2517 * Fused commands are currently not supported in the linux
2518 * implementation.
2519 *
2520 * As such, the implementation of the FC transport does not
2521 * look at the fused commands and order delivery to the upper
2522 * layer until we have both based on csn.
2523 */
2524
2525 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2526
2527 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2528 fod->io_dir = NVMET_FCP_WRITE;
2529 if (!nvme_is_write(cmd: &cmdiu->sqe))
2530 goto transport_error;
2531 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2532 fod->io_dir = NVMET_FCP_READ;
2533 if (nvme_is_write(cmd: &cmdiu->sqe))
2534 goto transport_error;
2535 } else {
2536 fod->io_dir = NVMET_FCP_NODATA;
2537 if (xfrlen)
2538 goto transport_error;
2539 }
2540
2541 fod->req.cmd = &fod->cmdiubuf.sqe;
2542 fod->req.cqe = &fod->rspiubuf.cqe;
2543 if (tgtport->pe)
2544 fod->req.port = tgtport->pe->port;
2545
2546 /* clear any response payload */
2547 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2548
2549 fod->data_sg = NULL;
2550 fod->data_sg_cnt = 0;
2551
2552 ret = nvmet_req_init(req: &fod->req,
2553 cq: &fod->queue->nvme_cq,
2554 sq: &fod->queue->nvme_sq,
2555 ops: &nvmet_fc_tgt_fcp_ops);
2556 if (!ret) {
2557 /* bad SQE content or invalid ctrl state */
2558 /* nvmet layer has already called op done to send rsp. */
2559 return;
2560 }
2561
2562 fod->req.transfer_len = xfrlen;
2563
2564 /* keep a running counter of tail position */
2565 atomic_inc(v: &fod->queue->sqtail);
2566
2567 if (fod->req.transfer_len) {
2568 ret = nvmet_fc_alloc_tgt_pgs(fod);
2569 if (ret) {
2570 nvmet_req_complete(req: &fod->req, status: ret);
2571 return;
2572 }
2573 }
2574 fod->req.sg = fod->data_sg;
2575 fod->req.sg_cnt = fod->data_sg_cnt;
2576 fod->offset = 0;
2577
2578 if (fod->io_dir == NVMET_FCP_WRITE) {
2579 /* pull the data over before invoking nvmet layer */
2580 nvmet_fc_transfer_fcp_data(tgtport, fod, op: NVMET_FCOP_WRITEDATA);
2581 return;
2582 }
2583
2584 /*
2585 * Reads or no data:
2586 *
2587 * can invoke the nvmet_layer now. If read data, cmd completion will
2588 * push the data
2589 */
2590 fod->req.execute(&fod->req);
2591 return;
2592
2593transport_error:
2594 nvmet_fc_abort_op(tgtport, fod);
2595}
2596
2597/**
2598 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2599 * upon the reception of a NVME FCP CMD IU.
2600 *
2601 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2602 * layer for processing.
2603 *
2604 * The nvmet_fc layer allocates a local job structure (struct
2605 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2606 * CMD IU buffer to the job structure. As such, on a successful
2607 * completion (returns 0), the LLDD may immediately free/reuse
2608 * the CMD IU buffer passed in the call.
2609 *
2610 * However, in some circumstances, due to the packetized nature of FC
2611 * and the api of the FC LLDD which may issue a hw command to send the
2612 * response, but the LLDD may not get the hw completion for that command
2613 * and upcall the nvmet_fc layer before a new command may be
2614 * asynchronously received - its possible for a command to be received
2615 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2616 * the appearance of more commands received than fits in the sq.
2617 * To alleviate this scenario, a temporary queue is maintained in the
2618 * transport for pending LLDD requests waiting for a queue job structure.
2619 * In these "overrun" cases, a temporary queue element is allocated
2620 * the LLDD request and CMD iu buffer information remembered, and the
2621 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2622 * structure is freed, it is immediately reallocated for anything on the
2623 * pending request list. The LLDDs defer_rcv() callback is called,
2624 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2625 * is then started normally with the transport.
2626 *
2627 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2628 * the completion as successful but must not reuse the CMD IU buffer
2629 * until the LLDD's defer_rcv() callback has been called for the
2630 * corresponding struct nvmefc_tgt_fcp_req pointer.
2631 *
2632 * If there is any other condition in which an error occurs, the
2633 * transport will return a non-zero status indicating the error.
2634 * In all cases other than -EOVERFLOW, the transport has not accepted the
2635 * request and the LLDD should abort the exchange.
2636 *
2637 * @target_port: pointer to the (registered) target port the FCP CMD IU
2638 * was received on.
2639 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2640 * the exchange corresponding to the FCP Exchange.
