1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2018 Spreadtrum Communications Inc.
3
4#include <linux/gpio/consumer.h>
5#include <linux/iio/consumer.h>
6#include <linux/interrupt.h>
7#include <linux/kernel.h>
8#include <linux/math64.h>
9#include <linux/module.h>
10#include <linux/nvmem-consumer.h>
11#include <linux/of.h>
12#include <linux/platform_device.h>
13#include <linux/power_supply.h>
14#include <linux/regmap.h>
15#include <linux/slab.h>
16
17/* PMIC global control registers definition */
18#define SC27XX_MODULE_EN0 0xc08
19#define SC27XX_CLK_EN0 0xc18
20#define SC27XX_FGU_EN BIT(7)
21#define SC27XX_FGU_RTC_EN BIT(6)
22
23/* FGU registers definition */
24#define SC27XX_FGU_START 0x0
25#define SC27XX_FGU_CONFIG 0x4
26#define SC27XX_FGU_ADC_CONFIG 0x8
27#define SC27XX_FGU_STATUS 0xc
28#define SC27XX_FGU_INT_EN 0x10
29#define SC27XX_FGU_INT_CLR 0x14
30#define SC27XX_FGU_INT_STS 0x1c
31#define SC27XX_FGU_VOLTAGE 0x20
32#define SC27XX_FGU_OCV 0x24
33#define SC27XX_FGU_POCV 0x28
34#define SC27XX_FGU_CURRENT 0x2c
35#define SC27XX_FGU_LOW_OVERLOAD 0x34
36#define SC27XX_FGU_CLBCNT_SETH 0x50
37#define SC27XX_FGU_CLBCNT_SETL 0x54
38#define SC27XX_FGU_CLBCNT_DELTH 0x58
39#define SC27XX_FGU_CLBCNT_DELTL 0x5c
40#define SC27XX_FGU_CLBCNT_VALH 0x68
41#define SC27XX_FGU_CLBCNT_VALL 0x6c
42#define SC27XX_FGU_CLBCNT_QMAXL 0x74
43#define SC27XX_FGU_USER_AREA_SET 0xa0
44#define SC27XX_FGU_USER_AREA_CLEAR 0xa4
45#define SC27XX_FGU_USER_AREA_STATUS 0xa8
46#define SC27XX_FGU_VOLTAGE_BUF 0xd0
47#define SC27XX_FGU_CURRENT_BUF 0xf0
48
49#define SC27XX_WRITE_SELCLB_EN BIT(0)
50#define SC27XX_FGU_CLBCNT_MASK GENMASK(15, 0)
51#define SC27XX_FGU_CLBCNT_SHIFT 16
52#define SC27XX_FGU_LOW_OVERLOAD_MASK GENMASK(12, 0)
53
54#define SC27XX_FGU_INT_MASK GENMASK(9, 0)
55#define SC27XX_FGU_LOW_OVERLOAD_INT BIT(0)
56#define SC27XX_FGU_CLBCNT_DELTA_INT BIT(2)
57
58#define SC27XX_FGU_MODE_AREA_MASK GENMASK(15, 12)
59#define SC27XX_FGU_CAP_AREA_MASK GENMASK(11, 0)
60#define SC27XX_FGU_MODE_AREA_SHIFT 12
61
62#define SC27XX_FGU_FIRST_POWERTON GENMASK(3, 0)
63#define SC27XX_FGU_DEFAULT_CAP GENMASK(11, 0)
64#define SC27XX_FGU_NORMAIL_POWERTON 0x5
65
66#define SC27XX_FGU_CUR_BASIC_ADC 8192
67#define SC27XX_FGU_SAMPLE_HZ 2
68/* micro Ohms */
69#define SC27XX_FGU_IDEAL_RESISTANCE 20000
70
71/*
72 * struct sc27xx_fgu_data: describe the FGU device
73 * @regmap: regmap for register access
74 * @dev: platform device
75 * @battery: battery power supply
76 * @base: the base offset for the controller
77 * @lock: protect the structure
78 * @gpiod: GPIO for battery detection
79 * @channel: IIO channel to get battery temperature
80 * @charge_chan: IIO channel to get charge voltage
81 * @internal_resist: the battery internal resistance in mOhm
82 * @total_cap: the total capacity of the battery in mAh
83 * @init_cap: the initial capacity of the battery in mAh
84 * @alarm_cap: the alarm capacity
85 * @init_clbcnt: the initial coulomb counter
86 * @max_volt: the maximum constant input voltage in millivolt
87 * @min_volt: the minimum drained battery voltage in microvolt
88 * @boot_volt: the voltage measured during boot in microvolt
89 * @table_len: the capacity table length
90 * @resist_table_len: the resistance table length
91 * @cur_1000ma_adc: ADC value corresponding to 1000 mA
92 * @vol_1000mv_adc: ADC value corresponding to 1000 mV
93 * @calib_resist: the real resistance of coulomb counter chip in uOhm
94 * @cap_table: capacity table with corresponding ocv
95 * @resist_table: resistance percent table with corresponding temperature
96 */
97struct sc27xx_fgu_data {
98 struct regmap *regmap;
99 struct device *dev;
100 struct power_supply *battery;
101 u32 base;
102 struct mutex lock;
103 struct gpio_desc *gpiod;
104 struct iio_channel *channel;
105 struct iio_channel *charge_chan;
106 bool bat_present;
107 int internal_resist;
108 int total_cap;
109 int init_cap;
110 int alarm_cap;
111 int init_clbcnt;
112 int max_volt;
113 int min_volt;
114 int boot_volt;
115 int table_len;
116 int resist_table_len;
117 int cur_1000ma_adc;
118 int vol_1000mv_adc;
119 int calib_resist;
120 struct power_supply_battery_ocv_table *cap_table;
121 struct power_supply_resistance_temp_table *resist_table;
122};
123
124static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity);
125static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
126 int cap, bool int_mode);
127static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap);
128static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp);
129
130static const char * const sc27xx_charger_supply_name[] = {
131 "sc2731_charger",
132 "sc2720_charger",
133 "sc2721_charger",
134 "sc2723_charger",
135};
136
137static int sc27xx_fgu_adc_to_current(struct sc27xx_fgu_data *data, s64 adc)
138{
139 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->cur_1000ma_adc);
140}
141
142static int sc27xx_fgu_adc_to_voltage(struct sc27xx_fgu_data *data, s64 adc)
143{
144 return DIV_S64_ROUND_CLOSEST(adc * 1000, data->vol_1000mv_adc);
145}
146
147static int sc27xx_fgu_voltage_to_adc(struct sc27xx_fgu_data *data, int vol)
148{
149 return DIV_ROUND_CLOSEST(vol * data->vol_1000mv_adc, 1000);
150}
151
152static bool sc27xx_fgu_is_first_poweron(struct sc27xx_fgu_data *data)
153{
154 int ret, status, cap, mode;
155
156 ret = regmap_read(map: data->regmap,
157 reg: data->base + SC27XX_FGU_USER_AREA_STATUS, val: &status);
158 if (ret)
159 return false;
160
161 /*
162 * We use low 4 bits to save the last battery capacity and high 12 bits
163 * to save the system boot mode.
