1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(&regulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(lock: &rdev->mutex, ctx: ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(lock: &regulator_nesting_mutex);
157 ret = ww_mutex_lock(lock: &rdev->mutex, ctx: ww_ctx);
158 mutex_lock(&regulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(lock: &regulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(&regulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(lock: &rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(lock: &regulator_nesting_mutex);
208}
209
210/**
211 * regulator_lock_two - lock two regulators
212 * @rdev1: first regulator
213 * @rdev2: second regulator
214 * @ww_ctx: w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
218static void regulator_lock_two(struct regulator_dev *rdev1,
219 struct regulator_dev *rdev2,
220 struct ww_acquire_ctx *ww_ctx)
221{
222 struct regulator_dev *held, *contended;
223 int ret;
224
225 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
226
227 /* Try to just grab both of them */
228 ret = regulator_lock_nested(rdev: rdev1, ww_ctx);
229 WARN_ON(ret);
230 ret = regulator_lock_nested(rdev: rdev2, ww_ctx);
231 if (ret != -EDEADLOCK) {
232 WARN_ON(ret);
233 goto exit;
234 }
235
236 held = rdev1;
237 contended = rdev2;
238 while (true) {
239 regulator_unlock(rdev: held);
240
241 ww_mutex_lock_slow(lock: &contended->mutex, ctx: ww_ctx);
242 contended->ref_cnt++;
243 contended->mutex_owner = current;
244 swap(held, contended);
245 ret = regulator_lock_nested(rdev: contended, ww_ctx);
246
247 if (ret != -EDEADLOCK) {
248 WARN_ON(ret);
249 break;
250 }
251 }
252
253exit:
254 ww_acquire_done(ctx: ww_ctx);
255}
256
257/**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1: first regulator
260 * @rdev2: second regulator
261 * @ww_ctx: w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
266static void regulator_unlock_two(struct regulator_dev *rdev1,
267 struct regulator_dev *rdev2,
268 struct ww_acquire_ctx *ww_ctx)
269{
270 regulator_unlock(rdev: rdev2);
271 regulator_unlock(rdev: rdev1);
272 ww_acquire_fini(ctx: ww_ctx);
273}
274
275static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276{
277 struct regulator_dev *c_rdev;
278 int i;
279
280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283 if (rdev->supply->rdev == c_rdev)
284 return true;
285 }
286
287 return false;
288}
289
290static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 unsigned int n_coupled)
292{
293 struct regulator_dev *c_rdev, *supply_rdev;
294 int i, supply_n_coupled;
295
296 for (i = n_coupled; i > 0; i--) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299 if (!c_rdev)
300 continue;
301
302 if (c_rdev->supply && !regulator_supply_is_couple(rdev: c_rdev)) {
303 supply_rdev = c_rdev->supply->rdev;
304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306 regulator_unlock_recursive(rdev: supply_rdev,
307 n_coupled: supply_n_coupled);
308 }
309
310 regulator_unlock(rdev: c_rdev);
311 }
312}
313
314static int regulator_lock_recursive(struct regulator_dev *rdev,
315 struct regulator_dev **new_contended_rdev,
316 struct regulator_dev **old_contended_rdev,
317 struct ww_acquire_ctx *ww_ctx)
318{
319 struct regulator_dev *c_rdev;
320 int i, err;
321
322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325 if (!c_rdev)
326 continue;
327
328 if (c_rdev != *old_contended_rdev) {
329 err = regulator_lock_nested(rdev: c_rdev, ww_ctx);
330 if (err) {
331 if (err == -EDEADLK) {
332 *new_contended_rdev = c_rdev;
333 goto err_unlock;
334 }
335
336 /* shouldn't happen */
337 WARN_ON_ONCE(err != -EALREADY);
338 }
339 } else {
340 *old_contended_rdev = NULL;
341 }
342
343 if (c_rdev->supply && !regulator_supply_is_couple(rdev: c_rdev)) {
344 err = regulator_lock_recursive(rdev: c_rdev->supply->rdev,
345 new_contended_rdev,
346 old_contended_rdev,
347 ww_ctx);
348 if (err) {
349 regulator_unlock(rdev: c_rdev);
350 goto err_unlock;
351 }
352 }
353 }
354
355 return 0;
356
357err_unlock:
358 regulator_unlock_recursive(rdev, n_coupled: i);
359
360 return err;
361}
362
363/**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 * regulators
366 * @rdev: regulator source
367 * @ww_ctx: w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
371static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 struct ww_acquire_ctx *ww_ctx)
373{
374 regulator_unlock_recursive(rdev, n_coupled: rdev->coupling_desc.n_coupled);
375 ww_acquire_fini(ctx: ww_ctx);
376}
377
378/**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev: regulator source
381 * @ww_ctx: w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
386static void regulator_lock_dependent(struct regulator_dev *rdev,
387 struct ww_acquire_ctx *ww_ctx)
388{
389 struct regulator_dev *new_contended_rdev = NULL;
390 struct regulator_dev *old_contended_rdev = NULL;
391 int err;
392
393 mutex_lock(&regulator_list_mutex);
394
395 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
396
397 do {
398 if (new_contended_rdev) {
399 ww_mutex_lock_slow(lock: &new_contended_rdev->mutex, ctx: ww_ctx);
400 old_contended_rdev = new_contended_rdev;
401 old_contended_rdev->ref_cnt++;
402 old_contended_rdev->mutex_owner = current;
403 }
404
405 err = regulator_lock_recursive(rdev,
406 new_contended_rdev: &new_contended_rdev,
407 old_contended_rdev: &old_contended_rdev,
408 ww_ctx);
409
410 if (old_contended_rdev)
411 regulator_unlock(rdev: old_contended_rdev);
412
413 } while (err == -EDEADLK);
414
415 ww_acquire_done(ctx: ww_ctx);
416
417 mutex_unlock(lock: &regulator_list_mutex);
418}
419
420/**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
431static struct device_node *of_get_child_regulator(struct device_node *parent,
432 const char *prop_name)
433{
434 struct device_node *regnode = NULL;
435 struct device_node *child = NULL;
436
437 for_each_child_of_node(parent, child) {
438 regnode = of_parse_phandle(np: child, phandle_name: prop_name, index: 0);
439
440 if (!regnode) {
441 regnode = of_get_child_regulator(parent: child, prop_name);
442 if (regnode)
443 goto err_node_put;
444 } else {
445 goto err_node_put;
446 }
447 }
448 return NULL;
449
450err_node_put:
451 of_node_put(node: child);
452 return regnode;
453}
454
455/**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
464static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465{
466 struct device_node *regnode = NULL;
467 char prop_name[64]; /* 64 is max size of property name */
468
469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471 snprintf(buf: prop_name, size: 64, fmt: "%s-supply", supply);
472 regnode = of_parse_phandle(np: dev->of_node, phandle_name: prop_name, index: 0);
473
474 if (!regnode) {
475 regnode = of_get_child_regulator(parent: dev->of_node, prop_name);
476 if (regnode)
477 return regnode;
478
479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 prop_name, dev->of_node);
481 return NULL;
482 }
483 return regnode;
484}
485
486/* Platform voltage constraint check */
487int regulator_check_voltage(struct regulator_dev *rdev,
488 int *min_uV, int *max_uV)
489{
490 BUG_ON(*min_uV > *max_uV);
491
492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 rdev_err(rdev, "voltage operation not allowed\n");
494 return -EPERM;
495 }
496
497 if (*max_uV > rdev->constraints->max_uV)
498 *max_uV = rdev->constraints->max_uV;
499 if (*min_uV < rdev->constraints->min_uV)
500 *min_uV = rdev->constraints->min_uV;
501
502 if (*min_uV > *max_uV) {
503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 *min_uV, *max_uV);
505 return -EINVAL;
506 }
507
508 return 0;
509}
510
511/* return 0 if the state is valid */
512static int regulator_check_states(suspend_state_t state)
513{
514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515}
516
517/* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
520int regulator_check_consumers(struct regulator_dev *rdev,
521 int *min_uV, int *max_uV,
522 suspend_state_t state)
523{
524 struct regulator *regulator;
525 struct regulator_voltage *voltage;
526
527 list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 voltage = &regulator->voltage[state];
529 /*
530 * Assume consumers that didn't say anything are OK
531 * with anything in the constraint range.
532 */
533 if (!voltage->min_uV && !voltage->max_uV)
534 continue;
535
536 if (*max_uV > voltage->max_uV)
537 *max_uV = voltage->max_uV;
538 if (*min_uV < voltage->min_uV)
539 *min_uV = voltage->min_uV;
540 }
541
542 if (*min_uV > *max_uV) {
543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 *min_uV, *max_uV);
545 return -EINVAL;
546 }
547
548 return 0;
549}
550
551/* current constraint check */
552static int regulator_check_current_limit(struct regulator_dev *rdev,
553 int *min_uA, int *max_uA)
554{
555 BUG_ON(*min_uA > *max_uA);
556
557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 rdev_err(rdev, "current operation not allowed\n");
559 return -EPERM;
560 }
561
562 if (*max_uA > rdev->constraints->max_uA)
563 *max_uA = rdev->constraints->max_uA;
564 if (*min_uA < rdev->constraints->min_uA)
565 *min_uA = rdev->constraints->min_uA;
566
567 if (*min_uA > *max_uA) {
568 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 *min_uA, *max_uA);
570 return -EINVAL;
571 }
572
573 return 0;
574}
575
576/* operating mode constraint check */
577static int regulator_mode_constrain(struct regulator_dev *rdev,
578 unsigned int *mode)
579{
580 switch (*mode) {
581 case REGULATOR_MODE_FAST:
582 case REGULATOR_MODE_NORMAL:
583 case REGULATOR_MODE_IDLE:
584 case REGULATOR_MODE_STANDBY:
585 break;
586 default:
587 rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 return -EINVAL;
589 }
590
591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 rdev_err(rdev, "mode operation not allowed\n");
593 return -EPERM;
594 }
595
596 /* The modes are bitmasks, the most power hungry modes having
597 * the lowest values. If the requested mode isn't supported
598 * try higher modes.
599 */
600 while (*mode) {
601 if (rdev->constraints->valid_modes_mask & *mode)
602 return 0;
603 *mode /= 2;
604 }
605
606 return -EINVAL;
607}
608
609static inline struct regulator_state *
610regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611{
612 if (rdev->constraints == NULL)
613 return NULL;
614
615 switch (state) {
616 case PM_SUSPEND_STANDBY:
617 return &rdev->constraints->state_standby;
618 case PM_SUSPEND_MEM:
619 return &rdev->constraints->state_mem;
620 case PM_SUSPEND_MAX:
621 return &rdev->constraints->state_disk;
622 default:
623 return NULL;
624 }
625}
626
627static const struct regulator_state *
628regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629{
630 const struct regulator_state *rstate;
631
632 rstate = regulator_get_suspend_state(rdev, state);
633 if (rstate == NULL)
634 return NULL;
635
636 /* If we have no suspend mode configuration don't set anything;
637 * only warn if the driver implements set_suspend_voltage or
638 * set_suspend_mode callback.
639 */
640 if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 rstate->enabled != DISABLE_IN_SUSPEND) {
642 if (rdev->desc->ops->set_suspend_voltage ||
643 rdev->desc->ops->set_suspend_mode)
644 rdev_warn(rdev, "No configuration\n");
645 return NULL;
646 }
647
648 return rstate;
649}
650
651static ssize_t microvolts_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653{
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int uV;
656
657 regulator_lock(rdev);
658 uV = regulator_get_voltage_rdev(rdev);
659 regulator_unlock(rdev);
660
661 if (uV < 0)
662 return uV;
663 return sprintf(buf, fmt: "%d\n", uV);
664}
665static DEVICE_ATTR_RO(microvolts);
666
667static ssize_t microamps_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
669{
670 struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672 return sprintf(buf, fmt: "%d\n", _regulator_get_current_limit(rdev));
673}
674static DEVICE_ATTR_RO(microamps);
675
676static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 char *buf)
678{
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681 return sprintf(buf, fmt: "%s\n", rdev_get_name(rdev));
682}
683static DEVICE_ATTR_RO(name);
684
685static const char *regulator_opmode_to_str(int mode)
686{
687 switch (mode) {
688 case REGULATOR_MODE_FAST:
689 return "fast";
690 case REGULATOR_MODE_NORMAL:
691 return "normal";
692 case REGULATOR_MODE_IDLE:
693 return "idle";
694 case REGULATOR_MODE_STANDBY:
695 return "standby";
696 }
697 return "unknown";
698}
699
700static ssize_t regulator_print_opmode(char *buf, int mode)
701{
702 return sprintf(buf, fmt: "%s\n", regulator_opmode_to_str(mode));
703}
704
705static ssize_t opmode_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 return regulator_print_opmode(buf, mode: _regulator_get_mode(rdev));
711}
712static DEVICE_ATTR_RO(opmode);
713
714static ssize_t regulator_print_state(char *buf, int state)
715{
716 if (state > 0)
717 return sprintf(buf, fmt: "enabled\n");
718 else if (state == 0)
719 return sprintf(buf, fmt: "disabled\n");
720 else
721 return sprintf(buf, fmt: "unknown\n");
722}
723
724static ssize_t state_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726{
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728 ssize_t ret;
729
730 regulator_lock(rdev);
731 ret = regulator_print_state(buf, state: _regulator_is_enabled(rdev));
732 regulator_unlock(rdev);
733
734 return ret;
735}
736static DEVICE_ATTR_RO(state);
737
738static ssize_t status_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740{
741 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 int status;
743 char *label;
744
745 status = rdev->desc->ops->get_status(rdev);
746 if (status < 0)
747 return status;
748
749 switch (status) {
750 case REGULATOR_STATUS_OFF:
751 label = "off";
752 break;
753 case REGULATOR_STATUS_ON:
754 label = "on";
755 break;
756 case REGULATOR_STATUS_ERROR:
757 label = "error";
758 break;
759 case REGULATOR_STATUS_FAST:
760 label = "fast";
761 break;
762 case REGULATOR_STATUS_NORMAL:
763 label = "normal";
764 break;
765 case REGULATOR_STATUS_IDLE:
766 label = "idle";
767 break;
768 case REGULATOR_STATUS_STANDBY:
769 label = "standby";
770 break;
771 case REGULATOR_STATUS_BYPASS:
772 label = "bypass";
773 break;
774 case REGULATOR_STATUS_UNDEFINED:
775 label = "undefined";
776 break;
777 default:
778 return -ERANGE;
779 }
780
781 return sprintf(buf, fmt: "%s\n", label);
782}
783static DEVICE_ATTR_RO(status);
784
785static ssize_t min_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787{
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790 if (!rdev->constraints)
791 return sprintf(buf, fmt: "constraint not defined\n");
792
793 return sprintf(buf, fmt: "%d\n", rdev->constraints->min_uA);
794}
795static DEVICE_ATTR_RO(min_microamps);
796
797static ssize_t max_microamps_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
799{
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 if (!rdev->constraints)
803 return sprintf(buf, fmt: "constraint not defined\n");
804
805 return sprintf(buf, fmt: "%d\n", rdev->constraints->max_uA);
806}
807static DEVICE_ATTR_RO(max_microamps);
808
809static ssize_t min_microvolts_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811{
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 if (!rdev->constraints)
815 return sprintf(buf, fmt: "constraint not defined\n");
816
817 return sprintf(buf, fmt: "%d\n", rdev->constraints->min_uV);
818}
819static DEVICE_ATTR_RO(min_microvolts);
820
821static ssize_t max_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 if (!rdev->constraints)
827 return sprintf(buf, fmt: "constraint not defined\n");
828
829 return sprintf(buf, fmt: "%d\n", rdev->constraints->max_uV);
830}
831static DEVICE_ATTR_RO(max_microvolts);
832
833static ssize_t requested_microamps_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837 struct regulator *regulator;
838 int uA = 0;
839
840 regulator_lock(rdev);
841 list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 if (regulator->enable_count)
843 uA += regulator->uA_load;
844 }
845 regulator_unlock(rdev);
846 return sprintf(buf, fmt: "%d\n", uA);
847}
848static DEVICE_ATTR_RO(requested_microamps);
849
850static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 char *buf)
852{
853 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return sprintf(buf, fmt: "%d\n", rdev->use_count);
855}
856static DEVICE_ATTR_RO(num_users);
857
858static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 char *buf)
860{
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 switch (rdev->desc->type) {
864 case REGULATOR_VOLTAGE:
865 return sprintf(buf, fmt: "voltage\n");
866 case REGULATOR_CURRENT:
867 return sprintf(buf, fmt: "current\n");
868 }
869 return sprintf(buf, fmt: "unknown\n");
870}
871static DEVICE_ATTR_RO(type);
872
873static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_mem.uV);
879}
880static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
882static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884{
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_disk.uV);
888}
889static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
891static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893{
894 struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_standby.uV);
897}
898static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
900static ssize_t suspend_mem_mode_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902{
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_opmode(buf,
906 mode: rdev->constraints->state_mem.mode);
907}
908static DEVICE_ATTR_RO(suspend_mem_mode);
909
910static ssize_t suspend_disk_mode_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912{
913 struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915 return regulator_print_opmode(buf,
916 mode: rdev->constraints->state_disk.mode);
917}
918static DEVICE_ATTR_RO(suspend_disk_mode);
919
920static ssize_t suspend_standby_mode_show(struct device *dev,
921 struct device_attribute *attr, char *buf)
922{
923 struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925 return regulator_print_opmode(buf,
926 mode: rdev->constraints->state_standby.mode);
927}
928static DEVICE_ATTR_RO(suspend_standby_mode);
929
930static ssize_t suspend_mem_state_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
932{
933 struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935 return regulator_print_state(buf,
936 state: rdev->constraints->state_mem.enabled);
937}
938static DEVICE_ATTR_RO(suspend_mem_state);
939
940static ssize_t suspend_disk_state_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942{
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_state(buf,
946 state: rdev->constraints->state_disk.enabled);
947}
948static DEVICE_ATTR_RO(suspend_disk_state);
949
950static ssize_t suspend_standby_state_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952{
953 struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955 return regulator_print_state(buf,
956 state: rdev->constraints->state_standby.enabled);
957}
958static DEVICE_ATTR_RO(suspend_standby_state);
959
960static ssize_t bypass_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962{
963 struct regulator_dev *rdev = dev_get_drvdata(dev);
964 const char *report;
965 bool bypass;
966 int ret;
967
968 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970 if (ret != 0)
971 report = "unknown";
972 else if (bypass)
973 report = "enabled";
974 else
975 report = "disabled";
976
977 return sprintf(buf, fmt: "%s\n", report);
978}
979static DEVICE_ATTR_RO(bypass);
980
981#define REGULATOR_ERROR_ATTR(name, bit) \
982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
983 char *buf) \
984 { \
985 int ret; \
986 unsigned int flags; \
987 struct regulator_dev *rdev = dev_get_drvdata(dev); \
988 ret = _regulator_get_error_flags(rdev, &flags); \
989 if (ret) \
990 return ret; \
991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
992 } \
993 static DEVICE_ATTR_RO(name)
994
995REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005/* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
1008static int drms_uA_update(struct regulator_dev *rdev)
1009{
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /*
1047 * Unfortunately in some cases the constraints->valid_ops has
1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 * That's not really legit but we won't consider it a fatal
1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 * wasn't set.
1052 */
1053 if (!rdev->constraints->valid_modes_mask) {
1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 return 0;
1056 }
1057
1058 /* get output voltage */
1059 output_uV = regulator_get_voltage_rdev(rdev);
1060
1061 /*
1062 * Don't return an error; if regulator driver cares about
1063 * output_uV then it's up to the driver to validate.
1064 */
1065 if (output_uV <= 0)
1066 rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068 /* get input voltage */
1069 input_uV = 0;
1070 if (rdev->supply)
1071 input_uV = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
1072 if (input_uV <= 0)
1073 input_uV = rdev->constraints->input_uV;
1074
1075 /*
1076 * Don't return an error; if regulator driver cares about
1077 * input_uV then it's up to the driver to validate.
1078 */
1079 if (input_uV <= 0)
1080 rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082 /* now get the optimum mode for our new total regulator load */
1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 output_uV, current_uA);
1085
1086 /* check the new mode is allowed */
1087 err = regulator_mode_constrain(rdev, mode: &mode);
1088 if (err < 0) {
1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 return err;
1092 }
1093
1094 err = rdev->desc->ops->set_mode(rdev, mode);
1095 if (err < 0)
1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 mode, ERR_PTR(err));
1098 }
1099
1100 return err;
1101}
1102
1103static int __suspend_set_state(struct regulator_dev *rdev,
1104 const struct regulator_state *rstate)
1105{
1106 int ret = 0;
1107
1108 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 rdev->desc->ops->set_suspend_enable)
1110 ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 rdev->desc->ops->set_suspend_disable)
1113 ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 ret = 0;
1116
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 return ret;
1120 }
1121
1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 return ret;
1127 }
1128 }
1129
1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 if (ret < 0) {
1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 return ret;
1135 }
1136 }
1137
1138 return ret;
1139}
1140
1141static int suspend_set_initial_state(struct regulator_dev *rdev)
1142{
1143 const struct regulator_state *rstate;
1144
1145 rstate = regulator_get_suspend_state_check(rdev,
1146 state: rdev->constraints->initial_state);
1147 if (!rstate)
1148 return 0;
1149
1150 return __suspend_set_state(rdev, rstate);
1151}
1152
1153#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154static void print_constraints_debug(struct regulator_dev *rdev)
1155{
1156 struct regulation_constraints *constraints = rdev->constraints;
1157 char buf[160] = "";
1158 size_t len = sizeof(buf) - 1;
1159 int count = 0;
1160 int ret;
1161
1162 if (constraints->min_uV && constraints->max_uV) {
1163 if (constraints->min_uV == constraints->max_uV)
1164 count += scnprintf(buf: buf + count, size: len - count, fmt: "%d mV ",
1165 constraints->min_uV / 1000);
1166 else
1167 count += scnprintf(buf: buf + count, size: len - count,
1168 fmt: "%d <--> %d mV ",
1169 constraints->min_uV / 1000,
1170 constraints->max_uV / 1000);
1171 }
1172
1173 if (!constraints->min_uV ||
1174 constraints->min_uV != constraints->max_uV) {
1175 ret = regulator_get_voltage_rdev(rdev);
1176 if (ret > 0)
1177 count += scnprintf(buf: buf + count, size: len - count,
1178 fmt: "at %d mV ", ret / 1000);
1179 }
1180
1181 if (constraints->uV_offset)
1182 count += scnprintf(buf: buf + count, size: len - count, fmt: "%dmV offset ",
1183 constraints->uV_offset / 1000);
1184
1185 if (constraints->min_uA && constraints->max_uA) {
1186 if (constraints->min_uA == constraints->max_uA)
1187 count += scnprintf(buf: buf + count, size: len - count, fmt: "%d mA ",
1188 constraints->min_uA / 1000);
1189 else
1190 count += scnprintf(buf: buf + count, size: len - count,
1191 fmt: "%d <--> %d mA ",
1192 constraints->min_uA / 1000,
1193 constraints->max_uA / 1000);
1194 }
1195
1196 if (!constraints->min_uA ||
1197 constraints->min_uA != constraints->max_uA) {
1198 ret = _regulator_get_current_limit(rdev);
1199 if (ret > 0)
1200 count += scnprintf(buf: buf + count, size: len - count,
1201 fmt: "at %d mA ", ret / 1000);
1202 }
1203
1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 count += scnprintf(buf: buf + count, size: len - count, fmt: "fast ");
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 count += scnprintf(buf: buf + count, size: len - count, fmt: "normal ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 count += scnprintf(buf: buf + count, size: len - count, fmt: "idle ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 count += scnprintf(buf: buf + count, size: len - count, fmt: "standby ");
1212
1213 if (!count)
1214 count = scnprintf(buf, size: len, fmt: "no parameters");
1215 else
1216 --count;
1217
1218 count += scnprintf(buf: buf + count, size: len - count, fmt: ", %s",
1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221 rdev_dbg(rdev, "%s\n", buf);
1222}
1223#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
1227static void print_constraints(struct regulator_dev *rdev)
1228{
1229 struct regulation_constraints *constraints = rdev->constraints;
1230
1231 print_constraints_debug(rdev);
1232
1233 if ((constraints->min_uV != constraints->max_uV) &&
1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 rdev_warn(rdev,
1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237}
1238
1239static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 struct regulation_constraints *constraints)
1241{
1242 const struct regulator_ops *ops = rdev->desc->ops;
1243 int ret;
1244
1245 /* do we need to apply the constraint voltage */
1246 if (rdev->constraints->apply_uV &&
1247 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 int target_min, target_max;
1249 int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251 if (current_uV == -ENOTRECOVERABLE) {
1252 /* This regulator can't be read and must be initialized */
1253 rdev_info(rdev, "Setting %d-%duV\n",
1254 rdev->constraints->min_uV,
1255 rdev->constraints->max_uV);
1256 _regulator_do_set_voltage(rdev,
1257 min_uV: rdev->constraints->min_uV,
1258 max_uV: rdev->constraints->max_uV);
1259 current_uV = regulator_get_voltage_rdev(rdev);
1260 }
1261
1262 if (current_uV < 0) {
1263 if (current_uV != -EPROBE_DEFER)
1264 rdev_err(rdev,
1265 "failed to get the current voltage: %pe\n",
1266 ERR_PTR(current_uV));
1267 return current_uV;
1268 }
1269
1270 /*
1271 * If we're below the minimum voltage move up to the
1272 * minimum voltage, if we're above the maximum voltage
1273 * then move down to the maximum.