2641 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2642 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2643 */
2644int
2645nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2646 struct nvmefc_tgt_fcp_req *fcpreq,
2647 void *cmdiubuf, u32 cmdiubuf_len)
2648{
2649 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(targetport: target_port);
2650 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2651 struct nvmet_fc_tgt_queue *queue;
2652 struct nvmet_fc_fcp_iod *fod;
2653 struct nvmet_fc_defer_fcp_req *deferfcp;
2654 unsigned long flags;
2655
2656 /* validate iu, so the connection id can be used to find the queue */
2657 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2658 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2659 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2660 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2661 return -EIO;
2662
2663 queue = nvmet_fc_find_target_queue(tgtport,
2664 be64_to_cpu(cmdiu->connection_id));
2665 if (!queue)
2666 return -ENOTCONN;
2667
2668 /*
2669 * note: reference taken by find_target_queue
2670 * After successful fod allocation, the fod will inherit the
2671 * ownership of that reference and will remove the reference
2672 * when the fod is freed.
2673 */
2674
2675 spin_lock_irqsave(&queue->qlock, flags);
2676
2677 fod = nvmet_fc_alloc_fcp_iod(queue);
2678 if (fod) {
2679 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2680
2681 fcpreq->nvmet_fc_private = fod;
2682 fod->fcpreq = fcpreq;
2683
2684 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2685
2686 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2687
2688 return 0;
2689 }
2690
2691 if (!tgtport->ops->defer_rcv) {
2692 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2693 /* release the queue lookup reference */
2694 nvmet_fc_tgt_q_put(queue);
2695 return -ENOENT;
2696 }
2697
2698 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2699 struct nvmet_fc_defer_fcp_req, req_list);
2700 if (deferfcp) {
2701 /* Just re-use one that was previously allocated */
2702 list_del(entry: &deferfcp->req_list);
2703 } else {
2704 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2705
2706 /* Now we need to dynamically allocate one */
2707 deferfcp = kmalloc(size: sizeof(*deferfcp), GFP_KERNEL);
2708 if (!deferfcp) {
2709 /* release the queue lookup reference */
2710 nvmet_fc_tgt_q_put(queue);
2711 return -ENOMEM;
2712 }
2713 spin_lock_irqsave(&queue->qlock, flags);
2714 }
2715
2716 /* For now, use rspaddr / rsplen to save payload information */
2717 fcpreq->rspaddr = cmdiubuf;
2718 fcpreq->rsplen = cmdiubuf_len;
2719 deferfcp->fcp_req = fcpreq;
2720
2721 /* defer processing till a fod becomes available */
2722 list_add_tail(new: &deferfcp->req_list, head: &queue->pending_cmd_list);
2723
2724 /* NOTE: the queue lookup reference is still valid */
2725
2726 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2727
2728 return -EOVERFLOW;
2729}
2730EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2731
2732/**
2733 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2734 * upon the reception of an ABTS for a FCP command
2735 *
2736 * Notify the transport that an ABTS has been received for a FCP command
2737 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2738 * LLDD believes the command is still being worked on
2739 * (template_ops->fcp_req_release() has not been called).
2740 *
2741 * The transport will wait for any outstanding work (an op to the LLDD,
2742 * which the lldd should complete with error due to the ABTS; or the
2743 * completion from the nvmet layer of the nvme command), then will
2744 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2745 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2746 * to the ABTS either after return from this function (assuming any
2747 * outstanding op work has been terminated) or upon the callback being
2748 * called.
2749 *
2750 * @target_port: pointer to the (registered) target port the FCP CMD IU
2751 * was received on.
2752 * @fcpreq: pointer to the fcpreq request structure that corresponds
2753 * to the exchange that received the ABTS.
2754 */
2755void
2756nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2757 struct nvmefc_tgt_fcp_req *fcpreq)
2758{
2759 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2760 struct nvmet_fc_tgt_queue *queue;
2761 unsigned long flags;
2762
2763 if (!fod || fod->fcpreq != fcpreq)
2764 /* job appears to have already completed, ignore abort */
2765 return;
2766
2767 queue = fod->queue;
2768
2769 spin_lock_irqsave(&queue->qlock, flags);
2770 if (fod->active) {
2771 /*
2772 * mark as abort. The abort handler, invoked upon completion
2773 * of any work, will detect the aborted status and do the
2774 * callback.
2775 */
2776 spin_lock(lock: &fod->flock);
2777 fod->abort = true;
2778 fod->aborted = true;
2779 spin_unlock(lock: &fod->flock);
2780 }
2781 spin_unlock_irqrestore(lock: &queue->qlock, flags);
2782}
2783EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2784
2785
2786struct nvmet_fc_traddr {
2787 u64 nn;
2788 u64 pn;
2789};
2790
2791static int
2792__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2793{
2794 u64 token64;
2795
2796 if (match_u64(sstr, result: &token64))
2797 return -EINVAL;
2798 *val = token64;
2799
2800 return 0;
2801}
2802
2803/*
2804 * This routine validates and extracts the WWN's from the TRADDR string.
