1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/blkdev.h>
8#include <linux/blk-integrity.h>
9#include <linux/memremap.h>
10#include <linux/module.h>
11#include "nvmet.h"
12
13void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14{
15 /* Logical blocks per physical block, 0's based. */
16 const __le16 lpp0b = to0based(a: bdev_physical_block_size(bdev) /
17 bdev_logical_block_size(bdev));
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(a: bdev_discard_granularity(bdev) /
44 bdev_logical_block_size(bdev));
45 /* NPDG = Namespace Preferred Deallocate Alignment */
46 id->npda = id->npdg;
47 /* NOWS = Namespace Optimal Write Size */
48 id->nows = to0based(a: bdev_io_opt(bdev) / bdev_logical_block_size(bdev));
49}
50
51void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
52{
53 if (ns->bdev_handle) {
54 bdev_release(handle: ns->bdev_handle);
55 ns->bdev = NULL;
56 ns->bdev_handle = NULL;
57 }
58}
59
60static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
61{
62 struct blk_integrity *bi = bdev_get_integrity(bdev: ns->bdev);
63
64 if (bi) {
65 ns->metadata_size = bi->tuple_size;
66 if (bi->profile == &t10_pi_type1_crc)
67 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
68 else if (bi->profile == &t10_pi_type3_crc)
69 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
70 else
71 /* Unsupported metadata type */
72 ns->metadata_size = 0;
73 }
74}
75
76int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
77{
78 int ret;
79
80 /*
81 * When buffered_io namespace attribute is enabled that means user want
82 * this block device to be used as a file, so block device can take
83 * an advantage of cache.
84 */
85 if (ns->buffered_io)
86 return -ENOTBLK;
87
88 ns->bdev_handle = bdev_open_by_path(path: ns->device_path,
89 BLK_OPEN_READ | BLK_OPEN_WRITE, NULL, NULL);
90 if (IS_ERR(ptr: ns->bdev_handle)) {
91 ret = PTR_ERR(ptr: ns->bdev_handle);
92 if (ret != -ENOTBLK) {
93 pr_err("failed to open block device %s: (%d)\n",
94 ns->device_path, ret);
95 }
96 ns->bdev_handle = NULL;
97 return ret;
98 }
99 ns->bdev = ns->bdev_handle->bdev;
100 ns->size = bdev_nr_bytes(bdev: ns->bdev);
101 ns->blksize_shift = blksize_bits(size: bdev_logical_block_size(bdev: ns->bdev));
102
103 ns->pi_type = 0;
104 ns->metadata_size = 0;
105 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
106 nvmet_bdev_ns_enable_integrity(ns);
107
108 if (bdev_is_zoned(bdev: ns->bdev)) {
109 if (!nvmet_bdev_zns_enable(ns)) {
110 nvmet_bdev_ns_disable(ns);
111 return -EINVAL;
112 }
113 ns->csi = NVME_CSI_ZNS;
114 }
115
116 return 0;
117}
118
119void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
120{
121 ns->size = bdev_nr_bytes(bdev: ns->bdev);
122}
123
124u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
125{
126 u16 status = NVME_SC_SUCCESS;
127
128 if (likely(blk_sts == BLK_STS_OK))
129 return status;
130 /*
131 * Right now there exists M : 1 mapping between block layer error
132 * to the NVMe status code (see nvme_error_status()). For consistency,
133 * when we reverse map we use most appropriate NVMe Status code from
134 * the group of the NVMe staus codes used in the nvme_error_status().
135 */
136 switch (blk_sts) {
137 case BLK_STS_NOSPC:
138 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
139 req->error_loc = offsetof(struct nvme_rw_command, length);
140 break;
141 case BLK_STS_TARGET:
142 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
143 req->error_loc = offsetof(struct nvme_rw_command, slba);
144 break;
145 case BLK_STS_NOTSUPP:
146 req->error_loc = offsetof(struct nvme_common_command, opcode);
147 switch (req->cmd->common.opcode) {
148 case nvme_cmd_dsm:
149 case nvme_cmd_write_zeroes:
150 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
151 break;
152 default:
153 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
154 }
155 break;
156 case BLK_STS_MEDIUM:
157 status = NVME_SC_ACCESS_DENIED;
158 req->error_loc = offsetof(struct nvme_rw_command, nsid);
159 break;
160 case BLK_STS_IOERR:
161 default:
162 status = NVME_SC_INTERNAL | NVME_SC_DNR;
163 req->error_loc = offsetof(struct nvme_common_command, opcode);
164 }
165
166 switch (req->cmd->common.opcode) {
