1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12#include <linux/module.h>
13#include <linux/types.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/delay.h>
17#include <linux/device.h>
18#include <linux/notifier.h>
19#include <linux/err.h>
20#include <linux/of.h>
21#include <linux/power_supply.h>
22#include <linux/property.h>
23#include <linux/thermal.h>
24#include <linux/fixp-arith.h>
25#include "power_supply.h"
26#include "samsung-sdi-battery.h"
27
28/* exported for the APM Power driver, APM emulation */
29struct class *power_supply_class;
30EXPORT_SYMBOL_GPL(power_supply_class);
31
32static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
33
34static struct device_type power_supply_dev_type;
35
36#define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10)
37
38static bool __power_supply_is_supplied_by(struct power_supply *supplier,
39 struct power_supply *supply)
40{
41 int i;
42
43 if (!supply->supplied_from && !supplier->supplied_to)
44 return false;
45
46 /* Support both supplied_to and supplied_from modes */
47 if (supply->supplied_from) {
48 if (!supplier->desc->name)
49 return false;
50 for (i = 0; i < supply->num_supplies; i++)
51 if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
52 return true;
53 } else {
54 if (!supply->desc->name)
55 return false;
56 for (i = 0; i < supplier->num_supplicants; i++)
57 if (!strcmp(supplier->supplied_to[i], supply->desc->name))
58 return true;
59 }
60
61 return false;
62}
63
64static int __power_supply_changed_work(struct device *dev, void *data)
65{
66 struct power_supply *psy = data;
67 struct power_supply *pst = dev_get_drvdata(dev);
68
69 if (__power_supply_is_supplied_by(supplier: psy, supply: pst)) {
70 if (pst->desc->external_power_changed)
71 pst->desc->external_power_changed(pst);
72 }
73
74 return 0;
75}
76
77static void power_supply_changed_work(struct work_struct *work)
78{
79 unsigned long flags;
80 struct power_supply *psy = container_of(work, struct power_supply,
81 changed_work);
82
83 dev_dbg(&psy->dev, "%s\n", __func__);
84
85 spin_lock_irqsave(&psy->changed_lock, flags);
86 /*
87 * Check 'changed' here to avoid issues due to race between
88 * power_supply_changed() and this routine. In worst case
89 * power_supply_changed() can be called again just before we take above
90 * lock. During the first call of this routine we will mark 'changed' as
91 * false and it will stay false for the next call as well.
92 */
93 if (likely(psy->changed)) {
94 psy->changed = false;
95 spin_unlock_irqrestore(lock: &psy->changed_lock, flags);
96 class_for_each_device(class: power_supply_class, NULL, data: psy,
97 fn: __power_supply_changed_work);
98 power_supply_update_leds(psy);
99 blocking_notifier_call_chain(nh: &power_supply_notifier,
100 val: PSY_EVENT_PROP_CHANGED, v: psy);
101 kobject_uevent(kobj: &psy->dev.kobj, action: KOBJ_CHANGE);
102 spin_lock_irqsave(&psy->changed_lock, flags);
103 }
104
105 /*
106 * Hold the wakeup_source until all events are processed.
107 * power_supply_changed() might have called again and have set 'changed'
108 * to true.
109 */
110 if (likely(!psy->changed))
111 pm_relax(dev: &psy->dev);
112 spin_unlock_irqrestore(lock: &psy->changed_lock, flags);
113}
114
115void power_supply_changed(struct power_supply *psy)
116{
117 unsigned long flags;
118
119 dev_dbg(&psy->dev, "%s\n", __func__);
120
121 spin_lock_irqsave(&psy->changed_lock, flags);
122 psy->changed = true;
123 pm_stay_awake(dev: &psy->dev);
124 spin_unlock_irqrestore(lock: &psy->changed_lock, flags);
125 schedule_work(work: &psy->changed_work);
126}
127EXPORT_SYMBOL_GPL(power_supply_changed);
128
129/*
130 * Notify that power supply was registered after parent finished the probing.
131 *
132 * Often power supply is registered from driver's probe function. However
133 * calling power_supply_changed() directly from power_supply_register()
134 * would lead to execution of get_property() function provided by the driver
135 * too early - before the probe ends.
136 *
137 * Avoid that by waiting on parent's mutex.
138 */
139static void power_supply_deferred_register_work(struct work_struct *work)
140{
141 struct power_supply *psy = container_of(work, struct power_supply,
142 deferred_register_work.work);
143
144 if (psy->dev.parent) {
145 while (!mutex_trylock(lock: &psy->dev.parent->mutex)) {
146 if (psy->removing)
147 return;
148 msleep(msecs: 10);
149 }
150 }
151
152 power_supply_changed(psy);
153
154 if (psy->dev.parent)
155 mutex_unlock(lock: &psy->dev.parent->mutex);
156}
157
158#ifdef CONFIG_OF
159static int __power_supply_populate_supplied_from(struct device *dev,
160 void *data)
161{
162 struct power_supply *psy = data;
163 struct power_supply *epsy = dev_get_drvdata(dev);
164 struct device_node *np;
165 int i = 0;
166
167 do {
168 np = of_parse_phandle(np: psy->of_node, phandle_name: "power-supplies", index: i++);
169 if (!np)
170 break;
171
172 if (np == epsy->of_node) {
173 dev_dbg(&psy->dev, "%s: Found supply : %s\n",
174 psy->desc->name, epsy->desc->name);
175 psy->supplied_from[i-1] = (char *)epsy->desc->name;
176 psy->num_supplies++;
177 of_node_put(node: np);
178 break;
179 }
180 of_node_put(node: np);
181 } while (np);
182
183 return 0;
184}
185
186static int power_supply_populate_supplied_from(struct power_supply *psy)
187{
188 int error;
189
190 error = class_for_each_device(class: power_supply_class, NULL, data: psy,
191 fn: __power_supply_populate_supplied_from);
192
193 dev_dbg(&psy->dev, "%s %d\n", __func__, error);
194
195 return error;
196}
197
198static int __power_supply_find_supply_from_node(struct device *dev,
199 void *data)
200{
201 struct device_node *np = data;
202 struct power_supply *epsy = dev_get_drvdata(dev);
203
204 /* returning non-zero breaks out of class_for_each_device loop */
205 if (epsy->of_node == np)
206 return 1;
207
208 return 0;
209}
210
211static int power_supply_find_supply_from_node(struct device_node *supply_node)
212{
213 int error;
214
215 /*
216 * class_for_each_device() either returns its own errors or values
217 * returned by __power_supply_find_supply_from_node().
218 *
219 * __power_supply_find_supply_from_node() will return 0 (no match)
220 * or 1 (match).
