1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Allwinner sun4i Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
6 *
7 * Limitations:
8 * - When outputing the source clock directly, the PWM logic will be bypassed
9 * and the currently running period is not guaranteed to be completed
10 */
11
12#include <linux/bitops.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/err.h>
16#include <linux/io.h>
17#include <linux/jiffies.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/platform_device.h>
21#include <linux/pwm.h>
22#include <linux/reset.h>
23#include <linux/slab.h>
24#include <linux/spinlock.h>
25#include <linux/time.h>
26
27#define PWM_CTRL_REG 0x0
28
29#define PWM_CH_PRD_BASE 0x4
30#define PWM_CH_PRD_OFFSET 0x4
31#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
32
33#define PWMCH_OFFSET 15
34#define PWM_PRESCAL_MASK GENMASK(3, 0)
35#define PWM_PRESCAL_OFF 0
36#define PWM_EN BIT(4)
37#define PWM_ACT_STATE BIT(5)
38#define PWM_CLK_GATING BIT(6)
39#define PWM_MODE BIT(7)
40#define PWM_PULSE BIT(8)
41#define PWM_BYPASS BIT(9)
42
43#define PWM_RDY_BASE 28
44#define PWM_RDY_OFFSET 1
45#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
46
47#define PWM_PRD(prd) (((prd) - 1) << 16)
48#define PWM_PRD_MASK GENMASK(15, 0)
49
50#define PWM_DTY_MASK GENMASK(15, 0)
51
52#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
53#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
54#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
55
56#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
57
58static const u32 prescaler_table[] = {
59 120,
60 180,
61 240,
62 360,
63 480,
64 0,
65 0,
66 0,
67 12000,
68 24000,
69 36000,
70 48000,
71 72000,
72 0,
73 0,
74 0, /* Actually 1 but tested separately */
75};
76
77struct sun4i_pwm_data {
78 bool has_prescaler_bypass;
79 bool has_direct_mod_clk_output;
80 unsigned int npwm;
81};
82
83struct sun4i_pwm_chip {
84 struct pwm_chip chip;
85 struct clk *bus_clk;
86 struct clk *clk;
87 struct reset_control *rst;
88 void __iomem *base;
89 spinlock_t ctrl_lock;
90 const struct sun4i_pwm_data *data;
91};
92
93static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
94{
95 return container_of(chip, struct sun4i_pwm_chip, chip);
96}
97
98static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
99 unsigned long offset)
100{
101 return readl(addr: chip->base + offset);
102}
103
104static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
105 u32 val, unsigned long offset)
106{
107 writel(val, addr: chip->base + offset);
108}
109
110static int sun4i_pwm_get_state(struct pwm_chip *chip,
111 struct pwm_device *pwm,
112 struct pwm_state *state)
113{
114 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
115 u64 clk_rate, tmp;
116 u32 val;
117 unsigned int prescaler;
118
119 clk_rate = clk_get_rate(clk: sun4i_pwm->clk);
120 if (!clk_rate)
121 return -EINVAL;
122
123 val = sun4i_pwm_readl(chip: sun4i_pwm, PWM_CTRL_REG);
124
125 /*
126 * PWM chapter in H6 manual has a diagram which explains that if bypass
127 * bit is set, no other setting has any meaning. Even more, experiment
128 * proved that also enable bit is ignored in this case.