167 case nvme_cmd_read:
168 case nvme_cmd_write:
169 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
170 break;
171 case nvme_cmd_write_zeroes:
172 req->error_slba =
173 le64_to_cpu(req->cmd->write_zeroes.slba);
174 break;
175 default:
176 req->error_slba = 0;
177 }
178 return status;
179}
180
181static void nvmet_bio_done(struct bio *bio)
182{
183 struct nvmet_req *req = bio->bi_private;
184
185 nvmet_req_complete(req, status: blk_to_nvme_status(req, blk_sts: bio->bi_status));
186 nvmet_req_bio_put(req, bio);
187}
188
189#ifdef CONFIG_BLK_DEV_INTEGRITY
190static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
191 struct sg_mapping_iter *miter)
192{
193 struct blk_integrity *bi;
194 struct bio_integrity_payload *bip;
195 int rc;
196 size_t resid, len;
197
198 bi = bdev_get_integrity(bdev: req->ns->bdev);
199 if (unlikely(!bi)) {
200 pr_err("Unable to locate bio_integrity\n");
201 return -ENODEV;
202 }
203
204 bip = bio_integrity_alloc(bio, GFP_NOIO,
205 bio_max_segs(nr_segs: req->metadata_sg_cnt));
206 if (IS_ERR(ptr: bip)) {
207 pr_err("Unable to allocate bio_integrity_payload\n");
208 return PTR_ERR(ptr: bip);
209 }
210
211 /* virtual start sector must be in integrity interval units */
212 bip_set_seed(bip, seed: bio->bi_iter.bi_sector >>
213 (bi->interval_exp - SECTOR_SHIFT));
214
215 resid = bio_integrity_bytes(bi, bio_sectors(bio));
216 while (resid > 0 && sg_miter_next(miter)) {
217 len = min_t(size_t, miter->length, resid);
218 rc = bio_integrity_add_page(bio, miter->page, len,
219 offset_in_page(miter->addr));
220 if (unlikely(rc != len)) {
221 pr_err("bio_integrity_add_page() failed; %d\n", rc);
222 sg_miter_stop(miter);
223 return -ENOMEM;
224 }
225
226 resid -= len;
227 if (len < miter->length)
228 miter->consumed -= miter->length - len;
229 }
230 sg_miter_stop(miter);
231
232 return 0;
233}
234#else
235static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
236 struct sg_mapping_iter *miter)
237{
238 return -EINVAL;
239}
240#endif /* CONFIG_BLK_DEV_INTEGRITY */
241
242static void nvmet_bdev_execute_rw(struct nvmet_req *req)
243{
244 unsigned int sg_cnt = req->sg_cnt;
245 struct bio *bio;
246 struct scatterlist *sg;
247 struct blk_plug plug;
248 sector_t sector;
249 blk_opf_t opf;
250 int i, rc;
251 struct sg_mapping_iter prot_miter;
252 unsigned int iter_flags;
253 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
254
255 if (!nvmet_check_transfer_len(req, len: total_len))
256 return;
257
258 if (!req->sg_cnt) {
259 nvmet_req_complete(req, status: 0);
260 return;
261 }
262
263 if (req->cmd->rw.opcode == nvme_cmd_write) {
264 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
265 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
266 opf |= REQ_FUA;
267 iter_flags = SG_MITER_TO_SG;
268 } else {
269 opf = REQ_OP_READ;
270 iter_flags = SG_MITER_FROM_SG;
271 }
272
273 if (is_pci_p2pdma_page(page: sg_page(sg: req->sg)))
274 opf |= REQ_NOMERGE;
275
276 sector = nvmet_lba_to_sect(ns: req->ns, lba: req->cmd->rw.slba);
277
278 if (nvmet_use_inline_bvec(req)) {
279 bio = &req->b.inline_bio;
280 bio_init(bio, bdev: req->ns->bdev, table: req->inline_bvec,
281 ARRAY_SIZE(req->inline_bvec), opf);
282 } else {
283 bio = bio_alloc(bdev: req->ns->bdev, nr_vecs: bio_max_segs(nr_segs: sg_cnt), opf,
284 GFP_KERNEL);
285 }
286 bio->bi_iter.bi_sector = sector;
287 bio->bi_private = req;
288 bio->bi_end_io = nvmet_bio_done;
289
290 blk_start_plug(&plug);
291 if (req->metadata_len)
292 sg_miter_start(miter: &prot_miter, sgl: req->metadata_sg,
293 nents: req->metadata_sg_cnt, flags: iter_flags);
294
295 for_each_sg(req->sg, sg, req->sg_cnt, i) {
296 while (bio_add_page(bio, page: sg_page(sg), len: sg->length, off: sg->offset)
297 != sg->length) {
298 struct bio *prev = bio;
299
300 if (req->metadata_len) {
301 rc = nvmet_bdev_alloc_bip(req, bio,
302 miter: &prot_miter);
303 if (unlikely(rc)) {
304 bio_io_error(bio);
305 return;
306 }
307 }
308
309 bio = bio_alloc(bdev: req->ns->bdev, nr_vecs: bio_max_segs(nr_segs: sg_cnt),
310 opf, GFP_KERNEL);
311 bio->bi_iter.bi_sector = sector;
312
313 bio_chain(bio, prev);
314 submit_bio(bio: prev);
315 }
316
317 sector += sg->length >> 9;
