1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DA9150 Fuel-Gauge Driver
4 *
5 * Copyright (c) 2015 Dialog Semiconductor
6 *
7 * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/platform_device.h>
13#include <linux/of.h>
14#include <linux/slab.h>
15#include <linux/interrupt.h>
16#include <linux/delay.h>
17#include <linux/power_supply.h>
18#include <linux/list.h>
19#include <asm/div64.h>
20#include <linux/mfd/da9150/core.h>
21#include <linux/mfd/da9150/registers.h>
22#include <linux/devm-helpers.h>
23
24/* Core2Wire */
25#define DA9150_QIF_READ (0x0 << 7)
26#define DA9150_QIF_WRITE (0x1 << 7)
27#define DA9150_QIF_CODE_MASK 0x7F
28
29#define DA9150_QIF_BYTE_SIZE 8
30#define DA9150_QIF_BYTE_MASK 0xFF
31#define DA9150_QIF_SHORT_SIZE 2
32#define DA9150_QIF_LONG_SIZE 4
33
34/* QIF Codes */
35#define DA9150_QIF_UAVG 6
36#define DA9150_QIF_UAVG_SIZE DA9150_QIF_LONG_SIZE
37#define DA9150_QIF_IAVG 8
38#define DA9150_QIF_IAVG_SIZE DA9150_QIF_LONG_SIZE
39#define DA9150_QIF_NTCAVG 12
40#define DA9150_QIF_NTCAVG_SIZE DA9150_QIF_LONG_SIZE
41#define DA9150_QIF_SHUNT_VAL 36
42#define DA9150_QIF_SHUNT_VAL_SIZE DA9150_QIF_SHORT_SIZE
43#define DA9150_QIF_SD_GAIN 38
44#define DA9150_QIF_SD_GAIN_SIZE DA9150_QIF_LONG_SIZE
45#define DA9150_QIF_FCC_MAH 40
46#define DA9150_QIF_FCC_MAH_SIZE DA9150_QIF_SHORT_SIZE
47#define DA9150_QIF_SOC_PCT 43
48#define DA9150_QIF_SOC_PCT_SIZE DA9150_QIF_SHORT_SIZE
49#define DA9150_QIF_CHARGE_LIMIT 44
50#define DA9150_QIF_CHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
51#define DA9150_QIF_DISCHARGE_LIMIT 45
52#define DA9150_QIF_DISCHARGE_LIMIT_SIZE DA9150_QIF_SHORT_SIZE
53#define DA9150_QIF_FW_MAIN_VER 118
54#define DA9150_QIF_FW_MAIN_VER_SIZE DA9150_QIF_SHORT_SIZE
55#define DA9150_QIF_E_FG_STATUS 126
56#define DA9150_QIF_E_FG_STATUS_SIZE DA9150_QIF_SHORT_SIZE
57#define DA9150_QIF_SYNC 127
58#define DA9150_QIF_SYNC_SIZE DA9150_QIF_SHORT_SIZE
59#define DA9150_QIF_MAX_CODES 128
60
61/* QIF Sync Timeout */
62#define DA9150_QIF_SYNC_TIMEOUT 1000
63#define DA9150_QIF_SYNC_RETRIES 10
64
65/* QIF E_FG_STATUS */
66#define DA9150_FG_IRQ_LOW_SOC_MASK (1 << 0)
67#define DA9150_FG_IRQ_HIGH_SOC_MASK (1 << 1)
68#define DA9150_FG_IRQ_SOC_MASK \
69 (DA9150_FG_IRQ_LOW_SOC_MASK | DA9150_FG_IRQ_HIGH_SOC_MASK)
70
71/* Private data */
72struct da9150_fg {
73 struct da9150 *da9150;
74 struct device *dev;
75
76 struct mutex io_lock;
77
78 struct power_supply *battery;
79 struct delayed_work work;
80 u32 interval;
81
82 int warn_soc;
83 int crit_soc;
84 int soc;
85};
86
87/* Battery Properties */
88static u32 da9150_fg_read_attr(struct da9150_fg *fg, u8 code, u8 size)
89
90{
91 u8 buf[DA9150_QIF_LONG_SIZE];
92 u8 read_addr;
93 u32 res = 0;
94 int i;
95
96 /* Set QIF code (READ mode) */
97 read_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_READ;
98
99 da9150_read_qif(da9150: fg->da9150, addr: read_addr, count: size, buf);
100 for (i = 0; i < size; ++i)
101 res |= (buf[i] << (i * DA9150_QIF_BYTE_SIZE));
102
103 return res;
104}
105
106static void da9150_fg_write_attr(struct da9150_fg *fg, u8 code, u8 size,
107 u32 val)
108
109{
110 u8 buf[DA9150_QIF_LONG_SIZE];
111 u8 write_addr;
