1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) ST-Ericsson AB 2012
4 *
5 * Main and Back-up battery management driver.
6 *
7 * Note: Backup battery management is required in case of Li-Ion battery and not
8 * for capacitive battery. HREF boards have capacitive battery and hence backup
9 * battery management is not used and the supported code is available in this
10 * driver.
11 *
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/component.h>
21#include <linux/device.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/power_supply.h>
25#include <linux/kobject.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/time.h>
29#include <linux/time64.h>
30#include <linux/of.h>
31#include <linux/completion.h>
32#include <linux/mfd/core.h>
33#include <linux/mfd/abx500.h>
34#include <linux/mfd/abx500/ab8500.h>
35#include <linux/iio/consumer.h>
36#include <linux/kernel.h>
37#include <linux/fixp-arith.h>
38
39#include "ab8500-bm.h"
40
41#define FG_LSB_IN_MA 1627
42#define QLSB_NANO_AMP_HOURS_X10 1071
43#define INS_CURR_TIMEOUT (3 * HZ)
44
45#define SEC_TO_SAMPLE(S) (S * 4)
46
47#define NBR_AVG_SAMPLES 20
48#define WAIT_FOR_INST_CURRENT_MAX 70
49/* Currents higher than -500mA (dissipating) will make compensation unstable */
50#define IGNORE_VBAT_HIGHCUR -500000
51
52#define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
53
54#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
55#define BATT_OK_MIN 2360 /* mV */
56#define BATT_OK_INCREMENT 50 /* mV */
57#define BATT_OK_MAX_NR_INCREMENTS 0xE
58
59/* FG constants */
60#define BATT_OVV 0x01
61
62/**
63 * struct ab8500_fg_interrupts - ab8500 fg interrupts
64 * @name: name of the interrupt
65 * @isr function pointer to the isr
66 */
67struct ab8500_fg_interrupts {
68 char *name;
69 irqreturn_t (*isr)(int irq, void *data);
70};
71
72enum ab8500_fg_discharge_state {
73 AB8500_FG_DISCHARGE_INIT,
74 AB8500_FG_DISCHARGE_INITMEASURING,
75 AB8500_FG_DISCHARGE_INIT_RECOVERY,
76 AB8500_FG_DISCHARGE_RECOVERY,
77 AB8500_FG_DISCHARGE_READOUT_INIT,
78 AB8500_FG_DISCHARGE_READOUT,
79 AB8500_FG_DISCHARGE_WAKEUP,
80};
81
82static char *discharge_state[] = {
83 "DISCHARGE_INIT",
84 "DISCHARGE_INITMEASURING",
85 "DISCHARGE_INIT_RECOVERY",
86 "DISCHARGE_RECOVERY",
87 "DISCHARGE_READOUT_INIT",
88 "DISCHARGE_READOUT",
89 "DISCHARGE_WAKEUP",
90};
91
92enum ab8500_fg_charge_state {
93 AB8500_FG_CHARGE_INIT,
94 AB8500_FG_CHARGE_READOUT,
95};
96
97static char *charge_state[] = {
98 "CHARGE_INIT",
99 "CHARGE_READOUT",
100};
101
102enum ab8500_fg_calibration_state {
103 AB8500_FG_CALIB_INIT,
104 AB8500_FG_CALIB_WAIT,
105 AB8500_FG_CALIB_END,
106};
107
108struct ab8500_fg_avg_cap {
109 int avg;
110 int samples[NBR_AVG_SAMPLES];
111 time64_t time_stamps[NBR_AVG_SAMPLES];
112 int pos;
113 int nbr_samples;
114 int sum;
115};
116
117struct ab8500_fg_cap_scaling {
118 bool enable;
119 int cap_to_scale[2];
120 int disable_cap_level;
121 int scaled_cap;
122};
123
124struct ab8500_fg_battery_capacity {
125 int max_mah_design;
126 int max_mah;
127 int mah;
128 int permille;
129 int level;
130 int prev_mah;
131 int prev_percent;
132 int prev_level;
133 int user_mah;
134 struct ab8500_fg_cap_scaling cap_scale;
135};
136
137struct ab8500_fg_flags {
138 bool fg_enabled;
139 bool conv_done;
140 bool charging;
141 bool fully_charged;
142 bool force_full;
143 bool low_bat_delay;
144 bool low_bat;
145 bool bat_ovv;
146 bool batt_unknown;
147 bool calibrate;
148 bool user_cap;
149 bool batt_id_received;
150};
151
152struct inst_curr_result_list {
153 struct list_head list;
154 int *result;
155};
156
157/**
158 * struct ab8500_fg - ab8500 FG device information
159 * @dev: Pointer to the structure device
160 * @node: a list of AB8500 FGs, hence prepared for reentrance
161 * @irq holds the CCEOC interrupt number
162 * @vbat_uv: Battery voltage in uV
163 * @vbat_nom_uv: Nominal battery voltage in uV
164 * @inst_curr_ua: Instantenous battery current in uA
165 * @avg_curr_ua: Average battery current in uA
166 * @bat_temp battery temperature
167 * @fg_samples: Number of samples used in the FG accumulation
168 * @accu_charge: Accumulated charge from the last conversion
169 * @recovery_cnt: Counter for recovery mode
170 * @high_curr_cnt: Counter for high current mode
171 * @init_cnt: Counter for init mode
172 * @low_bat_cnt Counter for number of consecutive low battery measures
173 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
174 * @recovery_needed: Indicate if recovery is needed
175 * @high_curr_mode: Indicate if we're in high current mode
176 * @init_capacity: Indicate if initial capacity measuring should be done
177 * @turn_off_fg: True if fg was off before current measurement
178 * @calib_state State during offset calibration
179 * @discharge_state: Current discharge state
180 * @charge_state: Current charge state
181 * @ab8500_fg_started Completion struct used for the instant current start
182 * @ab8500_fg_complete Completion struct used for the instant current reading
183 * @flags: Structure for information about events triggered
184 * @bat_cap: Structure for battery capacity specific parameters
185 * @avg_cap: Average capacity filter
186 * @parent: Pointer to the struct ab8500
187 * @main_bat_v: ADC channel for the main battery voltage
188 * @bm: Platform specific battery management information
189 * @fg_psy: Structure that holds the FG specific battery properties
190 * @fg_wq: Work queue for running the FG algorithm
191 * @fg_periodic_work: Work to run the FG algorithm periodically
192 * @fg_low_bat_work: Work to check low bat condition
193 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
194 * @fg_work: Work to run the FG algorithm instantly
195 * @fg_acc_cur_work: Work to read the FG accumulator
196 * @fg_check_hw_failure_work: Work for checking HW state
197 * @cc_lock: Mutex for locking the CC
198 * @fg_kobject: Structure of type kobject
199 */
200struct ab8500_fg {
201 struct device *dev;
202 struct list_head node;
203 int irq;
204 int vbat_uv;
205 int vbat_nom_uv;
206 int inst_curr_ua;
207 int avg_curr_ua;
208 int bat_temp;
209 int fg_samples;
210 int accu_charge;
211 int recovery_cnt;
212 int high_curr_cnt;
213 int init_cnt;
214 int low_bat_cnt;
215 int nbr_cceoc_irq_cnt;
216 u32 line_impedance_uohm;
217 bool recovery_needed;
218 bool high_curr_mode;
219 bool init_capacity;
220 bool turn_off_fg;
221 enum ab8500_fg_calibration_state calib_state;
222 enum ab8500_fg_discharge_state discharge_state;
223 enum ab8500_fg_charge_state charge_state;
224 struct completion ab8500_fg_started;
225 struct completion ab8500_fg_complete;
226 struct ab8500_fg_flags flags;
227 struct ab8500_fg_battery_capacity bat_cap;
228 struct ab8500_fg_avg_cap avg_cap;
229 struct ab8500 *parent;
230 struct iio_channel *main_bat_v;
231 struct ab8500_bm_data *bm;
232 struct power_supply *fg_psy;
233 struct workqueue_struct *fg_wq;
234 struct delayed_work fg_periodic_work;
235 struct delayed_work fg_low_bat_work;
236 struct delayed_work fg_reinit_work;
237 struct work_struct fg_work;
238 struct work_struct fg_acc_cur_work;
239 struct delayed_work fg_check_hw_failure_work;
240 struct mutex cc_lock;
241 struct kobject fg_kobject;
242};
243static LIST_HEAD(ab8500_fg_list);
244
245/**
246 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
247 * (i.e. the first fuel gauge in the instance list)
248 */
249struct ab8500_fg *ab8500_fg_get(void)
250{
251 return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
252 node);
253}
254
255/* Main battery properties */
256static enum power_supply_property ab8500_fg_props[] = {
257 POWER_SUPPLY_PROP_VOLTAGE_NOW,
258 POWER_SUPPLY_PROP_CURRENT_NOW,
259 POWER_SUPPLY_PROP_CURRENT_AVG,
260 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
261 POWER_SUPPLY_PROP_ENERGY_FULL,
262 POWER_SUPPLY_PROP_ENERGY_NOW,
263 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
264 POWER_SUPPLY_PROP_CHARGE_FULL,
265 POWER_SUPPLY_PROP_CHARGE_NOW,
266 POWER_SUPPLY_PROP_CAPACITY,
267 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
268};
269
270/*
271 * This array maps the raw hex value to lowbat voltage used by the AB8500
272 * Values taken from the UM0836, in microvolts.
273 */
274static int ab8500_fg_lowbat_voltage_map[] = {
275 2300000,
276 2325000,
277 2350000,
278 2375000,
279 2400000,
280 2425000,
281 2450000,
282 2475000,
283 2500000,
284 2525000,
285 2550000,
286 2575000,
287 2600000,
288 2625000,
289 2650000,
290 2675000,
291 2700000,
292 2725000,
293 2750000,
294 2775000,
295 2800000,
296 2825000,
297 2850000,
298 2875000,
299 2900000,
300 2925000,
301 2950000,
302 2975000,
303 3000000,
304 3025000,
305 3050000,
306 3075000,
307 3100000,
308 3125000,
309 3150000,
310 3175000,
311 3200000,
312 3225000,
313 3250000,
314 3275000,
315 3300000,
316 3325000,
317 3350000,
318 3375000,
319 3400000,
320 3425000,
321 3450000,
322 3475000,
323 3500000,
324 3525000,
325 3550000,
326 3575000,
327 3600000,
328 3625000,
329 3650000,
330 3675000,
331 3700000,
332 3725000,
333 3750000,
334 3775000,
335 3800000,
336 3825000,
337 3850000,
338 3850000,
339};
340
341static u8 ab8500_volt_to_regval(int voltage_uv)
342{
343 int i;
344
345 if (voltage_uv < ab8500_fg_lowbat_voltage_map[0])
346 return 0;
347
348 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
349 if (voltage_uv < ab8500_fg_lowbat_voltage_map[i])
350 return (u8) i - 1;
351 }
352
353 /* If not captured above, return index of last element */
354 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
355}
356
357/**
358 * ab8500_fg_is_low_curr() - Low or high current mode
359 * @di: pointer to the ab8500_fg structure
360 * @curr_ua: the current to base or our decision on in microampere
361 *
362 * Low current mode if the current consumption is below a certain threshold
363 */
364static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr_ua)
365{
366 /*
367 * We want to know if we're in low current mode
368 */
369 if (curr_ua > -di->bm->fg_params->high_curr_threshold_ua)
370 return true;
371 else
372 return false;
373}
374
375/**
376 * ab8500_fg_add_cap_sample() - Add capacity to average filter
377 * @di: pointer to the ab8500_fg structure
378 * @sample: the capacity in mAh to add to the filter
379 *
380 * A capacity is added to the filter and a new mean capacity is calculated and
381 * returned
382 */
383static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
384{
385 time64_t now = ktime_get_boottime_seconds();
386 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
387
388 do {
389 avg->sum += sample - avg->samples[avg->pos];
390 avg->samples[avg->pos] = sample;
391 avg->time_stamps[avg->pos] = now;
392 avg->pos++;
393
394 if (avg->pos == NBR_AVG_SAMPLES)
395 avg->pos = 0;
396
397 if (avg->nbr_samples < NBR_AVG_SAMPLES)
398 avg->nbr_samples++;
399
400 /*
401 * Check the time stamp for each sample. If too old,
402 * replace with latest sample
403 */
404 } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
405
406 avg->avg = avg->sum / avg->nbr_samples;
407
408 return avg->avg;
409}
410
411/**
412 * ab8500_fg_clear_cap_samples() - Clear average filter
413 * @di: pointer to the ab8500_fg structure
414 *
415 * The capacity filter is reset to zero.