221 *
222 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
223 * it returned 0, or error as returned by it.
224 */
225 error = class_for_each_device(class: power_supply_class, NULL, data: supply_node,
226 fn: __power_supply_find_supply_from_node);
227
228 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
229}
230
231static int power_supply_check_supplies(struct power_supply *psy)
232{
233 struct device_node *np;
234 int cnt = 0;
235
236 /* If there is already a list honor it */
237 if (psy->supplied_from && psy->num_supplies > 0)
238 return 0;
239
240 /* No device node found, nothing to do */
241 if (!psy->of_node)
242 return 0;
243
244 do {
245 int ret;
246
247 np = of_parse_phandle(np: psy->of_node, phandle_name: "power-supplies", index: cnt++);
248 if (!np)
249 break;
250
251 ret = power_supply_find_supply_from_node(supply_node: np);
252 of_node_put(node: np);
253
254 if (ret) {
255 dev_dbg(&psy->dev, "Failed to find supply!\n");
256 return ret;
257 }
258 } while (np);
259
260 /* Missing valid "power-supplies" entries */
261 if (cnt == 1)
262 return 0;
263
264 /* All supplies found, allocate char ** array for filling */
265 psy->supplied_from = devm_kzalloc(dev: &psy->dev, size: sizeof(*psy->supplied_from),
266 GFP_KERNEL);
267 if (!psy->supplied_from)
268 return -ENOMEM;
269
270 *psy->supplied_from = devm_kcalloc(dev: &psy->dev,
271 n: cnt - 1, size: sizeof(**psy->supplied_from),
272 GFP_KERNEL);
273 if (!*psy->supplied_from)
274 return -ENOMEM;
275
276 return power_supply_populate_supplied_from(psy);
277}
278#else
279static int power_supply_check_supplies(struct power_supply *psy)
280{
281 int nval, ret;
282
283 if (!psy->dev.parent)
284 return 0;
285
286 nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
287 if (nval <= 0)
288 return 0;
289
290 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
291 sizeof(char *), GFP_KERNEL);
292 if (!psy->supplied_from)
293 return -ENOMEM;
294
295 ret = device_property_read_string_array(psy->dev.parent,
296 "supplied-from", (const char **)psy->supplied_from, nval);
297 if (ret < 0)
298 return ret;
299
300 psy->num_supplies = nval;
301
302 return 0;
303}
304#endif
305
306struct psy_am_i_supplied_data {
307 struct power_supply *psy;
308 unsigned int count;
309};
310
311static int __power_supply_am_i_supplied(struct device *dev, void *_data)
312{
313 union power_supply_propval ret = {0,};
314 struct power_supply *epsy = dev_get_drvdata(dev);
315 struct psy_am_i_supplied_data *data = _data;
316
317 if (__power_supply_is_supplied_by(supplier: epsy, supply: data->psy)) {
318 data->count++;
319 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
320 &ret))
321 return ret.intval;
322 }
323
324 return 0;
325}
326
327int power_supply_am_i_supplied(struct power_supply *psy)
328{
329 struct psy_am_i_supplied_data data = { psy, 0 };
330 int error;
331
332 error = class_for_each_device(class: power_supply_class, NULL, data: &data,
333 fn: __power_supply_am_i_supplied);
334
335 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
336
337 if (data.count == 0)
338 return -ENODEV;
339
340 return error;
341}
342EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
343
344static int __power_supply_is_system_supplied(struct device *dev, void *data)
345{
346 union power_supply_propval ret = {0,};
347 struct power_supply *psy = dev_get_drvdata(dev);
348 unsigned int *count = data;
349
350 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
351 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
352 return 0;
353
354 (*count)++;
355 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
356 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
357 &ret))
358 return ret.intval;
359
360 return 0;
361}
362
363int power_supply_is_system_supplied(void)
364{
365 int error;
366 unsigned int count = 0;
367
368 error = class_for_each_device(class: power_supply_class, NULL, data: &count,
369 fn: __power_supply_is_system_supplied);
370
371 /*
372 * If no system scope power class device was found at all, most probably we
373 * are running on a desktop system, so assume we are on mains power.
374 */
375 if (count == 0)
376 return 1;
377
378 return error;
379}
380EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
381
382struct psy_get_supplier_prop_data {
383 struct power_supply *psy;
384 enum power_supply_property psp;
385 union power_supply_propval *val;
386};
387
388static int __power_supply_get_supplier_property(struct device *dev, void *_data)
389{
390 struct power_supply *epsy = dev_get_drvdata(dev);
391 struct psy_get_supplier_prop_data *data = _data;
392
393 if (__power_supply_is_supplied_by(supplier: epsy, supply: data->psy))
394 if (!power_supply_get_property(psy: epsy, psp: data->psp, val: data->val))
395 return 1; /* Success */
396
397 return 0; /* Continue iterating */
398}
399
400int power_supply_get_property_from_supplier(struct power_supply *psy,
401 enum power_supply_property psp,
402 union power_supply_propval *val)
403{
404 struct psy_get_supplier_prop_data data = {
405 .psy = psy,
406 .psp = psp,
407 .val = val,
408 };
409 int ret;
410
411 /*
412 * This function is not intended for use with a supply with multiple
413 * suppliers, we simply pick the first supply to report the psp.
414 */
415 ret = class_for_each_device(class: power_supply_class, NULL, data: &data,
416 fn: __power_supply_get_supplier_property);
417 if (ret < 0)
418 return ret;
419 if (ret == 0)
420 return -ENODEV;
421
422 return 0;
423}
424EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
425
426int power_supply_set_battery_charged(struct power_supply *psy)
427{
428 if (atomic_read(v: &psy->use_cnt) >= 0 &&
429 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
430 psy->desc->set_charged) {
431 psy->desc->set_charged(psy);
432 return 0;
433 }
434
435 return -EINVAL;
436}
437EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
438
439static int power_supply_match_device_by_name(struct device *dev, const void *data)
440{
441 const char *name = data;
442 struct power_supply *psy = dev_get_drvdata(dev);
443
444 return strcmp(psy->desc->name, name) == 0;
445}
446
447/**
448 * power_supply_get_by_name() - Search for a power supply and returns its ref
449 * @name: Power supply name to fetch
450 *
451 * If power supply was found, it increases reference count for the
452 * internal power supply's device. The user should power_supply_put()
453 * after usage.
454 *
455 * Return: On success returns a reference to a power supply with
456 * matching name equals to @name, a NULL otherwise.