112 int i;
113
114 /* Set QIF code (WRITE mode) */
115 write_addr = (code & DA9150_QIF_CODE_MASK) | DA9150_QIF_WRITE;
116
117 for (i = 0; i < size; ++i) {
118 buf[i] = (val >> (i * DA9150_QIF_BYTE_SIZE)) &
119 DA9150_QIF_BYTE_MASK;
120 }
121 da9150_write_qif(da9150: fg->da9150, addr: write_addr, count: size, buf);
122}
123
124/* Trigger QIF Sync to update QIF readable data */
125static void da9150_fg_read_sync_start(struct da9150_fg *fg)
126{
127 int i = 0;
128 u32 res = 0;
129
130 mutex_lock(&fg->io_lock);
131
132 /* Check if QIF sync already requested, and write to sync if not */
133 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
134 DA9150_QIF_SYNC_SIZE);
135 if (res > 0)
136 da9150_fg_write_attr(fg, DA9150_QIF_SYNC,
137 DA9150_QIF_SYNC_SIZE, val: 0);
138
139 /* Wait for sync to complete */
140 res = 0;
141 while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
142 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
143 DA9150_QIF_SYNC_TIMEOUT * 2);
144 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
145 DA9150_QIF_SYNC_SIZE);
146 }
147
148 /* Check if sync completed */
149 if (res == 0)
150 dev_err(fg->dev, "Failed to perform QIF read sync!\n");
151}
152
153/*
154 * Should always be called after QIF sync read has been performed, and all
155 * attributes required have been accessed.
156 */
157static inline void da9150_fg_read_sync_end(struct da9150_fg *fg)
158{
159 mutex_unlock(lock: &fg->io_lock);
160}
161
162/* Sync read of single QIF attribute */
163static u32 da9150_fg_read_attr_sync(struct da9150_fg *fg, u8 code, u8 size)
164{
165 u32 val;
166
167 da9150_fg_read_sync_start(fg);
168 val = da9150_fg_read_attr(fg, code, size);
169 da9150_fg_read_sync_end(fg);
170
171 return val;
172}
173
174/* Wait for QIF Sync, write QIF data and wait for ack */
175static void da9150_fg_write_attr_sync(struct da9150_fg *fg, u8 code, u8 size,
176 u32 val)
177{
178 int i = 0;
179 u32 res = 0, sync_val;
180
181 mutex_lock(&fg->io_lock);
182
183 /* Check if QIF sync already requested */
184 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
185 DA9150_QIF_SYNC_SIZE);
186
187 /* Wait for an existing sync to complete */
188 while ((res == 0) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
189 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
190 DA9150_QIF_SYNC_TIMEOUT * 2);
191 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
192 DA9150_QIF_SYNC_SIZE);
193 }
194
195 if (res == 0) {
196 dev_err(fg->dev, "Timeout waiting for existing QIF sync!\n");
197 mutex_unlock(lock: &fg->io_lock);
198 return;
199 }
200
201 /* Write value for QIF code */
202 da9150_fg_write_attr(fg, code, size, val);
203
204 /* Wait for write acknowledgment */
205 i = 0;
206 sync_val = res;
207 while ((res == sync_val) && (i++ < DA9150_QIF_SYNC_RETRIES)) {
208 usleep_range(DA9150_QIF_SYNC_TIMEOUT,
209 DA9150_QIF_SYNC_TIMEOUT * 2);
210 res = da9150_fg_read_attr(fg, DA9150_QIF_SYNC,
211 DA9150_QIF_SYNC_SIZE);
212 }
213
214 mutex_unlock(lock: &fg->io_lock);
215
216 /* Check write was actually successful */
217 if (res != (sync_val + 1))
218 dev_err(fg->dev, "Error performing QIF sync write for code %d\n",