164 */
165 mode = (status & SC27XX_FGU_MODE_AREA_MASK) >> SC27XX_FGU_MODE_AREA_SHIFT;
166 cap = status & SC27XX_FGU_CAP_AREA_MASK;
167
168 /*
169 * When FGU has been powered down, the user area registers became
170 * default value (0xffff), which can be used to valid if the system is
171 * first power on or not.
172 */
173 if (mode == SC27XX_FGU_FIRST_POWERTON || cap == SC27XX_FGU_DEFAULT_CAP)
174 return true;
175
176 return false;
177}
178
179static int sc27xx_fgu_save_boot_mode(struct sc27xx_fgu_data *data,
180 int boot_mode)
181{
182 int ret;
183
184 ret = regmap_update_bits(map: data->regmap,
185 reg: data->base + SC27XX_FGU_USER_AREA_CLEAR,
186 SC27XX_FGU_MODE_AREA_MASK,
187 SC27XX_FGU_MODE_AREA_MASK);
188 if (ret)
189 return ret;
190
191 /*
192 * Since the user area registers are put on power always-on region,
193 * then these registers changing time will be a little long. Thus
194 * here we should delay 200us to wait until values are updated
195 * successfully according to the datasheet.
196 */
197 udelay(200);
198
199 ret = regmap_update_bits(map: data->regmap,
200 reg: data->base + SC27XX_FGU_USER_AREA_SET,
201 SC27XX_FGU_MODE_AREA_MASK,
202 val: boot_mode << SC27XX_FGU_MODE_AREA_SHIFT);
203 if (ret)
204 return ret;
205
206 /*
207 * Since the user area registers are put on power always-on region,
208 * then these registers changing time will be a little long. Thus
209 * here we should delay 200us to wait until values are updated
210 * successfully according to the datasheet.
211 */
212 udelay(200);
213
214 /*
215 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
216 * make the user area data available, otherwise we can not save the user
217 * area data.
218 */
219 return regmap_update_bits(map: data->regmap,
220 reg: data->base + SC27XX_FGU_USER_AREA_CLEAR,
221 SC27XX_FGU_MODE_AREA_MASK, val: 0);
222}
223
224static int sc27xx_fgu_save_last_cap(struct sc27xx_fgu_data *data, int cap)
225{
226 int ret;
227
228 ret = regmap_update_bits(map: data->regmap,
229 reg: data->base + SC27XX_FGU_USER_AREA_CLEAR,
230 SC27XX_FGU_CAP_AREA_MASK,
231 SC27XX_FGU_CAP_AREA_MASK);
232 if (ret)
233 return ret;
234
235 /*
236 * Since the user area registers are put on power always-on region,
237 * then these registers changing time will be a little long. Thus
238 * here we should delay 200us to wait until values are updated
239 * successfully according to the datasheet.
240 */
241 udelay(200);
242
243 ret = regmap_update_bits(map: data->regmap,
244 reg: data->base + SC27XX_FGU_USER_AREA_SET,
245 SC27XX_FGU_CAP_AREA_MASK, val: cap);
246 if (ret)
247 return ret;
248
249 /*
250 * Since the user area registers are put on power always-on region,
251 * then these registers changing time will be a little long. Thus
252 * here we should delay 200us to wait until values are updated
253 * successfully according to the datasheet.
254 */
255 udelay(200);
256
257 /*
258 * According to the datasheet, we should set the USER_AREA_CLEAR to 0 to
259 * make the user area data available, otherwise we can not save the user
260 * area data.
261 */
262 return regmap_update_bits(map: data->regmap,
263 reg: data->base + SC27XX_FGU_USER_AREA_CLEAR,
264 SC27XX_FGU_CAP_AREA_MASK, val: 0);
265}
266
267static int sc27xx_fgu_read_last_cap(struct sc27xx_fgu_data *data, int *cap)
268{
269 int ret, value;
270
271 ret = regmap_read(map: data->regmap,
272 reg: data->base + SC27XX_FGU_USER_AREA_STATUS, val: &value);
273 if (ret)
274 return ret;
275
276 *cap = value & SC27XX_FGU_CAP_AREA_MASK;
277 return 0;
278}
279
280/*
281 * When system boots on, we can not read battery capacity from coulomb
282 * registers, since now the coulomb registers are invalid. So we should
283 * calculate the battery open circuit voltage, and get current battery
284 * capacity according to the capacity table.
285 */
286static int sc27xx_fgu_get_boot_capacity(struct sc27xx_fgu_data *data, int *cap)
287{
288 int volt, cur, oci, ocv, ret;
289 bool is_first_poweron = sc27xx_fgu_is_first_poweron(data);
290
291 /*
292 * If system is not the first power on, we should use the last saved
293 * battery capacity as the initial battery capacity. Otherwise we should
294 * re-calculate the initial battery capacity.
295 */
296 if (!is_first_poweron) {
297 ret = sc27xx_fgu_read_last_cap(data, cap);
298 if (ret)
299 return ret;
300
301 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
302 }
303
304 /*
305 * After system booting on, the SC27XX_FGU_CLBCNT_QMAXL register saved
306 * the first sampled open circuit current.
