1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/dma-direct.h> /* for bus_dma_region */
17
18#include "of_private.h"
19
20/* Max address size we deal with */
21#define OF_MAX_ADDR_CELLS 4
22#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25/* Debug utility */
26#ifdef DEBUG
27static void of_dump_addr(const char *s, const __be32 *addr, int na)
28{
29 pr_debug("%s", s);
30 while (na--)
31 pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 pr_cont("\n");
33}
34#else
35static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36#endif
37
38/* Callbacks for bus specific translators */
39struct of_bus {
40 const char *name;
41 const char *addresses;
42 int (*match)(struct device_node *parent);
43 void (*count_cells)(struct device_node *child,
44 int *addrc, int *sizec);
45 u64 (*map)(__be32 *addr, const __be32 *range,
46 int na, int ns, int pna, int fna);
47 int (*translate)(__be32 *addr, u64 offset, int na);
48 int flag_cells;
49 unsigned int (*get_flags)(const __be32 *addr);
50};
51
52/*
53 * Default translator (generic bus)
54 */
55
56static void of_bus_default_count_cells(struct device_node *dev,
57 int *addrc, int *sizec)
58{
59 if (addrc)
60 *addrc = of_n_addr_cells(np: dev);
61 if (sizec)
62 *sizec = of_n_size_cells(np: dev);
63}
64
65static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66 int na, int ns, int pna, int fna)
67{
68 u64 cp, s, da;
69
70 cp = of_read_number(cell: range + fna, size: na - fna);
71 s = of_read_number(cell: range + na + pna, size: ns);
72 da = of_read_number(cell: addr + fna, size: na - fna);
73
74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75
76 if (da < cp || da >= (cp + s))
77 return OF_BAD_ADDR;
78 return da - cp;
79}
80
81static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82{
83 u64 a = of_read_number(cell: addr, size: na);
84 memset(addr, 0, na * 4);
85 a += offset;
86 if (na > 1)
87 addr[na - 2] = cpu_to_be32(a >> 32);
88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89
90 return 0;
91}
92
93static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94{
95 return of_read_number(cell: addr, size: 1);
96}
97
98static unsigned int of_bus_default_get_flags(const __be32 *addr)
99{
100 return IORESOURCE_MEM;
101}
102
103static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
104 int ns, int pna, int fna)
105{
106 /* Check that flags match */
107 if (*addr != *range)
108 return OF_BAD_ADDR;
109
110 return of_bus_default_map(addr, range, na, ns, pna, fna);
111}
112
113static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
114{
115 /* Keep "flags" part (high cell) in translated address */
116 return of_bus_default_translate(addr: addr + 1, offset, na: na - 1);
117}
118
119#ifdef CONFIG_PCI
120static unsigned int of_bus_pci_get_flags(const __be32 *addr)
121{
122 unsigned int flags = 0;
123 u32 w = be32_to_cpup(p: addr);
124
125 if (!IS_ENABLED(CONFIG_PCI))
126 return 0;
127
128 switch((w >> 24) & 0x03) {
129 case 0x01:
130 flags |= IORESOURCE_IO;
131 break;
132 case 0x02: /* 32 bits */
133 flags |= IORESOURCE_MEM;
134 break;
135
136 case 0x03: /* 64 bits */
137 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
138 break;
139 }
140 if (w & 0x40000000)
141 flags |= IORESOURCE_PREFETCH;
142 return flags;
143}
144
145/*
146 * PCI bus specific translator
147 */
148
149static bool of_node_is_pcie(struct device_node *np)
150{
151 bool is_pcie = of_node_name_eq(np, name: "pcie");
152
153 if (is_pcie)
154 pr_warn_once("%pOF: Missing device_type\n", np);
155
156 return is_pcie;
157}
158
159static int of_bus_pci_match(struct device_node *np)
160{
161 /*
162 * "pciex" is PCI Express
163 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
164 * "ht" is hypertransport
165 *
166 * If none of the device_type match, and that the node name is
167 * "pcie", accept the device as PCI (with a warning).