219 code);
220}
221
222/* Power Supply attributes */
223static int da9150_fg_capacity(struct da9150_fg *fg,
224 union power_supply_propval *val)
225{
226 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
227 DA9150_QIF_SOC_PCT_SIZE);
228
229 if (val->intval > 100)
230 val->intval = 100;
231
232 return 0;
233}
234
235static int da9150_fg_current_avg(struct da9150_fg *fg,
236 union power_supply_propval *val)
237{
238 u32 iavg, sd_gain, shunt_val;
239 u64 div, res;
240
241 da9150_fg_read_sync_start(fg);
242 iavg = da9150_fg_read_attr(fg, DA9150_QIF_IAVG,
243 DA9150_QIF_IAVG_SIZE);
244 shunt_val = da9150_fg_read_attr(fg, DA9150_QIF_SHUNT_VAL,
245 DA9150_QIF_SHUNT_VAL_SIZE);
246 sd_gain = da9150_fg_read_attr(fg, DA9150_QIF_SD_GAIN,
247 DA9150_QIF_SD_GAIN_SIZE);
248 da9150_fg_read_sync_end(fg);
249
250 div = (u64) (sd_gain * shunt_val * 65536ULL);
251 do_div(div, 1000000);
252 res = (u64) (iavg * 1000000ULL);
253 do_div(res, div);
254
255 val->intval = (int) res;
256
257 return 0;
258}
259
260static int da9150_fg_voltage_avg(struct da9150_fg *fg,
261 union power_supply_propval *val)
262{
263 u64 res;
264
265 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_UAVG,
266 DA9150_QIF_UAVG_SIZE);
267
268 res = (u64) (val->intval * 186ULL);
269 do_div(res, 10000);
270 val->intval = (int) res;
271
272 return 0;
273}
274
275static int da9150_fg_charge_full(struct da9150_fg *fg,
276 union power_supply_propval *val)
277{
278 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_FCC_MAH,
279 DA9150_QIF_FCC_MAH_SIZE);
280
281 val->intval = val->intval * 1000;
282
283 return 0;
284}
285
286/*
287 * Temperature reading from device is only valid if battery/system provides
288 * valid NTC to associated pin of DA9150 chip.
289 */
290static int da9150_fg_temp(struct da9150_fg *fg,
291 union power_supply_propval *val)
292{
293 val->intval = da9150_fg_read_attr_sync(fg, DA9150_QIF_NTCAVG,
294 DA9150_QIF_NTCAVG_SIZE);
295
296 val->intval = (val->intval * 10) / 1048576;
297
298 return 0;
299}
300
301static enum power_supply_property da9150_fg_props[] = {
302 POWER_SUPPLY_PROP_CAPACITY,
303 POWER_SUPPLY_PROP_CURRENT_AVG,
304 POWER_SUPPLY_PROP_VOLTAGE_AVG,
305 POWER_SUPPLY_PROP_CHARGE_FULL,
306 POWER_SUPPLY_PROP_TEMP,
307};
308
309static int da9150_fg_get_prop(struct power_supply *psy,
310 enum power_supply_property psp,
311 union power_supply_propval *val)
312{
313 struct da9150_fg *fg = dev_get_drvdata(dev: psy->dev.parent);
314 int ret;
315
316 switch (psp) {
317 case POWER_SUPPLY_PROP_CAPACITY:
318 ret = da9150_fg_capacity(fg, val);
319 break;
320 case POWER_SUPPLY_PROP_CURRENT_AVG:
321 ret = da9150_fg_current_avg(fg, val);
322 break;
323 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
324 ret = da9150_fg_voltage_avg(fg, val);
325 break;
326 case POWER_SUPPLY_PROP_CHARGE_FULL:
327 ret = da9150_fg_charge_full(fg, val);
328 break;
329 case POWER_SUPPLY_PROP_TEMP:
330 ret = da9150_fg_temp(fg, val);
331 break;
332 default:
333 ret = -EINVAL;
334 break;
335 }
336
337 return ret;
338}
339
340/* Repeated SOC check */
341static bool da9150_fg_soc_changed(struct da9150_fg *fg)
342{
343 union power_supply_propval val;