318 sg_cnt--;
319 }
320
321 if (req->metadata_len) {
322 rc = nvmet_bdev_alloc_bip(req, bio, miter: &prot_miter);
323 if (unlikely(rc)) {
324 bio_io_error(bio);
325 return;
326 }
327 }
328
329 submit_bio(bio);
330 blk_finish_plug(&plug);
331}
332
333static void nvmet_bdev_execute_flush(struct nvmet_req *req)
334{
335 struct bio *bio = &req->b.inline_bio;
336
337 if (!bdev_write_cache(bdev: req->ns->bdev)) {
338 nvmet_req_complete(req, status: NVME_SC_SUCCESS);
339 return;
340 }
341
342 if (!nvmet_check_transfer_len(req, len: 0))
343 return;
344
345 bio_init(bio, bdev: req->ns->bdev, table: req->inline_bvec,
346 ARRAY_SIZE(req->inline_bvec), opf: REQ_OP_WRITE | REQ_PREFLUSH);
347 bio->bi_private = req;
348 bio->bi_end_io = nvmet_bio_done;
349
350 submit_bio(bio);
351}
352
353u16 nvmet_bdev_flush(struct nvmet_req *req)
354{
355 if (!bdev_write_cache(bdev: req->ns->bdev))
356 return 0;
357
358 if (blkdev_issue_flush(bdev: req->ns->bdev))
359 return NVME_SC_INTERNAL | NVME_SC_DNR;
360 return 0;
361}
362
363static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
364 struct nvme_dsm_range *range, struct bio **bio)
365{
366 struct nvmet_ns *ns = req->ns;
367 int ret;
368
369 ret = __blkdev_issue_discard(bdev: ns->bdev,
370 sector: nvmet_lba_to_sect(ns, lba: range->slba),
371 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
372 GFP_KERNEL, biop: bio);
373 if (ret && ret != -EOPNOTSUPP) {
374 req->error_slba = le64_to_cpu(range->slba);
375 return errno_to_nvme_status(req, errno: ret);
376 }
377 return NVME_SC_SUCCESS;
378}
379
380static void nvmet_bdev_execute_discard(struct nvmet_req *req)
381{
382 struct nvme_dsm_range range;
383 struct bio *bio = NULL;
384 int i;
385 u16 status;
386
387 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
388 status = nvmet_copy_from_sgl(req, off: i * sizeof(range), buf: &range,
389 len: sizeof(range));
390 if (status)
391 break;
392
393 status = nvmet_bdev_discard_range(req, range: &range, bio: &bio);
394 if (status)
395 break;
396 }
397
398 if (bio) {
399 bio->bi_private = req;
400 bio->bi_end_io = nvmet_bio_done;
401 if (status)
402 bio_io_error(bio);
403 else
404 submit_bio(bio);
405 } else {
406 nvmet_req_complete(req, status);
407 }
408}
409
410static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
411{
412 if (!nvmet_check_data_len_lte(req, data_len: nvmet_dsm_len(req)))
413 return;
414
415 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
416 case NVME_DSMGMT_AD:
417 nvmet_bdev_execute_discard(req);
418 return;
419 case NVME_DSMGMT_IDR:
420 case NVME_DSMGMT_IDW:
421 default:
422 /* Not supported yet */
423 nvmet_req_complete(req, status: 0);
424 return;
425 }
426}
427
428static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
429{
430 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
431 struct bio *bio = NULL;
432 sector_t sector;
433 sector_t nr_sector;
434 int ret;
435
436 if (!nvmet_check_transfer_len(req, len: 0))
437 return;
438
439 sector = nvmet_lba_to_sect(ns: req->ns, lba: write_zeroes->slba);
440 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
441 (req->ns->blksize_shift - 9));
442
443 ret = __blkdev_issue_zeroout(bdev: req->ns->bdev, sector, nr_sects: nr_sector,
444 GFP_KERNEL, biop: &bio, flags: 0);
445 if (bio) {
446 bio->bi_private = req;
447 bio->bi_end_io = nvmet_bio_done;
448 submit_bio(bio);
449 } else {
450 nvmet_req_complete(req, status: errno_to_nvme_status(req, errno: ret));
451 }
452}
453
454u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
455{
456 switch (req->cmd->common.opcode) {
457 case nvme_cmd_read:
458 case nvme_cmd_write:
459 req->execute = nvmet_bdev_execute_rw;
460 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(ns: req->ns))
461 req->metadata_len = nvmet_rw_metadata_len(req);
462 return 0;
463 case nvme_cmd_flush:
464 req->execute = nvmet_bdev_execute_flush;
465 return 0;
466 case nvme_cmd_dsm:
467 req->execute = nvmet_bdev_execute_dsm;
468 return 0;
469 case nvme_cmd_write_zeroes:
470 req->execute = nvmet_bdev_execute_write_zeroes;
471 return 0;
472 default:
473 return nvmet_report_invalid_opcode(req);
474 }
475}
476

source code of linux/drivers/nvme/target/io-cmd-bdev.c