307 */
308 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_CLBCNT_QMAXL,
309 val: &cur);
310 if (ret)
311 return ret;
312
313 cur <<= 1;
314 oci = sc27xx_fgu_adc_to_current(data, adc: cur - SC27XX_FGU_CUR_BASIC_ADC);
315
316 /*
317 * Should get the OCV from SC27XX_FGU_POCV register at the system
318 * beginning. It is ADC values reading from registers which need to
319 * convert the corresponding voltage.
320 */
321 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_POCV, val: &volt);
322 if (ret)
323 return ret;
324
325 volt = sc27xx_fgu_adc_to_voltage(data, adc: volt);
326 ocv = volt * 1000 - oci * data->internal_resist;
327 data->boot_volt = ocv;
328
329 /*
330 * Parse the capacity table to look up the correct capacity percent
331 * according to current battery's corresponding OCV values.
332 */
333 *cap = power_supply_ocv2cap_simple(table: data->cap_table, table_len: data->table_len,
334 ocv);
335
336 ret = sc27xx_fgu_save_last_cap(data, cap: *cap);
337 if (ret)
338 return ret;
339
340 return sc27xx_fgu_save_boot_mode(data, SC27XX_FGU_NORMAIL_POWERTON);
341}
342
343static int sc27xx_fgu_set_clbcnt(struct sc27xx_fgu_data *data, int clbcnt)
344{
345 int ret;
346
347 ret = regmap_update_bits(map: data->regmap,
348 reg: data->base + SC27XX_FGU_CLBCNT_SETL,
349 SC27XX_FGU_CLBCNT_MASK, val: clbcnt);
350 if (ret)
351 return ret;
352
353 ret = regmap_update_bits(map: data->regmap,
354 reg: data->base + SC27XX_FGU_CLBCNT_SETH,
355 SC27XX_FGU_CLBCNT_MASK,
356 val: clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
357 if (ret)
358 return ret;
359
360 return regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_START,
361 SC27XX_WRITE_SELCLB_EN,
362 SC27XX_WRITE_SELCLB_EN);
363}
364
365static int sc27xx_fgu_get_clbcnt(struct sc27xx_fgu_data *data, int *clb_cnt)
366{
367 int ccl, cch, ret;
368
369 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_CLBCNT_VALL,
370 val: &ccl);
371 if (ret)
372 return ret;
373
374 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_CLBCNT_VALH,
375 val: &cch);
376 if (ret)
377 return ret;
378
379 *clb_cnt = ccl & SC27XX_FGU_CLBCNT_MASK;
380 *clb_cnt |= (cch & SC27XX_FGU_CLBCNT_MASK) << SC27XX_FGU_CLBCNT_SHIFT;
381
382 return 0;
383}
384
385static int sc27xx_fgu_get_vol_now(struct sc27xx_fgu_data *data, int *val)
386{
387 int ret;
388 u32 vol;
389
390 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_VOLTAGE_BUF,
391 val: &vol);
392 if (ret)
393 return ret;
394
395 /*
396 * It is ADC values reading from registers which need to convert to
397 * corresponding voltage values.
398 */
399 *val = sc27xx_fgu_adc_to_voltage(data, adc: vol);
400
401 return 0;
402}
403
404static int sc27xx_fgu_get_cur_now(struct sc27xx_fgu_data *data, int *val)
405{
406 int ret;
407 u32 cur;
408
409 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_CURRENT_BUF,
410 val: &cur);
411 if (ret)
412 return ret;
413
414 /*
415 * It is ADC values reading from registers which need to convert to
416 * corresponding current values.
417 */
418 *val = sc27xx_fgu_adc_to_current(data, adc: cur - SC27XX_FGU_CUR_BASIC_ADC);
419
420 return 0;
421}
422
423static int sc27xx_fgu_get_capacity(struct sc27xx_fgu_data *data, int *cap)
424{
425 int ret, cur_clbcnt, delta_clbcnt, delta_cap, temp;
426
427 /* Get current coulomb counters firstly */
428 ret = sc27xx_fgu_get_clbcnt(data, clb_cnt: &cur_clbcnt);
429 if (ret)
430 return ret;
431
432 delta_clbcnt = cur_clbcnt - data->init_clbcnt;
433
434 /*
435 * Convert coulomb counter to delta capacity (mAh), and set multiplier
436 * as 10 to improve the precision.
437 */
438 temp = DIV_ROUND_CLOSEST(delta_clbcnt * 10, 36 * SC27XX_FGU_SAMPLE_HZ);
439 temp = sc27xx_fgu_adc_to_current(data, adc: temp / 1000);
440
441 /*
442 * Convert to capacity percent of the battery total capacity,
443 * and multiplier is 100 too.
444 */
445 delta_cap = DIV_ROUND_CLOSEST(temp * 100, data->total_cap);
446 *cap = delta_cap + data->init_cap;
447
448 /* Calibrate the battery capacity in a normal range. */
449 sc27xx_fgu_capacity_calibration(data, cap: *cap, int_mode: false);
450
451 return 0;
452}
453
454static int sc27xx_fgu_get_vbat_vol(struct sc27xx_fgu_data *data, int *val)
455{
456 int ret, vol;
457
458 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_VOLTAGE, val: &vol);
459 if (ret)
460 return ret;
461
462 /*
463 * It is ADC values reading from registers which need to convert to
464 * corresponding voltage values.
465 */
466 *val = sc27xx_fgu_adc_to_voltage(data, adc: vol);
467
468 return 0;
469}
470
471static int sc27xx_fgu_get_current(struct sc27xx_fgu_data *data, int *val)
472{
473 int ret, cur;
474
475 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_CURRENT, val: &cur);
476 if (ret)
477 return ret;
478
479 /*
480 * It is ADC values reading from registers which need to convert to
481 * corresponding current values.