344
345 da9150_fg_capacity(fg, val: &val);
346 if (val.intval != fg->soc) {
347 fg->soc = val.intval;
348 return true;
349 }
350
351 return false;
352}
353
354static void da9150_fg_work(struct work_struct *work)
355{
356 struct da9150_fg *fg = container_of(work, struct da9150_fg, work.work);
357
358 /* Report if SOC has changed */
359 if (da9150_fg_soc_changed(fg))
360 power_supply_changed(psy: fg->battery);
361
362 schedule_delayed_work(dwork: &fg->work, delay: msecs_to_jiffies(m: fg->interval));
363}
364
365/* SOC level event configuration */
366static void da9150_fg_soc_event_config(struct da9150_fg *fg)
367{
368 int soc;
369
370 soc = da9150_fg_read_attr_sync(fg, DA9150_QIF_SOC_PCT,
371 DA9150_QIF_SOC_PCT_SIZE);
372
373 if (soc > fg->warn_soc) {
374 /* If SOC > warn level, set discharge warn level event */
375 da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
376 DA9150_QIF_DISCHARGE_LIMIT_SIZE,
377 val: fg->warn_soc + 1);
378 } else if ((soc <= fg->warn_soc) && (soc > fg->crit_soc)) {
379 /*
380 * If SOC <= warn level, set discharge crit level event,
381 * and set charge warn level event.
382 */
383 da9150_fg_write_attr_sync(fg, DA9150_QIF_DISCHARGE_LIMIT,
384 DA9150_QIF_DISCHARGE_LIMIT_SIZE,
385 val: fg->crit_soc + 1);
386
387 da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
388 DA9150_QIF_CHARGE_LIMIT_SIZE,
389 val: fg->warn_soc);
390 } else if (soc <= fg->crit_soc) {
391 /* If SOC <= crit level, set charge crit level event */
392 da9150_fg_write_attr_sync(fg, DA9150_QIF_CHARGE_LIMIT,
393 DA9150_QIF_CHARGE_LIMIT_SIZE,
394 val: fg->crit_soc);
395 }
396}
397
398static irqreturn_t da9150_fg_irq(int irq, void *data)
399{
400 struct da9150_fg *fg = data;
401 u32 e_fg_status;
402
403 /* Read FG IRQ status info */
404 e_fg_status = da9150_fg_read_attr(fg, DA9150_QIF_E_FG_STATUS,
405 DA9150_QIF_E_FG_STATUS_SIZE);
406
407 /* Handle warning/critical threhold events */
408 if (e_fg_status & DA9150_FG_IRQ_SOC_MASK)
409 da9150_fg_soc_event_config(fg);
410
411 /* Clear any FG IRQs */
412 da9150_fg_write_attr(fg, DA9150_QIF_E_FG_STATUS,
413 DA9150_QIF_E_FG_STATUS_SIZE, val: e_fg_status);
414
415 return IRQ_HANDLED;
416}
417
418static struct da9150_fg_pdata *da9150_fg_dt_pdata(struct device *dev)
419{
420 struct device_node *fg_node = dev->of_node;
421 struct da9150_fg_pdata *pdata;
422
423 pdata = devm_kzalloc(dev, size: sizeof(struct da9150_fg_pdata), GFP_KERNEL);
424 if (!pdata)
425 return NULL;
426
427 of_property_read_u32(np: fg_node, propname: "dlg,update-interval",
428 out_value: &pdata->update_interval);
429 of_property_read_u8(np: fg_node, propname: "dlg,warn-soc-level",
430 out_value: &pdata->warn_soc_lvl);
431 of_property_read_u8(np: fg_node, propname: "dlg,crit-soc-level",
432 out_value: &pdata->crit_soc_lvl);
433
434 return pdata;
435}
436
437static const struct power_supply_desc fg_desc = {
438 .name = "da9150-fg",
439 .type = POWER_SUPPLY_TYPE_BATTERY,
440 .properties = da9150_fg_props,
441 .num_properties = ARRAY_SIZE(da9150_fg_props),
442 .get_property = da9150_fg_get_prop,
443};
444
445static int da9150_fg_probe(struct platform_device *pdev)
446{
447 struct device *dev = &pdev->dev;