168 */
169 return of_node_is_type(np, type: "pci") || of_node_is_type(np, type: "pciex") ||
170 of_node_is_type(np, type: "vci") || of_node_is_type(np, type: "ht") ||
171 of_node_is_pcie(np);
172}
173
174static void of_bus_pci_count_cells(struct device_node *np,
175 int *addrc, int *sizec)
176{
177 if (addrc)
178 *addrc = 3;
179 if (sizec)
180 *sizec = 2;
181}
182
183static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
184 int pna, int fna)
185{
186 unsigned int af, rf;
187
188 af = of_bus_pci_get_flags(addr);
189 rf = of_bus_pci_get_flags(addr: range);
190
191 /* Check address type match */
192 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
193 return OF_BAD_ADDR;
194
195 return of_bus_default_map(addr, range, na, ns, pna, fna);
196}
197
198#endif /* CONFIG_PCI */
199
200/*
201 * of_pci_range_to_resource - Create a resource from an of_pci_range
202 * @range: the PCI range that describes the resource
203 * @np: device node where the range belongs to
204 * @res: pointer to a valid resource that will be updated to
205 * reflect the values contained in the range.
206 *
207 * Returns -EINVAL if the range cannot be converted to resource.
208 *
209 * Note that if the range is an IO range, the resource will be converted
210 * using pci_address_to_pio() which can fail if it is called too early or
211 * if the range cannot be matched to any host bridge IO space (our case here).
212 * To guard against that we try to register the IO range first.
213 * If that fails we know that pci_address_to_pio() will do too.
214 */
215int of_pci_range_to_resource(struct of_pci_range *range,
216 struct device_node *np, struct resource *res)
217{
218 int err;
219 res->flags = range->flags;
220 res->parent = res->child = res->sibling = NULL;
221 res->name = np->full_name;
222
223 if (res->flags & IORESOURCE_IO) {
224 unsigned long port;
225 err = pci_register_io_range(fwnode: &np->fwnode, addr: range->cpu_addr,
226 size: range->size);
227 if (err)
228 goto invalid_range;
229 port = pci_address_to_pio(addr: range->cpu_addr);
230 if (port == (unsigned long)-1) {
231 err = -EINVAL;
232 goto invalid_range;
233 }
234 res->start = port;
235 } else {
236 if ((sizeof(resource_size_t) < 8) &&
237 upper_32_bits(range->cpu_addr)) {
238 err = -EINVAL;
239 goto invalid_range;
240 }
241
242 res->start = range->cpu_addr;
243 }
244 res->end = res->start + range->size - 1;
245 return 0;
246
247invalid_range:
248 res->start = (resource_size_t)OF_BAD_ADDR;
249 res->end = (resource_size_t)OF_BAD_ADDR;
250 return err;
251}
252EXPORT_SYMBOL(of_pci_range_to_resource);
253
254/*
255 * of_range_to_resource - Create a resource from a ranges entry
256 * @np: device node where the range belongs to
257 * @index: the 'ranges' index to convert to a resource
258 * @res: pointer to a valid resource that will be updated to
259 * reflect the values contained in the range.
260 *
261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
262 * converted to resource.
263 */
264int of_range_to_resource(struct device_node *np, int index, struct resource *res)
265{
266 int ret, i = 0;
267 struct of_range_parser parser;
268 struct of_range range;
269
270 ret = of_range_parser_init(parser: &parser, node: np);
271 if (ret)
272 return ret;
273
274 for_each_of_range(&parser, &range)
275 if (i++ == index)
276 return of_pci_range_to_resource(&range, np, res);
277
278 return -ENOENT;
279}
280EXPORT_SYMBOL(of_range_to_resource);
281
282/*
283 * ISA bus specific translator
284 */
285
286static int of_bus_isa_match(struct device_node *np)
287{
288 return of_node_name_eq(np, name: "isa");
289}
290
291static void of_bus_isa_count_cells(struct device_node *child,
292 int *addrc, int *sizec)
293{
294 if (addrc)
295 *addrc = 2;
296 if (sizec)
297 *sizec = 1;
298}
299
300static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
301 int pna, int fna)
302{
303 /* Check address type match */
304 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
305 return OF_BAD_ADDR;
306
307 return of_bus_default_map(addr, range, na, ns, pna, fna);
308}
309
310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311{
312 unsigned int flags = 0;
313 u32 w = be32_to_cpup(p: addr);
314
315 if (w & 1)
316 flags |= IORESOURCE_IO;
317 else
318 flags |= IORESOURCE_MEM;
319 return flags;
320}
321
322static int of_bus_default_flags_match(struct device_node *np)
323{
324 return of_bus_n_addr_cells(np) == 3;
325}
326
327/*
328 * Array of bus specific translators
329 */
330
331static struct of_bus of_busses[] = {
332#ifdef CONFIG_PCI