416 */
417static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
418{
419 int i;
420 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
421
422 avg->pos = 0;
423 avg->nbr_samples = 0;
424 avg->sum = 0;
425 avg->avg = 0;
426
427 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
428 avg->samples[i] = 0;
429 avg->time_stamps[i] = 0;
430 }
431}
432
433/**
434 * ab8500_fg_fill_cap_sample() - Fill average filter
435 * @di: pointer to the ab8500_fg structure
436 * @sample: the capacity in mAh to fill the filter with
437 *
438 * The capacity filter is filled with a capacity in mAh
439 */
440static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
441{
442 int i;
443 time64_t now;
444 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
445
446 now = ktime_get_boottime_seconds();
447
448 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
449 avg->samples[i] = sample;
450 avg->time_stamps[i] = now;
451 }
452
453 avg->pos = 0;
454 avg->nbr_samples = NBR_AVG_SAMPLES;
455 avg->sum = sample * NBR_AVG_SAMPLES;
456 avg->avg = sample;
457}
458
459/**
460 * ab8500_fg_coulomb_counter() - enable coulomb counter
461 * @di: pointer to the ab8500_fg structure
462 * @enable: enable/disable
463 *
464 * Enable/Disable coulomb counter.
465 * On failure returns negative value.
466 */
467static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
468{
469 int ret = 0;
470 mutex_lock(&di->cc_lock);
471 if (enable) {
472 /* To be able to reprogram the number of samples, we have to
473 * first stop the CC and then enable it again */
474 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
475 AB8500_RTC_CC_CONF_REG, value: 0x00);
476 if (ret)
477 goto cc_err;
478
479 /* Program the samples */
480 ret = abx500_set_register_interruptible(dev: di->dev,
481 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
482 value: di->fg_samples);
483 if (ret)
484 goto cc_err;
485
486 /* Start the CC */
487 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
488 AB8500_RTC_CC_CONF_REG,
489 value: (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
490 if (ret)
491 goto cc_err;
492
493 di->flags.fg_enabled = true;
494 } else {
495 /* Clear any pending read requests */
496 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
497 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
498 bitmask: (RESET_ACCU | READ_REQ), bitvalues: 0);
499 if (ret)
500 goto cc_err;
501
502 ret = abx500_set_register_interruptible(dev: di->dev,
503 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, value: 0);
504 if (ret)
505 goto cc_err;
506
507 /* Stop the CC */
508 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
509 AB8500_RTC_CC_CONF_REG, value: 0);
510 if (ret)
511 goto cc_err;
512
513 di->flags.fg_enabled = false;
514
515 }
516 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
517 enable, di->fg_samples);
518
519 mutex_unlock(lock: &di->cc_lock);
520
521 return ret;
522cc_err:
523 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
524 mutex_unlock(lock: &di->cc_lock);
525 return ret;
526}
527
528/**
529 * ab8500_fg_inst_curr_start() - start battery instantaneous current
530 * @di: pointer to the ab8500_fg structure
531 *
532 * Returns 0 or error code
533 * Note: This is part "one" and has to be called before
534 * ab8500_fg_inst_curr_finalize()
535 */
536int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
537{
538 u8 reg_val;
539 int ret;
540
541 mutex_lock(&di->cc_lock);
542
543 di->nbr_cceoc_irq_cnt = 0;
544 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
545 AB8500_RTC_CC_CONF_REG, value: &reg_val);
546 if (ret < 0)
547 goto fail;
548
549 if (!(reg_val & CC_PWR_UP_ENA)) {
550 dev_dbg(di->dev, "%s Enable FG\n", __func__);
551 di->turn_off_fg = true;
552
553 /* Program the samples */
554 ret = abx500_set_register_interruptible(dev: di->dev,
555 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
556 SEC_TO_SAMPLE(10));
557 if (ret)
558 goto fail;
559
560 /* Start the CC */
561 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
562 AB8500_RTC_CC_CONF_REG,
563 value: (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
564 if (ret)
565 goto fail;
566 } else {
567 di->turn_off_fg = false;
568 }
569
570 /* Return and WFI */
571 reinit_completion(x: &di->ab8500_fg_started);
572 reinit_completion(x: &di->ab8500_fg_complete);
573 enable_irq(irq: di->irq);
574
575 /* Note: cc_lock is still locked */
576 return 0;
577fail:
578 mutex_unlock(lock: &di->cc_lock);
579 return ret;
580}
581
582/**
583 * ab8500_fg_inst_curr_started() - check if fg conversion has started
584 * @di: pointer to the ab8500_fg structure
585 *
586 * Returns 1 if conversion started, 0 if still waiting
587 */
588int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
589{
590 return completion_done(x: &di->ab8500_fg_started);
591}
592
593/**
594 * ab8500_fg_inst_curr_done() - check if fg conversion is done
595 * @di: pointer to the ab8500_fg structure
596 *
597 * Returns 1 if conversion done, 0 if still waiting
598 */
599int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
600{
601 return completion_done(x: &di->ab8500_fg_complete);
602}
603
604/**
605 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
606 * @di: pointer to the ab8500_fg structure
607 * @curr_ua: battery instantenous current in microampere (on success)
608 *
609 * Returns 0 or an error code
610 * Note: This is part "two" and has to be called at earliest 250 ms
611 * after ab8500_fg_inst_curr_start()
612 */
613int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *curr_ua)
614{
615 u8 low, high;
616 int val;
617 int ret;
618 unsigned long timeout;
619
620 if (!completion_done(x: &di->ab8500_fg_complete)) {
621 timeout = wait_for_completion_timeout(
622 x: &di->ab8500_fg_complete,
623 INS_CURR_TIMEOUT);
624 dev_dbg(di->dev, "Finalize time: %d ms\n",
625 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
626 if (!timeout) {
627 ret = -ETIME;
628 disable_irq(irq: di->irq);
629 di->nbr_cceoc_irq_cnt = 0;
630 dev_err(di->dev, "completion timed out [%d]\n",
631 __LINE__);
632 goto fail;
633 }
634 }
635
636 disable_irq(irq: di->irq);
637 di->nbr_cceoc_irq_cnt = 0;
638
639 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
640 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
641 READ_REQ, READ_REQ);
642
643 /* 100uS between read request and read is needed */
644 usleep_range(min: 100, max: 100);
645
646 /* Read CC Sample conversion value Low and high */
647 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
648 AB8500_GASG_CC_SMPL_CNVL_REG, value: &low);
649 if (ret < 0)
650 goto fail;
651
652 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
653 AB8500_GASG_CC_SMPL_CNVH_REG, value: &high);
654 if (ret < 0)
655 goto fail;
656
657 /*
658 * negative value for Discharging
659 * convert 2's complement into decimal
660 */
661 if (high & 0x10)
662 val = (low | (high << 8) | 0xFFFFE000);
663 else
664 val = (low | (high << 8));
665
666 /*
667 * Convert to unit value in mA
668 * Full scale input voltage is
669 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542.000 uA
670 * Given a 250ms conversion cycle time the LSB corresponds
671 * to 107.1 nAh. Convert to current by dividing by the conversion
672 * time in hours (250ms = 1 / (3600 * 4)h)
673 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
674 */
675 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / di->bm->fg_res;
676
677 if (di->turn_off_fg) {
678 dev_dbg(di->dev, "%s Disable FG\n", __func__);
679
680 /* Clear any pending read requests */
681 ret = abx500_set_register_interruptible(dev: di->dev,
682 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, value: 0);
683 if (ret)
684 goto fail;
685
686 /* Stop the CC */
687 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
688 AB8500_RTC_CC_CONF_REG, value: 0);
689 if (ret)
690 goto fail;
691 }
692 mutex_unlock(lock: &di->cc_lock);
693 *curr_ua = val;
694
695 return 0;
696fail:
697 mutex_unlock(lock: &di->cc_lock);
698 return ret;
699}
700
701/**
702 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
703 * @di: pointer to the ab8500_fg structure
704 *
705 * Returns battery instantenous current in microampere (on success)
706 * else error code
707 */
708int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
709{
710 int ret;
711 unsigned long timeout;
712 int curr_ua = 0;
713
714 ret = ab8500_fg_inst_curr_start(di);
715 if (ret) {
716 dev_err(di->dev, "Failed to initialize fg_inst\n");
717 return 0;
718 }
719
720 /* Wait for CC to actually start */
721 if (!completion_done(x: &di->ab8500_fg_started)) {
722 timeout = wait_for_completion_timeout(
723 x: &di->ab8500_fg_started,
724 INS_CURR_TIMEOUT);
725 dev_dbg(di->dev, "Start time: %d ms\n",
726 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
727 if (!timeout) {
728 ret = -ETIME;
729 dev_err(di->dev, "completion timed out [%d]\n",
730 __LINE__);
731 goto fail;
732 }
733 }
734
735 ret = ab8500_fg_inst_curr_finalize(di, curr_ua: &curr_ua);
736 if (ret) {
737 dev_err(di->dev, "Failed to finalize fg_inst\n");
738 return 0;
739 }
740
741 dev_dbg(di->dev, "%s instant current: %d uA", __func__, curr_ua);
742 return curr_ua;
743fail:
744 disable_irq(irq: di->irq);
745 mutex_unlock(lock: &di->cc_lock);
746 return ret;
747}
748
749/**
750 * ab8500_fg_acc_cur_work() - average battery current
751 * @work: pointer to the work_struct structure
752 *
753 * Updated the average battery current obtained from the
754 * coulomb counter.
755 */
756static void ab8500_fg_acc_cur_work(struct work_struct *work)
757{
758 int val;
759 int ret;
760 u8 low, med, high;
761
762 struct ab8500_fg *di = container_of(work,
763 struct ab8500_fg, fg_acc_cur_work);
764
765 mutex_lock(&di->cc_lock);
766 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
767 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
768 if (ret)
769 goto exit;
770
771 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
772 AB8500_GASG_CC_NCOV_ACCU_LOW, value: &low);
773 if (ret < 0)
774 goto exit;
775
776 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
777 AB8500_GASG_CC_NCOV_ACCU_MED, value: &med);
778 if (ret < 0)
779 goto exit;
780
781 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_GAS_GAUGE,
782 AB8500_GASG_CC_NCOV_ACCU_HIGH, value: &high);
783 if (ret < 0)
784 goto exit;
785
786 /* Check for sign bit in case of negative value, 2's complement */
787 if (high & 0x10)
788 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
789 else
790 val = (low | (med << 8) | (high << 16));
791
792 /*
793 * Convert to uAh
794 * Given a 250ms conversion cycle time the LSB corresponds
795 * to 112.9 nAh.
796 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
797 */
798 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
799 (100 * di->bm->fg_res);
800
801 /*
802 * Convert to unit value in uA
803 * by dividing by the conversion
804 * time in hours (= samples / (3600 * 4)h)
805 */
806 di->avg_curr_ua = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
807 (di->bm->fg_res * (di->fg_samples / 4));
808
809 di->flags.conv_done = true;
810
811 mutex_unlock(lock: &di->cc_lock);
812
813 queue_work(wq: di->fg_wq, work: &di->fg_work);
814
815 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
816 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
817 return;
818exit:
819 dev_err(di->dev,
820 "Failed to read or write gas gauge registers\n");
821 mutex_unlock(lock: &di->cc_lock);
822 queue_work(wq: di->fg_wq, work: &di->fg_work);
823}
824
825/**
826 * ab8500_fg_bat_voltage() - get battery voltage
827 * @di: pointer to the ab8500_fg structure
828 *
829 * Returns battery voltage in microvolts (on success) else error code
830 */
831static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
832{
833 int vbat, ret;
834 static int prev;
835
836 ret = iio_read_channel_processed(chan: di->main_bat_v, val: &vbat);
837 if (ret < 0) {
838 dev_err(di->dev,
839 "%s ADC conversion failed, using previous value\n",
840 __func__);
841 return prev;
842 }
843
844 /* IIO returns millivolts but we want microvolts */
845 vbat *= 1000;
846 prev = vbat;
847 return vbat;
848}
849
850/**
851 * ab8500_fg_volt_to_capacity() - Voltage based capacity
852 * @di: pointer to the ab8500_fg structure
853 * @voltage_uv: The voltage to convert to a capacity in microvolt
854 *
855 * Returns battery capacity in per mille based on voltage
856 */
857static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage_uv)
858{
859 struct power_supply_battery_info *bi = di->bm->bi;
860
861 /* Multiply by 10 because the capacity is tracked in per mille */
862 return power_supply_batinfo_ocv2cap(info: bi, ocv: voltage_uv, temp: di->bat_temp) * 10;
863}
864
865/**
866 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
867 * @di: pointer to the ab8500_fg structure
868 *
869 * Returns battery capacity based on battery voltage that is not compensated
870 * for the voltage drop due to the load
871 */
872static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
873{
874 di->vbat_uv = ab8500_fg_bat_voltage(di);
875 return ab8500_fg_volt_to_capacity(di, voltage_uv: di->vbat_uv);
876}
877
878/**
879 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
880 * @di: pointer to the ab8500_fg structure
881 * @vbat_uncomp_uv: Uncompensated VBAT voltage
882 *
883 * Returns battery inner resistance added with the fuel gauge resistor value
884 * to get the total resistance in the whole link from gnd to bat+ node
885 * in milliohm.