1274 */
1275 target_min = current_uV;
1276 target_max = current_uV;
1277
1278 if (current_uV < rdev->constraints->min_uV) {
1279 target_min = rdev->constraints->min_uV;
1280 target_max = rdev->constraints->min_uV;
1281 }
1282
1283 if (current_uV > rdev->constraints->max_uV) {
1284 target_min = rdev->constraints->max_uV;
1285 target_max = rdev->constraints->max_uV;
1286 }
1287
1288 if (target_min != current_uV || target_max != current_uV) {
1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 current_uV, target_min, target_max);
1291 ret = _regulator_do_set_voltage(
1292 rdev, min_uV: target_min, max_uV: target_max);
1293 if (ret < 0) {
1294 rdev_err(rdev,
1295 "failed to apply %d-%duV constraint: %pe\n",
1296 target_min, target_max, ERR_PTR(ret));
1297 return ret;
1298 }
1299 }
1300 }
1301
1302 /* constrain machine-level voltage specs to fit
1303 * the actual range supported by this regulator.
1304 */
1305 if (ops->list_voltage && rdev->desc->n_voltages) {
1306 int count = rdev->desc->n_voltages;
1307 int i;
1308 int min_uV = INT_MAX;
1309 int max_uV = INT_MIN;
1310 int cmin = constraints->min_uV;
1311 int cmax = constraints->max_uV;
1312
1313 /* it's safe to autoconfigure fixed-voltage supplies
1314 * and the constraints are used by list_voltage.
1315 */
1316 if (count == 1 && !cmin) {
1317 cmin = 1;
1318 cmax = INT_MAX;
1319 constraints->min_uV = cmin;
1320 constraints->max_uV = cmax;
1321 }
1322
1323 /* voltage constraints are optional */
1324 if ((cmin == 0) && (cmax == 0))
1325 return 0;
1326
1327 /* else require explicit machine-level constraints */
1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 rdev_err(rdev, "invalid voltage constraints\n");
1330 return -EINVAL;
1331 }
1332
1333 /* no need to loop voltages if range is continuous */
1334 if (rdev->desc->continuous_voltage_range)
1335 return 0;
1336
1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 for (i = 0; i < count; i++) {
1339 int value;
1340
1341 value = ops->list_voltage(rdev, i);
1342 if (value <= 0)
1343 continue;
1344
1345 /* maybe adjust [min_uV..max_uV] */
1346 if (value >= cmin && value < min_uV)
1347 min_uV = value;
1348 if (value <= cmax && value > max_uV)
1349 max_uV = value;
1350 }
1351
1352 /* final: [min_uV..max_uV] valid iff constraints valid */
1353 if (max_uV < min_uV) {
1354 rdev_err(rdev,
1355 "unsupportable voltage constraints %u-%uuV\n",
1356 min_uV, max_uV);
1357 return -EINVAL;
1358 }
1359
1360 /* use regulator's subset of machine constraints */
1361 if (constraints->min_uV < min_uV) {
1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 constraints->min_uV, min_uV);
1364 constraints->min_uV = min_uV;
1365 }
1366 if (constraints->max_uV > max_uV) {
1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 constraints->max_uV, max_uV);
1369 constraints->max_uV = max_uV;
1370 }
1371 }
1372
1373 return 0;
1374}
1375
1376static int machine_constraints_current(struct regulator_dev *rdev,
1377 struct regulation_constraints *constraints)
1378{
1379 const struct regulator_ops *ops = rdev->desc->ops;
1380 int ret;
1381
1382 if (!constraints->min_uA && !constraints->max_uA)
1383 return 0;
1384
1385 if (constraints->min_uA > constraints->max_uA) {
1386 rdev_err(rdev, "Invalid current constraints\n");
1387 return -EINVAL;
1388 }
1389
1390 if (!ops->set_current_limit || !ops->get_current_limit) {
1391 rdev_warn(rdev, "Operation of current configuration missing\n");
1392 return 0;
1393 }
1394
1395 /* Set regulator current in constraints range */
1396 ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 constraints->max_uA);
1398 if (ret < 0) {
1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 return ret;
1401 }
1402
1403 return 0;
1404}
1405
1406static int _regulator_do_enable(struct regulator_dev *rdev);
1407
1408static int notif_set_limit(struct regulator_dev *rdev,
1409 int (*set)(struct regulator_dev *, int, int, bool),
1410 int limit, int severity)
1411{
1412 bool enable;
1413
1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 enable = false;
1416 limit = 0;
1417 } else {
1418 enable = true;
1419 }
1420
1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 limit = 0;
1423
1424 return set(rdev, limit, severity, enable);
1425}
1426
1427static int handle_notify_limits(struct regulator_dev *rdev,
1428 int (*set)(struct regulator_dev *, int, int, bool),
1429 struct notification_limit *limits)
1430{
1431 int ret = 0;
1432
1433 if (!set)
1434 return -EOPNOTSUPP;
1435
1436 if (limits->prot)
1437 ret = notif_set_limit(rdev, set, limit: limits->prot,
1438 severity: REGULATOR_SEVERITY_PROT);
1439 if (ret)
1440 return ret;
1441
1442 if (limits->err)
1443 ret = notif_set_limit(rdev, set, limit: limits->err,
1444 severity: REGULATOR_SEVERITY_ERR);
1445 if (ret)
1446 return ret;
1447
1448 if (limits->warn)
1449 ret = notif_set_limit(rdev, set, limit: limits->warn,
1450 severity: REGULATOR_SEVERITY_WARN);
1451
1452 return ret;
1453}
1454/**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
1464static int set_machine_constraints(struct regulator_dev *rdev)
1465{
1466 int ret = 0;
1467 const struct regulator_ops *ops = rdev->desc->ops;
1468
1469 ret = machine_constraints_voltage(rdev, constraints: rdev->constraints);
1470 if (ret != 0)
1471 return ret;
1472
1473 ret = machine_constraints_current(rdev, constraints: rdev->constraints);
1474 if (ret != 0)
1475 return ret;
1476
1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 ret = ops->set_input_current_limit(rdev,
1479 rdev->constraints->ilim_uA);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 }
1485
1486 /* do we need to setup our suspend state */
1487 if (rdev->constraints->initial_state) {
1488 ret = suspend_set_initial_state(rdev);
1489 if (ret < 0) {
1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 return ret;
1492 }
1493 }
1494
1495 if (rdev->constraints->initial_mode) {
1496 if (!ops->set_mode) {
1497 rdev_err(rdev, "no set_mode operation\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 if (ret < 0) {
1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 return ret;
1505 }
1506 } else if (rdev->constraints->system_load) {
1507 /*
1508 * We'll only apply the initial system load if an
1509 * initial mode wasn't specified.
1510 */
1511 drms_uA_update(rdev);
1512 }
1513
1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 && ops->set_ramp_delay) {
1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 if (ret < 0) {
1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 return ret;
1520 }
1521 }
1522
1523 if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 ret = ops->set_pull_down(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 return ret;
1528 }
1529 }
1530
1531 if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 ret = ops->set_soft_start(rdev);
1533 if (ret < 0) {
1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 return ret;
1536 }
1537 }
1538
1539 /*
1540 * Existing logic does not warn if over_current_protection is given as
1541 * a constraint but driver does not support that. I think we should
1542 * warn about this type of issues as it is possible someone changes
1543 * PMIC on board to another type - and the another PMIC's driver does
1544 * not support setting protection. Board composer may happily believe
1545 * the DT limits are respected - especially if the new PMIC HW also
1546 * supports protection but the driver does not. I won't change the logic
1547 * without hearing more experienced opinion on this though.
1548 *
1549 * If warning is seen as a good idea then we can merge handling the
1550 * over-curret protection and detection and get rid of this special
1551 * handling.
1552 */
1553 if (rdev->constraints->over_current_protection
1554 && ops->set_over_current_protection) {
1555 int lim = rdev->constraints->over_curr_limits.prot;
1556
1557 ret = ops->set_over_current_protection(rdev, lim,
1558 REGULATOR_SEVERITY_PROT,
1559 true);
1560 if (ret < 0) {
1561 rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 ERR_PTR(ret));
1563 return ret;
1564 }
1565 }
1566
1567 if (rdev->constraints->over_current_detection)
1568 ret = handle_notify_limits(rdev,
1569 set: ops->set_over_current_protection,
1570 limits: &rdev->constraints->over_curr_limits);
1571 if (ret) {
1572 if (ret != -EOPNOTSUPP) {
1573 rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 ERR_PTR(ret));
1575 return ret;
1576 }
1577 rdev_warn(rdev,
1578 "IC does not support requested over-current limits\n");
1579 }
1580
1581 if (rdev->constraints->over_voltage_detection)
1582 ret = handle_notify_limits(rdev,
1583 set: ops->set_over_voltage_protection,
1584 limits: &rdev->constraints->over_voltage_limits);
1585 if (ret) {
1586 if (ret != -EOPNOTSUPP) {
1587 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 ERR_PTR(ret));
1589 return ret;
1590 }
1591 rdev_warn(rdev,
1592 "IC does not support requested over voltage limits\n");
1593 }
1594
1595 if (rdev->constraints->under_voltage_detection)
1596 ret = handle_notify_limits(rdev,
1597 set: ops->set_under_voltage_protection,
1598 limits: &rdev->constraints->under_voltage_limits);
1599 if (ret) {
1600 if (ret != -EOPNOTSUPP) {
1601 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 ERR_PTR(ret));
1603 return ret;
1604 }
1605 rdev_warn(rdev,
1606 "IC does not support requested under voltage limits\n");
1607 }
1608
1609 if (rdev->constraints->over_temp_detection)
1610 ret = handle_notify_limits(rdev,
1611 set: ops->set_thermal_protection,
1612 limits: &rdev->constraints->temp_limits);
1613 if (ret) {
1614 if (ret != -EOPNOTSUPP) {
1615 rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 ERR_PTR(ret));
1617 return ret;
1618 }
1619 rdev_warn(rdev,
1620 "IC does not support requested temperature limits\n");
1621 }
1622
1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 bool ad_state = (rdev->constraints->active_discharge ==
1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627 ret = ops->set_active_discharge(rdev, ad_state);
1628 if (ret < 0) {
1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 return ret;
1631 }
1632 }
1633
1634 /*
1635 * If there is no mechanism for controlling the regulator then
1636 * flag it as always_on so we don't end up duplicating checks
1637 * for this so much. Note that we could control the state of
1638 * a supply to control the output on a regulator that has no
1639 * direct control.
1640 */
1641 if (!rdev->ena_pin && !ops->enable) {
1642 if (rdev->supply_name && !rdev->supply)
1643 return -EPROBE_DEFER;
1644
1645 if (rdev->supply)
1646 rdev->constraints->always_on =
1647 rdev->supply->rdev->constraints->always_on;
1648 else
1649 rdev->constraints->always_on = true;
1650 }
1651
1652 /* If the constraints say the regulator should be on at this point
1653 * and we have control then make sure it is enabled.
1654 */
1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 /* If we want to enable this regulator, make sure that we know
1657 * the supplying regulator.
1658 */
1659 if (rdev->supply_name && !rdev->supply)
1660 return -EPROBE_DEFER;
1661
1662 /* If supplying regulator has already been enabled,
1663 * it's not intended to have use_count increment
1664 * when rdev is only boot-on.
1665 */
1666 if (rdev->supply &&
1667 (rdev->constraints->always_on ||
1668 !regulator_is_enabled(regulator: rdev->supply))) {
1669 ret = regulator_enable(regulator: rdev->supply);
1670 if (ret < 0) {
1671 _regulator_put(regulator: rdev->supply);
1672 rdev->supply = NULL;
1673 return ret;
1674 }
1675 }
1676
1677 ret = _regulator_do_enable(rdev);
1678 if (ret < 0 && ret != -EINVAL) {
1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 return ret;
1681 }
1682
1683 if (rdev->constraints->always_on)
1684 rdev->use_count++;
1685 } else if (rdev->desc->off_on_delay) {
1686 rdev->last_off = ktime_get();
1687 }
1688
1689 print_constraints(rdev);
1690 return 0;
1691}
1692
1693/**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
1702static int set_supply(struct regulator_dev *rdev,
1703 struct regulator_dev *supply_rdev)
1704{
1705 int err;
1706
1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709 if (!try_module_get(module: supply_rdev->owner))
1710 return -ENODEV;
1711
1712 rdev->supply = create_regulator(rdev: supply_rdev, dev: &rdev->dev, supply_name: "SUPPLY");
1713 if (rdev->supply == NULL) {
1714 module_put(module: supply_rdev->owner);
1715 err = -ENOMEM;
1716 return err;
1717 }
1718 supply_rdev->open_count++;
1719
1720 return 0;
1721}
1722
1723/**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev: regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply: symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices. Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
1734static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 const char *consumer_dev_name,
1736 const char *supply)
1737{
1738 struct regulator_map *node, *new_node;
1739 int has_dev;
1740
1741 if (supply == NULL)
1742 return -EINVAL;
1743
1744 if (consumer_dev_name != NULL)
1745 has_dev = 1;
1746 else
1747 has_dev = 0;
1748
1749 new_node = kzalloc(size: sizeof(struct regulator_map), GFP_KERNEL);
1750 if (new_node == NULL)
1751 return -ENOMEM;
1752
1753 new_node->regulator = rdev;
1754 new_node->supply = supply;
1755
1756 if (has_dev) {
1757 new_node->dev_name = kstrdup(s: consumer_dev_name, GFP_KERNEL);
1758 if (new_node->dev_name == NULL) {
1759 kfree(objp: new_node);
1760 return -ENOMEM;
1761 }
1762 }
1763
1764 mutex_lock(&regulator_list_mutex);
1765 list_for_each_entry(node, &regulator_map_list, list) {
1766 if (node->dev_name && consumer_dev_name) {
1767 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 continue;
1769 } else if (node->dev_name || consumer_dev_name) {
1770 continue;
1771 }
1772
1773 if (strcmp(node->supply, supply) != 0)
1774 continue;
1775
1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 consumer_dev_name,
1778 dev_name(&node->regulator->dev),
1779 node->regulator->desc->name,
1780 supply,
1781 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 goto fail;
1783 }
1784
1785 list_add(new: &new_node->list, head: &regulator_map_list);
1786 mutex_unlock(lock: &regulator_list_mutex);
1787
1788 return 0;
1789
1790fail:
1791 mutex_unlock(lock: &regulator_list_mutex);
1792 kfree(objp: new_node->dev_name);
1793 kfree(objp: new_node);
1794 return -EBUSY;
1795}
1796
1797static void unset_regulator_supplies(struct regulator_dev *rdev)
1798{
1799 struct regulator_map *node, *n;
1800
1801 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1802 if (rdev == node->regulator) {
1803 list_del(entry: &node->list);
1804 kfree(objp: node->dev_name);
1805 kfree(objp: node);
1806 }
1807 }
1808}
1809
1810#ifdef CONFIG_DEBUG_FS
1811static ssize_t constraint_flags_read_file(struct file *file,
1812 char __user *user_buf,
1813 size_t count, loff_t *ppos)
1814{
1815 const struct regulator *regulator = file->private_data;
1816 const struct regulation_constraints *c = regulator->rdev->constraints;
1817 char *buf;
1818 ssize_t ret;
1819
1820 if (!c)
1821 return 0;
1822
1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 if (!buf)
1825 return -ENOMEM;
1826
1827 ret = snprintf(buf, PAGE_SIZE,
1828 fmt: "always_on: %u\n"
1829 "boot_on: %u\n"
1830 "apply_uV: %u\n"
1831 "ramp_disable: %u\n"
1832 "soft_start: %u\n"
1833 "pull_down: %u\n"
1834 "over_current_protection: %u\n",
1835 c->always_on,
1836 c->boot_on,
1837 c->apply_uV,
1838 c->ramp_disable,
1839 c->soft_start,
1840 c->pull_down,
1841 c->over_current_protection);
1842
1843 ret = simple_read_from_buffer(to: user_buf, count, ppos, from: buf, available: ret);
1844 kfree(objp: buf);
1845
1846 return ret;
1847}
1848
1849#endif
1850
1851static const struct file_operations constraint_flags_fops = {
1852#ifdef CONFIG_DEBUG_FS
1853 .open = simple_open,
1854 .read = constraint_flags_read_file,
1855 .llseek = default_llseek,
1856#endif
1857};
1858
1859#define REG_STR_SIZE 64
1860
1861static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 struct device *dev,
1863 const char *supply_name)
1864{
1865 struct regulator *regulator;
1866 int err = 0;
1867
1868 lockdep_assert_held_once(&rdev->mutex.base);
1869
1870 if (dev) {
1871 char buf[REG_STR_SIZE];
1872 int size;
1873
1874 size = snprintf(buf, REG_STR_SIZE, fmt: "%s-%s",
1875 dev->kobj.name, supply_name);
1876 if (size >= REG_STR_SIZE)
1877 return NULL;
1878
1879 supply_name = kstrdup(s: buf, GFP_KERNEL);
1880 if (supply_name == NULL)
1881 return NULL;
1882 } else {
1883 supply_name = kstrdup_const(s: supply_name, GFP_KERNEL);
1884 if (supply_name == NULL)
1885 return NULL;
1886 }
1887
1888 regulator = kzalloc(size: sizeof(*regulator), GFP_KERNEL);
1889 if (regulator == NULL) {
1890 kfree_const(x: supply_name);
1891 return NULL;
1892 }
1893
1894 regulator->rdev = rdev;
1895 regulator->supply_name = supply_name;
1896
1897 list_add(new: &regulator->list, head: &rdev->consumer_list);
1898
1899 if (dev) {
1900 regulator->dev = dev;
1901
1902 /* Add a link to the device sysfs entry */
1903 err = sysfs_create_link_nowarn(kobj: &rdev->dev.kobj, target: &dev->kobj,
1904 name: supply_name);
1905 if (err) {
1906 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 dev->kobj.name, ERR_PTR(err));
1908 /* non-fatal */
1909 }
1910 }
1911
1912 if (err != -EEXIST)
1913 regulator->debugfs = debugfs_create_dir(name: supply_name, parent: rdev->debugfs);
1914 if (IS_ERR(ptr: regulator->debugfs))
1915 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916
1917 debugfs_create_u32(name: "uA_load", mode: 0444, parent: regulator->debugfs,
1918 value: &regulator->uA_load);
1919 debugfs_create_u32(name: "min_uV", mode: 0444, parent: regulator->debugfs,
1920 value: &regulator->voltage[PM_SUSPEND_ON].min_uV);
1921 debugfs_create_u32(name: "max_uV", mode: 0444, parent: regulator->debugfs,
1922 value: &regulator->voltage[PM_SUSPEND_ON].max_uV);
1923 debugfs_create_file(name: "constraint_flags", mode: 0444, parent: regulator->debugfs,
1924 data: regulator, fops: &constraint_flags_fops);
1925
1926 /*
1927 * Check now if the regulator is an always on regulator - if
1928 * it is then we don't need to do nearly so much work for
1929 * enable/disable calls.
1930 */
1931 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1932 _regulator_is_enabled(rdev))
1933 regulator->always_on = true;
1934
1935 return regulator;
1936}
1937
1938static int _regulator_get_enable_time(struct regulator_dev *rdev)
1939{
1940 if (rdev->constraints && rdev->constraints->enable_time)
1941 return rdev->constraints->enable_time;
1942 if (rdev->desc->ops->enable_time)
1943 return rdev->desc->ops->enable_time(rdev);
1944 return rdev->desc->enable_time;
1945}
1946
1947static struct regulator_supply_alias *regulator_find_supply_alias(
1948 struct device *dev, const char *supply)
1949{
1950 struct regulator_supply_alias *map;
1951
1952 list_for_each_entry(map, &regulator_supply_alias_list, list)
1953 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1954 return map;
1955
1956 return NULL;
1957}
1958
1959static void regulator_supply_alias(struct device **dev, const char **supply)
1960{
1961 struct regulator_supply_alias *map;
1962
1963 map = regulator_find_supply_alias(dev: *dev, supply: *supply);
1964 if (map) {
1965 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1966 *supply, map->alias_supply,
1967 dev_name(map->alias_dev));
1968 *dev = map->alias_dev;
1969 *supply = map->alias_supply;
1970 }
1971}
1972
1973static int regulator_match(struct device *dev, const void *data)
1974{
1975 struct regulator_dev *r = dev_to_rdev(dev);
1976
1977 return strcmp(rdev_get_name(r), data) == 0;
1978}
1979
1980static struct regulator_dev *regulator_lookup_by_name(const char *name)
1981{
1982 struct device *dev;
1983
1984 dev = class_find_device(class: &regulator_class, NULL, data: name, match: regulator_match);
1985
1986 return dev ? dev_to_rdev(dev) : NULL;
1987}
1988
1989/**
1990 * regulator_dev_lookup - lookup a regulator device.