333 /* PCI */
334 {
335 .name = "pci",
336 .addresses = "assigned-addresses",
337 .match = of_bus_pci_match,
338 .count_cells = of_bus_pci_count_cells,
339 .map = of_bus_pci_map,
340 .translate = of_bus_default_flags_translate,
341 .flag_cells = 1,
342 .get_flags = of_bus_pci_get_flags,
343 },
344#endif /* CONFIG_PCI */
345 /* ISA */
346 {
347 .name = "isa",
348 .addresses = "reg",
349 .match = of_bus_isa_match,
350 .count_cells = of_bus_isa_count_cells,
351 .map = of_bus_isa_map,
352 .translate = of_bus_default_flags_translate,
353 .flag_cells = 1,
354 .get_flags = of_bus_isa_get_flags,
355 },
356 /* Default with flags cell */
357 {
358 .name = "default-flags",
359 .addresses = "reg",
360 .match = of_bus_default_flags_match,
361 .count_cells = of_bus_default_count_cells,
362 .map = of_bus_default_flags_map,
363 .translate = of_bus_default_flags_translate,
364 .flag_cells = 1,
365 .get_flags = of_bus_default_flags_get_flags,
366 },
367 /* Default */
368 {
369 .name = "default",
370 .addresses = "reg",
371 .match = NULL,
372 .count_cells = of_bus_default_count_cells,
373 .map = of_bus_default_map,
374 .translate = of_bus_default_translate,
375 .get_flags = of_bus_default_get_flags,
376 },
377};
378
379static struct of_bus *of_match_bus(struct device_node *np)
380{
381 int i;
382
383 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
384 if (!of_busses[i].match || of_busses[i].match(np))
385 return &of_busses[i];
386 BUG();
387 return NULL;
388}
389
390static int of_empty_ranges_quirk(struct device_node *np)
391{
392 if (IS_ENABLED(CONFIG_PPC)) {
393 /* To save cycles, we cache the result for global "Mac" setting */
394 static int quirk_state = -1;
395
396 /* PA-SEMI sdc DT bug */
397 if (of_device_is_compatible(device: np, "1682m-sdc"))
398 return true;
399
400 /* Make quirk cached */
401 if (quirk_state < 0)
402 quirk_state =
403 of_machine_is_compatible(compat: "Power Macintosh") ||
404 of_machine_is_compatible(compat: "MacRISC");
405 return quirk_state;
406 }
407 return false;
408}
409
410static int of_translate_one(struct device_node *parent, struct of_bus *bus,
411 struct of_bus *pbus, __be32 *addr,
412 int na, int ns, int pna, const char *rprop)
413{
414 const __be32 *ranges;
415 unsigned int rlen;
416 int rone;
417 u64 offset = OF_BAD_ADDR;
418
419 /*
420 * Normally, an absence of a "ranges" property means we are
421 * crossing a non-translatable boundary, and thus the addresses
422 * below the current cannot be converted to CPU physical ones.
423 * Unfortunately, while this is very clear in the spec, it's not
424 * what Apple understood, and they do have things like /uni-n or
425 * /ht nodes with no "ranges" property and a lot of perfectly
426 * useable mapped devices below them. Thus we treat the absence of
427 * "ranges" as equivalent to an empty "ranges" property which means
428 * a 1:1 translation at that level. It's up to the caller not to try
429 * to translate addresses that aren't supposed to be translated in
430 * the first place. --BenH.
431 *
432 * As far as we know, this damage only exists on Apple machines, so
433 * This code is only enabled on powerpc. --gcl
434 *
435 * This quirk also applies for 'dma-ranges' which frequently exist in
436 * child nodes without 'dma-ranges' in the parent nodes. --RobH
437 */
438 ranges = of_get_property(node: parent, name: rprop, lenp: &rlen);
439 if (ranges == NULL && !of_empty_ranges_quirk(np: parent) &&
440 strcmp(rprop, "dma-ranges")) {
441 pr_debug("no ranges; cannot translate\n");
442 return 1;
443 }
444 if (ranges == NULL || rlen == 0) {
445 offset = of_read_number(cell: addr, size: na);
446 memset(addr, 0, pna * 4);
447 pr_debug("empty ranges; 1:1 translation\n");
448 goto finish;
449 }
450
451 pr_debug("walking ranges...\n");
452
453 /* Now walk through the ranges */
454 rlen /= 4;
455 rone = na + pna + ns;
456 for (; rlen >= rone; rlen -= rone, ranges += rone) {
457 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
458 if (offset != OF_BAD_ADDR)
459 break;
460 }
461 if (offset == OF_BAD_ADDR) {
462 pr_debug("not found !\n");
463 return 1;
464 }
465 memcpy(addr, ranges + na, 4 * pna);
466
467 finish:
468 of_dump_addr(s: "parent translation for:", addr, na: pna);
469 pr_debug("with offset: %llx\n", offset);
470
471 /* Translate it into parent bus space */
472 return pbus->translate(addr, offset, pna);
473}
474
475/*
476 * Translate an address from the device-tree into a CPU physical address,
477 * this walks up the tree and applies the various bus mappings on the
478 * way.