457 */
458struct power_supply *power_supply_get_by_name(const char *name)
459{
460 struct power_supply *psy = NULL;
461 struct device *dev = class_find_device(class: power_supply_class, NULL, data: name,
462 match: power_supply_match_device_by_name);
463
464 if (dev) {
465 psy = dev_get_drvdata(dev);
466 atomic_inc(v: &psy->use_cnt);
467 }
468
469 return psy;
470}
471EXPORT_SYMBOL_GPL(power_supply_get_by_name);
472
473/**
474 * power_supply_put() - Drop reference obtained with power_supply_get_by_name
475 * @psy: Reference to put
476 *
477 * The reference to power supply should be put before unregistering
478 * the power supply.
479 */
480void power_supply_put(struct power_supply *psy)
481{
482 might_sleep();
483
484 atomic_dec(v: &psy->use_cnt);
485 put_device(dev: &psy->dev);
486}
487EXPORT_SYMBOL_GPL(power_supply_put);
488
489#ifdef CONFIG_OF
490static int power_supply_match_device_node(struct device *dev, const void *data)
491{
492 return dev->parent && dev->parent->of_node == data;
493}
494
495/**
496 * power_supply_get_by_phandle() - Search for a power supply and returns its ref
497 * @np: Pointer to device node holding phandle property
498 * @property: Name of property holding a power supply name
499 *
500 * If power supply was found, it increases reference count for the
501 * internal power supply's device. The user should power_supply_put()
502 * after usage.
503 *
504 * Return: On success returns a reference to a power supply with
505 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
506 */
507struct power_supply *power_supply_get_by_phandle(struct device_node *np,
508 const char *property)
509{
510 struct device_node *power_supply_np;
511 struct power_supply *psy = NULL;
512 struct device *dev;
513
514 power_supply_np = of_parse_phandle(np, phandle_name: property, index: 0);
515 if (!power_supply_np)
516 return ERR_PTR(error: -ENODEV);
517
518 dev = class_find_device(class: power_supply_class, NULL, data: power_supply_np,
519 match: power_supply_match_device_node);
520
521 of_node_put(node: power_supply_np);
522
523 if (dev) {
524 psy = dev_get_drvdata(dev);
525 atomic_inc(v: &psy->use_cnt);
526 }
527
528 return psy;
529}
530EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
531
532static void devm_power_supply_put(struct device *dev, void *res)
533{
534 struct power_supply **psy = res;
535
536 power_supply_put(*psy);
537}
538
539/**
540 * devm_power_supply_get_by_phandle() - Resource managed version of
541 * power_supply_get_by_phandle()
542 * @dev: Pointer to device holding phandle property
543 * @property: Name of property holding a power supply phandle
544 *
545 * Return: On success returns a reference to a power supply with
546 * matching name equals to value under @property, NULL or ERR_PTR otherwise.
547 */
548struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
549 const char *property)
550{
551 struct power_supply **ptr, *psy;
552
553 if (!dev->of_node)
554 return ERR_PTR(error: -ENODEV);
555
556 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
557 if (!ptr)
558 return ERR_PTR(error: -ENOMEM);
559
560 psy = power_supply_get_by_phandle(dev->of_node, property);
561 if (IS_ERR_OR_NULL(ptr: psy)) {
562 devres_free(res: ptr);
563 } else {
564 *ptr = psy;
565 devres_add(dev, res: ptr);
566 }
567 return psy;
568}
569EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
570#endif /* CONFIG_OF */
571
572int power_supply_get_battery_info(struct power_supply *psy,
573 struct power_supply_battery_info **info_out)
574{
575 struct power_supply_resistance_temp_table *resist_table;
576 struct power_supply_battery_info *info;
577 struct device_node *battery_np = NULL;
578 struct fwnode_reference_args args;
579 struct fwnode_handle *fwnode = NULL;
580 const char *value;
581 int err, len, index;
582 const __be32 *list;
583 u32 min_max[2];
584
585 if (psy->of_node) {
586 battery_np = of_parse_phandle(np: psy->of_node, phandle_name: "monitored-battery", index: 0);
587 if (!battery_np)
588 return -ENODEV;
589
590 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
591 } else if (psy->dev.parent) {
592 err = fwnode_property_get_reference_args(
593 dev_fwnode(psy->dev.parent),
594 prop: "monitored-battery", NULL, nargs: 0, index: 0, args: &args);
595 if (err)
596 return err;
597
598 fwnode = args.fwnode;
599 }
600
601 if (!fwnode)
602 return -ENOENT;
603
604 err = fwnode_property_read_string(fwnode, propname: "compatible", val: &value);
605 if (err)
606 goto out_put_node;
607
608
609 /* Try static batteries first */
610 err = samsung_sdi_battery_get_info(dev: &psy->dev, compatible: value, info: &info);
611 if (!err)
612 goto out_ret_pointer;
613 else if (err == -ENODEV)
614 /*
615 * Device does not have a static battery.
616 * Proceed to look for a simple battery.
617 */
618 err = 0;
619
620 if (strcmp("simple-battery", value)) {
621 err = -ENODEV;
622 goto out_put_node;
623 }
624
625 info = devm_kzalloc(dev: &psy->dev, size: sizeof(*info), GFP_KERNEL);
626 if (!info) {
627 err = -ENOMEM;
628 goto out_put_node;
629 }
630
631 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
632 info->energy_full_design_uwh = -EINVAL;
633 info->charge_full_design_uah = -EINVAL;
634 info->voltage_min_design_uv = -EINVAL;
635 info->voltage_max_design_uv = -EINVAL;
636 info->precharge_current_ua = -EINVAL;
637 info->charge_term_current_ua = -EINVAL;
638 info->constant_charge_current_max_ua = -EINVAL;
639 info->constant_charge_voltage_max_uv = -EINVAL;
640 info->tricklecharge_current_ua = -EINVAL;
641 info->precharge_voltage_max_uv = -EINVAL;
642 info->charge_restart_voltage_uv = -EINVAL;
643 info->overvoltage_limit_uv = -EINVAL;
644 info->maintenance_charge = NULL;
645 info->alert_low_temp_charge_current_ua = -EINVAL;
646 info->alert_low_temp_charge_voltage_uv = -EINVAL;
647 info->alert_high_temp_charge_current_ua = -EINVAL;
648 info->alert_high_temp_charge_voltage_uv = -EINVAL;
649 info->temp_ambient_alert_min = INT_MIN;
650 info->temp_ambient_alert_max = INT_MAX;
651 info->temp_alert_min = INT_MIN;
652 info->temp_alert_max = INT_MAX;
653 info->temp_min = INT_MIN;
654 info->temp_max = INT_MAX;
655 info->factory_internal_resistance_uohm = -EINVAL;
656 info->resist_table = NULL;
657 info->bti_resistance_ohm = -EINVAL;
658 info->bti_resistance_tolerance = -EINVAL;
659
660 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
661 info->ocv_table[index] = NULL;
662 info->ocv_temp[index] = -EINVAL;
663 info->ocv_table_size[index] = -EINVAL;
664 }
665
666 /* The property and field names below must correspond to elements
667 * in enum power_supply_property. For reasoning, see
668 * Documentation/power/power_supply_class.rst.