1991 * @dev: device for regulator "consumer".
1992 * @supply: Supply name or regulator ID.
1993 *
1994 * If successful, returns a struct regulator_dev that corresponds to the name
1995 * @supply and with the embedded struct device refcount incremented by one.
1996 * The refcount must be dropped by calling put_device().
1997 * On failure one of the following ERR-PTR-encoded values is returned:
1998 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1999 * in the future.
2000 */
2001static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2002 const char *supply)
2003{
2004 struct regulator_dev *r = NULL;
2005 struct device_node *node;
2006 struct regulator_map *map;
2007 const char *devname = NULL;
2008
2009 regulator_supply_alias(dev: &dev, supply: &supply);
2010
2011 /* first do a dt based lookup */
2012 if (dev && dev->of_node) {
2013 node = of_get_regulator(dev, supply);
2014 if (node) {
2015 r = of_find_regulator_by_node(np: node);
2016 of_node_put(node);
2017 if (r)
2018 return r;
2019
2020 /*
2021 * We have a node, but there is no device.
2022 * assume it has not registered yet.
2023 */
2024 return ERR_PTR(error: -EPROBE_DEFER);
2025 }
2026 }
2027
2028 /* if not found, try doing it non-dt way */
2029 if (dev)
2030 devname = dev_name(dev);
2031
2032 mutex_lock(&regulator_list_mutex);
2033 list_for_each_entry(map, &regulator_map_list, list) {
2034 /* If the mapping has a device set up it must match */
2035 if (map->dev_name &&
2036 (!devname || strcmp(map->dev_name, devname)))
2037 continue;
2038
2039 if (strcmp(map->supply, supply) == 0 &&
2040 get_device(dev: &map->regulator->dev)) {
2041 r = map->regulator;
2042 break;
2043 }
2044 }
2045 mutex_unlock(lock: &regulator_list_mutex);
2046
2047 if (r)
2048 return r;
2049
2050 r = regulator_lookup_by_name(name: supply);
2051 if (r)
2052 return r;
2053
2054 return ERR_PTR(error: -ENODEV);
2055}
2056
2057static int regulator_resolve_supply(struct regulator_dev *rdev)
2058{
2059 struct regulator_dev *r;
2060 struct device *dev = rdev->dev.parent;
2061 struct ww_acquire_ctx ww_ctx;
2062 int ret = 0;
2063
2064 /* No supply to resolve? */
2065 if (!rdev->supply_name)
2066 return 0;
2067
2068 /* Supply already resolved? (fast-path without locking contention) */
2069 if (rdev->supply)
2070 return 0;
2071
2072 r = regulator_dev_lookup(dev, supply: rdev->supply_name);
2073 if (IS_ERR(ptr: r)) {
2074 ret = PTR_ERR(ptr: r);
2075
2076 /* Did the lookup explicitly defer for us? */
2077 if (ret == -EPROBE_DEFER)
2078 goto out;
2079
2080 if (have_full_constraints()) {
2081 r = dummy_regulator_rdev;
2082 get_device(dev: &r->dev);
2083 } else {
2084 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2085 rdev->supply_name, rdev->desc->name);
2086 ret = -EPROBE_DEFER;
2087 goto out;
2088 }
2089 }
2090
2091 if (r == rdev) {
2092 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2093 rdev->desc->name, rdev->supply_name);
2094 if (!have_full_constraints()) {
2095 ret = -EINVAL;
2096 goto out;
2097 }
2098 r = dummy_regulator_rdev;
2099 get_device(dev: &r->dev);
2100 }
2101
2102 /*
2103 * If the supply's parent device is not the same as the
2104 * regulator's parent device, then ensure the parent device
2105 * is bound before we resolve the supply, in case the parent
2106 * device get probe deferred and unregisters the supply.
2107 */
2108 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2109 if (!device_is_bound(dev: r->dev.parent)) {
2110 put_device(dev: &r->dev);
2111 ret = -EPROBE_DEFER;
2112 goto out;
2113 }
2114 }
2115
2116 /* Recursively resolve the supply of the supply */
2117 ret = regulator_resolve_supply(rdev: r);
2118 if (ret < 0) {
2119 put_device(dev: &r->dev);
2120 goto out;
2121 }
2122
2123 /*
2124 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2125 * between rdev->supply null check and setting rdev->supply in
2126 * set_supply() from concurrent tasks.
2127 */
2128 regulator_lock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2129
2130 /* Supply just resolved by a concurrent task? */
2131 if (rdev->supply) {
2132 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2133 put_device(dev: &r->dev);
2134 goto out;
2135 }
2136
2137 ret = set_supply(rdev, supply_rdev: r);
2138 if (ret < 0) {
2139 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2140 put_device(dev: &r->dev);
2141 goto out;
2142 }
2143
2144 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2145
2146 /*
2147 * In set_machine_constraints() we may have turned this regulator on
2148 * but we couldn't propagate to the supply if it hadn't been resolved
2149 * yet. Do it now.
2150 */
2151 if (rdev->use_count) {
2152 ret = regulator_enable(regulator: rdev->supply);
2153 if (ret < 0) {
2154 _regulator_put(regulator: rdev->supply);
2155 rdev->supply = NULL;
2156 goto out;
2157 }
2158 }
2159
2160out:
2161 return ret;
2162}
2163
2164/* Internal regulator request function */
2165struct regulator *_regulator_get(struct device *dev, const char *id,
2166 enum regulator_get_type get_type)
2167{
2168 struct regulator_dev *rdev;
2169 struct regulator *regulator;
2170 struct device_link *link;
2171 int ret;
2172
2173 if (get_type >= MAX_GET_TYPE) {
2174 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2175 return ERR_PTR(error: -EINVAL);
2176 }
2177
2178 if (id == NULL) {
2179 pr_err("get() with no identifier\n");
2180 return ERR_PTR(error: -EINVAL);
2181 }
2182
2183 rdev = regulator_dev_lookup(dev, supply: id);
2184 if (IS_ERR(ptr: rdev)) {
2185 ret = PTR_ERR(ptr: rdev);
2186
2187 /*
2188 * If regulator_dev_lookup() fails with error other
2189 * than -ENODEV our job here is done, we simply return it.
2190 */
2191 if (ret != -ENODEV)
2192 return ERR_PTR(error: ret);
2193
2194 if (!have_full_constraints()) {
2195 dev_warn(dev,
2196 "incomplete constraints, dummy supplies not allowed\n");
2197 return ERR_PTR(error: -ENODEV);
2198 }
2199
2200 switch (get_type) {
2201 case NORMAL_GET:
2202 /*
2203 * Assume that a regulator is physically present and
2204 * enabled, even if it isn't hooked up, and just
2205 * provide a dummy.
2206 */
2207 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2208 rdev = dummy_regulator_rdev;
2209 get_device(dev: &rdev->dev);
2210 break;
2211
2212 case EXCLUSIVE_GET:
2213 dev_warn(dev,
2214 "dummy supplies not allowed for exclusive requests\n");
2215 fallthrough;
2216
2217 default:
2218 return ERR_PTR(error: -ENODEV);
2219 }
2220 }
2221
2222 if (rdev->exclusive) {
2223 regulator = ERR_PTR(error: -EPERM);
2224 put_device(dev: &rdev->dev);
2225 return regulator;
2226 }
2227
2228 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2229 regulator = ERR_PTR(error: -EBUSY);
2230 put_device(dev: &rdev->dev);
2231 return regulator;
2232 }
2233
2234 mutex_lock(&regulator_list_mutex);
2235 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2236 mutex_unlock(lock: &regulator_list_mutex);
2237
2238 if (ret != 0) {
2239 regulator = ERR_PTR(error: -EPROBE_DEFER);
2240 put_device(dev: &rdev->dev);
2241 return regulator;
2242 }
2243
2244 ret = regulator_resolve_supply(rdev);
2245 if (ret < 0) {
2246 regulator = ERR_PTR(error: ret);
2247 put_device(dev: &rdev->dev);
2248 return regulator;
2249 }
2250
2251 if (!try_module_get(module: rdev->owner)) {
2252 regulator = ERR_PTR(error: -EPROBE_DEFER);
2253 put_device(dev: &rdev->dev);
2254 return regulator;
2255 }
2256
2257 regulator_lock(rdev);
2258 regulator = create_regulator(rdev, dev, supply_name: id);
2259 regulator_unlock(rdev);
2260 if (regulator == NULL) {
2261 regulator = ERR_PTR(error: -ENOMEM);
2262 module_put(module: rdev->owner);
2263 put_device(dev: &rdev->dev);
2264 return regulator;
2265 }
2266
2267 rdev->open_count++;
2268 if (get_type == EXCLUSIVE_GET) {
2269 rdev->exclusive = 1;
2270
2271 ret = _regulator_is_enabled(rdev);
2272 if (ret > 0) {
2273 rdev->use_count = 1;
2274 regulator->enable_count = 1;
2275 } else {
2276 rdev->use_count = 0;
2277 regulator->enable_count = 0;
2278 }
2279 }
2280
2281 link = device_link_add(consumer: dev, supplier: &rdev->dev, DL_FLAG_STATELESS);
2282 if (!IS_ERR_OR_NULL(ptr: link))
2283 regulator->device_link = true;
2284
2285 return regulator;
2286}
2287
2288/**
2289 * regulator_get - lookup and obtain a reference to a regulator.
2290 * @dev: device for regulator "consumer"
2291 * @id: Supply name or regulator ID.
2292 *
2293 * Returns a struct regulator corresponding to the regulator producer,
2294 * or IS_ERR() condition containing errno.
2295 *
2296 * Use of supply names configured via set_consumer_device_supply() is
2297 * strongly encouraged. It is recommended that the supply name used
2298 * should match the name used for the supply and/or the relevant
2299 * device pins in the datasheet.
2300 */
2301struct regulator *regulator_get(struct device *dev, const char *id)
2302{
2303 return _regulator_get(dev, id, get_type: NORMAL_GET);
2304}
2305EXPORT_SYMBOL_GPL(regulator_get);
2306
2307/**
2308 * regulator_get_exclusive - obtain exclusive access to a regulator.
2309 * @dev: device for regulator "consumer"
2310 * @id: Supply name or regulator ID.
2311 *
2312 * Returns a struct regulator corresponding to the regulator producer,
2313 * or IS_ERR() condition containing errno. Other consumers will be
2314 * unable to obtain this regulator while this reference is held and the
2315 * use count for the regulator will be initialised to reflect the current
2316 * state of the regulator.
2317 *
2318 * This is intended for use by consumers which cannot tolerate shared
2319 * use of the regulator such as those which need to force the
2320 * regulator off for correct operation of the hardware they are
2321 * controlling.
2322 *
2323 * Use of supply names configured via set_consumer_device_supply() is
2324 * strongly encouraged. It is recommended that the supply name used
2325 * should match the name used for the supply and/or the relevant
2326 * device pins in the datasheet.
2327 */
2328struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2329{
2330 return _regulator_get(dev, id, get_type: EXCLUSIVE_GET);
2331}
2332EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2333
2334/**
2335 * regulator_get_optional - obtain optional access to a regulator.
2336 * @dev: device for regulator "consumer"
2337 * @id: Supply name or regulator ID.
2338 *
2339 * Returns a struct regulator corresponding to the regulator producer,
2340 * or IS_ERR() condition containing errno.
2341 *
2342 * This is intended for use by consumers for devices which can have
2343 * some supplies unconnected in normal use, such as some MMC devices.
2344 * It can allow the regulator core to provide stub supplies for other
2345 * supplies requested using normal regulator_get() calls without
2346 * disrupting the operation of drivers that can handle absent
2347 * supplies.
2348 *
2349 * Use of supply names configured via set_consumer_device_supply() is
2350 * strongly encouraged. It is recommended that the supply name used
2351 * should match the name used for the supply and/or the relevant
2352 * device pins in the datasheet.
2353 */
2354struct regulator *regulator_get_optional(struct device *dev, const char *id)
2355{
2356 return _regulator_get(dev, id, get_type: OPTIONAL_GET);
2357}
2358EXPORT_SYMBOL_GPL(regulator_get_optional);
2359
2360static void destroy_regulator(struct regulator *regulator)
2361{
2362 struct regulator_dev *rdev = regulator->rdev;
2363
2364 debugfs_remove_recursive(dentry: regulator->debugfs);
2365
2366 if (regulator->dev) {
2367 if (regulator->device_link)
2368 device_link_remove(consumer: regulator->dev, supplier: &rdev->dev);
2369
2370 /* remove any sysfs entries */
2371 sysfs_remove_link(kobj: &rdev->dev.kobj, name: regulator->supply_name);
2372 }
2373
2374 regulator_lock(rdev);
2375 list_del(entry: &regulator->list);
2376
2377 rdev->open_count--;
2378 rdev->exclusive = 0;
2379 regulator_unlock(rdev);
2380
2381 kfree_const(x: regulator->supply_name);
2382 kfree(objp: regulator);
2383}
2384
2385/* regulator_list_mutex lock held by regulator_put() */
2386static void _regulator_put(struct regulator *regulator)
2387{
2388 struct regulator_dev *rdev;
2389
2390 if (IS_ERR_OR_NULL(ptr: regulator))
2391 return;
2392
2393 lockdep_assert_held_once(&regulator_list_mutex);
2394
2395 /* Docs say you must disable before calling regulator_put() */
2396 WARN_ON(regulator->enable_count);
2397
2398 rdev = regulator->rdev;
2399
2400 destroy_regulator(regulator);
2401
2402 module_put(module: rdev->owner);
2403 put_device(dev: &rdev->dev);
2404}
2405
2406/**
2407 * regulator_put - "free" the regulator source
2408 * @regulator: regulator source
2409 *
2410 * Note: drivers must ensure that all regulator_enable calls made on this
2411 * regulator source are balanced by regulator_disable calls prior to calling
2412 * this function.
2413 */
2414void regulator_put(struct regulator *regulator)
2415{
2416 mutex_lock(&regulator_list_mutex);
2417 _regulator_put(regulator);
2418 mutex_unlock(lock: &regulator_list_mutex);
2419}
2420EXPORT_SYMBOL_GPL(regulator_put);
2421
2422/**
2423 * regulator_register_supply_alias - Provide device alias for supply lookup
2424 *
2425 * @dev: device that will be given as the regulator "consumer"
2426 * @id: Supply name or regulator ID
2427 * @alias_dev: device that should be used to lookup the supply
2428 * @alias_id: Supply name or regulator ID that should be used to lookup the
2429 * supply
2430 *
2431 * All lookups for id on dev will instead be conducted for alias_id on
2432 * alias_dev.
2433 */
2434int regulator_register_supply_alias(struct device *dev, const char *id,
2435 struct device *alias_dev,
2436 const char *alias_id)
2437{
2438 struct regulator_supply_alias *map;
2439
2440 map = regulator_find_supply_alias(dev, supply: id);
2441 if (map)
2442 return -EEXIST;
2443
2444 map = kzalloc(size: sizeof(struct regulator_supply_alias), GFP_KERNEL);
2445 if (!map)
2446 return -ENOMEM;
2447
2448 map->src_dev = dev;
2449 map->src_supply = id;
2450 map->alias_dev = alias_dev;
2451 map->alias_supply = alias_id;
2452
2453 list_add(new: &map->list, head: &regulator_supply_alias_list);
2454
2455 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2456 id, dev_name(dev), alias_id, dev_name(alias_dev));
2457
2458 return 0;
2459}
2460EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2461
2462/**
2463 * regulator_unregister_supply_alias - Remove device alias
2464 *
2465 * @dev: device that will be given as the regulator "consumer"
2466 * @id: Supply name or regulator ID
2467 *
2468 * Remove a lookup alias if one exists for id on dev.
2469 */
2470void regulator_unregister_supply_alias(struct device *dev, const char *id)
2471{
2472 struct regulator_supply_alias *map;
2473
2474 map = regulator_find_supply_alias(dev, supply: id);
2475 if (map) {
2476 list_del(entry: &map->list);
2477 kfree(objp: map);
2478 }
2479}
2480EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2481
2482/**
2483 * regulator_bulk_register_supply_alias - register multiple aliases
2484 *
2485 * @dev: device that will be given as the regulator "consumer"
2486 * @id: List of supply names or regulator IDs
2487 * @alias_dev: device that should be used to lookup the supply
2488 * @alias_id: List of supply names or regulator IDs that should be used to
2489 * lookup the supply
2490 * @num_id: Number of aliases to register
2491 *
2492 * @return 0 on success, an errno on failure.
2493 *
2494 * This helper function allows drivers to register several supply
2495 * aliases in one operation. If any of the aliases cannot be
2496 * registered any aliases that were registered will be removed
2497 * before returning to the caller.
2498 */
2499int regulator_bulk_register_supply_alias(struct device *dev,
2500 const char *const *id,
2501 struct device *alias_dev,
2502 const char *const *alias_id,
2503 int num_id)
2504{
2505 int i;
2506 int ret;
2507
2508 for (i = 0; i < num_id; ++i) {
2509 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2510 alias_id[i]);
2511 if (ret < 0)
2512 goto err;
2513 }
2514
2515 return 0;
2516
2517err:
2518 dev_err(dev,
2519 "Failed to create supply alias %s,%s -> %s,%s\n",
2520 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2521
2522 while (--i >= 0)
2523 regulator_unregister_supply_alias(dev, id[i]);
2524
2525 return ret;
2526}
2527EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2528
2529/**
2530 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2531 *
2532 * @dev: device that will be given as the regulator "consumer"
2533 * @id: List of supply names or regulator IDs
2534 * @num_id: Number of aliases to unregister
2535 *
2536 * This helper function allows drivers to unregister several supply
2537 * aliases in one operation.
2538 */
2539void regulator_bulk_unregister_supply_alias(struct device *dev,
2540 const char *const *id,
2541 int num_id)
2542{
2543 int i;
2544
2545 for (i = 0; i < num_id; ++i)
2546 regulator_unregister_supply_alias(dev, id[i]);
2547}
2548EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2549
2550
2551/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2552static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2553 const struct regulator_config *config)
2554{
2555 struct regulator_enable_gpio *pin, *new_pin;
2556 struct gpio_desc *gpiod;
2557
2558 gpiod = config->ena_gpiod;
2559 new_pin = kzalloc(size: sizeof(*new_pin), GFP_KERNEL);
2560
2561 mutex_lock(&regulator_list_mutex);
2562
2563 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2564 if (pin->gpiod == gpiod) {
2565 rdev_dbg(rdev, "GPIO is already used\n");
2566 goto update_ena_gpio_to_rdev;
2567 }
2568 }
2569
2570 if (new_pin == NULL) {
2571 mutex_unlock(lock: &regulator_list_mutex);
2572 return -ENOMEM;
2573 }
2574
2575 pin = new_pin;
2576 new_pin = NULL;
2577
2578 pin->gpiod = gpiod;
2579 list_add(new: &pin->list, head: &regulator_ena_gpio_list);
2580
2581update_ena_gpio_to_rdev:
2582 pin->request_count++;
2583 rdev->ena_pin = pin;
2584
2585 mutex_unlock(lock: &regulator_list_mutex);
2586 kfree(objp: new_pin);
2587
2588 return 0;
2589}
2590
2591static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2592{
2593 struct regulator_enable_gpio *pin, *n;
2594
2595 if (!rdev->ena_pin)
2596 return;
2597
2598 /* Free the GPIO only in case of no use */
2599 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2600 if (pin != rdev->ena_pin)
2601 continue;
2602
2603 if (--pin->request_count)
2604 break;
2605
2606 gpiod_put(desc: pin->gpiod);
2607 list_del(entry: &pin->list);
2608 kfree(objp: pin);
2609 break;
2610 }
2611
2612 rdev->ena_pin = NULL;
2613}
2614
2615/**
2616 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2617 * @rdev: regulator_dev structure
2618 * @enable: enable GPIO at initial use?
2619 *
2620 * GPIO is enabled in case of initial use. (enable_count is 0)
2621 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2622 */
2623static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2624{
2625 struct regulator_enable_gpio *pin = rdev->ena_pin;
2626
2627 if (!pin)
2628 return -EINVAL;
2629
2630 if (enable) {
2631 /* Enable GPIO at initial use */
2632 if (pin->enable_count == 0)
2633 gpiod_set_value_cansleep(desc: pin->gpiod, value: 1);
2634
2635 pin->enable_count++;
2636 } else {
2637 if (pin->enable_count > 1) {
2638 pin->enable_count--;
2639 return 0;
2640 }
2641
2642 /* Disable GPIO if not used */
2643 if (pin->enable_count <= 1) {
2644 gpiod_set_value_cansleep(desc: pin->gpiod, value: 0);
2645 pin->enable_count = 0;
2646 }
2647 }
2648
2649 return 0;
2650}
2651
2652/**
2653 * _regulator_delay_helper - a delay helper function
2654 * @delay: time to delay in microseconds
2655 *
2656 * Delay for the requested amount of time as per the guidelines in:
2657 *
2658 * Documentation/timers/timers-howto.rst
2659 *
2660 * The assumption here is that these regulator operations will never used in
2661 * atomic context and therefore sleeping functions can be used.
2662 */
2663static void _regulator_delay_helper(unsigned int delay)
2664{
2665 unsigned int ms = delay / 1000;
2666 unsigned int us = delay % 1000;
2667
2668 if (ms > 0) {
2669 /*
2670 * For small enough values, handle super-millisecond
2671 * delays in the usleep_range() call below.
2672 */
2673 if (ms < 20)
2674 us += ms * 1000;
2675 else
2676 msleep(msecs: ms);
2677 }
2678
2679 /*
2680 * Give the scheduler some room to coalesce with any other
2681 * wakeup sources. For delays shorter than 10 us, don't even
2682 * bother setting up high-resolution timers and just busy-
2683 * loop.
2684 */
2685 if (us >= 10)
2686 usleep_range(min: us, max: us + 100);
2687 else
2688 udelay(us);
2689}
2690
2691/**
2692 * _regulator_check_status_enabled
2693 *
2694 * A helper function to check if the regulator status can be interpreted
2695 * as 'regulator is enabled'.