479 *
480 * Note: We consider that crossing any level with #size-cells == 0 to mean
481 * that translation is impossible (that is we are not dealing with a value
482 * that can be mapped to a cpu physical address). This is not really specified
483 * that way, but this is traditionally the way IBM at least do things
484 *
485 * Whenever the translation fails, the *host pointer will be set to the
486 * device that had registered logical PIO mapping, and the return code is
487 * relative to that node.
488 */
489static u64 __of_translate_address(struct device_node *dev,
490 struct device_node *(*get_parent)(const struct device_node *),
491 const __be32 *in_addr, const char *rprop,
492 struct device_node **host)
493{
494 struct device_node *parent = NULL;
495 struct of_bus *bus, *pbus;
496 __be32 addr[OF_MAX_ADDR_CELLS];
497 int na, ns, pna, pns;
498 u64 result = OF_BAD_ADDR;
499
500 pr_debug("** translation for device %pOF **\n", dev);
501
502 /* Increase refcount at current level */
503 of_node_get(node: dev);
504
505 *host = NULL;
506 /* Get parent & match bus type */
507 parent = get_parent(dev);
508 if (parent == NULL)
509 goto bail;
510 bus = of_match_bus(np: parent);
511
512 /* Count address cells & copy address locally */
513 bus->count_cells(dev, &na, &ns);
514 if (!OF_CHECK_COUNTS(na, ns)) {
515 pr_debug("Bad cell count for %pOF\n", dev);
516 goto bail;
517 }
518 memcpy(addr, in_addr, na * 4);
519
520 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
521 bus->name, na, ns, parent);
522 of_dump_addr(s: "translating address:", addr, na);
523
524 /* Translate */
525 for (;;) {
526 struct logic_pio_hwaddr *iorange;
527
528 /* Switch to parent bus */
529 of_node_put(node: dev);
530 dev = parent;
531 parent = get_parent(dev);
532
533 /* If root, we have finished */
534 if (parent == NULL) {
535 pr_debug("reached root node\n");
536 result = of_read_number(cell: addr, size: na);
537 break;
538 }
539
540 /*
541 * For indirectIO device which has no ranges property, get
542 * the address from reg directly.
543 */
544 iorange = find_io_range_by_fwnode(fwnode: &dev->fwnode);
545 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
546 result = of_read_number(cell: addr + 1, size: na - 1);
547 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
548 dev, result);
549 *host = of_node_get(node: dev);
550 break;
551 }
552
553 /* Get new parent bus and counts */
554 pbus = of_match_bus(np: parent);
555 pbus->count_cells(dev, &pna, &pns);
556 if (!OF_CHECK_COUNTS(pna, pns)) {
557 pr_err("Bad cell count for %pOF\n", dev);
558 break;
559 }
560
561 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
562 pbus->name, pna, pns, parent);
563
564 /* Apply bus translation */
565 if (of_translate_one(parent: dev, bus, pbus, addr, na, ns, pna, rprop))
566 break;
567
568 /* Complete the move up one level */
569 na = pna;
570 ns = pns;
571 bus = pbus;
572
573 of_dump_addr(s: "one level translation:", addr, na);
574 }
575 bail:
576 of_node_put(node: parent);
577 of_node_put(node: dev);
578
579 return result;
580}
581
582u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
583{
584 struct device_node *host;
585 u64 ret;
586
587 ret = __of_translate_address(dev, get_parent: of_get_parent,
588 in_addr, rprop: "ranges", host: &host);
589 if (host) {
590 of_node_put(node: host);
591 return OF_BAD_ADDR;
592 }
593
594 return ret;
595}
596EXPORT_SYMBOL(of_translate_address);
597
598#ifdef CONFIG_HAS_DMA
599struct device_node *__of_get_dma_parent(const struct device_node *np)
600{
601 struct of_phandle_args args;
602 int ret, index;
603
604 index = of_property_match_string(np, propname: "interconnect-names", string: "dma-mem");
605 if (index < 0)
606 return of_get_parent(node: np);
607
608 ret = of_parse_phandle_with_args(np, list_name: "interconnects",
609 cells_name: "#interconnect-cells",
610 index, out_args: &args);
611 if (ret < 0)
612 return of_get_parent(node: np);
613
614 return of_node_get(node: args.np);
615}
616#endif
617
618static struct device_node *of_get_next_dma_parent(struct device_node *np)
619{
620 struct device_node *parent;
621
622 parent = __of_get_dma_parent(np);
623 of_node_put(node: np);
624
625 return parent;
626}
627
628u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
629{
630 struct device_node *host;
631 u64 ret;
632
633 ret = __of_translate_address(dev, get_parent: __of_get_dma_parent,
634 in_addr, rprop: "dma-ranges", host: &host);
635
636 if (host) {
637 of_node_put(node: host);
638 return OF_BAD_ADDR;
639 }
640
641 return ret;
642}
643EXPORT_SYMBOL(of_translate_dma_address);
644
645/**
646 * of_translate_dma_region - Translate device tree address and size tuple
647 * @dev: device tree node for which to translate
648 * @prop: pointer into array of cells
649 * @start: return value for the start of the DMA range
650 * @length: return value for the length of the DMA range
651 *
652 * Returns a pointer to the cell immediately following the translated DMA region.