448 struct da9150 *da9150 = dev_get_drvdata(dev: dev->parent);
449 struct da9150_fg_pdata *fg_pdata = dev_get_platdata(dev);
450 struct da9150_fg *fg;
451 int ver, irq, ret = 0;
452
453 fg = devm_kzalloc(dev, size: sizeof(*fg), GFP_KERNEL);
454 if (fg == NULL)
455 return -ENOMEM;
456
457 platform_set_drvdata(pdev, data: fg);
458 fg->da9150 = da9150;
459 fg->dev = dev;
460
461 mutex_init(&fg->io_lock);
462
463 /* Enable QIF */
464 da9150_set_bits(da9150, DA9150_CORE2WIRE_CTRL_A, DA9150_FG_QIF_EN_MASK,
465 DA9150_FG_QIF_EN_MASK);
466
467 fg->battery = devm_power_supply_register(parent: dev, desc: &fg_desc, NULL);
468 if (IS_ERR(ptr: fg->battery)) {
469 ret = PTR_ERR(ptr: fg->battery);
470 return ret;
471 }
472
473 ver = da9150_fg_read_attr(fg, DA9150_QIF_FW_MAIN_VER,
474 DA9150_QIF_FW_MAIN_VER_SIZE);
475 dev_info(dev, "Version: 0x%x\n", ver);
476
477 /* Handle DT data if provided */
478 if (dev->of_node) {
479 fg_pdata = da9150_fg_dt_pdata(dev);
480 dev->platform_data = fg_pdata;
481 }
482
483 /* Handle any pdata provided */
484 if (fg_pdata) {
485 fg->interval = fg_pdata->update_interval;
486
487 if (fg_pdata->warn_soc_lvl > 100)
488 dev_warn(dev, "Invalid SOC warning level provided, Ignoring");
489 else
490 fg->warn_soc = fg_pdata->warn_soc_lvl;
491
492 if ((fg_pdata->crit_soc_lvl > 100) ||
493 (fg_pdata->crit_soc_lvl >= fg_pdata->warn_soc_lvl))
494 dev_warn(dev, "Invalid SOC critical level provided, Ignoring");
495 else
496 fg->crit_soc = fg_pdata->crit_soc_lvl;
497
498
499 }
500
501 /* Configure initial SOC level events */
502 da9150_fg_soc_event_config(fg);
503
504 /*
505 * If an interval period has been provided then setup repeating
506 * work for reporting data updates.
507 */
508 if (fg->interval) {
509 ret = devm_delayed_work_autocancel(dev, w: &fg->work,
510 worker: da9150_fg_work);
511 if (ret) {
512 dev_err(dev, "Failed to init work\n");
513 return ret;
514 }
515
516 schedule_delayed_work(dwork: &fg->work,
517 delay: msecs_to_jiffies(m: fg->interval));
518 }
519
520 /* Register IRQ */
521 irq = platform_get_irq_byname(pdev, "FG");
522 if (irq < 0)
523 return irq;
524
525 ret = devm_request_threaded_irq(dev, irq, NULL, thread_fn: da9150_fg_irq,
526 IRQF_ONESHOT, devname: "FG", dev_id: fg);
527 if (ret) {
528 dev_err(dev, "Failed to request IRQ %d: %d\n", irq, ret);
529 return ret;
530 }
531
532 return 0;
533}
534
535static int da9150_fg_resume(struct platform_device *pdev)
536{
537 struct da9150_fg *fg = platform_get_drvdata(pdev);
538
539 /*
540 * Trigger SOC check to happen now so as to indicate any value change
541 * since last check before suspend.
542 */
543 if (fg->interval)
544 flush_delayed_work(dwork: &fg->work);
545
546 return 0;
547}
548
549static struct platform_driver da9150_fg_driver = {
550 .driver = {
551 .name = "da9150-fuel-gauge",
552 },
553 .probe = da9150_fg_probe,
554 .resume = da9150_fg_resume,
555};
556
557module_platform_driver(da9150_fg_driver);
558
559MODULE_DESCRIPTION("Fuel-Gauge Driver for DA9150");
560MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
561MODULE_LICENSE("GPL");
562

source code of linux/drivers/power/supply/da9150-fg.c