2696 * @rdev: the regulator device to check
2697 *
2698 * Return:
2699 * * 1 - if status shows regulator is in enabled state
2700 * * 0 - if not enabled state
2701 * * Error Value - as received from ops->get_status()
2702 */
2703static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2704{
2705 int ret = rdev->desc->ops->get_status(rdev);
2706
2707 if (ret < 0) {
2708 rdev_info(rdev, "get_status returned error: %d\n", ret);
2709 return ret;
2710 }
2711
2712 switch (ret) {
2713 case REGULATOR_STATUS_OFF:
2714 case REGULATOR_STATUS_ERROR:
2715 case REGULATOR_STATUS_UNDEFINED:
2716 return 0;
2717 default:
2718 return 1;
2719 }
2720}
2721
2722static int _regulator_do_enable(struct regulator_dev *rdev)
2723{
2724 int ret, delay;
2725
2726 /* Query before enabling in case configuration dependent. */
2727 ret = _regulator_get_enable_time(rdev);
2728 if (ret >= 0) {
2729 delay = ret;
2730 } else {
2731 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2732 delay = 0;
2733 }
2734
2735 trace_regulator_enable(name: rdev_get_name(rdev));
2736
2737 if (rdev->desc->off_on_delay) {
2738 /* if needed, keep a distance of off_on_delay from last time
2739 * this regulator was disabled.
2740 */
2741 ktime_t end = ktime_add_us(kt: rdev->last_off, usec: rdev->desc->off_on_delay);
2742 s64 remaining = ktime_us_delta(later: end, earlier: ktime_get_boottime());
2743
2744 if (remaining > 0)
2745 _regulator_delay_helper(delay: remaining);
2746 }
2747
2748 if (rdev->ena_pin) {
2749 if (!rdev->ena_gpio_state) {
2750 ret = regulator_ena_gpio_ctrl(rdev, enable: true);
2751 if (ret < 0)
2752 return ret;
2753 rdev->ena_gpio_state = 1;
2754 }
2755 } else if (rdev->desc->ops->enable) {
2756 ret = rdev->desc->ops->enable(rdev);
2757 if (ret < 0)
2758 return ret;
2759 } else {
2760 return -EINVAL;
2761 }
2762
2763 /* Allow the regulator to ramp; it would be useful to extend
2764 * this for bulk operations so that the regulators can ramp
2765 * together.
2766 */
2767 trace_regulator_enable_delay(name: rdev_get_name(rdev));
2768
2769 /* If poll_enabled_time is set, poll upto the delay calculated
2770 * above, delaying poll_enabled_time uS to check if the regulator
2771 * actually got enabled.
2772 * If the regulator isn't enabled after our delay helper has expired,
2773 * return -ETIMEDOUT.
2774 */
2775 if (rdev->desc->poll_enabled_time) {
2776 int time_remaining = delay;
2777
2778 while (time_remaining > 0) {
2779 _regulator_delay_helper(delay: rdev->desc->poll_enabled_time);
2780
2781 if (rdev->desc->ops->get_status) {
2782 ret = _regulator_check_status_enabled(rdev);
2783 if (ret < 0)
2784 return ret;
2785 else if (ret)
2786 break;
2787 } else if (rdev->desc->ops->is_enabled(rdev))
2788 break;
2789
2790 time_remaining -= rdev->desc->poll_enabled_time;
2791 }
2792
2793 if (time_remaining <= 0) {
2794 rdev_err(rdev, "Enabled check timed out\n");
2795 return -ETIMEDOUT;
2796 }
2797 } else {
2798 _regulator_delay_helper(delay);
2799 }
2800
2801 trace_regulator_enable_complete(name: rdev_get_name(rdev));
2802
2803 return 0;
2804}
2805
2806/**
2807 * _regulator_handle_consumer_enable - handle that a consumer enabled
2808 * @regulator: regulator source
2809 *
2810 * Some things on a regulator consumer (like the contribution towards total
2811 * load on the regulator) only have an effect when the consumer wants the
2812 * regulator enabled. Explained in example with two consumers of the same
2813 * regulator:
2814 * consumer A: set_load(100); => total load = 0
2815 * consumer A: regulator_enable(); => total load = 100
2816 * consumer B: set_load(1000); => total load = 100
2817 * consumer B: regulator_enable(); => total load = 1100
2818 * consumer A: regulator_disable(); => total_load = 1000
2819 *
2820 * This function (together with _regulator_handle_consumer_disable) is
2821 * responsible for keeping track of the refcount for a given regulator consumer
2822 * and applying / unapplying these things.
2823 *
2824 * Returns 0 upon no error; -error upon error.
2825 */
2826static int _regulator_handle_consumer_enable(struct regulator *regulator)
2827{
2828 int ret;
2829 struct regulator_dev *rdev = regulator->rdev;
2830
2831 lockdep_assert_held_once(&rdev->mutex.base);
2832
2833 regulator->enable_count++;
2834 if (regulator->uA_load && regulator->enable_count == 1) {
2835 ret = drms_uA_update(rdev);
2836 if (ret)
2837 regulator->enable_count--;
2838 return ret;
2839 }
2840
2841 return 0;
2842}
2843
2844/**
2845 * _regulator_handle_consumer_disable - handle that a consumer disabled
2846 * @regulator: regulator source
2847 *
2848 * The opposite of _regulator_handle_consumer_enable().
2849 *
2850 * Returns 0 upon no error; -error upon error.
2851 */
2852static int _regulator_handle_consumer_disable(struct regulator *regulator)
2853{
2854 struct regulator_dev *rdev = regulator->rdev;
2855
2856 lockdep_assert_held_once(&rdev->mutex.base);
2857
2858 if (!regulator->enable_count) {
2859 rdev_err(rdev, "Underflow of regulator enable count\n");
2860 return -EINVAL;
2861 }
2862
2863 regulator->enable_count--;
2864 if (regulator->uA_load && regulator->enable_count == 0)
2865 return drms_uA_update(rdev);
2866
2867 return 0;
2868}
2869
2870/* locks held by regulator_enable() */
2871static int _regulator_enable(struct regulator *regulator)
2872{
2873 struct regulator_dev *rdev = regulator->rdev;
2874 int ret;
2875
2876 lockdep_assert_held_once(&rdev->mutex.base);
2877
2878 if (rdev->use_count == 0 && rdev->supply) {
2879 ret = _regulator_enable(regulator: rdev->supply);
2880 if (ret < 0)
2881 return ret;
2882 }
2883
2884 /* balance only if there are regulators coupled */
2885 if (rdev->coupling_desc.n_coupled > 1) {
2886 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2887 if (ret < 0)
2888 goto err_disable_supply;
2889 }
2890
2891 ret = _regulator_handle_consumer_enable(regulator);
2892 if (ret < 0)
2893 goto err_disable_supply;
2894
2895 if (rdev->use_count == 0) {
2896 /*
2897 * The regulator may already be enabled if it's not switchable
2898 * or was left on
2899 */
2900 ret = _regulator_is_enabled(rdev);
2901 if (ret == -EINVAL || ret == 0) {
2902 if (!regulator_ops_is_valid(rdev,
2903 REGULATOR_CHANGE_STATUS)) {
2904 ret = -EPERM;
2905 goto err_consumer_disable;
2906 }
2907
2908 ret = _regulator_do_enable(rdev);
2909 if (ret < 0)
2910 goto err_consumer_disable;
2911
2912 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2913 NULL);
2914 } else if (ret < 0) {
2915 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2916 goto err_consumer_disable;
2917 }
2918 /* Fallthrough on positive return values - already enabled */
2919 }
2920
2921 rdev->use_count++;
2922
2923 return 0;
2924
2925err_consumer_disable:
2926 _regulator_handle_consumer_disable(regulator);
2927
2928err_disable_supply:
2929 if (rdev->use_count == 0 && rdev->supply)
2930 _regulator_disable(regulator: rdev->supply);
2931
2932 return ret;
2933}
2934
2935/**
2936 * regulator_enable - enable regulator output
2937 * @regulator: regulator source
2938 *
2939 * Request that the regulator be enabled with the regulator output at
2940 * the predefined voltage or current value. Calls to regulator_enable()
2941 * must be balanced with calls to regulator_disable().
2942 *
2943 * NOTE: the output value can be set by other drivers, boot loader or may be
2944 * hardwired in the regulator.
2945 */
2946int regulator_enable(struct regulator *regulator)
2947{
2948 struct regulator_dev *rdev = regulator->rdev;
2949 struct ww_acquire_ctx ww_ctx;
2950 int ret;
2951
2952 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
2953 ret = _regulator_enable(regulator);
2954 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
2955
2956 return ret;
2957}
2958EXPORT_SYMBOL_GPL(regulator_enable);
2959
2960static int _regulator_do_disable(struct regulator_dev *rdev)
2961{
2962 int ret;
2963
2964 trace_regulator_disable(name: rdev_get_name(rdev));
2965
2966 if (rdev->ena_pin) {
2967 if (rdev->ena_gpio_state) {
2968 ret = regulator_ena_gpio_ctrl(rdev, enable: false);
2969 if (ret < 0)
2970 return ret;
2971 rdev->ena_gpio_state = 0;
2972 }
2973
2974 } else if (rdev->desc->ops->disable) {
2975 ret = rdev->desc->ops->disable(rdev);
2976 if (ret != 0)
2977 return ret;
2978 }
2979
2980 if (rdev->desc->off_on_delay)
2981 rdev->last_off = ktime_get_boottime();
2982
2983 trace_regulator_disable_complete(name: rdev_get_name(rdev));
2984
2985 return 0;
2986}
2987
2988/* locks held by regulator_disable() */
2989static int _regulator_disable(struct regulator *regulator)
2990{
2991 struct regulator_dev *rdev = regulator->rdev;
2992 int ret = 0;
2993
2994 lockdep_assert_held_once(&rdev->mutex.base);
2995
2996 if (WARN(rdev->use_count <= 0,
2997 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2998 return -EIO;
2999
3000 /* are we the last user and permitted to disable ? */
3001 if (rdev->use_count == 1 &&
3002 (rdev->constraints && !rdev->constraints->always_on)) {
3003
3004 /* we are last user */
3005 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3006 ret = _notifier_call_chain(rdev,
3007 REGULATOR_EVENT_PRE_DISABLE,
3008 NULL);
3009 if (ret & NOTIFY_STOP_MASK)
3010 return -EINVAL;
3011
3012 ret = _regulator_do_disable(rdev);
3013 if (ret < 0) {
3014 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3015 _notifier_call_chain(rdev,
3016 REGULATOR_EVENT_ABORT_DISABLE,
3017 NULL);
3018 return ret;
3019 }
3020 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3021 NULL);
3022 }
3023
3024 rdev->use_count = 0;
3025 } else if (rdev->use_count > 1) {
3026 rdev->use_count--;
3027 }
3028
3029 if (ret == 0)
3030 ret = _regulator_handle_consumer_disable(regulator);
3031
3032 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3033 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3034
3035 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3036 ret = _regulator_disable(regulator: rdev->supply);
3037
3038 return ret;
3039}
3040
3041/**
3042 * regulator_disable - disable regulator output
3043 * @regulator: regulator source
3044 *
3045 * Disable the regulator output voltage or current. Calls to
3046 * regulator_enable() must be balanced with calls to
3047 * regulator_disable().
3048 *
3049 * NOTE: this will only disable the regulator output if no other consumer
3050 * devices have it enabled, the regulator device supports disabling and
3051 * machine constraints permit this operation.
3052 */
3053int regulator_disable(struct regulator *regulator)
3054{
3055 struct regulator_dev *rdev = regulator->rdev;
3056 struct ww_acquire_ctx ww_ctx;
3057 int ret;
3058
3059 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3060 ret = _regulator_disable(regulator);
3061 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3062
3063 return ret;
3064}
3065EXPORT_SYMBOL_GPL(regulator_disable);
3066
3067/* locks held by regulator_force_disable() */
3068static int _regulator_force_disable(struct regulator_dev *rdev)
3069{
3070 int ret = 0;
3071
3072 lockdep_assert_held_once(&rdev->mutex.base);
3073
3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3075 REGULATOR_EVENT_PRE_DISABLE, NULL);
3076 if (ret & NOTIFY_STOP_MASK)
3077 return -EINVAL;
3078
3079 ret = _regulator_do_disable(rdev);
3080 if (ret < 0) {
3081 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3082 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3083 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3084 return ret;
3085 }
3086
3087 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3088 REGULATOR_EVENT_DISABLE, NULL);
3089
3090 return 0;
3091}
3092
3093/**
3094 * regulator_force_disable - force disable regulator output
3095 * @regulator: regulator source
3096 *
3097 * Forcibly disable the regulator output voltage or current.
3098 * NOTE: this *will* disable the regulator output even if other consumer
3099 * devices have it enabled. This should be used for situations when device
3100 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3101 */
3102int regulator_force_disable(struct regulator *regulator)
3103{
3104 struct regulator_dev *rdev = regulator->rdev;
3105 struct ww_acquire_ctx ww_ctx;
3106 int ret;
3107
3108 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3109
3110 ret = _regulator_force_disable(rdev: regulator->rdev);
3111
3112 if (rdev->coupling_desc.n_coupled > 1)
3113 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3114
3115 if (regulator->uA_load) {
3116 regulator->uA_load = 0;
3117 ret = drms_uA_update(rdev);
3118 }
3119
3120 if (rdev->use_count != 0 && rdev->supply)
3121 _regulator_disable(regulator: rdev->supply);
3122
3123 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3124
3125 return ret;
3126}
3127EXPORT_SYMBOL_GPL(regulator_force_disable);
3128
3129static void regulator_disable_work(struct work_struct *work)
3130{
3131 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3132 disable_work.work);
3133 struct ww_acquire_ctx ww_ctx;
3134 int count, i, ret;
3135 struct regulator *regulator;
3136 int total_count = 0;
3137
3138 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3139
3140 /*
3141 * Workqueue functions queue the new work instance while the previous
3142 * work instance is being processed. Cancel the queued work instance
3143 * as the work instance under processing does the job of the queued
3144 * work instance.
3145 */
3146 cancel_delayed_work(dwork: &rdev->disable_work);
3147
3148 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3149 count = regulator->deferred_disables;
3150
3151 if (!count)
3152 continue;
3153
3154 total_count += count;
3155 regulator->deferred_disables = 0;
3156
3157 for (i = 0; i < count; i++) {
3158 ret = _regulator_disable(regulator);
3159 if (ret != 0)
3160 rdev_err(rdev, "Deferred disable failed: %pe\n",
3161 ERR_PTR(ret));
3162 }
3163 }
3164 WARN_ON(!total_count);
3165
3166 if (rdev->coupling_desc.n_coupled > 1)
3167 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3168
3169 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3170}
3171
3172/**
3173 * regulator_disable_deferred - disable regulator output with delay
3174 * @regulator: regulator source
3175 * @ms: milliseconds until the regulator is disabled
3176 *
3177 * Execute regulator_disable() on the regulator after a delay. This
3178 * is intended for use with devices that require some time to quiesce.
3179 *
3180 * NOTE: this will only disable the regulator output if no other consumer
3181 * devices have it enabled, the regulator device supports disabling and
3182 * machine constraints permit this operation.
3183 */
3184int regulator_disable_deferred(struct regulator *regulator, int ms)
3185{
3186 struct regulator_dev *rdev = regulator->rdev;
3187
3188 if (!ms)
3189 return regulator_disable(regulator);
3190
3191 regulator_lock(rdev);
3192 regulator->deferred_disables++;
3193 mod_delayed_work(wq: system_power_efficient_wq, dwork: &rdev->disable_work,
3194 delay: msecs_to_jiffies(m: ms));
3195 regulator_unlock(rdev);
3196
3197 return 0;
3198}
3199EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3200
3201static int _regulator_is_enabled(struct regulator_dev *rdev)
3202{
3203 /* A GPIO control always takes precedence */
3204 if (rdev->ena_pin)
3205 return rdev->ena_gpio_state;
3206
3207 /* If we don't know then assume that the regulator is always on */
3208 if (!rdev->desc->ops->is_enabled)
3209 return 1;
3210
3211 return rdev->desc->ops->is_enabled(rdev);
3212}
3213
3214static int _regulator_list_voltage(struct regulator_dev *rdev,
3215 unsigned selector, int lock)
3216{
3217 const struct regulator_ops *ops = rdev->desc->ops;
3218 int ret;
3219
3220 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3221 return rdev->desc->fixed_uV;
3222
3223 if (ops->list_voltage) {
3224 if (selector >= rdev->desc->n_voltages)
3225 return -EINVAL;
3226 if (selector < rdev->desc->linear_min_sel)
3227 return 0;
3228 if (lock)
3229 regulator_lock(rdev);
3230 ret = ops->list_voltage(rdev, selector);
3231 if (lock)
3232 regulator_unlock(rdev);
3233 } else if (rdev->is_switch && rdev->supply) {
3234 ret = _regulator_list_voltage(rdev: rdev->supply->rdev,
3235 selector, lock);
3236 } else {
3237 return -EINVAL;
3238 }
3239
3240 if (ret > 0) {
3241 if (ret < rdev->constraints->min_uV)
3242 ret = 0;
3243 else if (ret > rdev->constraints->max_uV)
3244 ret = 0;
3245 }
3246
3247 return ret;
3248}
3249
3250/**
3251 * regulator_is_enabled - is the regulator output enabled
3252 * @regulator: regulator source
3253 *
3254 * Returns positive if the regulator driver backing the source/client
3255 * has requested that the device be enabled, zero if it hasn't, else a
3256 * negative errno code.
3257 *
3258 * Note that the device backing this regulator handle can have multiple
3259 * users, so it might be enabled even if regulator_enable() was never
3260 * called for this particular source.
3261 */
3262int regulator_is_enabled(struct regulator *regulator)
3263{
3264 int ret;
3265
3266 if (regulator->always_on)
3267 return 1;
3268
3269 regulator_lock(rdev: regulator->rdev);
3270 ret = _regulator_is_enabled(rdev: regulator->rdev);
3271 regulator_unlock(rdev: regulator->rdev);
3272
3273 return ret;
3274}
3275EXPORT_SYMBOL_GPL(regulator_is_enabled);
3276
3277/**
3278 * regulator_count_voltages - count regulator_list_voltage() selectors
3279 * @regulator: regulator source
3280 *
3281 * Returns number of selectors, or negative errno. Selectors are
3282 * numbered starting at zero, and typically correspond to bitfields
3283 * in hardware registers.
3284 */
3285int regulator_count_voltages(struct regulator *regulator)
3286{
3287 struct regulator_dev *rdev = regulator->rdev;
3288
3289 if (rdev->desc->n_voltages)
3290 return rdev->desc->n_voltages;
3291
3292 if (!rdev->is_switch || !rdev->supply)
3293 return -EINVAL;
3294
3295 return regulator_count_voltages(regulator: rdev->supply);
3296}
3297EXPORT_SYMBOL_GPL(regulator_count_voltages);
3298
3299/**
3300 * regulator_list_voltage - enumerate supported voltages
3301 * @regulator: regulator source
3302 * @selector: identify voltage to list
3303 * Context: can sleep
3304 *
3305 * Returns a voltage that can be passed to @regulator_set_voltage(),
3306 * zero if this selector code can't be used on this system, or a
3307 * negative errno.
3308 */
3309int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3310{
3311 return _regulator_list_voltage(rdev: regulator->rdev, selector, lock: 1);
3312}
3313EXPORT_SYMBOL_GPL(regulator_list_voltage);
3314
3315/**
3316 * regulator_get_regmap - get the regulator's register map
3317 * @regulator: regulator source
3318 *
3319 * Returns the register map for the given regulator, or an ERR_PTR value
3320 * if the regulator doesn't use regmap.
3321 */
3322struct regmap *regulator_get_regmap(struct regulator *regulator)
3323{
3324 struct regmap *map = regulator->rdev->regmap;
3325
3326 return map ? map : ERR_PTR(error: -EOPNOTSUPP);
3327}
3328
3329/**
3330 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3331 * @regulator: regulator source
3332 * @vsel_reg: voltage selector register, output parameter
3333 * @vsel_mask: mask for voltage selector bitfield, output parameter
3334 *
3335 * Returns the hardware register offset and bitmask used for setting the
3336 * regulator voltage. This might be useful when configuring voltage-scaling
3337 * hardware or firmware that can make I2C requests behind the kernel's back,
3338 * for example.
3339 *
3340 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3341 * and 0 is returned, otherwise a negative errno is returned.
3342 */
3343int regulator_get_hardware_vsel_register(struct regulator *regulator,
3344 unsigned *vsel_reg,
3345 unsigned *vsel_mask)
3346{
3347 struct regulator_dev *rdev = regulator->rdev;
3348 const struct regulator_ops *ops = rdev->desc->ops;
3349
3350 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3351 return -EOPNOTSUPP;
3352
3353 *vsel_reg = rdev->desc->vsel_reg;
3354 *vsel_mask = rdev->desc->vsel_mask;
3355
3356 return 0;
3357}
3358EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3359
3360/**
3361 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3362 * @regulator: regulator source
3363 * @selector: identify voltage to list
3364 *
3365 * Converts the selector to a hardware-specific voltage selector that can be
3366 * directly written to the regulator registers. The address of the voltage
3367 * register can be determined by calling @regulator_get_hardware_vsel_register.
3368 *
3369 * On error a negative errno is returned.
3370 */
3371int regulator_list_hardware_vsel(struct regulator *regulator,
3372 unsigned selector)
3373{
3374 struct regulator_dev *rdev = regulator->rdev;
3375 const struct regulator_ops *ops = rdev->desc->ops;
3376
3377 if (selector >= rdev->desc->n_voltages)
3378 return -EINVAL;
3379 if (selector < rdev->desc->linear_min_sel)
3380 return 0;
3381 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3382 return -EOPNOTSUPP;
3383
3384 return selector;
3385}
3386EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3387
3388/**
3389 * regulator_get_linear_step - return the voltage step size between VSEL values
3390 * @regulator: regulator source
3391 *
3392 * Returns the voltage step size between VSEL values for linear
3393 * regulators, or return 0 if the regulator isn't a linear regulator.
3394 */
3395unsigned int regulator_get_linear_step(struct regulator *regulator)
3396{
3397 struct regulator_dev *rdev = regulator->rdev;
3398
3399 return rdev->desc->uV_step;
3400}
3401EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3402
3403/**
3404 * regulator_is_supported_voltage - check if a voltage range can be supported
3405 *
3406 * @regulator: Regulator to check.
3407 * @min_uV: Minimum required voltage in uV.
3408 * @max_uV: Maximum required voltage in uV.
3409 *
3410 * Returns a boolean.