653 */
654const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
655 phys_addr_t *start, size_t *length)
656{
657 struct device_node *parent;
658 u64 address, size;
659 int na, ns;
660
661 parent = __of_get_dma_parent(np: dev);
662 if (!parent)
663 return NULL;
664
665 na = of_bus_n_addr_cells(np: parent);
666 ns = of_bus_n_size_cells(np: parent);
667
668 of_node_put(node: parent);
669
670 address = of_translate_dma_address(dev, prop);
671 if (address == OF_BAD_ADDR)
672 return NULL;
673
674 size = of_read_number(cell: prop + na, size: ns);
675
676 if (start)
677 *start = address;
678
679 if (length)
680 *length = size;
681
682 return prop + na + ns;
683}
684EXPORT_SYMBOL(of_translate_dma_region);
685
686const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
687 u64 *size, unsigned int *flags)
688{
689 const __be32 *prop;
690 unsigned int psize;
691 struct device_node *parent;
692 struct of_bus *bus;
693 int onesize, i, na, ns;
694
695 /* Get parent & match bus type */
696 parent = of_get_parent(node: dev);
697 if (parent == NULL)
698 return NULL;
699 bus = of_match_bus(np: parent);
700 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
701 of_node_put(node: parent);
702 return NULL;
703 }
704 bus->count_cells(dev, &na, &ns);
705 of_node_put(node: parent);
706 if (!OF_CHECK_ADDR_COUNT(na))
707 return NULL;
708
709 /* Get "reg" or "assigned-addresses" property */
710 prop = of_get_property(node: dev, name: bus->addresses, lenp: &psize);
711 if (prop == NULL)
712 return NULL;
713 psize /= 4;
714
715 onesize = na + ns;
716 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
717 u32 val = be32_to_cpu(prop[0]);
718 /* PCI bus matches on BAR number instead of index */
719 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
720 ((index >= 0) && (i == index))) {
721 if (size)
722 *size = of_read_number(cell: prop + na, size: ns);
723 if (flags)
724 *flags = bus->get_flags(prop);
725 return prop;
726 }
727 }
728 return NULL;
729}
730EXPORT_SYMBOL(__of_get_address);
731
732/**
733 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
734 * @np: device tree node for which to retrieve "reg" from
735 * @idx: "reg" entry index to read
736 * @addr: return value for the untranslated address
737 * @size: return value for the entry size
738 *
739 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
740 * size values filled in.