669 */
670
671 if (!fwnode_property_read_string(fwnode, propname: "device-chemistry", val: &value)) {
672 if (!strcmp("nickel-cadmium", value))
673 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
674 else if (!strcmp("nickel-metal-hydride", value))
675 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
676 else if (!strcmp("lithium-ion", value))
677 /* Imprecise lithium-ion type */
678 info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
679 else if (!strcmp("lithium-ion-polymer", value))
680 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
681 else if (!strcmp("lithium-ion-iron-phosphate", value))
682 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
683 else if (!strcmp("lithium-ion-manganese-oxide", value))
684 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
685 else
686 dev_warn(&psy->dev, "%s unknown battery type\n", value);
687 }
688
689 fwnode_property_read_u32(fwnode, propname: "energy-full-design-microwatt-hours",
690 val: &info->energy_full_design_uwh);
691 fwnode_property_read_u32(fwnode, propname: "charge-full-design-microamp-hours",
692 val: &info->charge_full_design_uah);
693 fwnode_property_read_u32(fwnode, propname: "voltage-min-design-microvolt",
694 val: &info->voltage_min_design_uv);
695 fwnode_property_read_u32(fwnode, propname: "voltage-max-design-microvolt",
696 val: &info->voltage_max_design_uv);
697 fwnode_property_read_u32(fwnode, propname: "trickle-charge-current-microamp",
698 val: &info->tricklecharge_current_ua);
699 fwnode_property_read_u32(fwnode, propname: "precharge-current-microamp",
700 val: &info->precharge_current_ua);
701 fwnode_property_read_u32(fwnode, propname: "precharge-upper-limit-microvolt",
702 val: &info->precharge_voltage_max_uv);
703 fwnode_property_read_u32(fwnode, propname: "charge-term-current-microamp",
704 val: &info->charge_term_current_ua);
705 fwnode_property_read_u32(fwnode, propname: "re-charge-voltage-microvolt",
706 val: &info->charge_restart_voltage_uv);
707 fwnode_property_read_u32(fwnode, propname: "over-voltage-threshold-microvolt",
708 val: &info->overvoltage_limit_uv);
709 fwnode_property_read_u32(fwnode, propname: "constant-charge-current-max-microamp",
710 val: &info->constant_charge_current_max_ua);
711 fwnode_property_read_u32(fwnode, propname: "constant-charge-voltage-max-microvolt",
712 val: &info->constant_charge_voltage_max_uv);
713 fwnode_property_read_u32(fwnode, propname: "factory-internal-resistance-micro-ohms",
714 val: &info->factory_internal_resistance_uohm);
715
716 if (!fwnode_property_read_u32_array(fwnode, propname: "ambient-celsius",
717 val: min_max, ARRAY_SIZE(min_max))) {
718 info->temp_ambient_alert_min = min_max[0];
719 info->temp_ambient_alert_max = min_max[1];
720 }
721 if (!fwnode_property_read_u32_array(fwnode, propname: "alert-celsius",
722 val: min_max, ARRAY_SIZE(min_max))) {
723 info->temp_alert_min = min_max[0];
724 info->temp_alert_max = min_max[1];
725 }
726 if (!fwnode_property_read_u32_array(fwnode, propname: "operating-range-celsius",
727 val: min_max, ARRAY_SIZE(min_max))) {
728 info->temp_min = min_max[0];
729 info->temp_max = min_max[1];
730 }
731
732 /*
733 * The below code uses raw of-data parsing to parse
734 * /schemas/types.yaml#/definitions/uint32-matrix
735 * data, so for now this is only support with of.
736 */
737 if (!battery_np)
738 goto out_ret_pointer;
739
740 len = of_property_count_u32_elems(np: battery_np, propname: "ocv-capacity-celsius");
741 if (len < 0 && len != -EINVAL) {
742 err = len;
743 goto out_put_node;
744 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
745 dev_err(&psy->dev, "Too many temperature values\n");
746 err = -EINVAL;
747 goto out_put_node;
748 } else if (len > 0) {
749 of_property_read_u32_array(np: battery_np, propname: "ocv-capacity-celsius",
750 out_values: info->ocv_temp, sz: len);
751 }
752
753 for (index = 0; index < len; index++) {
754 struct power_supply_battery_ocv_table *table;
755 char *propname;
756 int i, tab_len, size;
757
758 propname = kasprintf(GFP_KERNEL, fmt: "ocv-capacity-table-%d", index);
759 if (!propname) {
760 power_supply_put_battery_info(psy, info);
761 err = -ENOMEM;
762 goto out_put_node;
763 }
764 list = of_get_property(node: battery_np, name: propname, lenp: &size);
765 if (!list || !size) {
766 dev_err(&psy->dev, "failed to get %s\n", propname);
767 kfree(objp: propname);
768 power_supply_put_battery_info(psy, info);
769 err = -EINVAL;
770 goto out_put_node;
771 }
772
773 kfree(objp: propname);
774 tab_len = size / (2 * sizeof(__be32));
775 info->ocv_table_size[index] = tab_len;
776
777 table = info->ocv_table[index] =
778 devm_kcalloc(dev: &psy->dev, n: tab_len, size: sizeof(*table), GFP_KERNEL);
779 if (!info->ocv_table[index]) {
780 power_supply_put_battery_info(psy, info);
781 err = -ENOMEM;
782 goto out_put_node;
783 }
784
785 for (i = 0; i < tab_len; i++) {
786 table[i].ocv = be32_to_cpu(*list);
787 list++;
788 table[i].capacity = be32_to_cpu(*list);
789 list++;
790 }
791 }
792
793 list = of_get_property(node: battery_np, name: "resistance-temp-table", lenp: &len);
794 if (!list || !len)
795 goto out_ret_pointer;
796
797 info->resist_table_size = len / (2 * sizeof(__be32));
798 resist_table = info->resist_table = devm_kcalloc(dev: &psy->dev,
799 n: info->resist_table_size,
800 size: sizeof(*resist_table),
801 GFP_KERNEL);
802 if (!info->resist_table) {
803 power_supply_put_battery_info(psy, info);
804 err = -ENOMEM;
805 goto out_put_node;
806 }
807
808 for (index = 0; index < info->resist_table_size; index++) {
809 resist_table[index].temp = be32_to_cpu(*list++);
810 resist_table[index].resistance = be32_to_cpu(*list++);
811 }
812
813out_ret_pointer:
814 /* Finally return the whole thing */
815 *info_out = info;
816
817out_put_node:
818 fwnode_handle_put(fwnode);
819 of_node_put(node: battery_np);
820 return err;
821}
822EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
823
824void power_supply_put_battery_info(struct power_supply *psy,
825 struct power_supply_battery_info *info)
826{
827 int i;
828
829 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
830 if (info->ocv_table[i])
831 devm_kfree(dev: &psy->dev, p: info->ocv_table[i]);
832 }
833
834 if (info->resist_table)
835 devm_kfree(dev: &psy->dev, p: info->resist_table);
836
837 devm_kfree(dev: &psy->dev, p: info);
838}
839EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
840
841const enum power_supply_property power_supply_battery_info_properties[] = {
842 POWER_SUPPLY_PROP_TECHNOLOGY,
843 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
844 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
845 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
846 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
847 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
848 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
849 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