3411 */
3412int regulator_is_supported_voltage(struct regulator *regulator,
3413 int min_uV, int max_uV)
3414{
3415 struct regulator_dev *rdev = regulator->rdev;
3416 int i, voltages, ret;
3417
3418 /* If we can't change voltage check the current voltage */
3419 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3420 ret = regulator_get_voltage(regulator);
3421 if (ret >= 0)
3422 return min_uV <= ret && ret <= max_uV;
3423 else
3424 return ret;
3425 }
3426
3427 /* Any voltage within constrains range is fine? */
3428 if (rdev->desc->continuous_voltage_range)
3429 return min_uV >= rdev->constraints->min_uV &&
3430 max_uV <= rdev->constraints->max_uV;
3431
3432 ret = regulator_count_voltages(regulator);
3433 if (ret < 0)
3434 return 0;
3435 voltages = ret;
3436
3437 for (i = 0; i < voltages; i++) {
3438 ret = regulator_list_voltage(regulator, i);
3439
3440 if (ret >= min_uV && ret <= max_uV)
3441 return 1;
3442 }
3443
3444 return 0;
3445}
3446EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3447
3448static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3449 int max_uV)
3450{
3451 const struct regulator_desc *desc = rdev->desc;
3452
3453 if (desc->ops->map_voltage)
3454 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3455
3456 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3457 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3458
3459 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3460 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3461
3462 if (desc->ops->list_voltage ==
3463 regulator_list_voltage_pickable_linear_range)
3464 return regulator_map_voltage_pickable_linear_range(rdev,
3465 min_uV, max_uV);
3466
3467 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3468}
3469
3470static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3471 int min_uV, int max_uV,
3472 unsigned *selector)
3473{
3474 struct pre_voltage_change_data data;
3475 int ret;
3476
3477 data.old_uV = regulator_get_voltage_rdev(rdev);
3478 data.min_uV = min_uV;
3479 data.max_uV = max_uV;
3480 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3481 data: &data);
3482 if (ret & NOTIFY_STOP_MASK)
3483 return -EINVAL;
3484
3485 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3486 if (ret >= 0)
3487 return ret;
3488
3489 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3490 data: (void *)data.old_uV);
3491
3492 return ret;
3493}
3494
3495static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3496 int uV, unsigned selector)
3497{
3498 struct pre_voltage_change_data data;
3499 int ret;
3500
3501 data.old_uV = regulator_get_voltage_rdev(rdev);
3502 data.min_uV = uV;
3503 data.max_uV = uV;
3504 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3505 data: &data);
3506 if (ret & NOTIFY_STOP_MASK)
3507 return -EINVAL;
3508
3509 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3510 if (ret >= 0)
3511 return ret;
3512
3513 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3514 data: (void *)data.old_uV);
3515
3516 return ret;
3517}
3518
3519static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3520 int uV, int new_selector)
3521{
3522 const struct regulator_ops *ops = rdev->desc->ops;
3523 int diff, old_sel, curr_sel, ret;
3524
3525 /* Stepping is only needed if the regulator is enabled. */
3526 if (!_regulator_is_enabled(rdev))
3527 goto final_set;
3528
3529 if (!ops->get_voltage_sel)
3530 return -EINVAL;
3531
3532 old_sel = ops->get_voltage_sel(rdev);
3533 if (old_sel < 0)
3534 return old_sel;
3535
3536 diff = new_selector - old_sel;
3537 if (diff == 0)
3538 return 0; /* No change needed. */
3539
3540 if (diff > 0) {
3541 /* Stepping up. */
3542 for (curr_sel = old_sel + rdev->desc->vsel_step;
3543 curr_sel < new_selector;
3544 curr_sel += rdev->desc->vsel_step) {
3545 /*
3546 * Call the callback directly instead of using
3547 * _regulator_call_set_voltage_sel() as we don't
3548 * want to notify anyone yet. Same in the branch
3549 * below.
3550 */
3551 ret = ops->set_voltage_sel(rdev, curr_sel);
3552 if (ret)
3553 goto try_revert;
3554 }
3555 } else {
3556 /* Stepping down. */
3557 for (curr_sel = old_sel - rdev->desc->vsel_step;
3558 curr_sel > new_selector;
3559 curr_sel -= rdev->desc->vsel_step) {
3560 ret = ops->set_voltage_sel(rdev, curr_sel);
3561 if (ret)
3562 goto try_revert;
3563 }
3564 }
3565
3566final_set:
3567 /* The final selector will trigger the notifiers. */
3568 return _regulator_call_set_voltage_sel(rdev, uV, selector: new_selector);
3569
3570try_revert:
3571 /*
3572 * At least try to return to the previous voltage if setting a new
3573 * one failed.
3574 */
3575 (void)ops->set_voltage_sel(rdev, old_sel);
3576 return ret;
3577}
3578
3579static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3580 int old_uV, int new_uV)
3581{
3582 unsigned int ramp_delay = 0;
3583
3584 if (rdev->constraints->ramp_delay)
3585 ramp_delay = rdev->constraints->ramp_delay;
3586 else if (rdev->desc->ramp_delay)
3587 ramp_delay = rdev->desc->ramp_delay;
3588 else if (rdev->constraints->settling_time)
3589 return rdev->constraints->settling_time;
3590 else if (rdev->constraints->settling_time_up &&
3591 (new_uV > old_uV))
3592 return rdev->constraints->settling_time_up;
3593 else if (rdev->constraints->settling_time_down &&
3594 (new_uV < old_uV))
3595 return rdev->constraints->settling_time_down;
3596
3597 if (ramp_delay == 0)
3598 return 0;
3599
3600 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3601}
3602
3603static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3604 int min_uV, int max_uV)
3605{
3606 int ret;
3607 int delay = 0;
3608 int best_val = 0;
3609 unsigned int selector;
3610 int old_selector = -1;
3611 const struct regulator_ops *ops = rdev->desc->ops;
3612 int old_uV = regulator_get_voltage_rdev(rdev);
3613
3614 trace_regulator_set_voltage(name: rdev_get_name(rdev), min: min_uV, max: max_uV);
3615
3616 min_uV += rdev->constraints->uV_offset;
3617 max_uV += rdev->constraints->uV_offset;
3618
3619 /*
3620 * If we can't obtain the old selector there is not enough
3621 * info to call set_voltage_time_sel().
3622 */
3623 if (_regulator_is_enabled(rdev) &&
3624 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3625 old_selector = ops->get_voltage_sel(rdev);
3626 if (old_selector < 0)
3627 return old_selector;
3628 }
3629
3630 if (ops->set_voltage) {
3631 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3632 selector: &selector);
3633
3634 if (ret >= 0) {
3635 if (ops->list_voltage)
3636 best_val = ops->list_voltage(rdev,
3637 selector);
3638 else
3639 best_val = regulator_get_voltage_rdev(rdev);
3640 }
3641
3642 } else if (ops->set_voltage_sel) {
3643 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3644 if (ret >= 0) {
3645 best_val = ops->list_voltage(rdev, ret);
3646 if (min_uV <= best_val && max_uV >= best_val) {
3647 selector = ret;
3648 if (old_selector == selector)
3649 ret = 0;
3650 else if (rdev->desc->vsel_step)
3651 ret = _regulator_set_voltage_sel_step(
3652 rdev, uV: best_val, new_selector: selector);
3653 else
3654 ret = _regulator_call_set_voltage_sel(
3655 rdev, uV: best_val, selector);
3656 } else {
3657 ret = -EINVAL;
3658 }
3659 }
3660 } else {
3661 ret = -EINVAL;
3662 }
3663
3664 if (ret)
3665 goto out;
3666
3667 if (ops->set_voltage_time_sel) {
3668 /*
3669 * Call set_voltage_time_sel if successfully obtained
3670 * old_selector
3671 */
3672 if (old_selector >= 0 && old_selector != selector)
3673 delay = ops->set_voltage_time_sel(rdev, old_selector,
3674 selector);
3675 } else {
3676 if (old_uV != best_val) {
3677 if (ops->set_voltage_time)
3678 delay = ops->set_voltage_time(rdev, old_uV,
3679 best_val);
3680 else
3681 delay = _regulator_set_voltage_time(rdev,
3682 old_uV,
3683 new_uV: best_val);
3684 }
3685 }
3686
3687 if (delay < 0) {
3688 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3689 delay = 0;
3690 }
3691
3692 /* Insert any necessary delays */
3693 _regulator_delay_helper(delay);
3694
3695 if (best_val >= 0) {
3696 unsigned long data = best_val;
3697
3698 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3699 data: (void *)data);
3700 }
3701
3702out:
3703 trace_regulator_set_voltage_complete(name: rdev_get_name(rdev), value: best_val);
3704
3705 return ret;
3706}
3707
3708static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3709 int min_uV, int max_uV, suspend_state_t state)
3710{
3711 struct regulator_state *rstate;
3712 int uV, sel;
3713
3714 rstate = regulator_get_suspend_state(rdev, state);
3715 if (rstate == NULL)
3716 return -EINVAL;
3717
3718 if (min_uV < rstate->min_uV)
3719 min_uV = rstate->min_uV;
3720 if (max_uV > rstate->max_uV)
3721 max_uV = rstate->max_uV;
3722
3723 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3724 if (sel < 0)
3725 return sel;
3726
3727 uV = rdev->desc->ops->list_voltage(rdev, sel);
3728 if (uV >= min_uV && uV <= max_uV)
3729 rstate->uV = uV;
3730
3731 return 0;
3732}
3733
3734static int regulator_set_voltage_unlocked(struct regulator *regulator,
3735 int min_uV, int max_uV,
3736 suspend_state_t state)
3737{
3738 struct regulator_dev *rdev = regulator->rdev;
3739 struct regulator_voltage *voltage = &regulator->voltage[state];
3740 int ret = 0;
3741 int old_min_uV, old_max_uV;
3742 int current_uV;
3743
3744 /* If we're setting the same range as last time the change
3745 * should be a noop (some cpufreq implementations use the same
3746 * voltage for multiple frequencies, for example).
3747 */
3748 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3749 goto out;
3750
3751 /* If we're trying to set a range that overlaps the current voltage,
3752 * return successfully even though the regulator does not support
3753 * changing the voltage.
3754 */
3755 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3756 current_uV = regulator_get_voltage_rdev(rdev);
3757 if (min_uV <= current_uV && current_uV <= max_uV) {
3758 voltage->min_uV = min_uV;
3759 voltage->max_uV = max_uV;
3760 goto out;
3761 }
3762 }
3763
3764 /* sanity check */
3765 if (!rdev->desc->ops->set_voltage &&
3766 !rdev->desc->ops->set_voltage_sel) {
3767 ret = -EINVAL;
3768 goto out;
3769 }
3770
3771 /* constraints check */
3772 ret = regulator_check_voltage(rdev, min_uV: &min_uV, max_uV: &max_uV);
3773 if (ret < 0)
3774 goto out;
3775
3776 /* restore original values in case of error */
3777 old_min_uV = voltage->min_uV;
3778 old_max_uV = voltage->max_uV;
3779 voltage->min_uV = min_uV;
3780 voltage->max_uV = max_uV;
3781
3782 /* for not coupled regulators this will just set the voltage */
3783 ret = regulator_balance_voltage(rdev, state);
3784 if (ret < 0) {
3785 voltage->min_uV = old_min_uV;
3786 voltage->max_uV = old_max_uV;
3787 }
3788
3789out:
3790 return ret;
3791}
3792
3793int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3794 int max_uV, suspend_state_t state)
3795{
3796 int best_supply_uV = 0;
3797 int supply_change_uV = 0;
3798 int ret;
3799
3800 if (rdev->supply &&
3801 regulator_ops_is_valid(rdev: rdev->supply->rdev,
3802 REGULATOR_CHANGE_VOLTAGE) &&
3803 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3804 rdev->desc->ops->get_voltage_sel))) {
3805 int current_supply_uV;
3806 int selector;
3807
3808 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3809 if (selector < 0) {
3810 ret = selector;
3811 goto out;
3812 }
3813
3814 best_supply_uV = _regulator_list_voltage(rdev, selector, lock: 0);
3815 if (best_supply_uV < 0) {
3816 ret = best_supply_uV;
3817 goto out;
3818 }
3819
3820 best_supply_uV += rdev->desc->min_dropout_uV;
3821
3822 current_supply_uV = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
3823 if (current_supply_uV < 0) {
3824 ret = current_supply_uV;
3825 goto out;
3826 }
3827
3828 supply_change_uV = best_supply_uV - current_supply_uV;
3829 }
3830
3831 if (supply_change_uV > 0) {
3832 ret = regulator_set_voltage_unlocked(regulator: rdev->supply,
3833 min_uV: best_supply_uV, INT_MAX, state);
3834 if (ret) {
3835 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3836 ERR_PTR(ret));
3837 goto out;
3838 }
3839 }
3840
3841 if (state == PM_SUSPEND_ON)
3842 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3843 else
3844 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3845 max_uV, state);
3846 if (ret < 0)
3847 goto out;
3848
3849 if (supply_change_uV < 0) {
3850 ret = regulator_set_voltage_unlocked(regulator: rdev->supply,
3851 min_uV: best_supply_uV, INT_MAX, state);
3852 if (ret)
3853 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3854 ERR_PTR(ret));
3855 /* No need to fail here */
3856 ret = 0;
3857 }
3858
3859out:
3860 return ret;
3861}
3862EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3863
3864static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3865 int *current_uV, int *min_uV)
3866{
3867 struct regulation_constraints *constraints = rdev->constraints;
3868
3869 /* Limit voltage change only if necessary */
3870 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3871 return 1;
3872
3873 if (*current_uV < 0) {
3874 *current_uV = regulator_get_voltage_rdev(rdev);
3875
3876 if (*current_uV < 0)
3877 return *current_uV;
3878 }
3879
3880 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3881 return 1;
3882
3883 /* Clamp target voltage within the given step */
3884 if (*current_uV < *min_uV)
3885 *min_uV = min(*current_uV + constraints->max_uV_step,
3886 *min_uV);
3887 else
3888 *min_uV = max(*current_uV - constraints->max_uV_step,
3889 *min_uV);
3890
3891 return 0;
3892}
3893
3894static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3895 int *current_uV,
3896 int *min_uV, int *max_uV,
3897 suspend_state_t state,
3898 int n_coupled)
3899{
3900 struct coupling_desc *c_desc = &rdev->coupling_desc;
3901 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3902 struct regulation_constraints *constraints = rdev->constraints;
3903 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3904 int max_current_uV = 0, min_current_uV = INT_MAX;
3905 int highest_min_uV = 0, target_uV, possible_uV;
3906 int i, ret, max_spread;
3907 bool done;
3908
3909 *current_uV = -1;
3910
3911 /*
3912 * If there are no coupled regulators, simply set the voltage
3913 * demanded by consumers.
3914 */
3915 if (n_coupled == 1) {
3916 /*
3917 * If consumers don't provide any demands, set voltage
3918 * to min_uV
3919 */
3920 desired_min_uV = constraints->min_uV;
3921 desired_max_uV = constraints->max_uV;
3922
3923 ret = regulator_check_consumers(rdev,
3924 min_uV: &desired_min_uV,
3925 max_uV: &desired_max_uV, state);
3926 if (ret < 0)
3927 return ret;
3928
3929 possible_uV = desired_min_uV;
3930 done = true;
3931
3932 goto finish;
3933 }
3934
3935 /* Find highest min desired voltage */
3936 for (i = 0; i < n_coupled; i++) {
3937 int tmp_min = 0;
3938 int tmp_max = INT_MAX;
3939
3940 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3941
3942 ret = regulator_check_consumers(rdev: c_rdevs[i],
3943 min_uV: &tmp_min,
3944 max_uV: &tmp_max, state);
3945 if (ret < 0)
3946 return ret;
3947
3948 ret = regulator_check_voltage(rdev: c_rdevs[i], min_uV: &tmp_min, max_uV: &tmp_max);
3949 if (ret < 0)
3950 return ret;
3951
3952 highest_min_uV = max(highest_min_uV, tmp_min);
3953
3954 if (i == 0) {
3955 desired_min_uV = tmp_min;
3956 desired_max_uV = tmp_max;
3957 }
3958 }
3959
3960 max_spread = constraints->max_spread[0];
3961
3962 /*
3963 * Let target_uV be equal to the desired one if possible.
3964 * If not, set it to minimum voltage, allowed by other coupled
3965 * regulators.
3966 */
3967 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3968
3969 /*
3970 * Find min and max voltages, which currently aren't violating
3971 * max_spread.
3972 */
3973 for (i = 1; i < n_coupled; i++) {
3974 int tmp_act;
3975
3976 if (!_regulator_is_enabled(rdev: c_rdevs[i]))
3977 continue;
3978
3979 tmp_act = regulator_get_voltage_rdev(rdev: c_rdevs[i]);
3980 if (tmp_act < 0)
3981 return tmp_act;
3982
3983 min_current_uV = min(tmp_act, min_current_uV);
3984 max_current_uV = max(tmp_act, max_current_uV);
3985 }
3986
3987 /* There aren't any other regulators enabled */
3988 if (max_current_uV == 0) {
3989 possible_uV = target_uV;
3990 } else {
3991 /*
3992 * Correct target voltage, so as it currently isn't
3993 * violating max_spread
3994 */
3995 possible_uV = max(target_uV, max_current_uV - max_spread);
3996 possible_uV = min(possible_uV, min_current_uV + max_spread);
3997 }
3998
3999 if (possible_uV > desired_max_uV)
4000 return -EINVAL;
4001
4002 done = (possible_uV == target_uV);
4003 desired_min_uV = possible_uV;
4004
4005finish:
4006 /* Apply max_uV_step constraint if necessary */
4007 if (state == PM_SUSPEND_ON) {
4008 ret = regulator_limit_voltage_step(rdev, current_uV,
4009 min_uV: &desired_min_uV);
4010 if (ret < 0)
4011 return ret;
4012
4013 if (ret == 0)
4014 done = false;
4015 }
4016
4017 /* Set current_uV if wasn't done earlier in the code and if necessary */
4018 if (n_coupled > 1 && *current_uV == -1) {
4019
4020 if (_regulator_is_enabled(rdev)) {
4021 ret = regulator_get_voltage_rdev(rdev);
4022 if (ret < 0)
4023 return ret;
4024
4025 *current_uV = ret;
4026 } else {
4027 *current_uV = desired_min_uV;
4028 }
4029 }
4030
4031 *min_uV = desired_min_uV;
4032 *max_uV = desired_max_uV;
4033
4034 return done;
4035}
4036
4037int regulator_do_balance_voltage(struct regulator_dev *rdev,
4038 suspend_state_t state, bool skip_coupled)
4039{
4040 struct regulator_dev **c_rdevs;
4041 struct regulator_dev *best_rdev;
4042 struct coupling_desc *c_desc = &rdev->coupling_desc;
4043 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4044 unsigned int delta, best_delta;
4045 unsigned long c_rdev_done = 0;
4046 bool best_c_rdev_done;
4047
4048 c_rdevs = c_desc->coupled_rdevs;
4049 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4050
4051 /*
4052 * Find the best possible voltage change on each loop. Leave the loop
4053 * if there isn't any possible change.
4054 */
4055 do {
4056 best_c_rdev_done = false;
4057 best_delta = 0;
4058 best_min_uV = 0;
4059 best_max_uV = 0;
4060 best_c_rdev = 0;
4061 best_rdev = NULL;
4062
4063 /*
4064 * Find highest difference between optimal voltage
4065 * and current voltage.
4066 */
4067 for (i = 0; i < n_coupled; i++) {
4068 /*
4069 * optimal_uV is the best voltage that can be set for
4070 * i-th regulator at the moment without violating
4071 * max_spread constraint in order to balance
4072 * the coupled voltages.
4073 */
4074 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4075
4076 if (test_bit(i, &c_rdev_done))
4077 continue;
4078
4079 ret = regulator_get_optimal_voltage(rdev: c_rdevs[i],
4080 current_uV: &current_uV,
4081 min_uV: &optimal_uV,
4082 max_uV: &optimal_max_uV,
4083 state, n_coupled);
4084 if (ret < 0)
4085 goto out;
4086
4087 delta = abs(optimal_uV - current_uV);
4088
4089 if (delta && best_delta <= delta) {
4090 best_c_rdev_done = ret;
4091 best_delta = delta;
4092 best_rdev = c_rdevs[i];
4093 best_min_uV = optimal_uV;
4094 best_max_uV = optimal_max_uV;
4095 best_c_rdev = i;
4096 }
4097 }
4098
4099 /* Nothing to change, return successfully */
4100 if (!best_rdev) {
4101 ret = 0;
4102 goto out;
4103 }
4104
4105 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4106 best_max_uV, state);
4107
4108 if (ret < 0)
4109 goto out;
4110
4111 if (best_c_rdev_done)
4112 set_bit(nr: best_c_rdev, addr: &c_rdev_done);
4113
4114 } while (n_coupled > 1);
4115
4116out:
4117 return ret;
4118}
4119
4120static int regulator_balance_voltage(struct regulator_dev *rdev,
4121 suspend_state_t state)
4122{
4123 struct coupling_desc *c_desc = &rdev->coupling_desc;
4124 struct regulator_coupler *coupler = c_desc->coupler;
4125 bool skip_coupled = false;
4126
4127 /*
4128 * If system is in a state other than PM_SUSPEND_ON, don't check
4129 * other coupled regulators.
4130 */
4131 if (state != PM_SUSPEND_ON)
4132 skip_coupled = true;
4133
4134 if (c_desc->n_resolved < c_desc->n_coupled) {
4135 rdev_err(rdev, "Not all coupled regulators registered\n");
4136 return -EPERM;
4137 }
4138
4139 /* Invoke custom balancer for customized couplers */
4140 if (coupler && coupler->balance_voltage)
4141 return coupler->balance_voltage(coupler, rdev, state);
4142
4143 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4144}
4145
4146/**
4147 * regulator_set_voltage - set regulator output voltage
4148 * @regulator: regulator source
4149 * @min_uV: Minimum required voltage in uV
4150 * @max_uV: Maximum acceptable voltage in uV
4151 *
4152 * Sets a voltage regulator to the desired output voltage. This can be set
4153 * during any regulator state. IOW, regulator can be disabled or enabled.
4154 *
4155 * If the regulator is enabled then the voltage will change to the new value
4156 * immediately otherwise if the regulator is disabled the regulator will
4157 * output at the new voltage when enabled.
4158 *
4159 * NOTE: If the regulator is shared between several devices then the lowest
4160 * request voltage that meets the system constraints will be used.
4161 * Regulator system constraints must be set for this regulator before
4162 * calling this function otherwise this call will fail.