741 */
742int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
743{
744 const __be32 *prop = of_get_address(dev: np, index: idx, size, NULL);
745
746 if (!prop)
747 return -EINVAL;
748
749 *addr = of_read_number(cell: prop, size: of_n_addr_cells(np));
750
751 return 0;
752}
753EXPORT_SYMBOL(of_property_read_reg);
754
755static int parser_init(struct of_pci_range_parser *parser,
756 struct device_node *node, const char *name)
757{
758 int rlen;
759
760 parser->node = node;
761 parser->pna = of_n_addr_cells(np: node);
762 parser->na = of_bus_n_addr_cells(np: node);
763 parser->ns = of_bus_n_size_cells(np: node);
764 parser->dma = !strcmp(name, "dma-ranges");
765 parser->bus = of_match_bus(np: node);
766
767 parser->range = of_get_property(node, name, lenp: &rlen);
768 if (parser->range == NULL)
769 return -ENOENT;
770
771 parser->end = parser->range + rlen / sizeof(__be32);
772
773 return 0;
774}
775
776int of_pci_range_parser_init(struct of_pci_range_parser *parser,
777 struct device_node *node)
778{
779 return parser_init(parser, node, name: "ranges");
780}
781EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
782
783int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
784 struct device_node *node)
785{
786 return parser_init(parser, node, name: "dma-ranges");
787}
788EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
789#define of_dma_range_parser_init of_pci_dma_range_parser_init
790
791struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
792 struct of_pci_range *range)
793{
794 int na = parser->na;
795 int ns = parser->ns;
796 int np = parser->pna + na + ns;
797 int busflag_na = parser->bus->flag_cells;
798
799 if (!range)
800 return NULL;
801
802 if (!parser->range || parser->range + np > parser->end)
803 return NULL;
804
805 range->flags = parser->bus->get_flags(parser->range);
806
807 range->bus_addr = of_read_number(cell: parser->range + busflag_na, size: na - busflag_na);
808
809 if (parser->dma)
810 range->cpu_addr = of_translate_dma_address(parser->node,
811 parser->range + na);
812 else
813 range->cpu_addr = of_translate_address(parser->node,
814 parser->range + na);
815 range->size = of_read_number(cell: parser->range + parser->pna + na, size: ns);
816
817 parser->range += np;
818
819 /* Now consume following elements while they are contiguous */
820 while (parser->range + np <= parser->end) {
821 u32 flags = 0;
822 u64 bus_addr, cpu_addr, size;
823
824 flags = parser->bus->get_flags(parser->range);
825 bus_addr = of_read_number(cell: parser->range + busflag_na, size: na - busflag_na);
826 if (parser->dma)
827 cpu_addr = of_translate_dma_address(parser->node,
828 parser->range + na);
829 else
830 cpu_addr = of_translate_address(parser->node,
831 parser->range + na);
832 size = of_read_number(cell: parser->range + parser->pna + na, size: ns);
833
834 if (flags != range->flags)
835 break;
836 if (bus_addr != range->bus_addr + range->size ||
837 cpu_addr != range->cpu_addr + range->size)
838 break;
839
840 range->size += size;
841 parser->range += np;
842 }
843
844 return range;
845}
846EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
847
848static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
849 u64 size)
850{
851 u64 taddr;
852 unsigned long port;
853 struct device_node *host;
854
855 taddr = __of_translate_address(dev, get_parent: of_get_parent,
856 in_addr, rprop: "ranges", host: &host);
857 if (host) {
858 /* host-specific port access */
859 port = logic_pio_trans_hwaddr(fwnode: &host->fwnode, hw_addr: taddr, size);
860 of_node_put(node: host);
861 } else {
862 /* memory-mapped I/O range */
863 port = pci_address_to_pio(addr: taddr);
864 }
865
866 if (port == (unsigned long)-1)
867 return OF_BAD_ADDR;
868
869 return port;
870}
871
872#ifdef CONFIG_HAS_DMA
873/**
874 * of_dma_get_range - Get DMA range info and put it into a map array
875 * @np: device node to get DMA range info
876 * @map: dma range structure to return
877 *
878 * Look in bottom up direction for the first "dma-ranges" property
879 * and parse it. Put the information into a DMA offset map array.
880 *
881 * dma-ranges format:
882 * DMA addr (dma_addr) : naddr cells
883 * CPU addr (phys_addr_t) : pna cells
884 * size : nsize cells
885 *
886 * It returns -ENODEV if "dma-ranges" property was not found for this
887 * device in the DT.