482 */
483 *val = sc27xx_fgu_adc_to_current(data, adc: cur - SC27XX_FGU_CUR_BASIC_ADC);
484
485 return 0;
486}
487
488static int sc27xx_fgu_get_vbat_ocv(struct sc27xx_fgu_data *data, int *val)
489{
490 int vol, cur, ret, temp, resistance;
491
492 ret = sc27xx_fgu_get_vbat_vol(data, val: &vol);
493 if (ret)
494 return ret;
495
496 ret = sc27xx_fgu_get_current(data, val: &cur);
497 if (ret)
498 return ret;
499
500 resistance = data->internal_resist;
501 if (data->resist_table_len > 0) {
502 ret = sc27xx_fgu_get_temp(data, temp: &temp);
503 if (ret)
504 return ret;
505
506 resistance = power_supply_temp2resist_simple(table: data->resist_table,
507 table_len: data->resist_table_len, temp);
508 resistance = data->internal_resist * resistance / 100;
509 }
510
511 /* Return the battery OCV in micro volts. */
512 *val = vol * 1000 - cur * resistance;
513
514 return 0;
515}
516
517static int sc27xx_fgu_get_charge_vol(struct sc27xx_fgu_data *data, int *val)
518{
519 int ret, vol;
520
521 ret = iio_read_channel_processed(chan: data->charge_chan, val: &vol);
522 if (ret < 0)
523 return ret;
524
525 *val = vol * 1000;
526 return 0;
527}
528
529static int sc27xx_fgu_get_temp(struct sc27xx_fgu_data *data, int *temp)
530{
531 return iio_read_channel_processed(chan: data->channel, val: temp);
532}
533
534static int sc27xx_fgu_get_health(struct sc27xx_fgu_data *data, int *health)
535{
536 int ret, vol;
537
538 ret = sc27xx_fgu_get_vbat_vol(data, val: &vol);
539 if (ret)
540 return ret;
541
542 if (vol > data->max_volt)
543 *health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
544 else
545 *health = POWER_SUPPLY_HEALTH_GOOD;
546
547 return 0;
548}
549
550static int sc27xx_fgu_get_status(struct sc27xx_fgu_data *data, int *status)
551{
552 union power_supply_propval val;
553 struct power_supply *psy;
554 int i, ret = -EINVAL;
555
556 for (i = 0; i < ARRAY_SIZE(sc27xx_charger_supply_name); i++) {
557 psy = power_supply_get_by_name(name: sc27xx_charger_supply_name[i]);
558 if (!psy)
559 continue;
560
561 ret = power_supply_get_property(psy, psp: POWER_SUPPLY_PROP_STATUS,
562 val: &val);
563 power_supply_put(psy);
564 if (ret)
565 return ret;
566
567 *status = val.intval;
568 }
569
570 return ret;
571}
572
573static int sc27xx_fgu_get_property(struct power_supply *psy,
574 enum power_supply_property psp,
575 union power_supply_propval *val)
576{
577 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
578 int ret = 0;
579 int value;
580
581 mutex_lock(&data->lock);
582
583 switch (psp) {
584 case POWER_SUPPLY_PROP_STATUS:
585 ret = sc27xx_fgu_get_status(data, status: &value);
586 if (ret)
587 goto error;
588
589 val->intval = value;
590 break;
591
592 case POWER_SUPPLY_PROP_HEALTH:
593 ret = sc27xx_fgu_get_health(data, health: &value);
594 if (ret)
595 goto error;
596
597 val->intval = value;
598 break;
599
600 case POWER_SUPPLY_PROP_PRESENT:
601 val->intval = data->bat_present;
602 break;
603
604 case POWER_SUPPLY_PROP_TEMP:
605 ret = sc27xx_fgu_get_temp(data, temp: &value);
606 if (ret)
607 goto error;
608
609 val->intval = value;
610 break;
611
612 case POWER_SUPPLY_PROP_TECHNOLOGY:
613 val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
614 break;
615
616 case POWER_SUPPLY_PROP_CAPACITY:
617 ret = sc27xx_fgu_get_capacity(data, cap: &value);
618 if (ret)
619 goto error;
620
621 val->intval = value;
622 break;
623
624 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
625 ret = sc27xx_fgu_get_vbat_vol(data, val: &value);
626 if (ret)
627 goto error;
628
629 val->intval = value * 1000;
630 break;
631
632 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
633 ret = sc27xx_fgu_get_vbat_ocv(data, val: &value);
634 if (ret)
635 goto error;
636
637 val->intval = value;
638 break;
639
640 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
641 ret = sc27xx_fgu_get_charge_vol(data, val: &value);
642 if (ret)
643 goto error;
644
645 val->intval = value;
646 break;
647
648 case POWER_SUPPLY_PROP_CURRENT_AVG:
649 ret = sc27xx_fgu_get_current(data, val: &value);
650 if (ret)
651 goto error;
652
653 val->intval = value * 1000;
654 break;
655
656 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
657 val->intval = data->total_cap * 1000;
658 break;
659
660 case POWER_SUPPLY_PROP_CHARGE_NOW:
661 ret = sc27xx_fgu_get_clbcnt(data, clb_cnt: &value);
662 if (ret)
663 goto error;
664
665 value = DIV_ROUND_CLOSEST(value * 10,
666 36 * SC27XX_FGU_SAMPLE_HZ);
667 val->intval = sc27xx_fgu_adc_to_current(data, adc: value);
668
669 break;
670
671 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
672 ret = sc27xx_fgu_get_vol_now(data, val: &value);
673 if (ret)
674 goto error;
675
676 val->intval = value * 1000;
677 break;
678
679 case POWER_SUPPLY_PROP_CURRENT_NOW:
680 ret = sc27xx_fgu_get_cur_now(data, val: &value);
681 if (ret)
682 goto error;
683
684 val->intval = value * 1000;
685 break;
686
687 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
688 val->intval = data->boot_volt;
689 break;
690
691 default:
692 ret = -EINVAL;
693 break;
694 }
695
696error:
697 mutex_unlock(lock: &data->lock);
698 return ret;
699}
700
701static int sc27xx_fgu_set_property(struct power_supply *psy,
702 enum power_supply_property psp,
703 const union power_supply_propval *val)
704{
705 struct sc27xx_fgu_data *data = power_supply_get_drvdata(psy);
706 int ret;
707
708 mutex_lock(&data->lock);
709
710 switch (psp) {
711 case POWER_SUPPLY_PROP_CAPACITY:
712 ret = sc27xx_fgu_save_last_cap(data, cap: val->intval);
713 if (ret < 0)
714 dev_err(data->dev, "failed to save battery capacity\n");