4163 */
4164int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4165{
4166 struct ww_acquire_ctx ww_ctx;
4167 int ret;
4168
4169 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4170
4171 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4172 PM_SUSPEND_ON);
4173
4174 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4175
4176 return ret;
4177}
4178EXPORT_SYMBOL_GPL(regulator_set_voltage);
4179
4180static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4181 suspend_state_t state, bool en)
4182{
4183 struct regulator_state *rstate;
4184
4185 rstate = regulator_get_suspend_state(rdev, state);
4186 if (rstate == NULL)
4187 return -EINVAL;
4188
4189 if (!rstate->changeable)
4190 return -EPERM;
4191
4192 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4193
4194 return 0;
4195}
4196
4197int regulator_suspend_enable(struct regulator_dev *rdev,
4198 suspend_state_t state)
4199{
4200 return regulator_suspend_toggle(rdev, state, en: true);
4201}
4202EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4203
4204int regulator_suspend_disable(struct regulator_dev *rdev,
4205 suspend_state_t state)
4206{
4207 struct regulator *regulator;
4208 struct regulator_voltage *voltage;
4209
4210 /*
4211 * if any consumer wants this regulator device keeping on in
4212 * suspend states, don't set it as disabled.
4213 */
4214 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4215 voltage = &regulator->voltage[state];
4216 if (voltage->min_uV || voltage->max_uV)
4217 return 0;
4218 }
4219
4220 return regulator_suspend_toggle(rdev, state, en: false);
4221}
4222EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4223
4224static int _regulator_set_suspend_voltage(struct regulator *regulator,
4225 int min_uV, int max_uV,
4226 suspend_state_t state)
4227{
4228 struct regulator_dev *rdev = regulator->rdev;
4229 struct regulator_state *rstate;
4230
4231 rstate = regulator_get_suspend_state(rdev, state);
4232 if (rstate == NULL)
4233 return -EINVAL;
4234
4235 if (rstate->min_uV == rstate->max_uV) {
4236 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4237 return -EPERM;
4238 }
4239
4240 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4241}
4242
4243int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4244 int max_uV, suspend_state_t state)
4245{
4246 struct ww_acquire_ctx ww_ctx;
4247 int ret;
4248
4249 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4250 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4251 return -EINVAL;
4252
4253 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4254
4255 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4256 max_uV, state);
4257
4258 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4259
4260 return ret;
4261}
4262EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4263
4264/**
4265 * regulator_set_voltage_time - get raise/fall time
4266 * @regulator: regulator source
4267 * @old_uV: starting voltage in microvolts
4268 * @new_uV: target voltage in microvolts
4269 *
4270 * Provided with the starting and ending voltage, this function attempts to
4271 * calculate the time in microseconds required to rise or fall to this new
4272 * voltage.
4273 */
4274int regulator_set_voltage_time(struct regulator *regulator,
4275 int old_uV, int new_uV)
4276{
4277 struct regulator_dev *rdev = regulator->rdev;
4278 const struct regulator_ops *ops = rdev->desc->ops;
4279 int old_sel = -1;
4280 int new_sel = -1;
4281 int voltage;
4282 int i;
4283
4284 if (ops->set_voltage_time)
4285 return ops->set_voltage_time(rdev, old_uV, new_uV);
4286 else if (!ops->set_voltage_time_sel)
4287 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4288
4289 /* Currently requires operations to do this */
4290 if (!ops->list_voltage || !rdev->desc->n_voltages)
4291 return -EINVAL;
4292
4293 for (i = 0; i < rdev->desc->n_voltages; i++) {
4294 /* We only look for exact voltage matches here */
4295 if (i < rdev->desc->linear_min_sel)
4296 continue;
4297
4298 if (old_sel >= 0 && new_sel >= 0)
4299 break;
4300
4301 voltage = regulator_list_voltage(regulator, i);
4302 if (voltage < 0)
4303 return -EINVAL;
4304 if (voltage == 0)
4305 continue;
4306 if (voltage == old_uV)
4307 old_sel = i;
4308 if (voltage == new_uV)
4309 new_sel = i;
4310 }
4311
4312 if (old_sel < 0 || new_sel < 0)
4313 return -EINVAL;
4314
4315 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4316}
4317EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4318
4319/**
4320 * regulator_set_voltage_time_sel - get raise/fall time
4321 * @rdev: regulator source device
4322 * @old_selector: selector for starting voltage
4323 * @new_selector: selector for target voltage
4324 *
4325 * Provided with the starting and target voltage selectors, this function
4326 * returns time in microseconds required to rise or fall to this new voltage
4327 *
4328 * Drivers providing ramp_delay in regulation_constraints can use this as their
4329 * set_voltage_time_sel() operation.
4330 */
4331int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4332 unsigned int old_selector,
4333 unsigned int new_selector)
4334{
4335 int old_volt, new_volt;
4336
4337 /* sanity check */
4338 if (!rdev->desc->ops->list_voltage)
4339 return -EINVAL;
4340
4341 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4342 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4343
4344 if (rdev->desc->ops->set_voltage_time)
4345 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4346 new_volt);
4347 else
4348 return _regulator_set_voltage_time(rdev, old_uV: old_volt, new_uV: new_volt);
4349}
4350EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4351
4352int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4353{
4354 int ret;
4355
4356 regulator_lock(rdev);
4357
4358 if (!rdev->desc->ops->set_voltage &&
4359 !rdev->desc->ops->set_voltage_sel) {
4360 ret = -EINVAL;
4361 goto out;
4362 }
4363
4364 /* balance only, if regulator is coupled */
4365 if (rdev->coupling_desc.n_coupled > 1)
4366 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4367 else
4368 ret = -EOPNOTSUPP;
4369
4370out:
4371 regulator_unlock(rdev);
4372 return ret;
4373}
4374
4375/**
4376 * regulator_sync_voltage - re-apply last regulator output voltage
4377 * @regulator: regulator source
4378 *
4379 * Re-apply the last configured voltage. This is intended to be used
4380 * where some external control source the consumer is cooperating with
4381 * has caused the configured voltage to change.
4382 */
4383int regulator_sync_voltage(struct regulator *regulator)
4384{
4385 struct regulator_dev *rdev = regulator->rdev;
4386 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4387 int ret, min_uV, max_uV;
4388
4389 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4390 return 0;
4391
4392 regulator_lock(rdev);
4393
4394 if (!rdev->desc->ops->set_voltage &&
4395 !rdev->desc->ops->set_voltage_sel) {
4396 ret = -EINVAL;
4397 goto out;
4398 }
4399
4400 /* This is only going to work if we've had a voltage configured. */
4401 if (!voltage->min_uV && !voltage->max_uV) {
4402 ret = -EINVAL;
4403 goto out;
4404 }
4405
4406 min_uV = voltage->min_uV;
4407 max_uV = voltage->max_uV;
4408
4409 /* This should be a paranoia check... */
4410 ret = regulator_check_voltage(rdev, min_uV: &min_uV, max_uV: &max_uV);
4411 if (ret < 0)
4412 goto out;
4413
4414 ret = regulator_check_consumers(rdev, min_uV: &min_uV, max_uV: &max_uV, state: 0);
4415 if (ret < 0)
4416 goto out;
4417
4418 /* balance only, if regulator is coupled */
4419 if (rdev->coupling_desc.n_coupled > 1)
4420 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4421 else
4422 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4423
4424out:
4425 regulator_unlock(rdev);
4426 return ret;
4427}
4428EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4429
4430int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4431{
4432 int sel, ret;
4433 bool bypassed;
4434
4435 if (rdev->desc->ops->get_bypass) {
4436 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4437 if (ret < 0)
4438 return ret;
4439 if (bypassed) {
4440 /* if bypassed the regulator must have a supply */
4441 if (!rdev->supply) {
4442 rdev_err(rdev,
4443 "bypassed regulator has no supply!\n");
4444 return -EPROBE_DEFER;
4445 }
4446
4447 return regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
4448 }
4449 }
4450
4451 if (rdev->desc->ops->get_voltage_sel) {
4452 sel = rdev->desc->ops->get_voltage_sel(rdev);
4453 if (sel < 0)
4454 return sel;
4455 ret = rdev->desc->ops->list_voltage(rdev, sel);
4456 } else if (rdev->desc->ops->get_voltage) {
4457 ret = rdev->desc->ops->get_voltage(rdev);
4458 } else if (rdev->desc->ops->list_voltage) {
4459 ret = rdev->desc->ops->list_voltage(rdev, 0);
4460 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4461 ret = rdev->desc->fixed_uV;
4462 } else if (rdev->supply) {
4463 ret = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
4464 } else if (rdev->supply_name) {
4465 return -EPROBE_DEFER;
4466 } else {
4467 return -EINVAL;
4468 }
4469
4470 if (ret < 0)
4471 return ret;
4472 return ret - rdev->constraints->uV_offset;
4473}
4474EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4475
4476/**
4477 * regulator_get_voltage - get regulator output voltage
4478 * @regulator: regulator source
4479 *
4480 * This returns the current regulator voltage in uV.
4481 *
4482 * NOTE: If the regulator is disabled it will return the voltage value. This
4483 * function should not be used to determine regulator state.
4484 */
4485int regulator_get_voltage(struct regulator *regulator)
4486{
4487 struct ww_acquire_ctx ww_ctx;
4488 int ret;
4489
4490 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4491 ret = regulator_get_voltage_rdev(regulator->rdev);
4492 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4493
4494 return ret;
4495}
4496EXPORT_SYMBOL_GPL(regulator_get_voltage);
4497
4498/**
4499 * regulator_set_current_limit - set regulator output current limit
4500 * @regulator: regulator source
4501 * @min_uA: Minimum supported current in uA
4502 * @max_uA: Maximum supported current in uA
4503 *
4504 * Sets current sink to the desired output current. This can be set during
4505 * any regulator state. IOW, regulator can be disabled or enabled.
4506 *
4507 * If the regulator is enabled then the current will change to the new value
4508 * immediately otherwise if the regulator is disabled the regulator will
4509 * output at the new current when enabled.
4510 *
4511 * NOTE: Regulator system constraints must be set for this regulator before
4512 * calling this function otherwise this call will fail.
4513 */
4514int regulator_set_current_limit(struct regulator *regulator,
4515 int min_uA, int max_uA)
4516{
4517 struct regulator_dev *rdev = regulator->rdev;
4518 int ret;
4519
4520 regulator_lock(rdev);
4521
4522 /* sanity check */
4523 if (!rdev->desc->ops->set_current_limit) {
4524 ret = -EINVAL;
4525 goto out;
4526 }
4527
4528 /* constraints check */
4529 ret = regulator_check_current_limit(rdev, min_uA: &min_uA, max_uA: &max_uA);
4530 if (ret < 0)
4531 goto out;
4532
4533 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4534out:
4535 regulator_unlock(rdev);
4536 return ret;
4537}
4538EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4539
4540static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4541{
4542 /* sanity check */
4543 if (!rdev->desc->ops->get_current_limit)
4544 return -EINVAL;
4545
4546 return rdev->desc->ops->get_current_limit(rdev);
4547}
4548
4549static int _regulator_get_current_limit(struct regulator_dev *rdev)
4550{
4551 int ret;
4552
4553 regulator_lock(rdev);
4554 ret = _regulator_get_current_limit_unlocked(rdev);
4555 regulator_unlock(rdev);
4556
4557 return ret;
4558}
4559
4560/**
4561 * regulator_get_current_limit - get regulator output current
4562 * @regulator: regulator source
4563 *
4564 * This returns the current supplied by the specified current sink in uA.
4565 *
4566 * NOTE: If the regulator is disabled it will return the current value. This
4567 * function should not be used to determine regulator state.
4568 */
4569int regulator_get_current_limit(struct regulator *regulator)
4570{
4571 return _regulator_get_current_limit(rdev: regulator->rdev);
4572}
4573EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4574
4575/**
4576 * regulator_set_mode - set regulator operating mode
4577 * @regulator: regulator source
4578 * @mode: operating mode - one of the REGULATOR_MODE constants
4579 *
4580 * Set regulator operating mode to increase regulator efficiency or improve
4581 * regulation performance.
4582 *
4583 * NOTE: Regulator system constraints must be set for this regulator before
4584 * calling this function otherwise this call will fail.
4585 */
4586int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4587{
4588 struct regulator_dev *rdev = regulator->rdev;
4589 int ret;
4590 int regulator_curr_mode;
4591
4592 regulator_lock(rdev);
4593
4594 /* sanity check */
4595 if (!rdev->desc->ops->set_mode) {
4596 ret = -EINVAL;
4597 goto out;
4598 }
4599
4600 /* return if the same mode is requested */
4601 if (rdev->desc->ops->get_mode) {
4602 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4603 if (regulator_curr_mode == mode) {
4604 ret = 0;
4605 goto out;
4606 }
4607 }
4608
4609 /* constraints check */
4610 ret = regulator_mode_constrain(rdev, mode: &mode);
4611 if (ret < 0)
4612 goto out;
4613
4614 ret = rdev->desc->ops->set_mode(rdev, mode);
4615out:
4616 regulator_unlock(rdev);
4617 return ret;
4618}
4619EXPORT_SYMBOL_GPL(regulator_set_mode);
4620
4621static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4622{
4623 /* sanity check */
4624 if (!rdev->desc->ops->get_mode)
4625 return -EINVAL;
4626
4627 return rdev->desc->ops->get_mode(rdev);
4628}
4629
4630static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4631{
4632 int ret;
4633
4634 regulator_lock(rdev);
4635 ret = _regulator_get_mode_unlocked(rdev);
4636 regulator_unlock(rdev);
4637
4638 return ret;
4639}
4640
4641/**
4642 * regulator_get_mode - get regulator operating mode
4643 * @regulator: regulator source
4644 *
4645 * Get the current regulator operating mode.
4646 */
4647unsigned int regulator_get_mode(struct regulator *regulator)
4648{
4649 return _regulator_get_mode(rdev: regulator->rdev);
4650}
4651EXPORT_SYMBOL_GPL(regulator_get_mode);
4652
4653static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4654{
4655 int ret = 0;
4656
4657 if (rdev->use_cached_err) {
4658 spin_lock(lock: &rdev->err_lock);
4659 ret = rdev->cached_err;
4660 spin_unlock(lock: &rdev->err_lock);
4661 }
4662 return ret;
4663}
4664
4665static int _regulator_get_error_flags(struct regulator_dev *rdev,
4666 unsigned int *flags)
4667{
4668 int cached_flags, ret = 0;
4669
4670 regulator_lock(rdev);
4671
4672 cached_flags = rdev_get_cached_err_flags(rdev);
4673
4674 if (rdev->desc->ops->get_error_flags)
4675 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4676 else if (!rdev->use_cached_err)
4677 ret = -EINVAL;
4678
4679 *flags |= cached_flags;
4680
4681 regulator_unlock(rdev);
4682
4683 return ret;
4684}
4685
4686/**
4687 * regulator_get_error_flags - get regulator error information
4688 * @regulator: regulator source
4689 * @flags: pointer to store error flags
4690 *
4691 * Get the current regulator error information.
4692 */
4693int regulator_get_error_flags(struct regulator *regulator,
4694 unsigned int *flags)
4695{
4696 return _regulator_get_error_flags(rdev: regulator->rdev, flags);
4697}
4698EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4699
4700/**
4701 * regulator_set_load - set regulator load
4702 * @regulator: regulator source
4703 * @uA_load: load current
4704 *
4705 * Notifies the regulator core of a new device load. This is then used by
4706 * DRMS (if enabled by constraints) to set the most efficient regulator
4707 * operating mode for the new regulator loading.
4708 *
4709 * Consumer devices notify their supply regulator of the maximum power
4710 * they will require (can be taken from device datasheet in the power
4711 * consumption tables) when they change operational status and hence power
4712 * state. Examples of operational state changes that can affect power
4713 * consumption are :-
4714 *
4715 * o Device is opened / closed.
4716 * o Device I/O is about to begin or has just finished.
4717 * o Device is idling in between work.
4718 *
4719 * This information is also exported via sysfs to userspace.
4720 *
4721 * DRMS will sum the total requested load on the regulator and change
4722 * to the most efficient operating mode if platform constraints allow.
4723 *
4724 * NOTE: when a regulator consumer requests to have a regulator
4725 * disabled then any load that consumer requested no longer counts
4726 * toward the total requested load. If the regulator is re-enabled
4727 * then the previously requested load will start counting again.
4728 *
4729 * If a regulator is an always-on regulator then an individual consumer's
4730 * load will still be removed if that consumer is fully disabled.
4731 *
4732 * On error a negative errno is returned.
4733 */
4734int regulator_set_load(struct regulator *regulator, int uA_load)
4735{
4736 struct regulator_dev *rdev = regulator->rdev;
4737 int old_uA_load;
4738 int ret = 0;
4739
4740 regulator_lock(rdev);
4741 old_uA_load = regulator->uA_load;
4742 regulator->uA_load = uA_load;
4743 if (regulator->enable_count && old_uA_load != uA_load) {
4744 ret = drms_uA_update(rdev);
4745 if (ret < 0)
4746 regulator->uA_load = old_uA_load;
4747 }
4748 regulator_unlock(rdev);
4749
4750 return ret;
4751}
4752EXPORT_SYMBOL_GPL(regulator_set_load);
4753
4754/**
4755 * regulator_allow_bypass - allow the regulator to go into bypass mode
4756 *
4757 * @regulator: Regulator to configure
4758 * @enable: enable or disable bypass mode
4759 *
4760 * Allow the regulator to go into bypass mode if all other consumers
4761 * for the regulator also enable bypass mode and the machine
4762 * constraints allow this. Bypass mode means that the regulator is
4763 * simply passing the input directly to the output with no regulation.
4764 */
4765int regulator_allow_bypass(struct regulator *regulator, bool enable)
4766{
4767 struct regulator_dev *rdev = regulator->rdev;
4768 const char *name = rdev_get_name(rdev);
4769 int ret = 0;
4770
4771 if (!rdev->desc->ops->set_bypass)
4772 return 0;
4773
4774 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4775 return 0;
4776
4777 regulator_lock(rdev);
4778
4779 if (enable && !regulator->bypass) {
4780 rdev->bypass_count++;
4781
4782 if (rdev->bypass_count == rdev->open_count) {
4783 trace_regulator_bypass_enable(name);
4784
4785 ret = rdev->desc->ops->set_bypass(rdev, enable);
4786 if (ret != 0)
4787 rdev->bypass_count--;
4788 else
4789 trace_regulator_bypass_enable_complete(name);
4790 }
4791
4792 } else if (!enable && regulator->bypass) {
4793 rdev->bypass_count--;
4794
4795 if (rdev->bypass_count != rdev->open_count) {
4796 trace_regulator_bypass_disable(name);
4797
4798 ret = rdev->desc->ops->set_bypass(rdev, enable);
4799 if (ret != 0)
4800 rdev->bypass_count++;
4801 else
4802 trace_regulator_bypass_disable_complete(name);
4803 }
4804 }
4805
4806 if (ret == 0)
4807 regulator->bypass = enable;
4808
4809 regulator_unlock(rdev);
4810
4811 return ret;
4812}
4813EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4814
4815/**
4816 * regulator_register_notifier - register regulator event notifier
4817 * @regulator: regulator source
4818 * @nb: notifier block
4819 *
4820 * Register notifier block to receive regulator events.
4821 */
4822int regulator_register_notifier(struct regulator *regulator,
4823 struct notifier_block *nb)
4824{
4825 return blocking_notifier_chain_register(nh: &regulator->rdev->notifier,
4826 nb);
4827}
4828EXPORT_SYMBOL_GPL(regulator_register_notifier);
4829
4830/**
4831 * regulator_unregister_notifier - unregister regulator event notifier
4832 * @regulator: regulator source
4833 * @nb: notifier block
4834 *
4835 * Unregister regulator event notifier block.
4836 */
4837int regulator_unregister_notifier(struct regulator *regulator,
4838 struct notifier_block *nb)
4839{
4840 return blocking_notifier_chain_unregister(nh: &regulator->rdev->notifier,
4841 nb);
4842}
4843EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4844
4845/* notify regulator consumers and downstream regulator consumers.
4846 * Note mutex must be held by caller.
4847 */
4848static int _notifier_call_chain(struct regulator_dev *rdev,
4849 unsigned long event, void *data)
4850{
4851 /* call rdev chain first */
4852 return blocking_notifier_call_chain(nh: &rdev->notifier, val: event, v: data);
4853}
4854
4855int _regulator_bulk_get(struct device *dev, int num_consumers,
4856 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4857{
4858 int i;
4859 int ret;
4860
4861 for (i = 0; i < num_consumers; i++)
4862 consumers[i].consumer = NULL;
4863
4864 for (i = 0; i < num_consumers; i++) {
4865 consumers[i].consumer = _regulator_get(dev,
4866 id: consumers[i].supply, get_type);
4867 if (IS_ERR(ptr: consumers[i].consumer)) {
4868 ret = dev_err_probe(dev, err: PTR_ERR(ptr: consumers[i].consumer),
4869 fmt: "Failed to get supply '%s'",
4870 consumers[i].supply);
4871 consumers[i].consumer = NULL;
4872 goto err;
4873 }
4874
4875 if (consumers[i].init_load_uA > 0) {
4876 ret = regulator_set_load(consumers[i].consumer,
4877 consumers[i].init_load_uA);
4878 if (ret) {
4879 i++;
4880 goto err;
4881 }
4882 }
4883 }
4884
4885 return 0;
4886
4887err:
4888 while (--i >= 0)
4889 regulator_put(consumers[i].consumer);
4890
4891 return ret;
4892}
4893
4894/**
4895 * regulator_bulk_get - get multiple regulator consumers
4896 *
4897 * @dev: Device to supply
4898 * @num_consumers: Number of consumers to register
4899 * @consumers: Configuration of consumers; clients are stored here.
4900 *
4901 * @return 0 on success, an errno on failure.
4902 *
4903 * This helper function allows drivers to get several regulator
4904 * consumers in one operation. If any of the regulators cannot be
4905 * acquired then any regulators that were allocated will be freed
4906 * before returning to the caller.
4907 */
4908int regulator_bulk_get(struct device *dev, int num_consumers,
4909 struct regulator_bulk_data *consumers)
4910{
4911 return _regulator_bulk_get(dev, num_consumers, consumers, get_type: NORMAL_GET);
4912}
4913EXPORT_SYMBOL_GPL(regulator_bulk_get);
4914
4915static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4916{
4917 struct regulator_bulk_data *bulk = data;
4918
4919 bulk->ret = regulator_enable(bulk->consumer);
4920}
4921
4922/**
4923 * regulator_bulk_enable - enable multiple regulator consumers
4924 *
4925 * @num_consumers: Number of consumers
4926 * @consumers: Consumer data; clients are stored here.
4927 * @return 0 on success, an errno on failure
4928 *
4929 * This convenience API allows consumers to enable multiple regulator
4930 * clients in a single API call. If any consumers cannot be enabled
4931 * then any others that were enabled will be disabled again prior to
4932 * return.