886 */
887static int ab8500_fg_battery_resistance(struct ab8500_fg *di, int vbat_uncomp_uv)
888{
889 struct power_supply_battery_info *bi = di->bm->bi;
890 int resistance_percent = 0;
891 int resistance;
892
893 /*
894 * Determine the resistance at this voltage. First try VBAT-to-Ri else
895 * just infer it from the surrounding temperature, if nothing works just
896 * use the internal resistance.
897 */
898 if (power_supply_supports_vbat2ri(info: bi)) {
899 resistance = power_supply_vbat2ri(info: bi, vbat_uv: vbat_uncomp_uv, charging: di->flags.charging);
900 /* Convert to milliohm */
901 resistance = resistance / 1000;
902 } else if (power_supply_supports_temp2ri(info: bi)) {
903 resistance_percent = power_supply_temp2resist_simple(table: bi->resist_table,
904 table_len: bi->resist_table_size,
905 temp: di->bat_temp / 10);
906 /* Convert to milliohm */
907 resistance = bi->factory_internal_resistance_uohm / 1000;
908 resistance = resistance * resistance_percent / 100;
909 } else {
910 /* Last fallback */
911 resistance = bi->factory_internal_resistance_uohm / 1000;
912 }
913
914 /* Compensate for line impedance */
915 resistance += (di->line_impedance_uohm / 1000);
916
917 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
918 " fg resistance %d, total: %d (mOhm)\n",
919 __func__, di->bat_temp, resistance, di->bm->fg_res / 10,
920 (di->bm->fg_res / 10) + resistance);
921
922 /* fg_res variable is in 0.1mOhm */
923 resistance += di->bm->fg_res / 10;
924
925 return resistance;
926}
927
928/**
929 * ab8500_load_comp_fg_bat_voltage() - get load compensated battery voltage
930 * @di: pointer to the ab8500_fg structure
931 * @always: always return a voltage, also uncompensated
932 *
933 * Returns compensated battery voltage (on success) else error code.
934 * If always is specified, we always return a voltage but it may be
935 * uncompensated.
936 */
937static int ab8500_load_comp_fg_bat_voltage(struct ab8500_fg *di, bool always)
938{
939 int i = 0;
940 int vbat_uv = 0;
941 int rcomp;
942
943 /* Average the instant current to get a stable current measurement */
944 ab8500_fg_inst_curr_start(di);
945
946 do {
947 vbat_uv += ab8500_fg_bat_voltage(di);
948 i++;
949 usleep_range(min: 5000, max: 6000);
950 } while (!ab8500_fg_inst_curr_done(di) &&
951 i <= WAIT_FOR_INST_CURRENT_MAX);
952
953 if (i > WAIT_FOR_INST_CURRENT_MAX) {
954 dev_err(di->dev,
955 "TIMEOUT: return uncompensated measurement of VBAT\n");
956 di->vbat_uv = vbat_uv / i;
957 return di->vbat_uv;
958 }
959
960 ab8500_fg_inst_curr_finalize(di, curr_ua: &di->inst_curr_ua);
961
962 /*
963 * If there is too high current dissipation, the compensation cannot be
964 * trusted so return an error unless we must return something here, as
965 * enforced by the "always" parameter.
966 */
967 if (!always && di->inst_curr_ua < IGNORE_VBAT_HIGHCUR)
968 return -EINVAL;
969
970 vbat_uv = vbat_uv / i;
971
972 /* Next we apply voltage compensation from internal resistance */
973 rcomp = ab8500_fg_battery_resistance(di, vbat_uncomp_uv: vbat_uv);
974 vbat_uv = vbat_uv - (di->inst_curr_ua * rcomp) / 1000;
975
976 /* Always keep this state at latest measurement */
977 di->vbat_uv = vbat_uv;
978
979 return vbat_uv;
980}
981
982/**
983 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
984 * @di: pointer to the ab8500_fg structure
985 *
986 * Returns battery capacity based on battery voltage that is load compensated
987 * for the voltage drop
988 */
989static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
990{
991 int vbat_comp_uv;
992
993 vbat_comp_uv = ab8500_load_comp_fg_bat_voltage(di, always: true);
994
995 return ab8500_fg_volt_to_capacity(di, voltage_uv: vbat_comp_uv);
996}
997
998/**
999 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
1000 * @di: pointer to the ab8500_fg structure
1001 * @cap_mah: capacity in mAh
1002 *
1003 * Converts capacity in mAh to capacity in permille
1004 */
1005static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
1006{
1007 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
1008}
1009
1010/**
1011 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1012 * @di: pointer to the ab8500_fg structure
1013 * @cap_pm: capacity in permille
1014 *
1015 * Converts capacity in permille to capacity in mAh
1016 */
1017static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1018{
1019 return cap_pm * di->bat_cap.max_mah_design / 1000;
1020}
1021
1022/**
1023 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1024 * @di: pointer to the ab8500_fg structure
1025 * @cap_mah: capacity in mAh
1026 *
1027 * Converts capacity in mAh to capacity in uWh
1028 */
1029static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1030{
1031 u64 div_res;
1032 u32 div_rem;
1033
1034 /*
1035 * Capacity is in milli ampere hours (10^-3)Ah
1036 * Nominal voltage is in microvolts (10^-6)V
1037 * divide by 1000000 after multiplication to get to mWh
1038 */
1039 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv);
1040 div_rem = do_div(div_res, 1000000);
1041
1042 /* Make sure to round upwards if necessary */
1043 if (div_rem >= 1000000 / 2)
1044 div_res++;
1045
1046 return (int) div_res;
1047}
1048
1049/**
1050 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1051 * @di: pointer to the ab8500_fg structure
1052 *
1053 * Return the capacity in mAh based on previous calculated capcity and the FG
1054 * accumulator register value. The filter is filled with this capacity
1055 */
1056static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1057{
1058 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1059 __func__,
1060 di->bat_cap.mah,
1061 di->accu_charge);
1062
1063 /* Capacity should not be less than 0 */
1064 if (di->bat_cap.mah + di->accu_charge > 0)
1065 di->bat_cap.mah += di->accu_charge;
1066 else
1067 di->bat_cap.mah = 0;
1068 /*
1069 * We force capacity to 100% once when the algorithm
1070 * reports that it's full.
1071 */
1072 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1073 di->flags.force_full) {
1074 di->bat_cap.mah = di->bat_cap.max_mah_design;
1075 }
1076
1077 ab8500_fg_fill_cap_sample(di, sample: di->bat_cap.mah);
1078 di->bat_cap.permille =
1079 ab8500_fg_convert_mah_to_permille(di, cap_mah: di->bat_cap.mah);
1080
1081 /* We need to update battery voltage and inst current when charging */
1082 di->vbat_uv = ab8500_fg_bat_voltage(di);
1083 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di);
1084
1085 return di->bat_cap.mah;
1086}
1087
1088/**
1089 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1090 * @di: pointer to the ab8500_fg structure
1091 *
1092 * Return the capacity in mAh based on the load compensated battery voltage.
1093 * This value is added to the filter and a new mean value is calculated and
1094 * returned.
1095 */
1096static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di)
1097{
1098 int permille, mah;
1099
1100 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1101
1102 mah = ab8500_fg_convert_permille_to_mah(di, cap_pm: permille);
1103
1104 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, sample: mah);
1105 di->bat_cap.permille =
1106 ab8500_fg_convert_mah_to_permille(di, cap_mah: di->bat_cap.mah);
1107
1108 return di->bat_cap.mah;
1109}
1110
1111/**
1112 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1113 * @di: pointer to the ab8500_fg structure
1114 *
1115 * Return the capacity in mAh based on previous calculated capcity and the FG
1116 * accumulator register value. This value is added to the filter and a
1117 * new mean value is calculated and returned.
1118 */
1119static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1120{
1121 int permille_volt, permille;
1122
1123 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1124 __func__,
1125 di->bat_cap.mah,
1126 di->accu_charge);
1127
1128 /* Capacity should not be less than 0 */
1129 if (di->bat_cap.mah + di->accu_charge > 0)
1130 di->bat_cap.mah += di->accu_charge;
1131 else
1132 di->bat_cap.mah = 0;
1133
1134 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1135 di->bat_cap.mah = di->bat_cap.max_mah_design;
1136
1137 /*
1138 * Check against voltage based capacity. It can not be lower
1139 * than what the uncompensated voltage says
1140 */
1141 permille = ab8500_fg_convert_mah_to_permille(di, cap_mah: di->bat_cap.mah);
1142 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1143
1144 if (permille < permille_volt) {
1145 di->bat_cap.permille = permille_volt;
1146 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1147 cap_pm: di->bat_cap.permille);
1148
1149 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1150 __func__,
1151 permille,
1152 permille_volt);
1153
1154 ab8500_fg_fill_cap_sample(di, sample: di->bat_cap.mah);
1155 } else {
1156 ab8500_fg_fill_cap_sample(di, sample: di->bat_cap.mah);
1157 di->bat_cap.permille =
1158 ab8500_fg_convert_mah_to_permille(di, cap_mah: di->bat_cap.mah);
1159 }
1160
1161 return di->bat_cap.mah;
1162}
1163
1164/**
1165 * ab8500_fg_capacity_level() - Get the battery capacity level
1166 * @di: pointer to the ab8500_fg structure
1167 *
1168 * Get the battery capacity level based on the capacity in percent
1169 */
1170static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1171{
1172 int ret, percent;
1173
1174 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1175
1176 if (percent <= di->bm->cap_levels->critical ||
1177 di->flags.low_bat)
1178 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1179 else if (percent <= di->bm->cap_levels->low)
1180 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1181 else if (percent <= di->bm->cap_levels->normal)
1182 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1183 else if (percent <= di->bm->cap_levels->high)
1184 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1185 else
1186 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1187
1188 return ret;
1189}
1190
1191/**
1192 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1193 * @di: pointer to the ab8500_fg structure
1194 *
1195 * Calculates the capacity to be shown to upper layers. Scales the capacity
1196 * to have 100% as a reference from the actual capacity upon removal of charger
1197 * when charging is in maintenance mode.
1198 */
1199static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1200{
1201 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1202 int capacity = di->bat_cap.prev_percent;
1203
1204 if (!cs->enable)
1205 return capacity;
1206
1207 /*
1208 * As long as we are in fully charge mode scale the capacity
1209 * to show 100%.
1210 */
1211 if (di->flags.fully_charged) {
1212 cs->cap_to_scale[0] = 100;
1213 cs->cap_to_scale[1] =
1214 max(capacity, di->bm->fg_params->maint_thres);
1215 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1216 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1217 }
1218
1219 /* Calculates the scaled capacity. */
1220 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1221 && (cs->cap_to_scale[1] > 0))
1222 capacity = min(100,
1223 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1224 cs->cap_to_scale[0],
1225 cs->cap_to_scale[1]));
1226
1227 if (di->flags.charging) {
1228 if (capacity < cs->disable_cap_level) {
1229 cs->disable_cap_level = capacity;
1230 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1231 cs->disable_cap_level);
1232 } else if (!di->flags.fully_charged) {
1233 if (di->bat_cap.prev_percent >=
1234 cs->disable_cap_level) {
1235 dev_dbg(di->dev, "Disabling scaled capacity\n");
1236 cs->enable = false;
1237 capacity = di->bat_cap.prev_percent;
1238 } else {
1239 dev_dbg(di->dev,
1240 "Waiting in cap to level %d%%\n",
1241 cs->disable_cap_level);
1242 capacity = cs->disable_cap_level;
1243 }
1244 }
1245 }
1246
1247 return capacity;
1248}
1249
1250/**
1251 * ab8500_fg_update_cap_scalers() - Capacity scaling
1252 * @di: pointer to the ab8500_fg structure
1253 *
1254 * To be called when state change from charge<->discharge to update
1255 * the capacity scalers.