129 */
130 if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
131 sun4i_pwm->data->has_direct_mod_clk_output) {
132 state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
133 state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
134 state->polarity = PWM_POLARITY_NORMAL;
135 state->enabled = true;
136 return 0;
137 }
138
139 if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
140 sun4i_pwm->data->has_prescaler_bypass)
141 prescaler = 1;
142 else
143 prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
144
145 if (prescaler == 0)
146 return -EINVAL;
147
148 if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
149 state->polarity = PWM_POLARITY_NORMAL;
150 else
151 state->polarity = PWM_POLARITY_INVERSED;
152
153 if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
154 BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
155 state->enabled = true;
156 else
157 state->enabled = false;
158
159 val = sun4i_pwm_readl(chip: sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
160
161 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
162 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
163
164 tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
165 state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
166
167 return 0;
168}
169
170static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
171 const struct pwm_state *state,
172 u32 *dty, u32 *prd, unsigned int *prsclr,
173 bool *bypass)
174{
175 u64 clk_rate, div = 0;
176 unsigned int prescaler = 0;
177
178 clk_rate = clk_get_rate(clk: sun4i_pwm->clk);
179
180 *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
181 state->enabled &&
182 (state->period * clk_rate >= NSEC_PER_SEC) &&
183 (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
184 (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
185
186 /* Skip calculation of other parameters if we bypass them */
187 if (*bypass)
188 return 0;
189
190 if (sun4i_pwm->data->has_prescaler_bypass) {
191 /* First, test without any prescaler when available */
192 prescaler = PWM_PRESCAL_MASK;
193 /*
194 * When not using any prescaler, the clock period in nanoseconds
195 * is not an integer so round it half up instead of
196 * truncating to get less surprising values.
197 */
198 div = clk_rate * state->period + NSEC_PER_SEC / 2;
199 do_div(div, NSEC_PER_SEC);
200 if (div - 1 > PWM_PRD_MASK)
201 prescaler = 0;
202 }
203
204 if (prescaler == 0) {
205 /* Go up from the first divider */
206 for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
207 unsigned int pval = prescaler_table[prescaler];
208
209 if (!pval)
210 continue;
211
212 div = clk_rate;
213 do_div(div, pval);
214 div = div * state->period;
215 do_div(div, NSEC_PER_SEC);
216 if (div - 1 <= PWM_PRD_MASK)
217 break;
218 }
219
220 if (div - 1 > PWM_PRD_MASK)
221 return -EINVAL;
222 }
223
224 *prd = div;
225 div *= state->duty_cycle;
226 do_div(div, state->period);
227 *dty = div;
228 *prsclr = prescaler;
229
230 return 0;
231}
232
233static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
234 const struct pwm_state *state)
235{
236 struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
237 struct pwm_state cstate;
238 u32 ctrl, duty = 0, period = 0, val;
239 int ret;
240 unsigned int delay_us, prescaler = 0;
241 bool bypass;
242
243 pwm_get_state(pwm, state: &cstate);
244
245 if (!cstate.enabled) {
246 ret = clk_prepare_enable(clk: sun4i_pwm->clk);
247 if (ret) {
248 dev_err(chip->dev, "failed to enable PWM clock\n");
249 return ret;
250 }
251 }
252
253 ret = sun4i_pwm_calculate(sun4i_pwm, state, dty: &duty, prd: &period, prsclr: &prescaler,
254 bypass: &bypass);
255 if (ret) {
256 dev_err(chip->dev, "period exceeds the maximum value\n");
257 if (!cstate.enabled)
258 clk_disable_unprepare(clk: sun4i_pwm->clk);
259 return ret;
260 }
261
262 spin_lock(lock: &sun4i_pwm->ctrl_lock);
263 ctrl = sun4i_pwm_readl(chip: sun4i_pwm, PWM_CTRL_REG);
264
265 if (sun4i_pwm->data->has_direct_mod_clk_output) {
266 if (bypass) {
267 ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
268 /* We can skip other parameter */
269 sun4i_pwm_writel(chip: sun4i_pwm, val: ctrl, PWM_CTRL_REG);