851 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
853 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
854 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
855 POWER_SUPPLY_PROP_TEMP_MIN,
856 POWER_SUPPLY_PROP_TEMP_MAX,
857};
858EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
859
860const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
861EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
862
863bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
864 enum power_supply_property psp)
865{
866 if (!info)
867 return false;
868
869 switch (psp) {
870 case POWER_SUPPLY_PROP_TECHNOLOGY:
871 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
872 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
873 return info->energy_full_design_uwh >= 0;
874 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
875 return info->charge_full_design_uah >= 0;
876 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
877 return info->voltage_min_design_uv >= 0;
878 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
879 return info->voltage_max_design_uv >= 0;
880 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
881 return info->precharge_current_ua >= 0;
882 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
883 return info->charge_term_current_ua >= 0;
884 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
885 return info->constant_charge_current_max_ua >= 0;
886 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
887 return info->constant_charge_voltage_max_uv >= 0;
888 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
889 return info->temp_ambient_alert_min > INT_MIN;
890 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
891 return info->temp_ambient_alert_max < INT_MAX;
892 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
893 return info->temp_alert_min > INT_MIN;
894 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
895 return info->temp_alert_max < INT_MAX;
896 case POWER_SUPPLY_PROP_TEMP_MIN:
897 return info->temp_min > INT_MIN;
898 case POWER_SUPPLY_PROP_TEMP_MAX:
899 return info->temp_max < INT_MAX;
900 default:
901 return false;
902 }
903}
904EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
905
906int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
907 enum power_supply_property psp,
908 union power_supply_propval *val)
909{
910 if (!info)
911 return -EINVAL;
912
913 if (!power_supply_battery_info_has_prop(info, psp))
914 return -EINVAL;
915
916 switch (psp) {
917 case POWER_SUPPLY_PROP_TECHNOLOGY:
918 val->intval = info->technology;
919 return 0;
920 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
921 val->intval = info->energy_full_design_uwh;
922 return 0;
923 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
924 val->intval = info->charge_full_design_uah;
925 return 0;
926 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
927 val->intval = info->voltage_min_design_uv;
928 return 0;
929 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
930 val->intval = info->voltage_max_design_uv;
931 return 0;
932 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
933 val->intval = info->precharge_current_ua;
934 return 0;
935 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
936 val->intval = info->charge_term_current_ua;
937 return 0;
938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
939 val->intval = info->constant_charge_current_max_ua;
940 return 0;
941 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
942 val->intval = info->constant_charge_voltage_max_uv;
943 return 0;
944 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
945 val->intval = info->temp_ambient_alert_min;
946 return 0;
947 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
948 val->intval = info->temp_ambient_alert_max;
949 return 0;
950 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
951 val->intval = info->temp_alert_min;
952 return 0;
953 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
954 val->intval = info->temp_alert_max;
955 return 0;
956 case POWER_SUPPLY_PROP_TEMP_MIN:
957 val->intval = info->temp_min;
958 return 0;
959 case POWER_SUPPLY_PROP_TEMP_MAX:
960 val->intval = info->temp_max;
961 return 0;
962 default:
963 return -EINVAL;
964 }
965}
966EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
967
968/**
969 * power_supply_temp2resist_simple() - find the battery internal resistance
970 * percent from temperature
971 * @table: Pointer to battery resistance temperature table
972 * @table_len: The table length
973 * @temp: Current temperature
974 *
975 * This helper function is used to look up battery internal resistance percent
976 * according to current temperature value from the resistance temperature table,
977 * and the table must be ordered descending. Then the actual battery internal
978 * resistance = the ideal battery internal resistance * percent / 100.
979 *
980 * Return: the battery internal resistance percent
981 */
982int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
983 int table_len, int temp)
984{
985 int i, high, low;
986
987 for (i = 0; i < table_len; i++)
988 if (temp > table[i].temp)
989 break;
990
991 /* The library function will deal with high == low */
992 if (i == 0)
993 high = low = i;
994 else if (i == table_len)
995 high = low = i - 1;
996 else
997 high = (low = i) - 1;
998
999 return fixp_linear_interpolate(x0: table[low].temp,
1000 y0: table[low].resistance,
1001 x1: table[high].temp,
1002 y1: table[high].resistance,
1003 x: temp);
1004}
1005EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1006
1007/**
1008 * power_supply_vbat2ri() - find the battery internal resistance
1009 * from the battery voltage
1010 * @info: The battery information container
1011 * @vbat_uv: The battery voltage in microvolt
1012 * @charging: If we are charging (true) or not (false)
1013 *
1014 * This helper function is used to look up battery internal resistance
1015 * according to current battery voltage. Depending on whether the battery
1016 * is currently charging or not, different resistance will be returned.
1017 *
1018 * Returns the internal resistance in microohm or negative error code.
1019 */
1020int power_supply_vbat2ri(struct power_supply_battery_info *info,
1021 int vbat_uv, bool charging)
1022{
1023 struct power_supply_vbat_ri_table *vbat2ri;
1024 int table_len;
1025 int i, high, low;
1026
1027 /*
1028 * If we are charging, and the battery supplies a separate table
1029 * for this state, we use that in order to compensate for the
1030 * charging voltage. Otherwise we use the main table.
1031 */
1032 if (charging && info->vbat2ri_charging) {
1033 vbat2ri = info->vbat2ri_charging;
1034 table_len = info->vbat2ri_charging_size;
1035 } else {
1036 vbat2ri = info->vbat2ri_discharging;
1037 table_len = info->vbat2ri_discharging_size;
1038 }
1039
1040 /*
1041 * If no tables are specified, or if we are above the highest voltage in
1042 * the voltage table, just return the factory specified internal resistance.