4933 */
4934int regulator_bulk_enable(int num_consumers,
4935 struct regulator_bulk_data *consumers)
4936{
4937 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4938 int i;
4939 int ret = 0;
4940
4941 for (i = 0; i < num_consumers; i++) {
4942 async_schedule_domain(func: regulator_bulk_enable_async,
4943 data: &consumers[i], domain: &async_domain);
4944 }
4945
4946 async_synchronize_full_domain(domain: &async_domain);
4947
4948 /* If any consumer failed we need to unwind any that succeeded */
4949 for (i = 0; i < num_consumers; i++) {
4950 if (consumers[i].ret != 0) {
4951 ret = consumers[i].ret;
4952 goto err;
4953 }
4954 }
4955
4956 return 0;
4957
4958err:
4959 for (i = 0; i < num_consumers; i++) {
4960 if (consumers[i].ret < 0)
4961 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4962 ERR_PTR(consumers[i].ret));
4963 else
4964 regulator_disable(consumers[i].consumer);
4965 }
4966
4967 return ret;
4968}
4969EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4970
4971/**
4972 * regulator_bulk_disable - disable multiple regulator consumers
4973 *
4974 * @num_consumers: Number of consumers
4975 * @consumers: Consumer data; clients are stored here.
4976 * @return 0 on success, an errno on failure
4977 *
4978 * This convenience API allows consumers to disable multiple regulator
4979 * clients in a single API call. If any consumers cannot be disabled
4980 * then any others that were disabled will be enabled again prior to
4981 * return.
4982 */
4983int regulator_bulk_disable(int num_consumers,
4984 struct regulator_bulk_data *consumers)
4985{
4986 int i;
4987 int ret, r;
4988
4989 for (i = num_consumers - 1; i >= 0; --i) {
4990 ret = regulator_disable(consumers[i].consumer);
4991 if (ret != 0)
4992 goto err;
4993 }
4994
4995 return 0;
4996
4997err:
4998 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4999 for (++i; i < num_consumers; ++i) {
5000 r = regulator_enable(consumers[i].consumer);
5001 if (r != 0)
5002 pr_err("Failed to re-enable %s: %pe\n",
5003 consumers[i].supply, ERR_PTR(r));
5004 }
5005
5006 return ret;
5007}
5008EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5009
5010/**
5011 * regulator_bulk_force_disable - force disable multiple regulator consumers
5012 *
5013 * @num_consumers: Number of consumers
5014 * @consumers: Consumer data; clients are stored here.
5015 * @return 0 on success, an errno on failure
5016 *
5017 * This convenience API allows consumers to forcibly disable multiple regulator
5018 * clients in a single API call.
5019 * NOTE: This should be used for situations when device damage will
5020 * likely occur if the regulators are not disabled (e.g. over temp).
5021 * Although regulator_force_disable function call for some consumers can
5022 * return error numbers, the function is called for all consumers.
5023 */
5024int regulator_bulk_force_disable(int num_consumers,
5025 struct regulator_bulk_data *consumers)
5026{
5027 int i;
5028 int ret = 0;
5029
5030 for (i = 0; i < num_consumers; i++) {
5031 consumers[i].ret =
5032 regulator_force_disable(consumers[i].consumer);
5033
5034 /* Store first error for reporting */
5035 if (consumers[i].ret && !ret)
5036 ret = consumers[i].ret;
5037 }
5038
5039 return ret;
5040}
5041EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5042
5043/**
5044 * regulator_bulk_free - free multiple regulator consumers
5045 *
5046 * @num_consumers: Number of consumers
5047 * @consumers: Consumer data; clients are stored here.
5048 *
5049 * This convenience API allows consumers to free multiple regulator
5050 * clients in a single API call.
5051 */
5052void regulator_bulk_free(int num_consumers,
5053 struct regulator_bulk_data *consumers)
5054{
5055 int i;
5056
5057 for (i = 0; i < num_consumers; i++) {
5058 regulator_put(consumers[i].consumer);
5059 consumers[i].consumer = NULL;
5060 }
5061}
5062EXPORT_SYMBOL_GPL(regulator_bulk_free);
5063
5064/**
5065 * regulator_notifier_call_chain - call regulator event notifier
5066 * @rdev: regulator source
5067 * @event: notifier block
5068 * @data: callback-specific data.
5069 *
5070 * Called by regulator drivers to notify clients a regulator event has
5071 * occurred.
5072 */
5073int regulator_notifier_call_chain(struct regulator_dev *rdev,
5074 unsigned long event, void *data)
5075{
5076 _notifier_call_chain(rdev, event, data);
5077 return NOTIFY_DONE;
5078
5079}
5080EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5081
5082/**
5083 * regulator_mode_to_status - convert a regulator mode into a status
5084 *
5085 * @mode: Mode to convert
5086 *
5087 * Convert a regulator mode into a status.
5088 */
5089int regulator_mode_to_status(unsigned int mode)
5090{
5091 switch (mode) {
5092 case REGULATOR_MODE_FAST:
5093 return REGULATOR_STATUS_FAST;
5094 case REGULATOR_MODE_NORMAL:
5095 return REGULATOR_STATUS_NORMAL;
5096 case REGULATOR_MODE_IDLE:
5097 return REGULATOR_STATUS_IDLE;
5098 case REGULATOR_MODE_STANDBY:
5099 return REGULATOR_STATUS_STANDBY;
5100 default:
5101 return REGULATOR_STATUS_UNDEFINED;
5102 }
5103}
5104EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5105
5106static struct attribute *regulator_dev_attrs[] = {
5107 &dev_attr_name.attr,
5108 &dev_attr_num_users.attr,
5109 &dev_attr_type.attr,
5110 &dev_attr_microvolts.attr,
5111 &dev_attr_microamps.attr,
5112 &dev_attr_opmode.attr,
5113 &dev_attr_state.attr,
5114 &dev_attr_status.attr,
5115 &dev_attr_bypass.attr,
5116 &dev_attr_requested_microamps.attr,
5117 &dev_attr_min_microvolts.attr,
5118 &dev_attr_max_microvolts.attr,
5119 &dev_attr_min_microamps.attr,
5120 &dev_attr_max_microamps.attr,
5121 &dev_attr_under_voltage.attr,
5122 &dev_attr_over_current.attr,
5123 &dev_attr_regulation_out.attr,
5124 &dev_attr_fail.attr,
5125 &dev_attr_over_temp.attr,
5126 &dev_attr_under_voltage_warn.attr,
5127 &dev_attr_over_current_warn.attr,
5128 &dev_attr_over_voltage_warn.attr,
5129 &dev_attr_over_temp_warn.attr,
5130 &dev_attr_suspend_standby_state.attr,
5131 &dev_attr_suspend_mem_state.attr,
5132 &dev_attr_suspend_disk_state.attr,
5133 &dev_attr_suspend_standby_microvolts.attr,
5134 &dev_attr_suspend_mem_microvolts.attr,
5135 &dev_attr_suspend_disk_microvolts.attr,
5136 &dev_attr_suspend_standby_mode.attr,
5137 &dev_attr_suspend_mem_mode.attr,
5138 &dev_attr_suspend_disk_mode.attr,
5139 NULL
5140};
5141
5142/*
5143 * To avoid cluttering sysfs (and memory) with useless state, only
5144 * create attributes that can be meaningfully displayed.
5145 */
5146static umode_t regulator_attr_is_visible(struct kobject *kobj,
5147 struct attribute *attr, int idx)
5148{
5149 struct device *dev = kobj_to_dev(kobj);
5150 struct regulator_dev *rdev = dev_to_rdev(dev);
5151 const struct regulator_ops *ops = rdev->desc->ops;
5152 umode_t mode = attr->mode;
5153
5154 /* these three are always present */
5155 if (attr == &dev_attr_name.attr ||
5156 attr == &dev_attr_num_users.attr ||
5157 attr == &dev_attr_type.attr)
5158 return mode;
5159
5160 /* some attributes need specific methods to be displayed */
5161 if (attr == &dev_attr_microvolts.attr) {
5162 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5163 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5164 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5165 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5166 return mode;
5167 return 0;
5168 }
5169
5170 if (attr == &dev_attr_microamps.attr)
5171 return ops->get_current_limit ? mode : 0;
5172
5173 if (attr == &dev_attr_opmode.attr)
5174 return ops->get_mode ? mode : 0;
5175
5176 if (attr == &dev_attr_state.attr)
5177 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5178
5179 if (attr == &dev_attr_status.attr)
5180 return ops->get_status ? mode : 0;
5181
5182 if (attr == &dev_attr_bypass.attr)
5183 return ops->get_bypass ? mode : 0;
5184
5185 if (attr == &dev_attr_under_voltage.attr ||
5186 attr == &dev_attr_over_current.attr ||
5187 attr == &dev_attr_regulation_out.attr ||
5188 attr == &dev_attr_fail.attr ||
5189 attr == &dev_attr_over_temp.attr ||
5190 attr == &dev_attr_under_voltage_warn.attr ||
5191 attr == &dev_attr_over_current_warn.attr ||
5192 attr == &dev_attr_over_voltage_warn.attr ||
5193 attr == &dev_attr_over_temp_warn.attr)
5194 return ops->get_error_flags ? mode : 0;
5195
5196 /* constraints need specific supporting methods */
5197 if (attr == &dev_attr_min_microvolts.attr ||
5198 attr == &dev_attr_max_microvolts.attr)
5199 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5200
5201 if (attr == &dev_attr_min_microamps.attr ||
5202 attr == &dev_attr_max_microamps.attr)
5203 return ops->set_current_limit ? mode : 0;
5204
5205 if (attr == &dev_attr_suspend_standby_state.attr ||
5206 attr == &dev_attr_suspend_mem_state.attr ||
5207 attr == &dev_attr_suspend_disk_state.attr)
5208 return mode;
5209
5210 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5211 attr == &dev_attr_suspend_mem_microvolts.attr ||
5212 attr == &dev_attr_suspend_disk_microvolts.attr)
5213 return ops->set_suspend_voltage ? mode : 0;
5214
5215 if (attr == &dev_attr_suspend_standby_mode.attr ||
5216 attr == &dev_attr_suspend_mem_mode.attr ||
5217 attr == &dev_attr_suspend_disk_mode.attr)
5218 return ops->set_suspend_mode ? mode : 0;
5219
5220 return mode;
5221}
5222
5223static const struct attribute_group regulator_dev_group = {
5224 .attrs = regulator_dev_attrs,
5225 .is_visible = regulator_attr_is_visible,
5226};
5227
5228static const struct attribute_group *regulator_dev_groups[] = {
5229 &regulator_dev_group,
5230 NULL
5231};
5232
5233static void regulator_dev_release(struct device *dev)
5234{
5235 struct regulator_dev *rdev = dev_get_drvdata(dev);
5236
5237 debugfs_remove_recursive(dentry: rdev->debugfs);
5238 kfree(objp: rdev->constraints);
5239 of_node_put(node: rdev->dev.of_node);
5240 kfree(objp: rdev);
5241}
5242
5243static void rdev_init_debugfs(struct regulator_dev *rdev)
5244{
5245 struct device *parent = rdev->dev.parent;
5246 const char *rname = rdev_get_name(rdev);
5247 char name[NAME_MAX];
5248
5249 /* Avoid duplicate debugfs directory names */
5250 if (parent && rname == rdev->desc->name) {
5251 snprintf(buf: name, size: sizeof(name), fmt: "%s-%s", dev_name(dev: parent),
5252 rname);
5253 rname = name;
5254 }
5255
5256 rdev->debugfs = debugfs_create_dir(name: rname, parent: debugfs_root);
5257 if (IS_ERR(ptr: rdev->debugfs))
5258 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5259
5260 debugfs_create_u32(name: "use_count", mode: 0444, parent: rdev->debugfs,
5261 value: &rdev->use_count);
5262 debugfs_create_u32(name: "open_count", mode: 0444, parent: rdev->debugfs,
5263 value: &rdev->open_count);
5264 debugfs_create_u32(name: "bypass_count", mode: 0444, parent: rdev->debugfs,
5265 value: &rdev->bypass_count);
5266}
5267
5268static int regulator_register_resolve_supply(struct device *dev, void *data)
5269{
5270 struct regulator_dev *rdev = dev_to_rdev(dev);
5271
5272 if (regulator_resolve_supply(rdev))
5273 rdev_dbg(rdev, "unable to resolve supply\n");
5274
5275 return 0;
5276}
5277
5278int regulator_coupler_register(struct regulator_coupler *coupler)
5279{
5280 mutex_lock(&regulator_list_mutex);
5281 list_add_tail(new: &coupler->list, head: &regulator_coupler_list);
5282 mutex_unlock(lock: &regulator_list_mutex);
5283
5284 return 0;
5285}
5286
5287static struct regulator_coupler *
5288regulator_find_coupler(struct regulator_dev *rdev)
5289{
5290 struct regulator_coupler *coupler;
5291 int err;
5292
5293 /*
5294 * Note that regulators are appended to the list and the generic
5295 * coupler is registered first, hence it will be attached at last
5296 * if nobody cared.
5297 */
5298 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5299 err = coupler->attach_regulator(coupler, rdev);
5300 if (!err) {
5301 if (!coupler->balance_voltage &&
5302 rdev->coupling_desc.n_coupled > 2)
5303 goto err_unsupported;
5304
5305 return coupler;
5306 }
5307
5308 if (err < 0)
5309 return ERR_PTR(error: err);
5310
5311 if (err == 1)
5312 continue;
5313
5314 break;
5315 }
5316
5317 return ERR_PTR(error: -EINVAL);
5318
5319err_unsupported:
5320 if (coupler->detach_regulator)
5321 coupler->detach_regulator(coupler, rdev);
5322
5323 rdev_err(rdev,
5324 "Voltage balancing for multiple regulator couples is unimplemented\n");
5325
5326 return ERR_PTR(error: -EPERM);
5327}
5328
5329static void regulator_resolve_coupling(struct regulator_dev *rdev)
5330{
5331 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5332 struct coupling_desc *c_desc = &rdev->coupling_desc;
5333 int n_coupled = c_desc->n_coupled;
5334 struct regulator_dev *c_rdev;
5335 int i;
5336
5337 for (i = 1; i < n_coupled; i++) {
5338 /* already resolved */
5339 if (c_desc->coupled_rdevs[i])
5340 continue;
5341
5342 c_rdev = of_parse_coupled_regulator(rdev, index: i - 1);
5343
5344 if (!c_rdev)
5345 continue;
5346
5347 if (c_rdev->coupling_desc.coupler != coupler) {
5348 rdev_err(rdev, "coupler mismatch with %s\n",
5349 rdev_get_name(c_rdev));
5350 return;
5351 }
5352
5353 c_desc->coupled_rdevs[i] = c_rdev;
5354 c_desc->n_resolved++;
5355
5356 regulator_resolve_coupling(rdev: c_rdev);
5357 }
5358}
5359
5360static void regulator_remove_coupling(struct regulator_dev *rdev)
5361{
5362 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5363 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5364 struct regulator_dev *__c_rdev, *c_rdev;
5365 unsigned int __n_coupled, n_coupled;
5366 int i, k;
5367 int err;
5368
5369 n_coupled = c_desc->n_coupled;
5370
5371 for (i = 1; i < n_coupled; i++) {
5372 c_rdev = c_desc->coupled_rdevs[i];
5373
5374 if (!c_rdev)
5375 continue;
5376
5377 regulator_lock(rdev: c_rdev);
5378
5379 __c_desc = &c_rdev->coupling_desc;
5380 __n_coupled = __c_desc->n_coupled;
5381
5382 for (k = 1; k < __n_coupled; k++) {
5383 __c_rdev = __c_desc->coupled_rdevs[k];
5384
5385 if (__c_rdev == rdev) {
5386 __c_desc->coupled_rdevs[k] = NULL;
5387 __c_desc->n_resolved--;
5388 break;
5389 }
5390 }
5391
5392 regulator_unlock(rdev: c_rdev);
5393
5394 c_desc->coupled_rdevs[i] = NULL;
5395 c_desc->n_resolved--;
5396 }
5397
5398 if (coupler && coupler->detach_regulator) {
5399 err = coupler->detach_regulator(coupler, rdev);
5400 if (err)
5401 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5402 ERR_PTR(err));
5403 }
5404
5405 kfree(objp: rdev->coupling_desc.coupled_rdevs);
5406 rdev->coupling_desc.coupled_rdevs = NULL;
5407}
5408
5409static int regulator_init_coupling(struct regulator_dev *rdev)
5410{
5411 struct regulator_dev **coupled;
5412 int err, n_phandles;
5413
5414 if (!IS_ENABLED(CONFIG_OF))
5415 n_phandles = 0;
5416 else
5417 n_phandles = of_get_n_coupled(rdev);
5418
5419 coupled = kcalloc(n: n_phandles + 1, size: sizeof(*coupled), GFP_KERNEL);
5420 if (!coupled)
5421 return -ENOMEM;
5422
5423 rdev->coupling_desc.coupled_rdevs = coupled;
5424
5425 /*
5426 * Every regulator should always have coupling descriptor filled with
5427 * at least pointer to itself.
5428 */
5429 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5430 rdev->coupling_desc.n_coupled = n_phandles + 1;
5431 rdev->coupling_desc.n_resolved++;
5432
5433 /* regulator isn't coupled */
5434 if (n_phandles == 0)
5435 return 0;
5436
5437 if (!of_check_coupling_data(rdev))
5438 return -EPERM;
5439
5440 mutex_lock(&regulator_list_mutex);
5441 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5442 mutex_unlock(lock: &regulator_list_mutex);
5443
5444 if (IS_ERR(ptr: rdev->coupling_desc.coupler)) {
5445 err = PTR_ERR(ptr: rdev->coupling_desc.coupler);
5446 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5447 return err;
5448 }
5449
5450 return 0;
5451}
5452
5453static int generic_coupler_attach(struct regulator_coupler *coupler,
5454 struct regulator_dev *rdev)
5455{
5456 if (rdev->coupling_desc.n_coupled > 2) {
5457 rdev_err(rdev,
5458 "Voltage balancing for multiple regulator couples is unimplemented\n");
5459 return -EPERM;
5460 }
5461
5462 if (!rdev->constraints->always_on) {
5463 rdev_err(rdev,
5464 "Coupling of a non always-on regulator is unimplemented\n");
5465 return -ENOTSUPP;
5466 }
5467
5468 return 0;
5469}
5470
5471static struct regulator_coupler generic_regulator_coupler = {
5472 .attach_regulator = generic_coupler_attach,
5473};
5474
5475/**
5476 * regulator_register - register regulator
5477 * @dev: the device that drive the regulator
5478 * @regulator_desc: regulator to register
5479 * @cfg: runtime configuration for regulator
5480 *
5481 * Called by regulator drivers to register a regulator.
5482 * Returns a valid pointer to struct regulator_dev on success
5483 * or an ERR_PTR() on error.
5484 */
5485struct regulator_dev *
5486regulator_register(struct device *dev,
5487 const struct regulator_desc *regulator_desc,
5488 const struct regulator_config *cfg)
5489{
5490 const struct regulator_init_data *init_data;
5491 struct regulator_config *config = NULL;
5492 static atomic_t regulator_no = ATOMIC_INIT(-1);
5493 struct regulator_dev *rdev;
5494 bool dangling_cfg_gpiod = false;
5495 bool dangling_of_gpiod = false;
5496 int ret, i;
5497 bool resolved_early = false;
5498
5499 if (cfg == NULL)
5500 return ERR_PTR(error: -EINVAL);
5501 if (cfg->ena_gpiod)
5502 dangling_cfg_gpiod = true;
5503 if (regulator_desc == NULL) {
5504 ret = -EINVAL;
5505 goto rinse;
5506 }
5507
5508 WARN_ON(!dev || !cfg->dev);
5509
5510 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5511 ret = -EINVAL;
5512 goto rinse;
5513 }
5514
5515 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5516 regulator_desc->type != REGULATOR_CURRENT) {
5517 ret = -EINVAL;
5518 goto rinse;
5519 }
5520
5521 /* Only one of each should be implemented */
5522 WARN_ON(regulator_desc->ops->get_voltage &&
5523 regulator_desc->ops->get_voltage_sel);
5524 WARN_ON(regulator_desc->ops->set_voltage &&
5525 regulator_desc->ops->set_voltage_sel);
5526
5527 /* If we're using selectors we must implement list_voltage. */
5528 if (regulator_desc->ops->get_voltage_sel &&
5529 !regulator_desc->ops->list_voltage) {
5530 ret = -EINVAL;
5531 goto rinse;
5532 }
5533 if (regulator_desc->ops->set_voltage_sel &&
5534 !regulator_desc->ops->list_voltage) {
5535 ret = -EINVAL;
5536 goto rinse;
5537 }
5538
5539 rdev = kzalloc(size: sizeof(struct regulator_dev), GFP_KERNEL);
5540 if (rdev == NULL) {
5541 ret = -ENOMEM;
5542 goto rinse;
5543 }
5544 device_initialize(dev: &rdev->dev);
5545 dev_set_drvdata(dev: &rdev->dev, data: rdev);
5546 rdev->dev.class = &regulator_class;
5547 spin_lock_init(&rdev->err_lock);
5548
5549 /*
5550 * Duplicate the config so the driver could override it after
5551 * parsing init data.
5552 */
5553 config = kmemdup(p: cfg, size: sizeof(*cfg), GFP_KERNEL);
5554 if (config == NULL) {
5555 ret = -ENOMEM;
5556 goto clean;
5557 }
5558
5559 init_data = regulator_of_get_init_data(dev, desc: regulator_desc, config,
5560 node: &rdev->dev.of_node);
5561
5562 /*
5563 * Sometimes not all resources are probed already so we need to take
5564 * that into account. This happens most the time if the ena_gpiod comes
5565 * from a gpio extender or something else.
5566 */
5567 if (PTR_ERR(ptr: init_data) == -EPROBE_DEFER) {
5568 ret = -EPROBE_DEFER;
5569 goto clean;
5570 }
5571
5572 /*
5573 * We need to keep track of any GPIO descriptor coming from the
5574 * device tree until we have handled it over to the core. If the
5575 * config that was passed in to this function DOES NOT contain
5576 * a descriptor, and the config after this call DOES contain
5577 * a descriptor, we definitely got one from parsing the device
5578 * tree.