270 spin_unlock(lock: &sun4i_pwm->ctrl_lock);
271 return 0;
272 }
273
274 ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
275 }
276
277 if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
278 /* Prescaler changed, the clock has to be gated */
279 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
280 sun4i_pwm_writel(chip: sun4i_pwm, val: ctrl, PWM_CTRL_REG);
281
282 ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
283 ctrl |= BIT_CH(prescaler, pwm->hwpwm);
284 }
285
286 val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
287 sun4i_pwm_writel(chip: sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
288
289 if (state->polarity != PWM_POLARITY_NORMAL)
290 ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
291 else
292 ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
293
294 ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
295
296 if (state->enabled)
297 ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
298
299 sun4i_pwm_writel(chip: sun4i_pwm, val: ctrl, PWM_CTRL_REG);
300
301 spin_unlock(lock: &sun4i_pwm->ctrl_lock);
302
303 if (state->enabled)
304 return 0;
305
306 /* We need a full period to elapse before disabling the channel. */
307 delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC);
308 if ((delay_us / 500) > MAX_UDELAY_MS)
309 msleep(msecs: delay_us / 1000 + 1);
310 else
311 usleep_range(min: delay_us, max: delay_us * 2);
312
313 spin_lock(lock: &sun4i_pwm->ctrl_lock);
314 ctrl = sun4i_pwm_readl(chip: sun4i_pwm, PWM_CTRL_REG);
315 ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
316 ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
317 sun4i_pwm_writel(chip: sun4i_pwm, val: ctrl, PWM_CTRL_REG);
318 spin_unlock(lock: &sun4i_pwm->ctrl_lock);
319
320 clk_disable_unprepare(clk: sun4i_pwm->clk);
321
322 return 0;
323}
324
325static const struct pwm_ops sun4i_pwm_ops = {
326 .apply = sun4i_pwm_apply,
327 .get_state = sun4i_pwm_get_state,
328 .owner = THIS_MODULE,
329};
330
331static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
332 .has_prescaler_bypass = false,
333 .npwm = 2,
334};
335
336static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
337 .has_prescaler_bypass = true,
338 .npwm = 2,
339};
340
341static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
342 .has_prescaler_bypass = true,
343 .npwm = 1,
344};
345
346static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
347 .has_prescaler_bypass = true,
348 .has_direct_mod_clk_output = true,
349 .npwm = 1,
350};
351
352static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
353 .has_prescaler_bypass = true,
354 .has_direct_mod_clk_output = true,
355 .npwm = 2,
356};
357
358static const struct of_device_id sun4i_pwm_dt_ids[] = {
359 {
360 .compatible = "allwinner,sun4i-a10-pwm",
361 .data = &sun4i_pwm_dual_nobypass,
362 }, {
363 .compatible = "allwinner,sun5i-a10s-pwm",
364 .data = &sun4i_pwm_dual_bypass,
365 }, {
366 .compatible = "allwinner,sun5i-a13-pwm",
367 .data = &sun4i_pwm_single_bypass,
368 }, {
369 .compatible = "allwinner,sun7i-a20-pwm",
370 .data = &sun4i_pwm_dual_bypass,
371 }, {
372 .compatible = "allwinner,sun8i-h3-pwm",
373 .data = &sun4i_pwm_single_bypass,
374 }, {
375 .compatible = "allwinner,sun50i-a64-pwm",
376 .data = &sun50i_a64_pwm_data,
377 }, {
378 .compatible = "allwinner,sun50i-h6-pwm",
379 .data = &sun50i_h6_pwm_data,
380 }, {
381 /* sentinel */
382 },
383};
384MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
385
386static int sun4i_pwm_probe(struct platform_device *pdev)
387{
388 struct sun4i_pwm_chip *sun4ichip;
389 int ret;
390
391 sun4ichip = devm_kzalloc(dev: &pdev->dev, size: sizeof(*sun4ichip), GFP_KERNEL);
392 if (!sun4ichip)
393 return -ENOMEM;
394
395 sun4ichip->data = of_device_get_match_data(dev: &pdev->dev);
396 if (!sun4ichip->data)
397 return -ENODEV;
398
399 sun4ichip->base = devm_platform_ioremap_resource(pdev, index: 0);
400 if (IS_ERR(ptr: sun4ichip->base))
401 return PTR_ERR(ptr: sun4ichip->base);
402
403 /*
404 * All hardware variants need a source clock that is divided and
405 * then feeds the counter that defines the output wave form. In the
406 * device tree this clock is either unnamed or called "mod".