1043 */
1044 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1045 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1046 return info->factory_internal_resistance_charging_uohm;
1047 else
1048 return info->factory_internal_resistance_uohm;
1049 }
1050
1051 /* Break loop at table_len - 1 because that is the highest index */
1052 for (i = 0; i < table_len - 1; i++)
1053 if (vbat_uv > vbat2ri[i].vbat_uv)
1054 break;
1055
1056 /* The library function will deal with high == low */
1057 if ((i == 0) || (i == (table_len - 1)))
1058 high = i;
1059 else
1060 high = i - 1;
1061 low = i;
1062
1063 return fixp_linear_interpolate(x0: vbat2ri[low].vbat_uv,
1064 y0: vbat2ri[low].ri_uohm,
1065 x1: vbat2ri[high].vbat_uv,
1066 y1: vbat2ri[high].ri_uohm,
1067 x: vbat_uv);
1068}
1069EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1070
1071struct power_supply_maintenance_charge_table *
1072power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1073 int index)
1074{
1075 if (index >= info->maintenance_charge_size)
1076 return NULL;
1077 return &info->maintenance_charge[index];
1078}
1079EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1080
1081/**
1082 * power_supply_ocv2cap_simple() - find the battery capacity
1083 * @table: Pointer to battery OCV lookup table
1084 * @table_len: OCV table length
1085 * @ocv: Current OCV value
1086 *
1087 * This helper function is used to look up battery capacity according to
1088 * current OCV value from one OCV table, and the OCV table must be ordered
1089 * descending.
1090 *
1091 * Return: the battery capacity.
1092 */
1093int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1094 int table_len, int ocv)
1095{
1096 int i, high, low;
1097
1098 for (i = 0; i < table_len; i++)
1099 if (ocv > table[i].ocv)
1100 break;
1101
1102 /* The library function will deal with high == low */
1103 if (i == 0)
1104 high = low = i;
1105 else if (i == table_len)
1106 high = low = i - 1;
1107 else
1108 high = (low = i) - 1;
1109
1110 return fixp_linear_interpolate(x0: table[low].ocv,
1111 y0: table[low].capacity,
1112 x1: table[high].ocv,
1113 y1: table[high].capacity,
1114 x: ocv);
1115}
1116EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1117
1118struct power_supply_battery_ocv_table *
1119power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1120 int temp, int *table_len)
1121{
1122 int best_temp_diff = INT_MAX, temp_diff;
1123 u8 i, best_index = 0;
1124
1125 if (!info->ocv_table[0])
1126 return NULL;
1127
1128 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1129 /* Out of capacity tables */
1130 if (!info->ocv_table[i])
1131 break;
1132
1133 temp_diff = abs(info->ocv_temp[i] - temp);
1134
1135 if (temp_diff < best_temp_diff) {
1136 best_temp_diff = temp_diff;
1137 best_index = i;
1138 }
1139 }
1140
1141 *table_len = info->ocv_table_size[best_index];
1142 return info->ocv_table[best_index];
1143}
1144EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1145
1146int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1147 int ocv, int temp)
1148{
1149 struct power_supply_battery_ocv_table *table;
1150 int table_len;
1151
1152 table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1153 if (!table)
1154 return -EINVAL;
1155
1156 return power_supply_ocv2cap_simple(table, table_len, ocv);
1157}
1158EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1159
1160bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1161 int resistance)
1162{
1163 int low, high;
1164
1165 /* Nothing like this can be checked */
1166 if (info->bti_resistance_ohm <= 0)
1167 return false;
1168
1169 /* This will be extremely strict and unlikely to work */
1170 if (info->bti_resistance_tolerance <= 0)
1171 return (info->bti_resistance_ohm == resistance);
1172
1173 low = info->bti_resistance_ohm -
1174 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1175 high = info->bti_resistance_ohm +
1176 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1177
1178 return ((resistance >= low) && (resistance <= high));
1179}
1180EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1181
1182static bool psy_has_property(const struct power_supply_desc *psy_desc,
1183 enum power_supply_property psp)
1184{
1185 bool found = false;
1186 int i;
1187
1188 for (i = 0; i < psy_desc->num_properties; i++) {
1189 if (psy_desc->properties[i] == psp) {
1190 found = true;
1191 break;
1192 }
1193 }
1194
1195 return found;
1196}
1197
1198int power_supply_get_property(struct power_supply *psy,
1199 enum power_supply_property psp,
1200 union power_supply_propval *val)
1201{
1202 if (atomic_read(v: &psy->use_cnt) <= 0) {
1203 if (!psy->initialized)
1204 return -EAGAIN;
1205 return -ENODEV;
1206 }
1207
1208 if (psy_has_property(psy_desc: psy->desc, psp))
1209 return psy->desc->get_property(psy, psp, val);
1210 else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1211 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1212 else
1213 return -EINVAL;
1214}
1215EXPORT_SYMBOL_GPL(power_supply_get_property);
1216
1217int power_supply_set_property(struct power_supply *psy,
1218 enum power_supply_property psp,
1219 const union power_supply_propval *val)
1220{
1221 if (atomic_read(v: &psy->use_cnt) <= 0 || !psy->desc->set_property)
1222 return -ENODEV;
1223
1224 return psy->desc->set_property(psy, psp, val);
1225}
1226EXPORT_SYMBOL_GPL(power_supply_set_property);
1227
1228int power_supply_property_is_writeable(struct power_supply *psy,
1229 enum power_supply_property psp)
1230{
1231 if (atomic_read(v: &psy->use_cnt) <= 0 ||
1232 !psy->desc->property_is_writeable)
1233 return -ENODEV;
1234
1235 return psy->desc->property_is_writeable(psy, psp);
1236}
1237EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1238
1239void power_supply_external_power_changed(struct power_supply *psy)
1240{
1241 if (atomic_read(v: &psy->use_cnt) <= 0 ||
1242 !psy->desc->external_power_changed)
1243 return;
1244
1245 psy->desc->external_power_changed(psy);
1246}
1247EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1248
1249int power_supply_powers(struct power_supply *psy, struct device *dev)
1250{
1251 return sysfs_create_link(kobj: &psy->dev.kobj, target: &dev->kobj, name: "powers");
1252}
1253EXPORT_SYMBOL_GPL(power_supply_powers);
1254
1255static void power_supply_dev_release(struct device *dev)
1256{
1257 struct power_supply *psy = to_power_supply(dev);
1258 dev_dbg(dev, "%s\n", __func__);
1259 kfree(objp: psy);
1260}
1261