1256 */
1257static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1258{
1259 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1260
1261 if (!cs->enable)
1262 return;
1263 if (di->flags.charging) {
1264 di->bat_cap.cap_scale.disable_cap_level =
1265 di->bat_cap.cap_scale.scaled_cap;
1266 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1267 di->bat_cap.cap_scale.disable_cap_level);
1268 } else {
1269 if (cs->scaled_cap != 100) {
1270 cs->cap_to_scale[0] = cs->scaled_cap;
1271 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1272 } else {
1273 cs->cap_to_scale[0] = 100;
1274 cs->cap_to_scale[1] =
1275 max(di->bat_cap.prev_percent,
1276 di->bm->fg_params->maint_thres);
1277 }
1278
1279 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1280 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1281 }
1282}
1283
1284/**
1285 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1286 * @di: pointer to the ab8500_fg structure
1287 * @init: capacity is allowed to go up in init mode
1288 *
1289 * Check if capacity or capacity limit has changed and notify the system
1290 * about it using the power_supply framework
1291 */
1292static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1293{
1294 bool changed = false;
1295 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1296
1297 di->bat_cap.level = ab8500_fg_capacity_level(di);
1298
1299 if (di->bat_cap.level != di->bat_cap.prev_level) {
1300 /*
1301 * We do not allow reported capacity level to go up
1302 * unless we're charging or if we're in init
1303 */
1304 if (!(!di->flags.charging && di->bat_cap.level >
1305 di->bat_cap.prev_level) || init) {
1306 dev_dbg(di->dev, "level changed from %d to %d\n",
1307 di->bat_cap.prev_level,
1308 di->bat_cap.level);
1309 di->bat_cap.prev_level = di->bat_cap.level;
1310 changed = true;
1311 } else {
1312 dev_dbg(di->dev, "level not allowed to go up "
1313 "since no charger is connected: %d to %d\n",
1314 di->bat_cap.prev_level,
1315 di->bat_cap.level);
1316 }
1317 }
1318
1319 /*
1320 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1321 * shutdown
1322 */
1323 if (di->flags.low_bat) {
1324 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1325 di->bat_cap.prev_percent = 0;
1326 di->bat_cap.permille = 0;
1327 percent = 0;
1328 di->bat_cap.prev_mah = 0;
1329 di->bat_cap.mah = 0;
1330 changed = true;
1331 } else if (di->flags.fully_charged) {
1332 /*
1333 * We report 100% if algorithm reported fully charged
1334 * and show 100% during maintenance charging (scaling).
1335 */
1336 if (di->flags.force_full) {
1337 di->bat_cap.prev_percent = percent;
1338 di->bat_cap.prev_mah = di->bat_cap.mah;
1339
1340 changed = true;
1341
1342 if (!di->bat_cap.cap_scale.enable &&
1343 di->bm->capacity_scaling) {
1344 di->bat_cap.cap_scale.enable = true;
1345 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1346 di->bat_cap.cap_scale.cap_to_scale[1] =
1347 di->bat_cap.prev_percent;
1348 di->bat_cap.cap_scale.disable_cap_level = 100;
1349 }
1350 } else if (di->bat_cap.prev_percent != percent) {
1351 dev_dbg(di->dev,
1352 "battery reported full "
1353 "but capacity dropping: %d\n",
1354 percent);
1355 di->bat_cap.prev_percent = percent;
1356 di->bat_cap.prev_mah = di->bat_cap.mah;
1357
1358 changed = true;
1359 }
1360 } else if (di->bat_cap.prev_percent != percent) {
1361 if (percent == 0) {
1362 /*
1363 * We will not report 0% unless we've got
1364 * the LOW_BAT IRQ, no matter what the FG
1365 * algorithm says.
1366 */
1367 di->bat_cap.prev_percent = 1;
1368 percent = 1;
1369
1370 changed = true;
1371 } else if (!(!di->flags.charging &&
1372 percent > di->bat_cap.prev_percent) || init) {
1373 /*
1374 * We do not allow reported capacity to go up
1375 * unless we're charging or if we're in init
1376 */
1377 dev_dbg(di->dev,
1378 "capacity changed from %d to %d (%d)\n",
1379 di->bat_cap.prev_percent,
1380 percent,
1381 di->bat_cap.permille);
1382 di->bat_cap.prev_percent = percent;
1383 di->bat_cap.prev_mah = di->bat_cap.mah;
1384
1385 changed = true;
1386 } else {
1387 dev_dbg(di->dev, "capacity not allowed to go up since "
1388 "no charger is connected: %d to %d (%d)\n",
1389 di->bat_cap.prev_percent,
1390 percent,
1391 di->bat_cap.permille);
1392 }
1393 }
1394
1395 if (changed) {
1396 if (di->bm->capacity_scaling) {
1397 di->bat_cap.cap_scale.scaled_cap =
1398 ab8500_fg_calculate_scaled_capacity(di);
1399
1400 dev_info(di->dev, "capacity=%d (%d)\n",
1401 di->bat_cap.prev_percent,
1402 di->bat_cap.cap_scale.scaled_cap);
1403 }
1404 power_supply_changed(psy: di->fg_psy);
1405 if (di->flags.fully_charged && di->flags.force_full) {
1406 dev_dbg(di->dev, "Battery full, notifying.\n");
1407 di->flags.force_full = false;
1408 sysfs_notify(kobj: &di->fg_kobject, NULL, attr: "charge_full");
1409 }
1410 sysfs_notify(kobj: &di->fg_kobject, NULL, attr: "charge_now");
1411 }
1412}
1413
1414static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1415 enum ab8500_fg_charge_state new_state)
1416{
1417 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1418 di->charge_state,
1419 charge_state[di->charge_state],
1420 new_state,
1421 charge_state[new_state]);
1422
1423 di->charge_state = new_state;
1424}
1425
1426static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1427 enum ab8500_fg_discharge_state new_state)
1428{
1429 dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1430 di->discharge_state,
1431 discharge_state[di->discharge_state],
1432 new_state,
1433 discharge_state[new_state]);
1434
1435 di->discharge_state = new_state;
1436}
1437
1438/**
1439 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1440 * @di: pointer to the ab8500_fg structure
1441 *
1442 * Battery capacity calculation state machine for when we're charging
1443 */
1444static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1445{
1446 /*
1447 * If we change to discharge mode
1448 * we should start with recovery
1449 */
1450 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1451 ab8500_fg_discharge_state_to(di,
1452 new_state: AB8500_FG_DISCHARGE_INIT_RECOVERY);
1453
1454 switch (di->charge_state) {
1455 case AB8500_FG_CHARGE_INIT:
1456 di->fg_samples = SEC_TO_SAMPLE(
1457 di->bm->fg_params->accu_charging);
1458
1459 ab8500_fg_coulomb_counter(di, enable: true);
1460 ab8500_fg_charge_state_to(di, new_state: AB8500_FG_CHARGE_READOUT);
1461
1462 break;
1463
1464 case AB8500_FG_CHARGE_READOUT:
1465 /*
1466 * Read the FG and calculate the new capacity
1467 */
1468 mutex_lock(&di->cc_lock);
1469 if (!di->flags.conv_done && !di->flags.force_full) {
1470 /* Wasn't the CC IRQ that got us here */
1471 mutex_unlock(lock: &di->cc_lock);
1472 dev_dbg(di->dev, "%s CC conv not done\n",
1473 __func__);
1474
1475 break;
1476 }
1477 di->flags.conv_done = false;
1478 mutex_unlock(lock: &di->cc_lock);
1479
1480 ab8500_fg_calc_cap_charging(di);
1481
1482 break;
1483
1484 default:
1485 break;
1486 }
1487
1488 /* Check capacity limits */
1489 ab8500_fg_check_capacity_limits(di, init: false);
1490}
1491
1492static void force_capacity(struct ab8500_fg *di)
1493{
1494 int cap;
1495
1496 ab8500_fg_clear_cap_samples(di);
1497 cap = di->bat_cap.user_mah;
1498 if (cap > di->bat_cap.max_mah_design) {
1499 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1500 " %d\n", cap, di->bat_cap.max_mah_design);
1501 cap = di->bat_cap.max_mah_design;
1502 }
1503 ab8500_fg_fill_cap_sample(di, sample: di->bat_cap.user_mah);
1504 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap_mah: cap);
1505 di->bat_cap.mah = cap;
1506 ab8500_fg_check_capacity_limits(di, init: true);
1507}
1508
1509static bool check_sysfs_capacity(struct ab8500_fg *di)
1510{
1511 int cap, lower, upper;
1512 int cap_permille;
1513
1514 cap = di->bat_cap.user_mah;
1515
1516 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1517 cap_mah: di->bat_cap.user_mah);
1518
1519 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1520 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1521
1522 if (lower < 0)
1523 lower = 0;
1524 /* 1000 is permille, -> 100 percent */
1525 if (upper > 1000)
1526 upper = 1000;
1527
1528 dev_dbg(di->dev, "Capacity limits:"
1529 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1530 lower, cap_permille, upper, cap, di->bat_cap.mah);
1531
1532 /* If within limits, use the saved capacity and exit estimation...*/
1533 if (cap_permille > lower && cap_permille < upper) {
1534 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1535 force_capacity(di);
1536 return true;
1537 }
1538 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1539 return false;
1540}
1541
1542/**
1543 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1544 * @di: pointer to the ab8500_fg structure
1545 *
1546 * Battery capacity calculation state machine for when we're discharging
1547 */
1548static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1549{
1550 int sleep_time;
1551
1552 /* If we change to charge mode we should start with init */
1553 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1554 ab8500_fg_charge_state_to(di, new_state: AB8500_FG_CHARGE_INIT);
1555
1556 switch (di->discharge_state) {
1557 case AB8500_FG_DISCHARGE_INIT:
1558 /* We use the FG IRQ to work on */
1559 di->init_cnt = 0;
1560 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1561 ab8500_fg_coulomb_counter(di, enable: true);
1562 ab8500_fg_discharge_state_to(di,
1563 new_state: AB8500_FG_DISCHARGE_INITMEASURING);
1564
1565 fallthrough;
1566 case AB8500_FG_DISCHARGE_INITMEASURING:
1567 /*
1568 * Discard a number of samples during startup.
1569 * After that, use compensated voltage for a few
1570 * samples to get an initial capacity.
1571 * Then go to READOUT
1572 */
1573 sleep_time = di->bm->fg_params->init_timer;
1574
1575 /* Discard the first [x] seconds */
1576 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1577 ab8500_fg_calc_cap_discharge_voltage(di);
1578
1579 ab8500_fg_check_capacity_limits(di, init: true);
1580 }
1581
1582 di->init_cnt += sleep_time;
1583 if (di->init_cnt > di->bm->fg_params->init_total_time)
1584 ab8500_fg_discharge_state_to(di,
1585 new_state: AB8500_FG_DISCHARGE_READOUT_INIT);
1586
1587 break;
1588
1589 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1590 di->recovery_cnt = 0;
1591 di->recovery_needed = true;
1592 ab8500_fg_discharge_state_to(di,
1593 new_state: AB8500_FG_DISCHARGE_RECOVERY);
1594
1595 fallthrough;
1596
1597 case AB8500_FG_DISCHARGE_RECOVERY:
1598 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1599
1600 /*
1601 * We should check the power consumption
1602 * If low, go to READOUT (after x min) or
1603 * RECOVERY_SLEEP if time left.