407 * Some variants (e.g. H6) need another clock to access the
408 * hardware registers; this is called "bus".
409 * So we request "mod" first (and ignore the corner case that a
410 * parent provides a "mod" clock while the right one would be the
411 * unnamed one of the PWM device) and if this is not found we fall
412 * back to the first clock of the PWM.
413 */
414 sun4ichip->clk = devm_clk_get_optional(dev: &pdev->dev, id: "mod");
415 if (IS_ERR(ptr: sun4ichip->clk))
416 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: sun4ichip->clk),
417 fmt: "get mod clock failed\n");
418
419 if (!sun4ichip->clk) {
420 sun4ichip->clk = devm_clk_get(dev: &pdev->dev, NULL);
421 if (IS_ERR(ptr: sun4ichip->clk))
422 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: sun4ichip->clk),
423 fmt: "get unnamed clock failed\n");
424 }
425
426 sun4ichip->bus_clk = devm_clk_get_optional(dev: &pdev->dev, id: "bus");
427 if (IS_ERR(ptr: sun4ichip->bus_clk))
428 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: sun4ichip->bus_clk),
429 fmt: "get bus clock failed\n");
430
431 sun4ichip->rst = devm_reset_control_get_optional_shared(dev: &pdev->dev, NULL);
432 if (IS_ERR(ptr: sun4ichip->rst))
433 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: sun4ichip->rst),
434 fmt: "get reset failed\n");
435
436 /* Deassert reset */
437 ret = reset_control_deassert(rstc: sun4ichip->rst);
438 if (ret) {
439 dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
440 ERR_PTR(ret));
441 return ret;
442 }
443
444 /*
445 * We're keeping the bus clock on for the sake of simplicity.
446 * Actually it only needs to be on for hardware register accesses.
447 */
448 ret = clk_prepare_enable(clk: sun4ichip->bus_clk);
449 if (ret) {
450 dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
451 ERR_PTR(ret));
452 goto err_bus;
453 }
454
455 sun4ichip->chip.dev = &pdev->dev;
456 sun4ichip->chip.ops = &sun4i_pwm_ops;
457 sun4ichip->chip.npwm = sun4ichip->data->npwm;
458
459 spin_lock_init(&sun4ichip->ctrl_lock);
460
461 ret = pwmchip_add(chip: &sun4ichip->chip);
462 if (ret < 0) {
463 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
464 goto err_pwm_add;
465 }
466
467 platform_set_drvdata(pdev, data: sun4ichip);
468
469 return 0;
470
471err_pwm_add:
472 clk_disable_unprepare(clk: sun4ichip->bus_clk);
473err_bus:
474 reset_control_assert(rstc: sun4ichip->rst);
475
476 return ret;
477}
478
479static void sun4i_pwm_remove(struct platform_device *pdev)
480{
481 struct sun4i_pwm_chip *sun4ichip = platform_get_drvdata(pdev);
482
483 pwmchip_remove(chip: &sun4ichip->chip);
484
485 clk_disable_unprepare(clk: sun4ichip->bus_clk);
486 reset_control_assert(rstc: sun4ichip->rst);
487}
488
489static struct platform_driver sun4i_pwm_driver = {
490 .driver = {
491 .name = "sun4i-pwm",
492 .of_match_table = sun4i_pwm_dt_ids,
493 },
494 .probe = sun4i_pwm_probe,
495 .remove_new = sun4i_pwm_remove,
496};
497module_platform_driver(sun4i_pwm_driver);
498
499MODULE_ALIAS("platform:sun4i-pwm");
500MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
501MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
502MODULE_LICENSE("GPL v2");
503

source code of linux/drivers/pwm/pwm-sun4i.c