1262int power_supply_reg_notifier(struct notifier_block *nb)
1263{
1264 return blocking_notifier_chain_register(nh: &power_supply_notifier, nb);
1265}
1266EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1267
1268void power_supply_unreg_notifier(struct notifier_block *nb)
1269{
1270 blocking_notifier_chain_unregister(nh: &power_supply_notifier, nb);
1271}
1272EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1273
1274#ifdef CONFIG_THERMAL
1275static int power_supply_read_temp(struct thermal_zone_device *tzd,
1276 int *temp)
1277{
1278 struct power_supply *psy;
1279 union power_supply_propval val;
1280 int ret;
1281
1282 WARN_ON(tzd == NULL);
1283 psy = thermal_zone_device_priv(tzd);
1284 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1285 if (ret)
1286 return ret;
1287
1288 /* Convert tenths of degree Celsius to milli degree Celsius. */
1289 *temp = val.intval * 100;
1290
1291 return ret;
1292}
1293
1294static struct thermal_zone_device_ops psy_tzd_ops = {
1295 .get_temp = power_supply_read_temp,
1296};
1297
1298static int psy_register_thermal(struct power_supply *psy)
1299{
1300 int ret;
1301
1302 if (psy->desc->no_thermal)
1303 return 0;
1304
1305 /* Register battery zone device psy reports temperature */
1306 if (psy_has_property(psy_desc: psy->desc, psp: POWER_SUPPLY_PROP_TEMP)) {
1307 /* Prefer our hwmon device and avoid duplicates */
1308 struct thermal_zone_params tzp = {
1309 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1310 };
1311 psy->tzd = thermal_tripless_zone_device_register(type: psy->desc->name,
1312 devdata: psy, ops: &psy_tzd_ops, tzp: &tzp);
1313 if (IS_ERR(ptr: psy->tzd))
1314 return PTR_ERR(ptr: psy->tzd);
1315 ret = thermal_zone_device_enable(tz: psy->tzd);
1316 if (ret)
1317 thermal_zone_device_unregister(tz: psy->tzd);
1318 return ret;
1319 }
1320
1321 return 0;
1322}
1323
1324static void psy_unregister_thermal(struct power_supply *psy)
1325{
1326 if (IS_ERR_OR_NULL(ptr: psy->tzd))
1327 return;
1328 thermal_zone_device_unregister(tz: psy->tzd);
1329}
1330
1331#else
1332static int psy_register_thermal(struct power_supply *psy)
1333{
1334 return 0;
1335}
1336
1337static void psy_unregister_thermal(struct power_supply *psy)
1338{
1339}
1340#endif
1341
1342static struct power_supply *__must_check
1343__power_supply_register(struct device *parent,
1344 const struct power_supply_desc *desc,
1345 const struct power_supply_config *cfg,
1346 bool ws)
1347{
1348 struct device *dev;
1349 struct power_supply *psy;
1350 int rc;
1351
1352 if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1353 return ERR_PTR(error: -EINVAL);
1354
1355 if (!parent)
1356 pr_warn("%s: Expected proper parent device for '%s'\n",
1357 __func__, desc->name);
1358
1359 if (psy_has_property(psy_desc: desc, psp: POWER_SUPPLY_PROP_USB_TYPE) &&
1360 (!desc->usb_types || !desc->num_usb_types))
1361 return ERR_PTR(error: -EINVAL);
1362
1363 psy = kzalloc(size: sizeof(*psy), GFP_KERNEL);
1364 if (!psy)
1365 return ERR_PTR(error: -ENOMEM);
1366
1367 dev = &psy->dev;
1368
1369 device_initialize(dev);
1370
1371 dev->class = power_supply_class;
1372 dev->type = &power_supply_dev_type;
1373 dev->parent = parent;
1374 dev->release = power_supply_dev_release;
1375 dev_set_drvdata(dev, data: psy);
1376 psy->desc = desc;
1377 if (cfg) {
1378 dev->groups = cfg->attr_grp;
1379 psy->drv_data = cfg->drv_data;
1380 psy->of_node =
1381 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1382 dev->of_node = psy->of_node;
1383 psy->supplied_to = cfg->supplied_to;
1384 psy->num_supplicants = cfg->num_supplicants;
1385 }
1386
1387 rc = dev_set_name(dev, name: "%s", desc->name);
1388 if (rc)
1389 goto dev_set_name_failed;
1390
1391 INIT_WORK(&psy->changed_work, power_supply_changed_work);
1392 INIT_DELAYED_WORK(&psy->deferred_register_work,
1393 power_supply_deferred_register_work);
1394
1395 rc = power_supply_check_supplies(psy);
1396 if (rc) {
1397 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1398 goto check_supplies_failed;
1399 }
1400
1401 /*
1402 * Expose constant battery info, if it is available. While there are
1403 * some chargers accessing constant battery data, we only want to
1404 * expose battery data to userspace for battery devices.
1405 */
1406 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1407 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1408 if (rc && rc != -ENODEV && rc != -ENOENT)
1409 goto check_supplies_failed;
1410 }
1411
1412 spin_lock_init(&psy->changed_lock);
1413 rc = device_add(dev);
1414 if (rc)
1415 goto device_add_failed;
1416
1417 rc = device_init_wakeup(dev, enable: ws);
1418 if (rc)
1419 goto wakeup_init_failed;
1420
1421 rc = psy_register_thermal(psy);
1422 if (rc)
1423 goto register_thermal_failed;
1424
1425 rc = power_supply_create_triggers(psy);
1426 if (rc)
1427 goto create_triggers_failed;
1428
1429 rc = power_supply_add_hwmon_sysfs(psy);
1430 if (rc)
1431 goto add_hwmon_sysfs_failed;
1432
1433 /*
1434 * Update use_cnt after any uevents (most notably from device_add()).
1435 * We are here still during driver's probe but
1436 * the power_supply_uevent() calls back driver's get_property
1437 * method so:
1438 * 1. Driver did not assigned the returned struct power_supply,
1439 * 2. Driver could not finish initialization (anything in its probe
1440 * after calling power_supply_register()).
1441 */
1442 atomic_inc(v: &psy->use_cnt);
1443 psy->initialized = true;
1444
1445 queue_delayed_work(wq: system_power_efficient_wq,
1446 dwork: &psy->deferred_register_work,
1447 POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1448
1449 return psy;
1450
1451add_hwmon_sysfs_failed:
1452 power_supply_remove_triggers(psy);
1453create_triggers_failed:
1454 psy_unregister_thermal(psy);
1455register_thermal_failed:
1456wakeup_init_failed:
1457 device_del(dev);
1458device_add_failed:
1459check_supplies_failed:
1460dev_set_name_failed:
1461 put_device(dev);
1462 return ERR_PTR(error: rc);
1463}
1464
1465/**
1466 * power_supply_register() - Register new power supply
1467 * @parent: Device to be a parent of power supply's device, usually
1468 * the device which probe function calls this
1469 * @desc: Description of power supply, must be valid through whole
1470 * lifetime of this power supply
1471 * @cfg: Run-time specific configuration accessed during registering,
1472 * may be NULL
1473 *
1474 * Return: A pointer to newly allocated power_supply on success
1475 * or ERR_PTR otherwise.