1604 * If high, go to READOUT
1605 */
1606 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di);
1607
1608 if (ab8500_fg_is_low_curr(di, curr_ua: di->inst_curr_ua)) {
1609 if (di->recovery_cnt >
1610 di->bm->fg_params->recovery_total_time) {
1611 di->fg_samples = SEC_TO_SAMPLE(
1612 di->bm->fg_params->accu_high_curr);
1613 ab8500_fg_coulomb_counter(di, enable: true);
1614 ab8500_fg_discharge_state_to(di,
1615 new_state: AB8500_FG_DISCHARGE_READOUT);
1616 di->recovery_needed = false;
1617 } else {
1618 queue_delayed_work(wq: di->fg_wq,
1619 dwork: &di->fg_periodic_work,
1620 delay: sleep_time * HZ);
1621 }
1622 di->recovery_cnt += sleep_time;
1623 } else {
1624 di->fg_samples = SEC_TO_SAMPLE(
1625 di->bm->fg_params->accu_high_curr);
1626 ab8500_fg_coulomb_counter(di, enable: true);
1627 ab8500_fg_discharge_state_to(di,
1628 new_state: AB8500_FG_DISCHARGE_READOUT);
1629 }
1630 break;
1631
1632 case AB8500_FG_DISCHARGE_READOUT_INIT:
1633 di->fg_samples = SEC_TO_SAMPLE(
1634 di->bm->fg_params->accu_high_curr);
1635 ab8500_fg_coulomb_counter(di, enable: true);
1636 ab8500_fg_discharge_state_to(di,
1637 new_state: AB8500_FG_DISCHARGE_READOUT);
1638 break;
1639
1640 case AB8500_FG_DISCHARGE_READOUT:
1641 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di);
1642
1643 if (ab8500_fg_is_low_curr(di, curr_ua: di->inst_curr_ua)) {
1644 /* Detect mode change */
1645 if (di->high_curr_mode) {
1646 di->high_curr_mode = false;
1647 di->high_curr_cnt = 0;
1648 }
1649
1650 if (di->recovery_needed) {
1651 ab8500_fg_discharge_state_to(di,
1652 new_state: AB8500_FG_DISCHARGE_INIT_RECOVERY);
1653
1654 queue_delayed_work(wq: di->fg_wq,
1655 dwork: &di->fg_periodic_work, delay: 0);
1656
1657 break;
1658 }
1659
1660 ab8500_fg_calc_cap_discharge_voltage(di);
1661 } else {
1662 mutex_lock(&di->cc_lock);
1663 if (!di->flags.conv_done) {
1664 /* Wasn't the CC IRQ that got us here */
1665 mutex_unlock(lock: &di->cc_lock);
1666 dev_dbg(di->dev, "%s CC conv not done\n",
1667 __func__);
1668
1669 break;
1670 }
1671 di->flags.conv_done = false;
1672 mutex_unlock(lock: &di->cc_lock);
1673
1674 /* Detect mode change */
1675 if (!di->high_curr_mode) {
1676 di->high_curr_mode = true;
1677 di->high_curr_cnt = 0;
1678 }
1679
1680 di->high_curr_cnt +=
1681 di->bm->fg_params->accu_high_curr;
1682 if (di->high_curr_cnt >
1683 di->bm->fg_params->high_curr_time)
1684 di->recovery_needed = true;
1685
1686 ab8500_fg_calc_cap_discharge_fg(di);
1687 }
1688
1689 ab8500_fg_check_capacity_limits(di, init: false);
1690
1691 break;
1692
1693 case AB8500_FG_DISCHARGE_WAKEUP:
1694 ab8500_fg_calc_cap_discharge_voltage(di);
1695
1696 di->fg_samples = SEC_TO_SAMPLE(
1697 di->bm->fg_params->accu_high_curr);
1698 ab8500_fg_coulomb_counter(di, enable: true);
1699 ab8500_fg_discharge_state_to(di,
1700 new_state: AB8500_FG_DISCHARGE_READOUT);
1701
1702 ab8500_fg_check_capacity_limits(di, init: false);
1703
1704 break;
1705
1706 default:
1707 break;
1708 }
1709}
1710
1711/**
1712 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1713 * @di: pointer to the ab8500_fg structure
1714 *
1715 */
1716static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1717{
1718 int ret;
1719
1720 switch (di->calib_state) {
1721 case AB8500_FG_CALIB_INIT:
1722 dev_dbg(di->dev, "Calibration ongoing...\n");
1723
1724 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
1725 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1726 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1727 if (ret < 0)
1728 goto err;
1729
1730 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
1731 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1732 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1733 if (ret < 0)
1734 goto err;
1735 di->calib_state = AB8500_FG_CALIB_WAIT;
1736 break;
1737 case AB8500_FG_CALIB_END:
1738 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
1739 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1740 CC_MUXOFFSET, CC_MUXOFFSET);
1741 if (ret < 0)
1742 goto err;
1743 di->flags.calibrate = false;
1744 dev_dbg(di->dev, "Calibration done...\n");
1745 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
1746 break;
1747 case AB8500_FG_CALIB_WAIT:
1748 dev_dbg(di->dev, "Calibration WFI\n");
1749 break;
1750 default:
1751 break;
1752 }
1753 return;
1754err:
1755 /* Something went wrong, don't calibrate then */
1756 dev_err(di->dev, "failed to calibrate the CC\n");
1757 di->flags.calibrate = false;
1758 di->calib_state = AB8500_FG_CALIB_INIT;
1759 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
1760}
1761
1762/**
1763 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1764 * @di: pointer to the ab8500_fg structure
1765 *
1766 * Entry point for the battery capacity calculation state machine
1767 */
1768static void ab8500_fg_algorithm(struct ab8500_fg *di)
1769{
1770 if (di->flags.calibrate)
1771 ab8500_fg_algorithm_calibrate(di);
1772 else {
1773 if (di->flags.charging)
1774 ab8500_fg_algorithm_charging(di);
1775 else
1776 ab8500_fg_algorithm_discharging(di);
1777 }
1778
1779 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1780 "%d %d %d %d %d %d %d\n",
1781 di->bat_cap.max_mah_design,
1782 di->bat_cap.max_mah,
1783 di->bat_cap.mah,
1784 di->bat_cap.permille,
1785 di->bat_cap.level,
1786 di->bat_cap.prev_mah,
1787 di->bat_cap.prev_percent,
1788 di->bat_cap.prev_level,
1789 di->vbat_uv,
1790 di->inst_curr_ua,
1791 di->avg_curr_ua,
1792 di->accu_charge,
1793 di->flags.charging,
1794 di->charge_state,
1795 di->discharge_state,
1796 di->high_curr_mode,
1797 di->recovery_needed);
1798}
1799
1800/**
1801 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1802 * @work: pointer to the work_struct structure
1803 *
1804 * Work queue function for periodic work
1805 */
1806static void ab8500_fg_periodic_work(struct work_struct *work)
1807{
1808 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1809 fg_periodic_work.work);
1810
1811 if (di->init_capacity) {
1812 /* Get an initial capacity calculation */
1813 ab8500_fg_calc_cap_discharge_voltage(di);
1814 ab8500_fg_check_capacity_limits(di, init: true);
1815 di->init_capacity = false;
1816
1817 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
1818 } else if (di->flags.user_cap) {
1819 if (check_sysfs_capacity(di)) {
1820 ab8500_fg_check_capacity_limits(di, init: true);
1821 if (di->flags.charging)
1822 ab8500_fg_charge_state_to(di,
1823 new_state: AB8500_FG_CHARGE_INIT);
1824 else
1825 ab8500_fg_discharge_state_to(di,
1826 new_state: AB8500_FG_DISCHARGE_READOUT_INIT);
1827 }
1828 di->flags.user_cap = false;
1829 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
1830 } else
1831 ab8500_fg_algorithm(di);
1832
1833}
1834
1835/**
1836 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1837 * @work: pointer to the work_struct structure
1838 *
1839 * Work queue function for checking the OVV_BAT condition
1840 */
1841static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1842{
1843 int ret;
1844 u8 reg_value;
1845
1846 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1847 fg_check_hw_failure_work.work);
1848
1849 /*
1850 * If we have had a battery over-voltage situation,
1851 * check ovv-bit to see if it should be reset.
1852 */
1853 ret = abx500_get_register_interruptible(dev: di->dev,
1854 AB8500_CHARGER, AB8500_CH_STAT_REG,
1855 value: &reg_value);
1856 if (ret < 0) {
1857 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1858 return;
1859 }
1860 if ((reg_value & BATT_OVV) == BATT_OVV) {
1861 if (!di->flags.bat_ovv) {
1862 dev_dbg(di->dev, "Battery OVV\n");
1863 di->flags.bat_ovv = true;
1864 power_supply_changed(psy: di->fg_psy);
1865 }
1866 /* Not yet recovered from ovv, reschedule this test */
1867 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_check_hw_failure_work,
1868 HZ);
1869 } else {
1870 dev_dbg(di->dev, "Battery recovered from OVV\n");
1871 di->flags.bat_ovv = false;
1872 power_supply_changed(psy: di->fg_psy);
1873 }
1874}
1875
1876/**
1877 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1878 * @work: pointer to the work_struct structure
1879 *
1880 * Work queue function for checking the LOW_BAT condition
1881 */
1882static void ab8500_fg_low_bat_work(struct work_struct *work)
1883{
1884 int vbat_uv;
1885
1886 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1887 fg_low_bat_work.work);
1888
1889 vbat_uv = ab8500_fg_bat_voltage(di);
1890
1891 /* Check if LOW_BAT still fulfilled */
1892 if (vbat_uv < di->bm->fg_params->lowbat_threshold_uv) {
1893 /* Is it time to shut down? */
1894 if (di->low_bat_cnt < 1) {
1895 di->flags.low_bat = true;
1896 dev_warn(di->dev, "Shut down pending...\n");
1897 } else {
1898 /*
1899 * Else we need to re-schedule this check to be able to detect
1900 * if the voltage increases again during charging or
1901 * due to decreasing load.
1902 */
1903 di->low_bat_cnt--;
1904 dev_warn(di->dev, "Battery voltage still LOW\n");
1905 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_low_bat_work,
1906 delay: round_jiffies(LOW_BAT_CHECK_INTERVAL));
1907 }
1908 } else {
1909 di->flags.low_bat_delay = false;
1910 di->low_bat_cnt = 10;
1911 dev_warn(di->dev, "Battery voltage OK again\n");
1912 }
1913
1914 /* This is needed to dispatch LOW_BAT */
1915 ab8500_fg_check_capacity_limits(di, init: false);
1916}
1917
1918/**
1919 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1920 * to the target voltage.
1921 * @di: pointer to the ab8500_fg structure
1922 * @target: target voltage
1923 *
1924 * Returns bit pattern closest to the target voltage
1925 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1926 */
1927
1928static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1929{
1930 if (target > BATT_OK_MIN +
1931 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1932 return BATT_OK_MAX_NR_INCREMENTS;
1933 if (target < BATT_OK_MIN)
1934 return 0;
1935 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1936}
1937
1938/**
1939 * ab8500_fg_battok_init_hw_register - init battok levels
1940 * @di: pointer to the ab8500_fg structure
1941 *
1942 */
1943
1944static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1945{
1946 int selected;
1947 int sel0;
1948 int sel1;
1949 int cbp_sel0;
1950 int cbp_sel1;
1951 int ret;
1952 int new_val;
1953
1954 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1955 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1956
1957 cbp_sel0 = ab8500_fg_battok_calc(di, target: sel0);
1958 cbp_sel1 = ab8500_fg_battok_calc(di, target: sel1);
1959
1960 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1961
1962 if (selected != sel0)
1963 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1964 sel0, selected, cbp_sel0);
1965
1966 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1967
1968 if (selected != sel1)
1969 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1970 sel1, selected, cbp_sel1);
1971
1972 new_val = cbp_sel0 | (cbp_sel1 << 4);
1973
1974 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1975 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_SYS_CTRL2_BLOCK,
1976 AB8500_BATT_OK_REG, value: new_val);
1977 return ret;
1978}
1979
1980/**
1981 * ab8500_fg_instant_work() - Run the FG state machine instantly
1982 * @work: pointer to the work_struct structure
1983 *
1984 * Work queue function for instant work
1985 */
1986static void ab8500_fg_instant_work(struct work_struct *work)
1987{
1988 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1989
1990 ab8500_fg_algorithm(di);
1991}
1992
1993/**
1994 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1995 * @irq: interrupt number
1996 * @_di: pointer to the ab8500_fg structure
1997 *
1998 * Returns IRQ status(IRQ_HANDLED)
1999 */
2000static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
2001{
2002 struct ab8500_fg *di = _di;
2003 if (!di->nbr_cceoc_irq_cnt) {
2004 di->nbr_cceoc_irq_cnt++;
2005 complete(&di->ab8500_fg_started);
2006 } else {
2007 di->nbr_cceoc_irq_cnt = 0;
2008 complete(&di->ab8500_fg_complete);
2009 }
2010 return IRQ_HANDLED;
2011}
2012
2013/**
2014 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2015 * @irq: interrupt number
2016 * @_di: pointer to the ab8500_fg structure
2017 *
2018 * Returns IRQ status(IRQ_HANDLED)
2019 */
2020static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2021{
2022 struct ab8500_fg *di = _di;
2023 di->calib_state = AB8500_FG_CALIB_END;
2024 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
2025 return IRQ_HANDLED;
2026}
2027
2028/**
2029 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2030 * @irq: interrupt number
2031 * @_di: pointer to the ab8500_fg structure
2032 *
2033 * Returns IRQ status(IRQ_HANDLED)
2034 */
2035static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2036{
2037 struct ab8500_fg *di = _di;
2038
2039 queue_work(wq: di->fg_wq, work: &di->fg_acc_cur_work);
2040
2041 return IRQ_HANDLED;
2042}
2043
2044/**
2045 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2046 * @irq: interrupt number
2047 * @_di: pointer to the ab8500_fg structure
2048 *
2049 * Returns IRQ status(IRQ_HANDLED)
2050 */
2051static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2052{
2053 struct ab8500_fg *di = _di;
2054
2055 dev_dbg(di->dev, "Battery OVV\n");
2056
2057 /* Schedule a new HW failure check */
2058 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_check_hw_failure_work, delay: 0);
2059
2060 return IRQ_HANDLED;
2061}
2062
2063/**
2064 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2065 * @irq: interrupt number
2066 * @_di: pointer to the ab8500_fg structure
2067 *
2068 * Returns IRQ status(IRQ_HANDLED)
2069 */
2070static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2071{
2072 struct ab8500_fg *di = _di;
2073
2074 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2075 if (!di->flags.low_bat_delay) {
2076 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2077 di->flags.low_bat_delay = true;
2078 /*
2079 * Start a timer to check LOW_BAT again after some time
2080 * This is done to avoid shutdown on single voltage dips
2081 */
2082 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_low_bat_work,
2083 delay: round_jiffies(LOW_BAT_CHECK_INTERVAL));
2084 }
2085 return IRQ_HANDLED;
2086}
2087
2088/**
2089 * ab8500_fg_get_property() - get the fg properties
2090 * @psy: pointer to the power_supply structure
2091 * @psp: pointer to the power_supply_property structure
2092 * @val: pointer to the power_supply_propval union
2093 *
2094 * This function gets called when an application tries to get the
2095 * fg properties by reading the sysfs files.