5579 */
5580 if (!cfg->ena_gpiod && config->ena_gpiod)
5581 dangling_of_gpiod = true;
5582 if (!init_data) {
5583 init_data = config->init_data;
5584 rdev->dev.of_node = of_node_get(node: config->of_node);
5585 }
5586
5587 ww_mutex_init(lock: &rdev->mutex, ww_class: &regulator_ww_class);
5588 rdev->reg_data = config->driver_data;
5589 rdev->owner = regulator_desc->owner;
5590 rdev->desc = regulator_desc;
5591 if (config->regmap)
5592 rdev->regmap = config->regmap;
5593 else if (dev_get_regmap(dev, NULL))
5594 rdev->regmap = dev_get_regmap(dev, NULL);
5595 else if (dev->parent)
5596 rdev->regmap = dev_get_regmap(dev: dev->parent, NULL);
5597 INIT_LIST_HEAD(list: &rdev->consumer_list);
5598 INIT_LIST_HEAD(list: &rdev->list);
5599 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5600 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5601
5602 if (init_data && init_data->supply_regulator)
5603 rdev->supply_name = init_data->supply_regulator;
5604 else if (regulator_desc->supply_name)
5605 rdev->supply_name = regulator_desc->supply_name;
5606
5607 /* register with sysfs */
5608 rdev->dev.parent = config->dev;
5609 dev_set_name(dev: &rdev->dev, name: "regulator.%lu",
5610 (unsigned long) atomic_inc_return(v: &regulator_no));
5611
5612 /* set regulator constraints */
5613 if (init_data)
5614 rdev->constraints = kmemdup(p: &init_data->constraints,
5615 size: sizeof(*rdev->constraints),
5616 GFP_KERNEL);
5617 else
5618 rdev->constraints = kzalloc(size: sizeof(*rdev->constraints),
5619 GFP_KERNEL);
5620 if (!rdev->constraints) {
5621 ret = -ENOMEM;
5622 goto wash;
5623 }
5624
5625 if ((rdev->supply_name && !rdev->supply) &&
5626 (rdev->constraints->always_on ||
5627 rdev->constraints->boot_on)) {
5628 ret = regulator_resolve_supply(rdev);
5629 if (ret)
5630 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5631 ERR_PTR(ret));
5632
5633 resolved_early = true;
5634 }
5635
5636 /* perform any regulator specific init */
5637 if (init_data && init_data->regulator_init) {
5638 ret = init_data->regulator_init(rdev->reg_data);
5639 if (ret < 0)
5640 goto wash;
5641 }
5642
5643 if (config->ena_gpiod) {
5644 ret = regulator_ena_gpio_request(rdev, config);
5645 if (ret != 0) {
5646 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5647 ERR_PTR(ret));
5648 goto wash;
5649 }
5650 /* The regulator core took over the GPIO descriptor */
5651 dangling_cfg_gpiod = false;
5652 dangling_of_gpiod = false;
5653 }
5654
5655 ret = set_machine_constraints(rdev);
5656 if (ret == -EPROBE_DEFER && !resolved_early) {
5657 /* Regulator might be in bypass mode and so needs its supply
5658 * to set the constraints
5659 */
5660 /* FIXME: this currently triggers a chicken-and-egg problem
5661 * when creating -SUPPLY symlink in sysfs to a regulator
5662 * that is just being created
5663 */
5664 rdev_dbg(rdev, "will resolve supply early: %s\n",
5665 rdev->supply_name);
5666 ret = regulator_resolve_supply(rdev);
5667 if (!ret)
5668 ret = set_machine_constraints(rdev);
5669 else
5670 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5671 ERR_PTR(ret));
5672 }
5673 if (ret < 0)
5674 goto wash;
5675
5676 ret = regulator_init_coupling(rdev);
5677 if (ret < 0)
5678 goto wash;
5679
5680 /* add consumers devices */
5681 if (init_data) {
5682 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5683 ret = set_consumer_device_supply(rdev,
5684 consumer_dev_name: init_data->consumer_supplies[i].dev_name,
5685 supply: init_data->consumer_supplies[i].supply);
5686 if (ret < 0) {
5687 dev_err(dev, "Failed to set supply %s\n",
5688 init_data->consumer_supplies[i].supply);
5689 goto unset_supplies;
5690 }
5691 }
5692 }
5693
5694 if (!rdev->desc->ops->get_voltage &&
5695 !rdev->desc->ops->list_voltage &&
5696 !rdev->desc->fixed_uV)
5697 rdev->is_switch = true;
5698
5699 ret = device_add(dev: &rdev->dev);
5700 if (ret != 0)
5701 goto unset_supplies;
5702
5703 rdev_init_debugfs(rdev);
5704
5705 /* try to resolve regulators coupling since a new one was registered */
5706 mutex_lock(&regulator_list_mutex);
5707 regulator_resolve_coupling(rdev);
5708 mutex_unlock(lock: &regulator_list_mutex);
5709
5710 /* try to resolve regulators supply since a new one was registered */
5711 class_for_each_device(class: &regulator_class, NULL, NULL,
5712 fn: regulator_register_resolve_supply);
5713 kfree(objp: config);
5714 return rdev;
5715
5716unset_supplies:
5717 mutex_lock(&regulator_list_mutex);
5718 unset_regulator_supplies(rdev);
5719 regulator_remove_coupling(rdev);
5720 mutex_unlock(lock: &regulator_list_mutex);
5721wash:
5722 regulator_put(rdev->supply);
5723 kfree(objp: rdev->coupling_desc.coupled_rdevs);
5724 mutex_lock(&regulator_list_mutex);
5725 regulator_ena_gpio_free(rdev);
5726 mutex_unlock(lock: &regulator_list_mutex);
5727clean:
5728 if (dangling_of_gpiod)
5729 gpiod_put(desc: config->ena_gpiod);
5730 kfree(objp: config);
5731 put_device(dev: &rdev->dev);
5732rinse:
5733 if (dangling_cfg_gpiod)
5734 gpiod_put(desc: cfg->ena_gpiod);
5735 return ERR_PTR(error: ret);
5736}
5737EXPORT_SYMBOL_GPL(regulator_register);
5738
5739/**
5740 * regulator_unregister - unregister regulator
5741 * @rdev: regulator to unregister
5742 *
5743 * Called by regulator drivers to unregister a regulator.
5744 */
5745void regulator_unregister(struct regulator_dev *rdev)
5746{
5747 if (rdev == NULL)
5748 return;
5749
5750 if (rdev->supply) {
5751 while (rdev->use_count--)
5752 regulator_disable(rdev->supply);
5753 regulator_put(rdev->supply);
5754 }
5755
5756 flush_work(work: &rdev->disable_work.work);
5757
5758 mutex_lock(&regulator_list_mutex);
5759
5760 WARN_ON(rdev->open_count);
5761 regulator_remove_coupling(rdev);
5762 unset_regulator_supplies(rdev);
5763 list_del(entry: &rdev->list);
5764 regulator_ena_gpio_free(rdev);
5765 device_unregister(dev: &rdev->dev);
5766
5767 mutex_unlock(lock: &regulator_list_mutex);
5768}
5769EXPORT_SYMBOL_GPL(regulator_unregister);
5770
5771#ifdef CONFIG_SUSPEND
5772/**
5773 * regulator_suspend - prepare regulators for system wide suspend
5774 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5775 *
5776 * Configure each regulator with it's suspend operating parameters for state.
5777 */
5778static int regulator_suspend(struct device *dev)
5779{
5780 struct regulator_dev *rdev = dev_to_rdev(dev);
5781 suspend_state_t state = pm_suspend_target_state;
5782 int ret;
5783 const struct regulator_state *rstate;
5784
5785 rstate = regulator_get_suspend_state_check(rdev, state);
5786 if (!rstate)
5787 return 0;
5788
5789 regulator_lock(rdev);
5790 ret = __suspend_set_state(rdev, rstate);
5791 regulator_unlock(rdev);
5792
5793 return ret;
5794}
5795
5796static int regulator_resume(struct device *dev)
5797{
5798 suspend_state_t state = pm_suspend_target_state;
5799 struct regulator_dev *rdev = dev_to_rdev(dev);
5800 struct regulator_state *rstate;
5801 int ret = 0;
5802
5803 rstate = regulator_get_suspend_state(rdev, state);
5804 if (rstate == NULL)
5805 return 0;
5806
5807 /* Avoid grabbing the lock if we don't need to */
5808 if (!rdev->desc->ops->resume)
5809 return 0;
5810
5811 regulator_lock(rdev);
5812
5813 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5814 rstate->enabled == DISABLE_IN_SUSPEND)
5815 ret = rdev->desc->ops->resume(rdev);
5816
5817 regulator_unlock(rdev);
5818
5819 return ret;
5820}
5821#else /* !CONFIG_SUSPEND */
5822
5823#define regulator_suspend NULL
5824#define regulator_resume NULL
5825
5826#endif /* !CONFIG_SUSPEND */
5827
5828#ifdef CONFIG_PM
5829static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5830 .suspend = regulator_suspend,
5831 .resume = regulator_resume,
5832};
5833#endif
5834
5835struct class regulator_class = {
5836 .name = "regulator",
5837 .dev_release = regulator_dev_release,
5838 .dev_groups = regulator_dev_groups,
5839#ifdef CONFIG_PM
5840 .pm = &regulator_pm_ops,
5841#endif
5842};
5843/**
5844 * regulator_has_full_constraints - the system has fully specified constraints
5845 *
5846 * Calling this function will cause the regulator API to disable all
5847 * regulators which have a zero use count and don't have an always_on
5848 * constraint in a late_initcall.
5849 *
5850 * The intention is that this will become the default behaviour in a
5851 * future kernel release so users are encouraged to use this facility
5852 * now.
5853 */
5854void regulator_has_full_constraints(void)
5855{
5856 has_full_constraints = 1;
5857}
5858EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5859
5860/**
5861 * rdev_get_drvdata - get rdev regulator driver data
5862 * @rdev: regulator
5863 *
5864 * Get rdev regulator driver private data. This call can be used in the
5865 * regulator driver context.
5866 */
5867void *rdev_get_drvdata(struct regulator_dev *rdev)
5868{
5869 return rdev->reg_data;
5870}
5871EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5872
5873/**
5874 * regulator_get_drvdata - get regulator driver data
5875 * @regulator: regulator
5876 *
5877 * Get regulator driver private data. This call can be used in the consumer
5878 * driver context when non API regulator specific functions need to be called.
5879 */
5880void *regulator_get_drvdata(struct regulator *regulator)
5881{
5882 return regulator->rdev->reg_data;
5883}
5884EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5885
5886/**
5887 * regulator_set_drvdata - set regulator driver data
5888 * @regulator: regulator
5889 * @data: data
5890 */
5891void regulator_set_drvdata(struct regulator *regulator, void *data)
5892{
5893 regulator->rdev->reg_data = data;
5894}
5895EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5896
5897/**
5898 * rdev_get_id - get regulator ID
5899 * @rdev: regulator
5900 */
5901int rdev_get_id(struct regulator_dev *rdev)
5902{
5903 return rdev->desc->id;
5904}
5905EXPORT_SYMBOL_GPL(rdev_get_id);
5906
5907struct device *rdev_get_dev(struct regulator_dev *rdev)
5908{
5909 return &rdev->dev;
5910}
5911EXPORT_SYMBOL_GPL(rdev_get_dev);
5912
5913struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5914{
5915 return rdev->regmap;
5916}
5917EXPORT_SYMBOL_GPL(rdev_get_regmap);
5918
5919void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5920{
5921 return reg_init_data->driver_data;
5922}
5923EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5924
5925#ifdef CONFIG_DEBUG_FS
5926static int supply_map_show(struct seq_file *sf, void *data)
5927{
5928 struct regulator_map *map;
5929
5930 list_for_each_entry(map, &regulator_map_list, list) {
5931 seq_printf(m: sf, fmt: "%s -> %s.%s\n",
5932 rdev_get_name(map->regulator), map->dev_name,
5933 map->supply);
5934 }
5935
5936 return 0;
5937}
5938DEFINE_SHOW_ATTRIBUTE(supply_map);
5939
5940struct summary_data {
5941 struct seq_file *s;
5942 struct regulator_dev *parent;
5943 int level;
5944};
5945
5946static void regulator_summary_show_subtree(struct seq_file *s,
5947 struct regulator_dev *rdev,
5948 int level);
5949
5950static int regulator_summary_show_children(struct device *dev, void *data)
5951{
5952 struct regulator_dev *rdev = dev_to_rdev(dev);
5953 struct summary_data *summary_data = data;
5954
5955 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5956 regulator_summary_show_subtree(s: summary_data->s, rdev,
5957 level: summary_data->level + 1);
5958
5959 return 0;
5960}
5961
5962static void regulator_summary_show_subtree(struct seq_file *s,
5963 struct regulator_dev *rdev,
5964 int level)
5965{
5966 struct regulation_constraints *c;
5967 struct regulator *consumer;
5968 struct summary_data summary_data;
5969 unsigned int opmode;
5970
5971 if (!rdev)
5972 return;
5973
5974 opmode = _regulator_get_mode_unlocked(rdev);
5975 seq_printf(m: s, fmt: "%*s%-*s %3d %4d %6d %7s ",
5976 level * 3 + 1, "",
5977 30 - level * 3, rdev_get_name(rdev),
5978 rdev->use_count, rdev->open_count, rdev->bypass_count,
5979 regulator_opmode_to_str(mode: opmode));
5980
5981 seq_printf(m: s, fmt: "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5982 seq_printf(m: s, fmt: "%5dmA ",
5983 _regulator_get_current_limit_unlocked(rdev) / 1000);
5984
5985 c = rdev->constraints;
5986 if (c) {
5987 switch (rdev->desc->type) {
5988 case REGULATOR_VOLTAGE:
5989 seq_printf(m: s, fmt: "%5dmV %5dmV ",
5990 c->min_uV / 1000, c->max_uV / 1000);
5991 break;
5992 case REGULATOR_CURRENT:
5993 seq_printf(m: s, fmt: "%5dmA %5dmA ",
5994 c->min_uA / 1000, c->max_uA / 1000);
5995 break;
5996 }
5997 }
5998
5999 seq_puts(m: s, s: "\n");
6000
6001 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6002 if (consumer->dev && consumer->dev->class == &regulator_class)
6003 continue;
6004
6005 seq_printf(m: s, fmt: "%*s%-*s ",
6006 (level + 1) * 3 + 1, "",
6007 30 - (level + 1) * 3,
6008 consumer->supply_name ? consumer->supply_name :
6009 consumer->dev ? dev_name(dev: consumer->dev) : "deviceless");
6010
6011 switch (rdev->desc->type) {
6012 case REGULATOR_VOLTAGE:
6013 seq_printf(m: s, fmt: "%3d %33dmA%c%5dmV %5dmV",
6014 consumer->enable_count,
6015 consumer->uA_load / 1000,
6016 consumer->uA_load && !consumer->enable_count ?
6017 '*' : ' ',
6018 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6019 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6020 break;
6021 case REGULATOR_CURRENT:
6022 break;
6023 }
6024
6025 seq_puts(m: s, s: "\n");
6026 }
6027
6028 summary_data.s = s;
6029 summary_data.level = level;
6030 summary_data.parent = rdev;
6031
6032 class_for_each_device(class: &regulator_class, NULL, data: &summary_data,
6033 fn: regulator_summary_show_children);
6034}
6035
6036struct summary_lock_data {
6037 struct ww_acquire_ctx *ww_ctx;
6038 struct regulator_dev **new_contended_rdev;
6039 struct regulator_dev **old_contended_rdev;
6040};
6041
6042static int regulator_summary_lock_one(struct device *dev, void *data)
6043{
6044 struct regulator_dev *rdev = dev_to_rdev(dev);
6045 struct summary_lock_data *lock_data = data;
6046 int ret = 0;
6047
6048 if (rdev != *lock_data->old_contended_rdev) {
6049 ret = regulator_lock_nested(rdev, ww_ctx: lock_data->ww_ctx);
6050
6051 if (ret == -EDEADLK)
6052 *lock_data->new_contended_rdev = rdev;
6053 else
6054 WARN_ON_ONCE(ret);
6055 } else {
6056 *lock_data->old_contended_rdev = NULL;
6057 }
6058
6059 return ret;
6060}
6061
6062static int regulator_summary_unlock_one(struct device *dev, void *data)
6063{
6064 struct regulator_dev *rdev = dev_to_rdev(dev);
6065 struct summary_lock_data *lock_data = data;
6066
6067 if (lock_data) {
6068 if (rdev == *lock_data->new_contended_rdev)
6069 return -EDEADLK;
6070 }
6071
6072 regulator_unlock(rdev);
6073
6074 return 0;
6075}
6076
6077static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6078 struct regulator_dev **new_contended_rdev,
6079 struct regulator_dev **old_contended_rdev)
6080{
6081 struct summary_lock_data lock_data;
6082 int ret;
6083
6084 lock_data.ww_ctx = ww_ctx;
6085 lock_data.new_contended_rdev = new_contended_rdev;
6086 lock_data.old_contended_rdev = old_contended_rdev;
6087
6088 ret = class_for_each_device(class: &regulator_class, NULL, data: &lock_data,
6089 fn: regulator_summary_lock_one);
6090 if (ret)
6091 class_for_each_device(class: &regulator_class, NULL, data: &lock_data,
6092 fn: regulator_summary_unlock_one);
6093
6094 return ret;
6095}
6096
6097static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6098{
6099 struct regulator_dev *new_contended_rdev = NULL;
6100 struct regulator_dev *old_contended_rdev = NULL;
6101 int err;
6102
6103 mutex_lock(&regulator_list_mutex);
6104
6105 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
6106
6107 do {
6108 if (new_contended_rdev) {
6109 ww_mutex_lock_slow(lock: &new_contended_rdev->mutex, ctx: ww_ctx);
6110 old_contended_rdev = new_contended_rdev;
6111 old_contended_rdev->ref_cnt++;
6112 old_contended_rdev->mutex_owner = current;
6113 }
6114
6115 err = regulator_summary_lock_all(ww_ctx,
6116 new_contended_rdev: &new_contended_rdev,
6117 old_contended_rdev: &old_contended_rdev);
6118
6119 if (old_contended_rdev)
6120 regulator_unlock(rdev: old_contended_rdev);
6121
6122 } while (err == -EDEADLK);
6123
6124 ww_acquire_done(ctx: ww_ctx);
6125}
6126
6127static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6128{
6129 class_for_each_device(class: &regulator_class, NULL, NULL,
6130 fn: regulator_summary_unlock_one);
6131 ww_acquire_fini(ctx: ww_ctx);
6132
6133 mutex_unlock(lock: &regulator_list_mutex);
6134}
6135
6136static int regulator_summary_show_roots(struct device *dev, void *data)
6137{
6138 struct regulator_dev *rdev = dev_to_rdev(dev);
6139 struct seq_file *s = data;
6140
6141 if (!rdev->supply)
6142 regulator_summary_show_subtree(s, rdev, level: 0);
6143
6144 return 0;
6145}
6146
6147static int regulator_summary_show(struct seq_file *s, void *data)
6148{
6149 struct ww_acquire_ctx ww_ctx;
6150
6151 seq_puts(m: s, s: " regulator use open bypass opmode voltage current min max\n");
6152 seq_puts(m: s, s: "---------------------------------------------------------------------------------------\n");
6153
6154 regulator_summary_lock(ww_ctx: &ww_ctx);
6155
6156 class_for_each_device(class: &regulator_class, NULL, data: s,
6157 fn: regulator_summary_show_roots);
6158
6159 regulator_summary_unlock(ww_ctx: &ww_ctx);
6160
6161 return 0;
6162}
6163DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6164#endif /* CONFIG_DEBUG_FS */
6165
6166static int __init regulator_init(void)
6167{
6168 int ret;
6169
6170 ret = class_register(class: &regulator_class);
6171
6172 debugfs_root = debugfs_create_dir(name: "regulator", NULL);
6173 if (IS_ERR(ptr: debugfs_root))
6174 pr_debug("regulator: Failed to create debugfs directory\n");
6175
6176#ifdef CONFIG_DEBUG_FS
6177 debugfs_create_file(name: "supply_map", mode: 0444, parent: debugfs_root, NULL,
6178 fops: &supply_map_fops);
6179
6180 debugfs_create_file(name: "regulator_summary", mode: 0444, parent: debugfs_root,
6181 NULL, fops: &regulator_summary_fops);
6182#endif
6183 regulator_dummy_init();
6184
6185 regulator_coupler_register(coupler: &generic_regulator_coupler);
6186
6187 return ret;
6188}
6189
6190/* init early to allow our consumers to complete system booting */
6191core_initcall(regulator_init);
6192
6193static int regulator_late_cleanup(struct device *dev, void *data)
6194{
6195 struct regulator_dev *rdev = dev_to_rdev(dev);
6196 struct regulation_constraints *c = rdev->constraints;
6197 int ret;
6198
6199 if (c && c->always_on)
6200 return 0;
6201
6202 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6203 return 0;
6204
6205 regulator_lock(rdev);
6206
6207 if (rdev->use_count)
6208 goto unlock;
6209
6210 /* If reading the status failed, assume that it's off. */
6211 if (_regulator_is_enabled(rdev) <= 0)
6212 goto unlock;
6213
6214 if (have_full_constraints()) {
6215 /* We log since this may kill the system if it goes
6216 * wrong.
6217 */
6218 rdev_info(rdev, "disabling\n");
6219 ret = _regulator_do_disable(rdev);
6220 if (ret != 0)
6221 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6222 } else {
6223 /* The intention is that in future we will
6224 * assume that full constraints are provided
6225 * so warn even if we aren't going to do
6226 * anything here.
6227 */
6228 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6229 }
6230
6231unlock:
6232 regulator_unlock(rdev);
6233
6234 return 0;
6235}
6236
6237static void regulator_init_complete_work_function(struct work_struct *work)
6238{
6239 /*
6240 * Regulators may had failed to resolve their input supplies
6241 * when were registered, either because the input supply was
6242 * not registered yet or because its parent device was not
6243 * bound yet. So attempt to resolve the input supplies for
6244 * pending regulators before trying to disable unused ones.
6245 */
6246 class_for_each_device(class: &regulator_class, NULL, NULL,
6247 fn: regulator_register_resolve_supply);
6248
6249 /* If we have a full configuration then disable any regulators
6250 * we have permission to change the status for and which are
6251 * not in use or always_on. This is effectively the default
6252 * for DT and ACPI as they have full constraints.
6253 */
6254 class_for_each_device(class: &regulator_class, NULL, NULL,
6255 fn: regulator_late_cleanup);
6256}
6257
6258static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6259 regulator_init_complete_work_function);
6260
6261static int __init regulator_init_complete(void)
6262{
6263 /*
6264 * Since DT doesn't provide an idiomatic mechanism for
6265 * enabling full constraints and since it's much more natural
6266 * with DT to provide them just assume that a DT enabled
6267 * system has full constraints.
6268 */
6269 if (of_have_populated_dt())
6270 has_full_constraints = true;
6271
6272 /*
6273 * We punt completion for an arbitrary amount of time since
6274 * systems like distros will load many drivers from userspace
6275 * so consumers might not always be ready yet, this is
6276 * particularly an issue with laptops where this might bounce
6277 * the display off then on. Ideally we'd get a notification
6278 * from userspace when this happens but we don't so just wait
6279 * a bit and hope we waited long enough. It'd be better if
6280 * we'd only do this on systems that need it, and a kernel
6281 * command line option might be useful.
6282 */
6283 schedule_delayed_work(dwork: &regulator_init_complete_work,
6284 delay: msecs_to_jiffies(m: 30000));
6285
6286 return 0;
6287}
6288late_initcall_sync(regulator_init_complete);
6289

source code of linux/drivers/regulator/core.c