715 break;
716
717 case POWER_SUPPLY_PROP_CALIBRATE:
718 sc27xx_fgu_adjust_cap(data, cap: val->intval);
719 ret = 0;
720 break;
721
722 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
723 data->total_cap = val->intval / 1000;
724 ret = 0;
725 break;
726
727 default:
728 ret = -EINVAL;
729 }
730
731 mutex_unlock(lock: &data->lock);
732
733 return ret;
734}
735
736static int sc27xx_fgu_property_is_writeable(struct power_supply *psy,
737 enum power_supply_property psp)
738{
739 return psp == POWER_SUPPLY_PROP_CAPACITY ||
740 psp == POWER_SUPPLY_PROP_CALIBRATE ||
741 psp == POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN;
742}
743
744static enum power_supply_property sc27xx_fgu_props[] = {
745 POWER_SUPPLY_PROP_STATUS,
746 POWER_SUPPLY_PROP_HEALTH,
747 POWER_SUPPLY_PROP_PRESENT,
748 POWER_SUPPLY_PROP_TEMP,
749 POWER_SUPPLY_PROP_TECHNOLOGY,
750 POWER_SUPPLY_PROP_CAPACITY,
751 POWER_SUPPLY_PROP_VOLTAGE_NOW,
752 POWER_SUPPLY_PROP_VOLTAGE_OCV,
753 POWER_SUPPLY_PROP_VOLTAGE_AVG,
754 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
755 POWER_SUPPLY_PROP_CURRENT_NOW,
756 POWER_SUPPLY_PROP_CURRENT_AVG,
757 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
758 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
759 POWER_SUPPLY_PROP_CALIBRATE,
760 POWER_SUPPLY_PROP_CHARGE_NOW
761};
762
763static const struct power_supply_desc sc27xx_fgu_desc = {
764 .name = "sc27xx-fgu",
765 .type = POWER_SUPPLY_TYPE_BATTERY,
766 .properties = sc27xx_fgu_props,
767 .num_properties = ARRAY_SIZE(sc27xx_fgu_props),
768 .get_property = sc27xx_fgu_get_property,
769 .set_property = sc27xx_fgu_set_property,
770 .external_power_changed = power_supply_changed,
771 .property_is_writeable = sc27xx_fgu_property_is_writeable,
772 .no_thermal = true,
773};
774
775static void sc27xx_fgu_adjust_cap(struct sc27xx_fgu_data *data, int cap)
776{
777 int ret;
778
779 data->init_cap = cap;
780 ret = sc27xx_fgu_get_clbcnt(data, clb_cnt: &data->init_clbcnt);
781 if (ret)
782 dev_err(data->dev, "failed to get init coulomb counter\n");
783}
784
785static void sc27xx_fgu_capacity_calibration(struct sc27xx_fgu_data *data,
786 int cap, bool int_mode)
787{
788 int ret, ocv, chg_sts, adc;
789
790 ret = sc27xx_fgu_get_vbat_ocv(data, val: &ocv);
791 if (ret) {
792 dev_err(data->dev, "get battery ocv error.\n");
793 return;
794 }
795
796 ret = sc27xx_fgu_get_status(data, status: &chg_sts);
797 if (ret) {
798 dev_err(data->dev, "get charger status error.\n");
799 return;
800 }
801
802 /*
803 * If we are in charging mode, then we do not need to calibrate the
804 * lower capacity.
805 */
806 if (chg_sts == POWER_SUPPLY_STATUS_CHARGING)
807 return;
808
809 if ((ocv > data->cap_table[0].ocv && cap < 100) || cap > 100) {
810 /*
811 * If current OCV value is larger than the max OCV value in
812 * OCV table, or the current capacity is larger than 100,
813 * we should force the inititial capacity to 100.
814 */
815 sc27xx_fgu_adjust_cap(data, cap: 100);
816 } else if (ocv <= data->cap_table[data->table_len - 1].ocv) {
817 /*
818 * If current OCV value is leass than the minimum OCV value in
819 * OCV table, we should force the inititial capacity to 0.
820 */
821 sc27xx_fgu_adjust_cap(data, cap: 0);
822 } else if ((ocv > data->cap_table[data->table_len - 1].ocv && cap <= 0) ||
823 (ocv > data->min_volt && cap <= data->alarm_cap)) {
824 /*
825 * If current OCV value is not matchable with current capacity,
826 * we should re-calculate current capacity by looking up the
827 * OCV table.
828 */
829 int cur_cap = power_supply_ocv2cap_simple(table: data->cap_table,
830 table_len: data->table_len, ocv);
831
832 sc27xx_fgu_adjust_cap(data, cap: cur_cap);
833 } else if (ocv <= data->min_volt) {
834 /*
835 * If current OCV value is less than the low alarm voltage, but
836 * current capacity is larger than the alarm capacity, we should
837 * adjust the inititial capacity to alarm capacity.
838 */
839 if (cap > data->alarm_cap) {
840 sc27xx_fgu_adjust_cap(data, cap: data->alarm_cap);
841 } else {
842 int cur_cap;
843
844 /*
845 * If current capacity is equal with 0 or less than 0
846 * (some error occurs), we should adjust inititial
847 * capacity to the capacity corresponding to current OCV
848 * value.
849 */
850 cur_cap = power_supply_ocv2cap_simple(table: data->cap_table,
851 table_len: data->table_len,
852 ocv);
853 sc27xx_fgu_adjust_cap(data, cap: cur_cap);
854 }
855
856 if (!int_mode)
857 return;
858
859 /*
860 * After adjusting the battery capacity, we should set the
861 * lowest alarm voltage instead.
862 */
863 data->min_volt = data->cap_table[data->table_len - 1].ocv;
864 data->alarm_cap = power_supply_ocv2cap_simple(table: data->cap_table,
865 table_len: data->table_len,
866 ocv: data->min_volt);
867
868 adc = sc27xx_fgu_voltage_to_adc(data, vol: data->min_volt / 1000);
869 regmap_update_bits(map: data->regmap,
870 reg: data->base + SC27XX_FGU_LOW_OVERLOAD,
871 SC27XX_FGU_LOW_OVERLOAD_MASK, val: adc);
872 }
873}
874
875static irqreturn_t sc27xx_fgu_interrupt(int irq, void *dev_id)
876{
877 struct sc27xx_fgu_data *data = dev_id;
878 int ret, cap;
879 u32 status;
880
881 mutex_lock(&data->lock);
882
883 ret = regmap_read(map: data->regmap, reg: data->base + SC27XX_FGU_INT_STS,
884 val: &status);
885 if (ret)
886 goto out;
887
888 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_INT_CLR,
889 mask: status, val: status);
890 if (ret)
891 goto out;
892
893 /*
894 * When low overload voltage interrupt happens, we should calibrate the
895 * battery capacity in lower voltage stage.