2805 * As kernel parsers need the 0x to determine number base, universally
2806 * build string to parse with 0x prefix before parsing name strings.
2807 */
2808static int
2809nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2810{
2811 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2812 substring_t wwn = { name, &name[sizeof(name)-1] };
2813 int nnoffset, pnoffset;
2814
2815 /* validate if string is one of the 2 allowed formats */
2816 if (strnlen(p: buf, maxlen: blen) == NVME_FC_TRADDR_MAXLENGTH &&
2817 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2818 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2819 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2820 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2821 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2822 NVME_FC_TRADDR_OXNNLEN;
2823 } else if ((strnlen(p: buf, maxlen: blen) == NVME_FC_TRADDR_MINLENGTH &&
2824 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2825 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2826 "pn-", NVME_FC_TRADDR_NNLEN))) {
2827 nnoffset = NVME_FC_TRADDR_NNLEN;
2828 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2829 } else
2830 goto out_einval;
2831
2832 name[0] = '0';
2833 name[1] = 'x';
2834 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2835
2836 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2837 if (__nvme_fc_parse_u64(sstr: &wwn, val: &traddr->nn))
2838 goto out_einval;
2839
2840 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2841 if (__nvme_fc_parse_u64(sstr: &wwn, val: &traddr->pn))
2842 goto out_einval;
2843
2844 return 0;
2845
2846out_einval:
2847 pr_warn("%s: bad traddr string\n", __func__);
2848 return -EINVAL;
2849}
2850
2851static int
2852nvmet_fc_add_port(struct nvmet_port *port)
2853{
2854 struct nvmet_fc_tgtport *tgtport;
2855 struct nvmet_fc_port_entry *pe;
2856 struct nvmet_fc_traddr traddr = { 0L, 0L };
2857 unsigned long flags;
2858 int ret;
2859
2860 /* validate the address info */
2861 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2862 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2863 return -EINVAL;
2864
2865 /* map the traddr address info to a target port */
2866
2867 ret = nvme_fc_parse_traddr(traddr: &traddr, buf: port->disc_addr.traddr,
2868 blen: sizeof(port->disc_addr.traddr));
2869 if (ret)
2870 return ret;
2871
2872 pe = kzalloc(size: sizeof(*pe), GFP_KERNEL);
2873 if (!pe)
2874 return -ENOMEM;
2875
2876 ret = -ENXIO;
2877 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2878 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2879 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2880 (tgtport->fc_target_port.port_name == traddr.pn)) {
2881 /* a FC port can only be 1 nvmet port id */
2882 if (!tgtport->pe) {
2883 nvmet_fc_portentry_bind(tgtport, pe, port);
2884 ret = 0;
2885 } else
2886 ret = -EALREADY;
2887 break;
2888 }
2889 }
2890 spin_unlock_irqrestore(lock: &nvmet_fc_tgtlock, flags);
2891
2892 if (ret)
2893 kfree(objp: pe);
2894
2895 return ret;
2896}
2897
2898static void
2899nvmet_fc_remove_port(struct nvmet_port *port)
2900{
2901 struct nvmet_fc_port_entry *pe = port->priv;
2902
2903 nvmet_fc_portentry_unbind(pe);
2904
2905 kfree(objp: pe);
2906}
2907
2908static void
2909nvmet_fc_discovery_chg(struct nvmet_port *port)
2910{
2911 struct nvmet_fc_port_entry *pe = port->priv;
2912 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2913
2914 if (tgtport && tgtport->ops->discovery_event)
2915 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2916}
2917
2918static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2919 .owner = THIS_MODULE,
2920 .type = NVMF_TRTYPE_FC,
2921 .msdbd = 1,
2922 .add_port = nvmet_fc_add_port,
2923 .remove_port = nvmet_fc_remove_port,
2924 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2925 .delete_ctrl = nvmet_fc_delete_ctrl,
2926 .discovery_chg = nvmet_fc_discovery_chg,
2927};
2928
2929static int __init nvmet_fc_init_module(void)
2930{
2931 return nvmet_register_transport(ops: &nvmet_fc_tgt_fcp_ops);
2932}
2933
2934static void __exit nvmet_fc_exit_module(void)
2935{
2936 /* sanity check - all lports should be removed */
2937 if (!list_empty(head: &nvmet_fc_target_list))
2938 pr_warn("%s: targetport list not empty\n", __func__);
2939
2940 nvmet_unregister_transport(ops: &nvmet_fc_tgt_fcp_ops);
2941
2942 ida_destroy(ida: &nvmet_fc_tgtport_cnt);
2943}
2944
2945module_init(nvmet_fc_init_module);
2946module_exit(nvmet_fc_exit_module);
2947
2948MODULE_LICENSE("GPL v2");
2949

source code of linux/drivers/nvme/target/fc.c