2096 * voltage_now: battery voltage
2097 * current_now: battery instant current
2098 * current_avg: battery average current
2099 * charge_full_design: capacity where battery is considered full
2100 * charge_now: battery capacity in nAh
2101 * capacity: capacity in percent
2102 * capacity_level: capacity level
2103 *
2104 * Returns error code in case of failure else 0 on success
2105 */
2106static int ab8500_fg_get_property(struct power_supply *psy,
2107 enum power_supply_property psp,
2108 union power_supply_propval *val)
2109{
2110 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2111
2112 /*
2113 * If battery is identified as unknown and charging of unknown
2114 * batteries is disabled, we always report 100% capacity and
2115 * capacity level UNKNOWN, since we can't calculate
2116 * remaining capacity
2117 */
2118
2119 switch (psp) {
2120 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2121 if (di->flags.bat_ovv)
2122 val->intval = BATT_OVV_VALUE;
2123 else
2124 val->intval = di->vbat_uv;
2125 break;
2126 case POWER_SUPPLY_PROP_CURRENT_NOW:
2127 val->intval = di->inst_curr_ua;
2128 break;
2129 case POWER_SUPPLY_PROP_CURRENT_AVG:
2130 val->intval = di->avg_curr_ua;
2131 break;
2132 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2133 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2134 cap_mah: di->bat_cap.max_mah_design);
2135 break;
2136 case POWER_SUPPLY_PROP_ENERGY_FULL:
2137 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2138 cap_mah: di->bat_cap.max_mah);
2139 break;
2140 case POWER_SUPPLY_PROP_ENERGY_NOW:
2141 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2142 di->flags.batt_id_received)
2143 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2144 cap_mah: di->bat_cap.max_mah);
2145 else
2146 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2147 cap_mah: di->bat_cap.prev_mah);
2148 break;
2149 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2150 val->intval = di->bat_cap.max_mah_design;
2151 break;
2152 case POWER_SUPPLY_PROP_CHARGE_FULL:
2153 val->intval = di->bat_cap.max_mah;
2154 break;
2155 case POWER_SUPPLY_PROP_CHARGE_NOW:
2156 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157 di->flags.batt_id_received)
2158 val->intval = di->bat_cap.max_mah;
2159 else
2160 val->intval = di->bat_cap.prev_mah;
2161 break;
2162 case POWER_SUPPLY_PROP_CAPACITY:
2163 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2164 di->flags.batt_id_received)
2165 val->intval = 100;
2166 else
2167 val->intval = di->bat_cap.prev_percent;
2168 break;
2169 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2170 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2171 di->flags.batt_id_received)
2172 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2173 else
2174 val->intval = di->bat_cap.prev_level;
2175 break;
2176 default:
2177 return -EINVAL;
2178 }
2179 return 0;
2180}
2181
2182static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2183{
2184 struct power_supply *psy;
2185 struct power_supply *ext = dev_get_drvdata(dev);
2186 const char **supplicants = (const char **)ext->supplied_to;
2187 struct ab8500_fg *di;
2188 struct power_supply_battery_info *bi;
2189 union power_supply_propval ret;
2190 int j;
2191
2192 psy = (struct power_supply *)data;
2193 di = power_supply_get_drvdata(psy);
2194 bi = di->bm->bi;
2195
2196 /*
2197 * For all psy where the name of your driver
2198 * appears in any supplied_to
2199 */
2200 j = match_string(array: supplicants, n: ext->num_supplicants, string: psy->desc->name);
2201 if (j < 0)
2202 return 0;
2203
2204 /* Go through all properties for the psy */
2205 for (j = 0; j < ext->desc->num_properties; j++) {
2206 enum power_supply_property prop;
2207 prop = ext->desc->properties[j];
2208
2209 if (power_supply_get_property(psy: ext, psp: prop, val: &ret))
2210 continue;
2211
2212 switch (prop) {
2213 case POWER_SUPPLY_PROP_STATUS:
2214 switch (ext->desc->type) {
2215 case POWER_SUPPLY_TYPE_BATTERY:
2216 switch (ret.intval) {
2217 case POWER_SUPPLY_STATUS_UNKNOWN:
2218 case POWER_SUPPLY_STATUS_DISCHARGING:
2219 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2220 if (!di->flags.charging)
2221 break;
2222 di->flags.charging = false;
2223 di->flags.fully_charged = false;
2224 if (di->bm->capacity_scaling)
2225 ab8500_fg_update_cap_scalers(di);
2226 queue_work(wq: di->fg_wq, work: &di->fg_work);
2227 break;
2228 case POWER_SUPPLY_STATUS_FULL:
2229 if (di->flags.fully_charged)
2230 break;
2231 di->flags.fully_charged = true;
2232 di->flags.force_full = true;
2233 /* Save current capacity as maximum */
2234 di->bat_cap.max_mah = di->bat_cap.mah;
2235 queue_work(wq: di->fg_wq, work: &di->fg_work);
2236 break;
2237 case POWER_SUPPLY_STATUS_CHARGING:
2238 if (di->flags.charging &&
2239 !di->flags.fully_charged)
2240 break;
2241 di->flags.charging = true;
2242 di->flags.fully_charged = false;
2243 if (di->bm->capacity_scaling)
2244 ab8500_fg_update_cap_scalers(di);
2245 queue_work(wq: di->fg_wq, work: &di->fg_work);
2246 break;
2247 }
2248 break;
2249 default:
2250 break;
2251 }
2252 break;
2253 case POWER_SUPPLY_PROP_TECHNOLOGY:
2254 switch (ext->desc->type) {
2255 case POWER_SUPPLY_TYPE_BATTERY:
2256 if (!di->flags.batt_id_received &&
2257 (bi && (bi->technology !=
2258 POWER_SUPPLY_TECHNOLOGY_UNKNOWN))) {
2259 di->flags.batt_id_received = true;
2260
2261 di->bat_cap.max_mah_design =
2262 di->bm->bi->charge_full_design_uah;
2263
2264 di->bat_cap.max_mah =
2265 di->bat_cap.max_mah_design;
2266
2267 di->vbat_nom_uv =
2268 di->bm->bi->voltage_max_design_uv;
2269 }
2270
2271 if (ret.intval)
2272 di->flags.batt_unknown = false;
2273 else
2274 di->flags.batt_unknown = true;
2275 break;
2276 default:
2277 break;
2278 }
2279 break;
2280 case POWER_SUPPLY_PROP_TEMP:
2281 switch (ext->desc->type) {
2282 case POWER_SUPPLY_TYPE_BATTERY:
2283 if (di->flags.batt_id_received)
2284 di->bat_temp = ret.intval;
2285 break;
2286 default:
2287 break;
2288 }
2289 break;
2290 default:
2291 break;
2292 }
2293 }
2294 return 0;
2295}
2296
2297/**
2298 * ab8500_fg_init_hw_registers() - Set up FG related registers
2299 * @di: pointer to the ab8500_fg structure
2300 *
2301 * Set up battery OVV, low battery voltage registers
2302 */
2303static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2304{
2305 int ret;
2306
2307 /*
2308 * Set VBAT OVV (overvoltage) threshold to 4.75V (typ) this is what
2309 * the hardware supports, nothing else can be configured in hardware.
2310 * See this as an "outer limit" where the charger will certainly
2311 * shut down. Other (lower) overvoltage levels need to be implemented
2312 * in software.
2313 */
2314 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
2315 AB8500_CHARGER,
2316 AB8500_BATT_OVV,
2317 BATT_OVV_TH_4P75,
2318 BATT_OVV_TH_4P75);
2319 if (ret) {
2320 dev_err(di->dev, "failed to set BATT_OVV\n");
2321 goto out;
2322 }
2323
2324 /* Enable VBAT OVV detection */
2325 ret = abx500_mask_and_set_register_interruptible(dev: di->dev,
2326 AB8500_CHARGER,
2327 AB8500_BATT_OVV,
2328 BATT_OVV_ENA,
2329 BATT_OVV_ENA);
2330 if (ret) {
2331 dev_err(di->dev, "failed to enable BATT_OVV\n");
2332 goto out;
2333 }
2334
2335 /* Low Battery Voltage */
2336 ret = abx500_set_register_interruptible(dev: di->dev,
2337 AB8500_SYS_CTRL2_BLOCK,
2338 AB8500_LOW_BAT_REG,
2339 value: ab8500_volt_to_regval(
2340 voltage_uv: di->bm->fg_params->lowbat_threshold_uv) << 1 |
2341 LOW_BAT_ENABLE);
2342 if (ret) {
2343 dev_err(di->dev, "%s write failed\n", __func__);
2344 goto out;
2345 }
2346
2347 /* Battery OK threshold */
2348 ret = ab8500_fg_battok_init_hw_register(di);
2349 if (ret) {
2350 dev_err(di->dev, "BattOk init write failed.\n");
2351 goto out;
2352 }
2353
2354 if (is_ab8505(ab: di->parent)) {
2355 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2356 AB8505_RTC_PCUT_MAX_TIME_REG, value: di->bm->fg_params->pcut_max_time);
2357
2358 if (ret) {
2359 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2360 goto out;
2361 }
2362
2363 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2364 AB8505_RTC_PCUT_FLAG_TIME_REG, value: di->bm->fg_params->pcut_flag_time);
2365
2366 if (ret) {
2367 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2368 goto out;
2369 }
2370
2371 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2372 AB8505_RTC_PCUT_RESTART_REG, value: di->bm->fg_params->pcut_max_restart);
2373
2374 if (ret) {
2375 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2376 goto out;
2377 }
2378
2379 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2380 AB8505_RTC_PCUT_DEBOUNCE_REG, value: di->bm->fg_params->pcut_debounce_time);
2381
2382 if (ret) {
2383 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2384 goto out;
2385 }
2386
2387 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2388 AB8505_RTC_PCUT_CTL_STATUS_REG, value: di->bm->fg_params->pcut_enable);
2389
2390 if (ret) {
2391 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2392 goto out;
2393 }
2394 }
2395out:
2396 return ret;
2397}
2398
2399/**
2400 * ab8500_fg_external_power_changed() - callback for power supply changes
2401 * @psy: pointer to the structure power_supply
2402 *
2403 * This function is the entry point of the pointer external_power_changed
2404 * of the structure power_supply.
2405 * This function gets executed when there is a change in any external power
2406 * supply that this driver needs to be notified of.