896 */
897 if (!(status & SC27XX_FGU_LOW_OVERLOAD_INT))
898 goto out;
899
900 ret = sc27xx_fgu_get_capacity(data, cap: &cap);
901 if (ret)
902 goto out;
903
904 sc27xx_fgu_capacity_calibration(data, cap, int_mode: true);
905
906out:
907 mutex_unlock(lock: &data->lock);
908
909 power_supply_changed(psy: data->battery);
910 return IRQ_HANDLED;
911}
912
913static irqreturn_t sc27xx_fgu_bat_detection(int irq, void *dev_id)
914{
915 struct sc27xx_fgu_data *data = dev_id;
916 int state;
917
918 mutex_lock(&data->lock);
919
920 state = gpiod_get_value_cansleep(desc: data->gpiod);
921 if (state < 0) {
922 dev_err(data->dev, "failed to get gpio state\n");
923 mutex_unlock(lock: &data->lock);
924 return IRQ_RETVAL(state);
925 }
926
927 data->bat_present = !!state;
928
929 mutex_unlock(lock: &data->lock);
930
931 power_supply_changed(psy: data->battery);
932 return IRQ_HANDLED;
933}
934
935static void sc27xx_fgu_disable(void *_data)
936{
937 struct sc27xx_fgu_data *data = _data;
938
939 regmap_update_bits(map: data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, val: 0);
940 regmap_update_bits(map: data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, val: 0);
941}
942
943static int sc27xx_fgu_cap_to_clbcnt(struct sc27xx_fgu_data *data, int capacity)
944{
945 /*
946 * Get current capacity (mAh) = battery total capacity (mAh) *
947 * current capacity percent (capacity / 100).
948 */
949 int cur_cap = DIV_ROUND_CLOSEST(data->total_cap * capacity, 100);
950
951 /*
952 * Convert current capacity (mAh) to coulomb counter according to the
953 * formula: 1 mAh =3.6 coulomb.
954 */
955 return DIV_ROUND_CLOSEST(cur_cap * 36 * data->cur_1000ma_adc * SC27XX_FGU_SAMPLE_HZ, 10);
956}
957
958static int sc27xx_fgu_calibration(struct sc27xx_fgu_data *data)
959{
960 struct nvmem_cell *cell;
961 int calib_data, cal_4200mv;
962 void *buf;
963 size_t len;
964
965 cell = nvmem_cell_get(dev: data->dev, id: "fgu_calib");
966 if (IS_ERR(ptr: cell))
967 return PTR_ERR(ptr: cell);
968
969 buf = nvmem_cell_read(cell, len: &len);
970 nvmem_cell_put(cell);
971
972 if (IS_ERR(ptr: buf))
973 return PTR_ERR(ptr: buf);
974
975 memcpy(&calib_data, buf, min(len, sizeof(u32)));
976
977 /*
978 * Get the ADC value corresponding to 4200 mV from eFuse controller
979 * according to below formula. Then convert to ADC values corresponding
980 * to 1000 mV and 1000 mA.
981 */
982 cal_4200mv = (calib_data & 0x1ff) + 6963 - 4096 - 256;
983 data->vol_1000mv_adc = DIV_ROUND_CLOSEST(cal_4200mv * 10, 42);
984 data->cur_1000ma_adc =
985 DIV_ROUND_CLOSEST(data->vol_1000mv_adc * 4 * data->calib_resist,
986 SC27XX_FGU_IDEAL_RESISTANCE);
987
988 kfree(objp: buf);
989 return 0;
990}
991
992static int sc27xx_fgu_hw_init(struct sc27xx_fgu_data *data)
993{
994 struct power_supply_battery_info *info;
995 struct power_supply_battery_ocv_table *table;
996 int ret, delta_clbcnt, alarm_adc;
997
998 ret = power_supply_get_battery_info(psy: data->battery, info_out: &info);
999 if (ret) {
1000 dev_err(data->dev, "failed to get battery information\n");
1001 return ret;
1002 }
1003
1004 data->total_cap = info->charge_full_design_uah / 1000;
1005 data->max_volt = info->constant_charge_voltage_max_uv / 1000;
1006 data->internal_resist = info->factory_internal_resistance_uohm / 1000;
1007 data->min_volt = info->voltage_min_design_uv;
1008
1009 /*
1010 * For SC27XX fuel gauge device, we only use one ocv-capacity
1011 * table in normal temperature 20 Celsius.
1012 */
1013 table = power_supply_find_ocv2cap_table(info, temp: 20, table_len: &data->table_len);
1014 if (!table)
1015 return -EINVAL;
1016
1017 data->cap_table = devm_kmemdup(dev: data->dev, src: table,
1018 len: data->table_len * sizeof(*table),
1019 GFP_KERNEL);
1020 if (!data->cap_table) {
1021 power_supply_put_battery_info(psy: data->battery, info);
1022 return -ENOMEM;
1023 }
1024
1025 data->alarm_cap = power_supply_ocv2cap_simple(table: data->cap_table,
1026 table_len: data->table_len,
1027 ocv: data->min_volt);
1028 if (!data->alarm_cap)
1029 data->alarm_cap += 1;
1030
1031 data->resist_table_len = info->resist_table_size;
1032 if (data->resist_table_len > 0) {
1033 data->resist_table = devm_kmemdup(dev: data->dev, src: info->resist_table,
1034 len: data->resist_table_len *
1035 sizeof(struct power_supply_resistance_temp_table),
1036 GFP_KERNEL);
1037 if (!data->resist_table) {
1038 power_supply_put_battery_info(psy: data->battery, info);
1039 return -ENOMEM;
1040 }
1041 }
1042
1043 power_supply_put_battery_info(psy: data->battery, info);
1044
1045 ret = sc27xx_fgu_calibration(data);
1046 if (ret)
1047 return ret;
1048
1049 /* Enable the FGU module */
1050 ret = regmap_update_bits(map: data->regmap, SC27XX_MODULE_EN0,
1051 SC27XX_FGU_EN, SC27XX_FGU_EN);
1052 if (ret) {
1053 dev_err(data->dev, "failed to enable fgu\n");
1054 return ret;
1055 }
1056
1057 /* Enable the FGU RTC clock to make it work */
1058 ret = regmap_update_bits(map: data->regmap, SC27XX_CLK_EN0,
1059 SC27XX_FGU_RTC_EN, SC27XX_FGU_RTC_EN);
1060 if (ret) {
1061 dev_err(data->dev, "failed to enable fgu RTC clock\n");
1062 goto disable_fgu;
1063 }
1064
1065 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_INT_CLR,
1066 SC27XX_FGU_INT_MASK, SC27XX_FGU_INT_MASK);
1067 if (ret) {
1068 dev_err(data->dev, "failed to clear interrupt status\n");
1069 goto disable_clk;
1070 }
1071
1072 /*
1073 * Set the voltage low overload threshold, which means when the battery
1074 * voltage is lower than this threshold, the controller will generate
1075 * one interrupt to notify.