888 */
889int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
890{
891 struct device_node *node = of_node_get(node: np);
892 const __be32 *ranges = NULL;
893 bool found_dma_ranges = false;
894 struct of_range_parser parser;
895 struct of_range range;
896 struct bus_dma_region *r;
897 int len, num_ranges = 0;
898 int ret = 0;
899
900 while (node) {
901 ranges = of_get_property(node, name: "dma-ranges", lenp: &len);
902
903 /* Ignore empty ranges, they imply no translation required */
904 if (ranges && len > 0)
905 break;
906
907 /* Once we find 'dma-ranges', then a missing one is an error */
908 if (found_dma_ranges && !ranges) {
909 ret = -ENODEV;
910 goto out;
911 }
912 found_dma_ranges = true;
913
914 node = of_get_next_dma_parent(np: node);
915 }
916
917 if (!node || !ranges) {
918 pr_debug("no dma-ranges found for node(%pOF)\n", np);
919 ret = -ENODEV;
920 goto out;
921 }
922
923 of_dma_range_parser_init(&parser, node);
924 for_each_of_range(&parser, &range) {
925 if (range.cpu_addr == OF_BAD_ADDR) {
926 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
927 range.bus_addr, node);
928 continue;
929 }
930 num_ranges++;
931 }
932
933 if (!num_ranges) {
934 ret = -EINVAL;
935 goto out;
936 }
937
938 r = kcalloc(n: num_ranges + 1, size: sizeof(*r), GFP_KERNEL);
939 if (!r) {
940 ret = -ENOMEM;
941 goto out;
942 }
943
944 /*
945 * Record all info in the generic DMA ranges array for struct device,
946 * returning an error if we don't find any parsable ranges.
947 */
948 *map = r;
949 of_dma_range_parser_init(&parser, node);
950 for_each_of_range(&parser, &range) {
951 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
952 range.bus_addr, range.cpu_addr, range.size);
953 if (range.cpu_addr == OF_BAD_ADDR)
954 continue;
955 r->cpu_start = range.cpu_addr;
956 r->dma_start = range.bus_addr;
957 r->size = range.size;
958 r->offset = range.cpu_addr - range.bus_addr;
959 r++;
960 }
961out:
962 of_node_put(node);
963 return ret;
964}
965#endif /* CONFIG_HAS_DMA */
966
967/**
968 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
969 * @np: The node to start searching from or NULL to start from the root
970 *
971 * Gets the highest CPU physical address that is addressable by all DMA masters
972 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
973 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
974 */
975phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
976{
977 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
978 struct of_range_parser parser;
979 phys_addr_t subtree_max_addr;
980 struct device_node *child;
981 struct of_range range;
982 const __be32 *ranges;
983 u64 cpu_end = 0;
984 int len;
985
986 if (!np)
987 np = of_root;
988
989 ranges = of_get_property(node: np, name: "dma-ranges", lenp: &len);
990 if (ranges && len) {
991 of_dma_range_parser_init(&parser, np);
992 for_each_of_range(&parser, &range)
993 if (range.cpu_addr + range.size > cpu_end)
994 cpu_end = range.cpu_addr + range.size - 1;
995
996 if (max_cpu_addr > cpu_end)
997 max_cpu_addr = cpu_end;
998 }
999
1000 for_each_available_child_of_node(np, child) {
1001 subtree_max_addr = of_dma_get_max_cpu_address(np: child);
1002 if (max_cpu_addr > subtree_max_addr)
1003 max_cpu_addr = subtree_max_addr;
1004 }
1005
1006 return max_cpu_addr;
1007}
1008
1009/**
1010 * of_dma_is_coherent - Check if device is coherent
1011 * @np: device node
1012 *
1013 * It returns true if "dma-coherent" property was found
1014 * for this device in the DT, or if DMA is coherent by
1015 * default for OF devices on the current platform and no
1016 * "dma-noncoherent" property was found for this device.
1017 */
1018bool of_dma_is_coherent(struct device_node *np)
1019{
1020 struct device_node *node;
1021 bool is_coherent = dma_default_coherent;
1022
1023 node = of_node_get(node: np);
1024
1025 while (node) {
1026 if (of_property_read_bool(np: node, propname: "dma-coherent")) {
1027 is_coherent = true;
1028 break;
1029 }
1030 if (of_property_read_bool(np: node, propname: "dma-noncoherent")) {
1031 is_coherent = false;
1032 break;
1033 }
1034 node = of_get_next_dma_parent(np: node);
1035 }
1036 of_node_put(node);
1037 return is_coherent;
1038}
1039EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1040
1041/**
1042 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1043 * @np: device node
1044 *
1045 * Returns true if the "nonposted-mmio" property was found for
1046 * the device's bus.
1047 *
1048 * This is currently only enabled on builds that support Apple ARM devices, as
1049 * an optimization.