2407 */
2408static void ab8500_fg_external_power_changed(struct power_supply *psy)
2409{
2410 class_for_each_device(class: power_supply_class, NULL, data: psy,
2411 fn: ab8500_fg_get_ext_psy_data);
2412}
2413
2414/**
2415 * ab8500_fg_reinit_work() - work to reset the FG algorithm
2416 * @work: pointer to the work_struct structure
2417 *
2418 * Used to reset the current battery capacity to be able to
2419 * retrigger a new voltage base capacity calculation. For
2420 * test and verification purpose.
2421 */
2422static void ab8500_fg_reinit_work(struct work_struct *work)
2423{
2424 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2425 fg_reinit_work.work);
2426
2427 if (!di->flags.calibrate) {
2428 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2429 ab8500_fg_clear_cap_samples(di);
2430 ab8500_fg_calc_cap_discharge_voltage(di);
2431 ab8500_fg_charge_state_to(di, new_state: AB8500_FG_CHARGE_INIT);
2432 ab8500_fg_discharge_state_to(di, new_state: AB8500_FG_DISCHARGE_INIT);
2433 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
2434
2435 } else {
2436 dev_err(di->dev, "Residual offset calibration ongoing "
2437 "retrying..\n");
2438 /* Wait one second until next try*/
2439 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_reinit_work,
2440 delay: round_jiffies(j: 1));
2441 }
2442}
2443
2444/* Exposure to the sysfs interface */
2445
2446struct ab8500_fg_sysfs_entry {
2447 struct attribute attr;
2448 ssize_t (*show)(struct ab8500_fg *, char *);
2449 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2450};
2451
2452static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2453{
2454 return sysfs_emit(buf, fmt: "%d\n", di->bat_cap.max_mah);
2455}
2456
2457static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2458 size_t count)
2459{
2460 unsigned long charge_full;
2461 int ret;
2462
2463 ret = kstrtoul(s: buf, base: 10, res: &charge_full);
2464 if (ret)
2465 return ret;
2466
2467 di->bat_cap.max_mah = (int) charge_full;
2468 return count;
2469}
2470
2471static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2472{
2473 return sysfs_emit(buf, fmt: "%d\n", di->bat_cap.prev_mah);
2474}
2475
2476static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2477 size_t count)
2478{
2479 unsigned long charge_now;
2480 int ret;
2481
2482 ret = kstrtoul(s: buf, base: 10, res: &charge_now);
2483 if (ret)
2484 return ret;
2485
2486 di->bat_cap.user_mah = (int) charge_now;
2487 di->flags.user_cap = true;
2488 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
2489 return count;
2490}
2491
2492static struct ab8500_fg_sysfs_entry charge_full_attr =
2493 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2494
2495static struct ab8500_fg_sysfs_entry charge_now_attr =
2496 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2497
2498static ssize_t
2499ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2500{
2501 struct ab8500_fg_sysfs_entry *entry;
2502 struct ab8500_fg *di;
2503
2504 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2505 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2506
2507 if (!entry->show)
2508 return -EIO;
2509
2510 return entry->show(di, buf);
2511}
2512static ssize_t
2513ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2514 size_t count)
2515{
2516 struct ab8500_fg_sysfs_entry *entry;
2517 struct ab8500_fg *di;
2518
2519 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2520 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2521
2522 if (!entry->store)
2523 return -EIO;
2524
2525 return entry->store(di, buf, count);
2526}
2527
2528static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2529 .show = ab8500_fg_show,
2530 .store = ab8500_fg_store,
2531};
2532
2533static struct attribute *ab8500_fg_attrs[] = {
2534 &charge_full_attr.attr,
2535 &charge_now_attr.attr,
2536 NULL,
2537};
2538ATTRIBUTE_GROUPS(ab8500_fg);
2539
2540static struct kobj_type ab8500_fg_ktype = {
2541 .sysfs_ops = &ab8500_fg_sysfs_ops,
2542 .default_groups = ab8500_fg_groups,
2543};
2544
2545/**
2546 * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2547 * @di: pointer to the struct ab8500_chargalg
2548 *
2549 * This function removes the entry in sysfs.
2550 */
2551static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2552{
2553 kobject_del(kobj: &di->fg_kobject);
2554}
2555
2556/**
2557 * ab8500_fg_sysfs_init() - init of sysfs entry
2558 * @di: pointer to the struct ab8500_chargalg
2559 *
2560 * This function adds an entry in sysfs.
2561 * Returns error code in case of failure else 0(on success)
2562 */
2563static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2564{
2565 int ret = 0;
2566
2567 ret = kobject_init_and_add(kobj: &di->fg_kobject,
2568 ktype: &ab8500_fg_ktype,
2569 NULL, fmt: "battery");
2570 if (ret < 0) {
2571 kobject_put(kobj: &di->fg_kobject);
2572 dev_err(di->dev, "failed to create sysfs entry\n");
2573 }
2574
2575 return ret;
2576}
2577
2578static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2579 struct device_attribute *attr,
2580 char *buf)
2581{
2582 int ret;
2583 u8 reg_value;
2584 struct power_supply *psy = dev_get_drvdata(dev);
2585 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2586
2587 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2588 AB8505_RTC_PCUT_FLAG_TIME_REG, value: &reg_value);
2589
2590 if (ret < 0) {
2591 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2592 goto fail;
2593 }
2594
2595 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0x7F));
2596
2597fail:
2598 return ret;
2599}
2600
2601static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2602 struct device_attribute *attr,
2603 const char *buf, size_t count)
2604{
2605 int ret;
2606 int reg_value;
2607 struct power_supply *psy = dev_get_drvdata(dev);
2608 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2609
2610 if (kstrtoint(s: buf, base: 10, res: &reg_value))
2611 goto fail;
2612
2613 if (reg_value > 0x7F) {
2614 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2615 goto fail;
2616 }
2617
2618 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2619 AB8505_RTC_PCUT_FLAG_TIME_REG, value: (u8)reg_value);
2620
2621 if (ret < 0)
2622 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2623
2624fail:
2625 return count;
2626}
2627
2628static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2629 struct device_attribute *attr,
2630 char *buf)
2631{
2632 int ret;
2633 u8 reg_value;
2634 struct power_supply *psy = dev_get_drvdata(dev);
2635 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2636
2637 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2638 AB8505_RTC_PCUT_MAX_TIME_REG, value: &reg_value);
2639
2640 if (ret < 0) {
2641 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2642 goto fail;
2643 }
2644
2645 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0x7F));
2646
2647fail:
2648 return ret;
2649
2650}
2651
2652static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2653 struct device_attribute *attr,
2654 const char *buf, size_t count)
2655{
2656 int ret;
2657 int reg_value;
2658 struct power_supply *psy = dev_get_drvdata(dev);
2659 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2660
2661 if (kstrtoint(s: buf, base: 10, res: &reg_value))
2662 goto fail;
2663
2664 if (reg_value > 0x7F) {
2665 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2666 goto fail;
2667 }
2668
2669 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2670 AB8505_RTC_PCUT_MAX_TIME_REG, value: (u8)reg_value);
2671
2672 if (ret < 0)
2673 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2674
2675fail:
2676 return count;
2677}
2678
2679static ssize_t ab8505_powercut_restart_read(struct device *dev,
2680 struct device_attribute *attr,
2681 char *buf)
2682{
2683 int ret;
2684 u8 reg_value;
2685 struct power_supply *psy = dev_get_drvdata(dev);
2686 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2687
2688 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2689 AB8505_RTC_PCUT_RESTART_REG, value: &reg_value);
2690
2691 if (ret < 0) {
2692 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2693 goto fail;
2694 }
2695
2696 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0xF));
2697
2698fail:
2699 return ret;
2700}
2701
2702static ssize_t ab8505_powercut_restart_write(struct device *dev,
2703 struct device_attribute *attr,
2704 const char *buf, size_t count)
2705{
2706 int ret;
2707 int reg_value;
2708 struct power_supply *psy = dev_get_drvdata(dev);
2709 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2710
2711 if (kstrtoint(s: buf, base: 10, res: &reg_value))
2712 goto fail;
2713
2714 if (reg_value > 0xF) {
2715 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2716 goto fail;
2717 }
2718
2719 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2720 AB8505_RTC_PCUT_RESTART_REG, value: (u8)reg_value);
2721
2722 if (ret < 0)
2723 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2724
2725fail:
2726 return count;
2727
2728}
2729
2730static ssize_t ab8505_powercut_timer_read(struct device *dev,
2731 struct device_attribute *attr,
2732 char *buf)
2733{
2734 int ret;
2735 u8 reg_value;
2736 struct power_supply *psy = dev_get_drvdata(dev);
2737 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2738
2739 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2740 AB8505_RTC_PCUT_TIME_REG, value: &reg_value);
2741
2742 if (ret < 0) {
2743 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2744 goto fail;
2745 }
2746
2747 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0x7F));
2748
2749fail:
2750 return ret;
2751}
2752
2753static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2754 struct device_attribute *attr,
2755 char *buf)
2756{
2757 int ret;
2758 u8 reg_value;
2759 struct power_supply *psy = dev_get_drvdata(dev);
2760 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2761
2762 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2763 AB8505_RTC_PCUT_RESTART_REG, value: &reg_value);
2764
2765 if (ret < 0) {
2766 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2767 goto fail;
2768 }
2769
2770 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0xF0) >> 4);
2771
2772fail:
2773 return ret;
2774}
2775
2776static ssize_t ab8505_powercut_read(struct device *dev,
2777 struct device_attribute *attr,
2778 char *buf)
2779{
2780 int ret;
2781 u8 reg_value;
2782 struct power_supply *psy = dev_get_drvdata(dev);
2783 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2784
2785 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2786 AB8505_RTC_PCUT_CTL_STATUS_REG, value: &reg_value);
2787
2788 if (ret < 0)
2789 goto fail;
2790
2791 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0x1));
2792
2793fail:
2794 return ret;
2795}
2796
2797static ssize_t ab8505_powercut_write(struct device *dev,
2798 struct device_attribute *attr,
2799 const char *buf, size_t count)
2800{
2801 int ret;
2802 int reg_value;
2803 struct power_supply *psy = dev_get_drvdata(dev);
2804 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2805
2806 if (kstrtoint(s: buf, base: 10, res: &reg_value))
2807 goto fail;
2808
2809 if (reg_value > 0x1) {
2810 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2811 goto fail;
2812 }
2813
2814 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2815 AB8505_RTC_PCUT_CTL_STATUS_REG, value: (u8)reg_value);
2816
2817 if (ret < 0)
2818 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2819
2820fail:
2821 return count;
2822}
2823
2824static ssize_t ab8505_powercut_flag_read(struct device *dev,
2825 struct device_attribute *attr,
2826 char *buf)
2827{
2828
2829 int ret;
2830 u8 reg_value;
2831 struct power_supply *psy = dev_get_drvdata(dev);
2832 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2833
2834 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2835 AB8505_RTC_PCUT_CTL_STATUS_REG, value: &reg_value);
2836
2837 if (ret < 0) {
2838 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2839 goto fail;
2840 }
2841
2842 return sysfs_emit(buf, fmt: "%d\n", ((reg_value & 0x10) >> 4));
2843
2844fail:
2845 return ret;
2846}
2847
2848static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2849 struct device_attribute *attr,
2850 char *buf)
2851{
2852 int ret;
2853 u8 reg_value;
2854 struct power_supply *psy = dev_get_drvdata(dev);
2855 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2856
2857 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2858 AB8505_RTC_PCUT_DEBOUNCE_REG, value: &reg_value);
2859
2860 if (ret < 0) {
2861 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2862 goto fail;
2863 }
2864
2865 return sysfs_emit(buf, fmt: "%d\n", (reg_value & 0x7));
2866
2867fail:
2868 return ret;
2869}
2870