1076 */
1077 alarm_adc = sc27xx_fgu_voltage_to_adc(data, vol: data->min_volt / 1000);
1078 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_LOW_OVERLOAD,
1079 SC27XX_FGU_LOW_OVERLOAD_MASK, val: alarm_adc);
1080 if (ret) {
1081 dev_err(data->dev, "failed to set fgu low overload\n");
1082 goto disable_clk;
1083 }
1084
1085 /*
1086 * Set the coulomb counter delta threshold, that means when the coulomb
1087 * counter change is multiples of the delta threshold, the controller
1088 * will generate one interrupt to notify the users to update the battery
1089 * capacity. Now we set the delta threshold as a counter value of 1%
1090 * capacity.
1091 */
1092 delta_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, capacity: 1);
1093
1094 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_CLBCNT_DELTL,
1095 SC27XX_FGU_CLBCNT_MASK, val: delta_clbcnt);
1096 if (ret) {
1097 dev_err(data->dev, "failed to set low delta coulomb counter\n");
1098 goto disable_clk;
1099 }
1100
1101 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_CLBCNT_DELTH,
1102 SC27XX_FGU_CLBCNT_MASK,
1103 val: delta_clbcnt >> SC27XX_FGU_CLBCNT_SHIFT);
1104 if (ret) {
1105 dev_err(data->dev, "failed to set high delta coulomb counter\n");
1106 goto disable_clk;
1107 }
1108
1109 /*
1110 * Get the boot battery capacity when system powers on, which is used to
1111 * initialize the coulomb counter. After that, we can read the coulomb
1112 * counter to measure the battery capacity.
1113 */
1114 ret = sc27xx_fgu_get_boot_capacity(data, cap: &data->init_cap);
1115 if (ret) {
1116 dev_err(data->dev, "failed to get boot capacity\n");
1117 goto disable_clk;
1118 }
1119
1120 /*
1121 * Convert battery capacity to the corresponding initial coulomb counter
1122 * and set into coulomb counter registers.
1123 */
1124 data->init_clbcnt = sc27xx_fgu_cap_to_clbcnt(data, capacity: data->init_cap);
1125 ret = sc27xx_fgu_set_clbcnt(data, clbcnt: data->init_clbcnt);
1126 if (ret) {
1127 dev_err(data->dev, "failed to initialize coulomb counter\n");
1128 goto disable_clk;
1129 }
1130
1131 return 0;
1132
1133disable_clk:
1134 regmap_update_bits(map: data->regmap, SC27XX_CLK_EN0, SC27XX_FGU_RTC_EN, val: 0);
1135disable_fgu:
1136 regmap_update_bits(map: data->regmap, SC27XX_MODULE_EN0, SC27XX_FGU_EN, val: 0);
1137
1138 return ret;
1139}
1140
1141static int sc27xx_fgu_probe(struct platform_device *pdev)
1142{
1143 struct device *dev = &pdev->dev;
1144 struct device_node *np = dev->of_node;
1145 struct power_supply_config fgu_cfg = { };
1146 struct sc27xx_fgu_data *data;
1147 int ret, irq;
1148
1149 data = devm_kzalloc(dev, size: sizeof(*data), GFP_KERNEL);
1150 if (!data)
1151 return -ENOMEM;
1152
1153 data->regmap = dev_get_regmap(dev: dev->parent, NULL);
1154 if (!data->regmap) {
1155 dev_err(dev, "failed to get regmap\n");
1156 return -ENODEV;
1157 }
1158
1159 ret = device_property_read_u32(dev, propname: "reg", val: &data->base);
1160 if (ret) {
1161 dev_err(dev, "failed to get fgu address\n");
1162 return ret;
1163 }
1164
1165 ret = device_property_read_u32(dev: &pdev->dev,
1166 propname: "sprd,calib-resistance-micro-ohms",
1167 val: &data->calib_resist);
1168 if (ret) {
1169 dev_err(&pdev->dev,
1170 "failed to get fgu calibration resistance\n");
1171 return ret;
1172 }
1173
1174 data->channel = devm_iio_channel_get(dev, consumer_channel: "bat-temp");
1175 if (IS_ERR(ptr: data->channel)) {
1176 dev_err(dev, "failed to get IIO channel\n");
1177 return PTR_ERR(ptr: data->channel);
1178 }
1179
1180 data->charge_chan = devm_iio_channel_get(dev, consumer_channel: "charge-vol");
1181 if (IS_ERR(ptr: data->charge_chan)) {
1182 dev_err(dev, "failed to get charge IIO channel\n");
1183 return PTR_ERR(ptr: data->charge_chan);
1184 }
1185
1186 data->gpiod = devm_gpiod_get(dev, con_id: "bat-detect", flags: GPIOD_IN);
1187 if (IS_ERR(ptr: data->gpiod)) {
1188 dev_err(dev, "failed to get battery detection GPIO\n");
1189 return PTR_ERR(ptr: data->gpiod);
1190 }
1191
1192 ret = gpiod_get_value_cansleep(desc: data->gpiod);
1193 if (ret < 0) {
1194 dev_err(dev, "failed to get gpio state\n");
1195 return ret;
1196 }
1197
1198 data->bat_present = !!ret;
1199 mutex_init(&data->lock);
1200 data->dev = dev;
1201 platform_set_drvdata(pdev, data);