1050 */
1051static bool of_mmio_is_nonposted(struct device_node *np)
1052{
1053 struct device_node *parent;
1054 bool nonposted;
1055
1056 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1057 return false;
1058
1059 parent = of_get_parent(node: np);
1060 if (!parent)
1061 return false;
1062
1063 nonposted = of_property_read_bool(np: parent, propname: "nonposted-mmio");
1064
1065 of_node_put(node: parent);
1066 return nonposted;
1067}
1068
1069static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1070 struct resource *r)
1071{
1072 u64 taddr;
1073 const __be32 *addrp;
1074 u64 size;
1075 unsigned int flags;
1076 const char *name = NULL;
1077
1078 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1079 if (addrp == NULL)
1080 return -EINVAL;
1081
1082 /* Get optional "reg-names" property to add a name to a resource */
1083 if (index >= 0)
1084 of_property_read_string_index(np: dev, propname: "reg-names", index, output: &name);
1085
1086 if (flags & IORESOURCE_MEM)
1087 taddr = of_translate_address(dev, addrp);
1088 else if (flags & IORESOURCE_IO)
1089 taddr = of_translate_ioport(dev, in_addr: addrp, size);
1090 else
1091 return -EINVAL;
1092
1093 if (taddr == OF_BAD_ADDR)
1094 return -EINVAL;
1095 memset(r, 0, sizeof(struct resource));
1096
1097 if (of_mmio_is_nonposted(np: dev))
1098 flags |= IORESOURCE_MEM_NONPOSTED;
1099
1100 r->start = taddr;
1101 r->end = taddr + size - 1;
1102 r->flags = flags;
1103 r->name = name ? name : dev->full_name;
1104
1105 return 0;
1106}
1107
1108/**
1109 * of_address_to_resource - Translate device tree address and return as resource
1110 * @dev: Caller's Device Node
1111 * @index: Index into the array
1112 * @r: Pointer to resource array
1113 *
1114 * Returns -EINVAL if the range cannot be converted to resource.
1115 *
1116 * Note that if your address is a PIO address, the conversion will fail if
1117 * the physical address can't be internally converted to an IO token with
1118 * pci_address_to_pio(), that is because it's either called too early or it
1119 * can't be matched to any host bridge IO space
1120 */
1121int of_address_to_resource(struct device_node *dev, int index,
1122 struct resource *r)
1123{
1124 return __of_address_to_resource(dev, index, bar_no: -1, r);
1125}
1126EXPORT_SYMBOL_GPL(of_address_to_resource);
1127
1128int of_pci_address_to_resource(struct device_node *dev, int bar,
1129 struct resource *r)
1130{
1131
1132 if (!IS_ENABLED(CONFIG_PCI))
1133 return -ENOSYS;
1134
1135 return __of_address_to_resource(dev, index: -1, bar_no: bar, r);
1136}
1137EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1138
1139/**
1140 * of_iomap - Maps the memory mapped IO for a given device_node
1141 * @np: the device whose io range will be mapped
1142 * @index: index of the io range
1143 *
1144 * Returns a pointer to the mapped memory
1145 */
1146void __iomem *of_iomap(struct device_node *np, int index)
1147{
1148 struct resource res;
1149
1150 if (of_address_to_resource(np, index, &res))
1151 return NULL;
1152
1153 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1154 return ioremap_np(offset: res.start, size: resource_size(res: &res));
1155 else
1156 return ioremap(offset: res.start, size: resource_size(res: &res));
1157}
1158EXPORT_SYMBOL(of_iomap);
1159
1160/*
1161 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1162 * for a given device_node
1163 * @device: the device whose io range will be mapped
1164 * @index: index of the io range
1165 * @name: name "override" for the memory region request or NULL
1166 *
1167 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1168 * error code on failure. Usage example:
1169 *
1170 * base = of_io_request_and_map(node, 0, "foo");
1171 * if (IS_ERR(base))
1172 * return PTR_ERR(base);
1173 */
1174void __iomem *of_io_request_and_map(struct device_node *np, int index,
1175 const char *name)
1176{
1177 struct resource res;
1178 void __iomem *mem;
1179
1180 if (of_address_to_resource(np, index, &res))
1181 return IOMEM_ERR_PTR(-EINVAL);
1182
1183 if (!name)
1184 name = res.name;
1185 if (!request_mem_region(res.start, resource_size(&res), name))
1186 return IOMEM_ERR_PTR(-EBUSY);
1187
1188 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1189 mem = ioremap_np(offset: res.start, size: resource_size(res: &res));
1190 else
1191 mem = ioremap(offset: res.start, size: resource_size(res: &res));
1192
1193 if (!mem) {
1194 release_mem_region(res.start, resource_size(&res));
1195 return IOMEM_ERR_PTR(-ENOMEM);
1196 }
1197
1198 return mem;
1199}
1200EXPORT_SYMBOL(of_io_request_and_map);
1201

source code of linux/drivers/of/address.c