2871static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2872 struct device_attribute *attr,
2873 const char *buf, size_t count)
2874{
2875 int ret;
2876 int reg_value;
2877 struct power_supply *psy = dev_get_drvdata(dev);
2878 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2879
2880 if (kstrtoint(s: buf, base: 10, res: &reg_value))
2881 goto fail;
2882
2883 if (reg_value > 0x7) {
2884 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2885 goto fail;
2886 }
2887
2888 ret = abx500_set_register_interruptible(dev: di->dev, AB8500_RTC,
2889 AB8505_RTC_PCUT_DEBOUNCE_REG, value: (u8)reg_value);
2890
2891 if (ret < 0)
2892 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2893
2894fail:
2895 return count;
2896}
2897
2898static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2899 struct device_attribute *attr,
2900 char *buf)
2901{
2902 int ret;
2903 u8 reg_value;
2904 struct power_supply *psy = dev_get_drvdata(dev);
2905 struct ab8500_fg *di = power_supply_get_drvdata(psy);
2906
2907 ret = abx500_get_register_interruptible(dev: di->dev, AB8500_RTC,
2908 AB8505_RTC_PCUT_CTL_STATUS_REG, value: &reg_value);
2909
2910 if (ret < 0) {
2911 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2912 goto fail;
2913 }
2914
2915 return sysfs_emit(buf, fmt: "%d\n", ((reg_value & 0x20) >> 5));
2916
2917fail:
2918 return ret;
2919}
2920
2921static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2922 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2923 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2924 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2925 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2926 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2927 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2928 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2929 __ATTR(powercut_restart_counter, S_IRUGO,
2930 ab8505_powercut_restart_counter_read, NULL),
2931 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2932 ab8505_powercut_read, ab8505_powercut_write),
2933 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2934 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2935 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2936 __ATTR(powercut_enable_status, S_IRUGO,
2937 ab8505_powercut_enable_status_read, NULL),
2938};
2939
2940static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2941{
2942 unsigned int i;
2943
2944 if (is_ab8505(ab: di->parent)) {
2945 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2946 if (device_create_file(device: &di->fg_psy->dev,
2947 entry: &ab8505_fg_sysfs_psy_attrs[i]))
2948 goto sysfs_psy_create_attrs_failed_ab8505;
2949 }
2950 return 0;
2951sysfs_psy_create_attrs_failed_ab8505:
2952 dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2953 while (i--)
2954 device_remove_file(dev: &di->fg_psy->dev,
2955 attr: &ab8505_fg_sysfs_psy_attrs[i]);
2956
2957 return -EIO;
2958}
2959
2960static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2961{
2962 unsigned int i;
2963
2964 if (is_ab8505(ab: di->parent)) {
2965 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2966 (void)device_remove_file(dev: &di->fg_psy->dev,
2967 attr: &ab8505_fg_sysfs_psy_attrs[i]);
2968 }
2969}
2970
2971/* Exposure to the sysfs interface <<END>> */
2972
2973static int __maybe_unused ab8500_fg_resume(struct device *dev)
2974{
2975 struct ab8500_fg *di = dev_get_drvdata(dev);
2976
2977 /*
2978 * Change state if we're not charging. If we're charging we will wake
2979 * up on the FG IRQ
2980 */
2981 if (!di->flags.charging) {
2982 ab8500_fg_discharge_state_to(di, new_state: AB8500_FG_DISCHARGE_WAKEUP);
2983 queue_work(wq: di->fg_wq, work: &di->fg_work);
2984 }
2985
2986 return 0;
2987}
2988
2989static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2990{
2991 struct ab8500_fg *di = dev_get_drvdata(dev);
2992
2993 flush_delayed_work(dwork: &di->fg_periodic_work);
2994 flush_work(work: &di->fg_work);
2995 flush_work(work: &di->fg_acc_cur_work);
2996 flush_delayed_work(dwork: &di->fg_reinit_work);
2997 flush_delayed_work(dwork: &di->fg_low_bat_work);
2998 flush_delayed_work(dwork: &di->fg_check_hw_failure_work);
2999
3000 /*
3001 * If the FG is enabled we will disable it before going to suspend
3002 * only if we're not charging
3003 */
3004 if (di->flags.fg_enabled && !di->flags.charging)
3005 ab8500_fg_coulomb_counter(di, enable: false);
3006
3007 return 0;
3008}
3009
3010/* ab8500 fg driver interrupts and their respective isr */
3011static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3012 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3013 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3014 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3015 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3016 {"CCEOC", ab8500_fg_cc_data_end_handler},
3017};
3018
3019static char *supply_interface[] = {
3020 "ab8500_chargalg",
3021 "ab8500_usb",
3022};
3023
3024static const struct power_supply_desc ab8500_fg_desc = {
3025 .name = "ab8500_fg",
3026 .type = POWER_SUPPLY_TYPE_BATTERY,
3027 .properties = ab8500_fg_props,
3028 .num_properties = ARRAY_SIZE(ab8500_fg_props),
3029 .get_property = ab8500_fg_get_property,
3030 .external_power_changed = ab8500_fg_external_power_changed,
3031};
3032
3033static int ab8500_fg_bind(struct device *dev, struct device *master,
3034 void *data)
3035{
3036 struct ab8500_fg *di = dev_get_drvdata(dev);
3037
3038 di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah;
3039 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3040 di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv;
3041
3042 /* Start the coulomb counter */
3043 ab8500_fg_coulomb_counter(di, enable: true);
3044 /* Run the FG algorithm */
3045 queue_delayed_work(wq: di->fg_wq, dwork: &di->fg_periodic_work, delay: 0);
3046
3047 return 0;
3048}
3049
3050static void ab8500_fg_unbind(struct device *dev, struct device *master,
3051 void *data)
3052{
3053 struct ab8500_fg *di = dev_get_drvdata(dev);
3054 int ret;
3055
3056 /* Disable coulomb counter */
3057 ret = ab8500_fg_coulomb_counter(di, enable: false);
3058 if (ret)
3059 dev_err(dev, "failed to disable coulomb counter\n");
3060
3061 flush_workqueue(di->fg_wq);
3062}
3063
3064static const struct component_ops ab8500_fg_component_ops = {
3065 .bind = ab8500_fg_bind,
3066 .unbind = ab8500_fg_unbind,
3067};
3068
3069static int ab8500_fg_probe(struct platform_device *pdev)
3070{
3071 struct device *dev = &pdev->dev;
3072 struct power_supply_config psy_cfg = {};
3073 struct ab8500_fg *di;
3074 int i, irq;
3075 int ret = 0;
3076
3077 di = devm_kzalloc(dev, size: sizeof(*di), GFP_KERNEL);
3078 if (!di)
3079 return -ENOMEM;
3080
3081 di->bm = &ab8500_bm_data;
3082
3083 mutex_init(&di->cc_lock);
3084
3085 /* get parent data */
3086 di->dev = dev;
3087 di->parent = dev_get_drvdata(dev: pdev->dev.parent);
3088
3089 di->main_bat_v = devm_iio_channel_get(dev, consumer_channel: "main_bat_v");
3090 if (IS_ERR(ptr: di->main_bat_v)) {
3091 ret = dev_err_probe(dev, err: PTR_ERR(ptr: di->main_bat_v),
3092 fmt: "failed to get main battery ADC channel\n");
3093 return ret;
3094 }
3095
3096 if (!of_property_read_u32(np: dev->of_node, propname: "line-impedance-micro-ohms",
3097 out_value: &di->line_impedance_uohm))
3098 dev_info(dev, "line impedance: %u uOhm\n",
3099 di->line_impedance_uohm);
3100
3101 psy_cfg.supplied_to = supply_interface;
3102 psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3103 psy_cfg.drv_data = di;
3104
3105 di->init_capacity = true;
3106
3107 ab8500_fg_charge_state_to(di, new_state: AB8500_FG_CHARGE_INIT);
3108 ab8500_fg_discharge_state_to(di, new_state: AB8500_FG_DISCHARGE_INIT);
3109
3110 /* Create a work queue for running the FG algorithm */
3111 di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3112 if (di->fg_wq == NULL) {
3113 dev_err(dev, "failed to create work queue\n");
3114 return -ENOMEM;
3115 }
3116
3117 /* Init work for running the fg algorithm instantly */
3118 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3119
3120 /* Init work for getting the battery accumulated current */
3121 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3122
3123 /* Init work for reinitialising the fg algorithm */
3124 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3125 ab8500_fg_reinit_work);
3126
3127 /* Work delayed Queue to run the state machine */
3128 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3129 ab8500_fg_periodic_work);
3130
3131 /* Work to check low battery condition */
3132 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3133 ab8500_fg_low_bat_work);
3134
3135 /* Init work for HW failure check */
3136 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3137 ab8500_fg_check_hw_failure_work);
3138
3139 /* Reset battery low voltage flag */
3140 di->flags.low_bat = false;
3141
3142 /* Initialize low battery counter */
3143 di->low_bat_cnt = 10;
3144
3145 /* Initialize OVV, and other registers */
3146 ret = ab8500_fg_init_hw_registers(di);
3147 if (ret) {
3148 dev_err(dev, "failed to initialize registers\n");
3149 destroy_workqueue(wq: di->fg_wq);
3150 return ret;
3151 }
3152
3153 /* Consider battery unknown until we're informed otherwise */
3154 di->flags.batt_unknown = true;
3155 di->flags.batt_id_received = false;
3156
3157 /* Register FG power supply class */
3158 di->fg_psy = devm_power_supply_register(parent: dev, desc: &ab8500_fg_desc, cfg: &psy_cfg);
3159 if (IS_ERR(ptr: di->fg_psy)) {
3160 dev_err(dev, "failed to register FG psy\n");
3161 destroy_workqueue(wq: di->fg_wq);
3162 return PTR_ERR(ptr: di->fg_psy);
3163 }
3164
3165 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3166
3167 /*
3168 * Initialize completion used to notify completion and start
3169 * of inst current
3170 */
3171 init_completion(x: &di->ab8500_fg_started);
3172 init_completion(x: &di->ab8500_fg_complete);
3173
3174 /* Register primary interrupt handlers */
3175 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3176 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3177 if (irq < 0) {
3178 destroy_workqueue(wq: di->fg_wq);
3179 return irq;
3180 }
3181
3182 ret = devm_request_threaded_irq(dev, irq, NULL,
3183 thread_fn: ab8500_fg_irq[i].isr,
3184 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3185 devname: ab8500_fg_irq[i].name, dev_id: di);
3186
3187 if (ret != 0) {
3188 dev_err(dev, "failed to request %s IRQ %d: %d\n",
3189 ab8500_fg_irq[i].name, irq, ret);
3190 destroy_workqueue(wq: di->fg_wq);
3191 return ret;
3192 }
3193 dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3194 ab8500_fg_irq[i].name, irq, ret);
3195 }
3196
3197 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3198 disable_irq(irq: di->irq);
3199 di->nbr_cceoc_irq_cnt = 0;
3200
3201 platform_set_drvdata(pdev, data: di);
3202
3203 ret = ab8500_fg_sysfs_init(di);
3204 if (ret) {
3205 dev_err(dev, "failed to create sysfs entry\n");
3206 destroy_workqueue(wq: di->fg_wq);
3207 return ret;
3208 }
3209
3210 ret = ab8500_fg_sysfs_psy_create_attrs(di);
3211 if (ret) {
3212 dev_err(dev, "failed to create FG psy\n");
3213 ab8500_fg_sysfs_exit(di);
3214 destroy_workqueue(wq: di->fg_wq);
3215 return ret;
3216 }
3217
3218 /* Calibrate the fg first time */
3219 di->flags.calibrate = true;
3220 di->calib_state = AB8500_FG_CALIB_INIT;
3221
3222 /* Use room temp as default value until we get an update from driver. */
3223 di->bat_temp = 210;
3224
3225 list_add_tail(new: &di->node, head: &ab8500_fg_list);
3226
3227 return component_add(dev, &ab8500_fg_component_ops);
3228}
3229
3230static void ab8500_fg_remove(struct platform_device *pdev)
3231{
3232 struct ab8500_fg *di = platform_get_drvdata(pdev);
3233
3234 destroy_workqueue(wq: di->fg_wq);
3235 component_del(&pdev->dev, &ab8500_fg_component_ops);
3236 list_del(entry: &di->node);
3237 ab8500_fg_sysfs_exit(di);
3238 ab8500_fg_sysfs_psy_remove_attrs(di);
3239}
3240
3241static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3242
3243static const struct of_device_id ab8500_fg_match[] = {
3244 { .compatible = "stericsson,ab8500-fg", },
3245 { },
3246};
3247MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3248
3249struct platform_driver ab8500_fg_driver = {
3250 .probe = ab8500_fg_probe,
3251 .remove_new = ab8500_fg_remove,
3252 .driver = {
3253 .name = "ab8500-fg",
3254 .of_match_table = ab8500_fg_match,
3255 .pm = &ab8500_fg_pm_ops,
3256 },
3257};
3258MODULE_LICENSE("GPL v2");
3259MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3260MODULE_ALIAS("platform:ab8500-fg");
3261MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3262

source code of linux/drivers/power/supply/ab8500_fg.c