1202
1203 fgu_cfg.drv_data = data;
1204 fgu_cfg.of_node = np;
1205 data->battery = devm_power_supply_register(parent: dev, desc: &sc27xx_fgu_desc,
1206 cfg: &fgu_cfg);
1207 if (IS_ERR(ptr: data->battery)) {
1208 dev_err(dev, "failed to register power supply\n");
1209 return PTR_ERR(ptr: data->battery);
1210 }
1211
1212 ret = sc27xx_fgu_hw_init(data);
1213 if (ret) {
1214 dev_err(dev, "failed to initialize fgu hardware\n");
1215 return ret;
1216 }
1217
1218 ret = devm_add_action_or_reset(dev, sc27xx_fgu_disable, data);
1219 if (ret) {
1220 dev_err(dev, "failed to add fgu disable action\n");
1221 return ret;
1222 }
1223
1224 irq = platform_get_irq(pdev, 0);
1225 if (irq < 0)
1226 return irq;
1227
1228 ret = devm_request_threaded_irq(dev: data->dev, irq, NULL,
1229 thread_fn: sc27xx_fgu_interrupt,
1230 IRQF_NO_SUSPEND | IRQF_ONESHOT,
1231 devname: pdev->name, dev_id: data);
1232 if (ret) {
1233 dev_err(data->dev, "failed to request fgu IRQ\n");
1234 return ret;
1235 }
1236
1237 irq = gpiod_to_irq(desc: data->gpiod);
1238 if (irq < 0) {
1239 dev_err(dev, "failed to translate GPIO to IRQ\n");
1240 return irq;
1241 }
1242
1243 ret = devm_request_threaded_irq(dev, irq, NULL,
1244 thread_fn: sc27xx_fgu_bat_detection,
1245 IRQF_ONESHOT | IRQF_TRIGGER_RISING |
1246 IRQF_TRIGGER_FALLING,
1247 devname: pdev->name, dev_id: data);
1248 if (ret) {
1249 dev_err(dev, "failed to request IRQ\n");
1250 return ret;
1251 }
1252
1253 return 0;
1254}
1255
1256#ifdef CONFIG_PM_SLEEP
1257static int sc27xx_fgu_resume(struct device *dev)
1258{
1259 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1260 int ret;
1261
1262 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_INT_EN,
1263 SC27XX_FGU_LOW_OVERLOAD_INT |
1264 SC27XX_FGU_CLBCNT_DELTA_INT, val: 0);
1265 if (ret) {
1266 dev_err(data->dev, "failed to disable fgu interrupts\n");
1267 return ret;
1268 }
1269
1270 return 0;
1271}
1272
1273static int sc27xx_fgu_suspend(struct device *dev)
1274{
1275 struct sc27xx_fgu_data *data = dev_get_drvdata(dev);
1276 int ret, status, ocv;
1277
1278 ret = sc27xx_fgu_get_status(data, status: &status);
1279 if (ret)
1280 return ret;
1281
1282 /*
1283 * If we are charging, then no need to enable the FGU interrupts to
1284 * adjust the battery capacity.
1285 */
1286 if (status != POWER_SUPPLY_STATUS_NOT_CHARGING &&
1287 status != POWER_SUPPLY_STATUS_DISCHARGING)
1288 return 0;
1289
1290 ret = regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_INT_EN,
1291 SC27XX_FGU_LOW_OVERLOAD_INT,
1292 SC27XX_FGU_LOW_OVERLOAD_INT);
1293 if (ret) {
1294 dev_err(data->dev, "failed to enable low voltage interrupt\n");
1295 return ret;
1296 }
1297
1298 ret = sc27xx_fgu_get_vbat_ocv(data, val: &ocv);
1299 if (ret)
1300 goto disable_int;
1301
1302 /*
1303 * If current OCV is less than the minimum voltage, we should enable the
1304 * coulomb counter threshold interrupt to notify events to adjust the
1305 * battery capacity.
1306 */
1307 if (ocv < data->min_volt) {
1308 ret = regmap_update_bits(map: data->regmap,
1309 reg: data->base + SC27XX_FGU_INT_EN,
1310 SC27XX_FGU_CLBCNT_DELTA_INT,
1311 SC27XX_FGU_CLBCNT_DELTA_INT);
1312 if (ret) {
1313 dev_err(data->dev,
1314 "failed to enable coulomb threshold int\n");
1315 goto disable_int;
1316 }
1317 }
1318
1319 return 0;
1320
1321disable_int:
1322 regmap_update_bits(map: data->regmap, reg: data->base + SC27XX_FGU_INT_EN,
1323 SC27XX_FGU_LOW_OVERLOAD_INT, val: 0);
1324 return ret;
1325}
1326#endif
1327
1328static const struct dev_pm_ops sc27xx_fgu_pm_ops = {
1329 SET_SYSTEM_SLEEP_PM_OPS(sc27xx_fgu_suspend, sc27xx_fgu_resume)
1330};
1331
1332static const struct of_device_id sc27xx_fgu_of_match[] = {
1333 { .compatible = "sprd,sc2731-fgu", },
1334 { }
1335};
1336MODULE_DEVICE_TABLE(of, sc27xx_fgu_of_match);
1337
1338static struct platform_driver sc27xx_fgu_driver = {
1339 .probe = sc27xx_fgu_probe,
1340 .driver = {
1341 .name = "sc27xx-fgu",
1342 .of_match_table = sc27xx_fgu_of_match,
1343 .pm = &sc27xx_fgu_pm_ops,
1344 }
1345};
1346
1347module_platform_driver(sc27xx_fgu_driver);
1348
1349MODULE_DESCRIPTION("Spreadtrum SC27XX PMICs Fual Gauge Unit Driver");
1350MODULE_LICENSE("GPL v2");
1351

source code of linux/drivers/power/supply/sc27xx_fuel_gauge.c