1476 * Use power_supply_unregister() on returned power_supply pointer to release
1477 * resources.
1478 */
1479struct power_supply *__must_check power_supply_register(struct device *parent,
1480 const struct power_supply_desc *desc,
1481 const struct power_supply_config *cfg)
1482{
1483 return __power_supply_register(parent, desc, cfg, ws: true);
1484}
1485EXPORT_SYMBOL_GPL(power_supply_register);
1486
1487/**
1488 * power_supply_register_no_ws() - Register new non-waking-source power supply
1489 * @parent: Device to be a parent of power supply's device, usually
1490 * the device which probe function calls this
1491 * @desc: Description of power supply, must be valid through whole
1492 * lifetime of this power supply
1493 * @cfg: Run-time specific configuration accessed during registering,
1494 * may be NULL
1495 *
1496 * Return: A pointer to newly allocated power_supply on success
1497 * or ERR_PTR otherwise.
1498 * Use power_supply_unregister() on returned power_supply pointer to release
1499 * resources.
1500 */
1501struct power_supply *__must_check
1502power_supply_register_no_ws(struct device *parent,
1503 const struct power_supply_desc *desc,
1504 const struct power_supply_config *cfg)
1505{
1506 return __power_supply_register(parent, desc, cfg, ws: false);
1507}
1508EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1509
1510static void devm_power_supply_release(struct device *dev, void *res)
1511{
1512 struct power_supply **psy = res;
1513
1514 power_supply_unregister(psy: *psy);
1515}
1516
1517/**
1518 * devm_power_supply_register() - Register managed power supply
1519 * @parent: Device to be a parent of power supply's device, usually
1520 * the device which probe function calls this
1521 * @desc: Description of power supply, must be valid through whole
1522 * lifetime of this power supply
1523 * @cfg: Run-time specific configuration accessed during registering,
1524 * may be NULL
1525 *
1526 * Return: A pointer to newly allocated power_supply on success
1527 * or ERR_PTR otherwise.
1528 * The returned power_supply pointer will be automatically unregistered
1529 * on driver detach.
1530 */
1531struct power_supply *__must_check
1532devm_power_supply_register(struct device *parent,
1533 const struct power_supply_desc *desc,
1534 const struct power_supply_config *cfg)
1535{
1536 struct power_supply **ptr, *psy;
1537
1538 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1539
1540 if (!ptr)
1541 return ERR_PTR(error: -ENOMEM);
1542 psy = __power_supply_register(parent, desc, cfg, ws: true);
1543 if (IS_ERR(ptr: psy)) {
1544 devres_free(res: ptr);
1545 } else {
1546 *ptr = psy;
1547 devres_add(dev: parent, res: ptr);
1548 }
1549 return psy;
1550}
1551EXPORT_SYMBOL_GPL(devm_power_supply_register);
1552
1553/**
1554 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1555 * @parent: Device to be a parent of power supply's device, usually
1556 * the device which probe function calls this
1557 * @desc: Description of power supply, must be valid through whole
1558 * lifetime of this power supply
1559 * @cfg: Run-time specific configuration accessed during registering,
1560 * may be NULL
1561 *
1562 * Return: A pointer to newly allocated power_supply on success
1563 * or ERR_PTR otherwise.
1564 * The returned power_supply pointer will be automatically unregistered
1565 * on driver detach.
1566 */
1567struct power_supply *__must_check
1568devm_power_supply_register_no_ws(struct device *parent,
1569 const struct power_supply_desc *desc,
1570 const struct power_supply_config *cfg)
1571{
1572 struct power_supply **ptr, *psy;
1573
1574 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1575
1576 if (!ptr)
1577 return ERR_PTR(error: -ENOMEM);
1578 psy = __power_supply_register(parent, desc, cfg, ws: false);
1579 if (IS_ERR(ptr: psy)) {
1580 devres_free(res: ptr);
1581 } else {
1582 *ptr = psy;
1583 devres_add(dev: parent, res: ptr);
1584 }
1585 return psy;
1586}
1587EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1588
1589/**
1590 * power_supply_unregister() - Remove this power supply from system
1591 * @psy: Pointer to power supply to unregister
1592 *
1593 * Remove this power supply from the system. The resources of power supply
1594 * will be freed here or on last power_supply_put() call.
1595 */
1596void power_supply_unregister(struct power_supply *psy)
1597{
1598 WARN_ON(atomic_dec_return(&psy->use_cnt));
1599 psy->removing = true;
1600 cancel_work_sync(work: &psy->changed_work);
1601 cancel_delayed_work_sync(dwork: &psy->deferred_register_work);
1602 sysfs_remove_link(kobj: &psy->dev.kobj, name: "powers");
1603 power_supply_remove_hwmon_sysfs(psy);
1604 power_supply_remove_triggers(psy);
1605 psy_unregister_thermal(psy);
1606 device_init_wakeup(dev: &psy->dev, enable: false);
1607 device_unregister(dev: &psy->dev);
1608}
1609EXPORT_SYMBOL_GPL(power_supply_unregister);
1610
1611void *power_supply_get_drvdata(struct power_supply *psy)
1612{
1613 return psy->drv_data;
1614}
1615EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1616
1617static int __init power_supply_class_init(void)
1618{
1619 power_supply_class = class_create(name: "power_supply");
1620
1621 if (IS_ERR(ptr: power_supply_class))
1622 return PTR_ERR(ptr: power_supply_class);
1623
1624 power_supply_class->dev_uevent = power_supply_uevent;
1625 power_supply_init_attrs(dev_type: &power_supply_dev_type);
1626
1627 return 0;
1628}
1629
1630static void __exit power_supply_class_exit(void)
1631{
1632 class_destroy(cls: power_supply_class);
1633}
1634
1635subsys_initcall(power_supply_class_init);
1636module_exit(power_supply_class_exit);
1637
1638MODULE_DESCRIPTION("Universal power supply monitor class");
1639MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1640 "Szabolcs Gyurko, "
1641 "Anton Vorontsov <cbou@mail.ru>");
1642

source code of linux/drivers/power/supply/power_supply_core.c