1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio/consumer.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_WW_CLASS(regulator_ww_class);
53static DEFINE_MUTEX(regulator_nesting_mutex);
54static DEFINE_MUTEX(regulator_list_mutex);
55static LIST_HEAD(regulator_map_list);
56static LIST_HEAD(regulator_ena_gpio_list);
57static LIST_HEAD(regulator_supply_alias_list);
58static bool has_full_constraints;
59
60static struct dentry *debugfs_root;
61
62/*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72};
73
74/*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator *regulator);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108static int regulator_balance_voltage(struct regulator_dev *rdev,
109 suspend_state_t state);
110static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
111 int min_uV, int max_uV,
112 suspend_state_t state);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
116static void _regulator_put(struct regulator *regulator);
117
118static const char *rdev_get_name(struct regulator_dev *rdev)
119{
120 if (rdev->constraints && rdev->constraints->name)
121 return rdev->constraints->name;
122 else if (rdev->desc->name)
123 return rdev->desc->name;
124 else
125 return "";
126}
127
128static bool have_full_constraints(void)
129{
130 return has_full_constraints || of_have_populated_dt();
131}
132
133static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
134{
135 if (!rdev->constraints) {
136 rdev_err(rdev, "no constraints\n");
137 return false;
138 }
139
140 if (rdev->constraints->valid_ops_mask & ops)
141 return true;
142
143 return false;
144}
145
146/**
147 * regulator_lock_nested - lock a single regulator
148 * @rdev: regulator source
149 * @ww_ctx: w/w mutex acquire context
150 *
151 * This function can be called many times by one task on
152 * a single regulator and its mutex will be locked only
153 * once. If a task, which is calling this function is other
154 * than the one, which initially locked the mutex, it will
155 * wait on mutex.
156 */
157static inline int regulator_lock_nested(struct regulator_dev *rdev,
158 struct ww_acquire_ctx *ww_ctx)
159{
160 bool lock = false;
161 int ret = 0;
162
163 mutex_lock(&regulator_nesting_mutex);
164
165 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
166 if (rdev->mutex_owner == current)
167 rdev->ref_cnt++;
168 else
169 lock = true;
170
171 if (lock) {
172 mutex_unlock(&regulator_nesting_mutex);
173 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
174 mutex_lock(&regulator_nesting_mutex);
175 }
176 } else {
177 lock = true;
178 }
179
180 if (lock && ret != -EDEADLK) {
181 rdev->ref_cnt++;
182 rdev->mutex_owner = current;
183 }
184
185 mutex_unlock(&regulator_nesting_mutex);
186
187 return ret;
188}
189
190/**
191 * regulator_lock - lock a single regulator
192 * @rdev: regulator source
193 *
194 * This function can be called many times by one task on
195 * a single regulator and its mutex will be locked only
196 * once. If a task, which is calling this function is other
197 * than the one, which initially locked the mutex, it will
198 * wait on mutex.
199 */
200void regulator_lock(struct regulator_dev *rdev)
201{
202 regulator_lock_nested(rdev, NULL);
203}
204EXPORT_SYMBOL_GPL(regulator_lock);
205
206/**
207 * regulator_unlock - unlock a single regulator
208 * @rdev: regulator_source
209 *
210 * This function unlocks the mutex when the
211 * reference counter reaches 0.
212 */
213void regulator_unlock(struct regulator_dev *rdev)
214{
215 mutex_lock(&regulator_nesting_mutex);
216
217 if (--rdev->ref_cnt == 0) {
218 rdev->mutex_owner = NULL;
219 ww_mutex_unlock(&rdev->mutex);
220 }
221
222 WARN_ON_ONCE(rdev->ref_cnt < 0);
223
224 mutex_unlock(&regulator_nesting_mutex);
225}
226EXPORT_SYMBOL_GPL(regulator_unlock);
227
228static bool regulator_supply_is_couple(struct regulator_dev *rdev)
229{
230 struct regulator_dev *c_rdev;
231 int i;
232
233 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
234 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
235
236 if (rdev->supply->rdev == c_rdev)
237 return true;
238 }
239
240 return false;
241}
242
243static void regulator_unlock_recursive(struct regulator_dev *rdev,
244 unsigned int n_coupled)
245{
246 struct regulator_dev *c_rdev;
247 int i;
248
249 for (i = n_coupled; i > 0; i--) {
250 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
251
252 if (!c_rdev)
253 continue;
254
255 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
256 regulator_unlock_recursive(
257 c_rdev->supply->rdev,
258 c_rdev->coupling_desc.n_coupled);
259
260 regulator_unlock(c_rdev);
261 }
262}
263
264static int regulator_lock_recursive(struct regulator_dev *rdev,
265 struct regulator_dev **new_contended_rdev,
266 struct regulator_dev **old_contended_rdev,
267 struct ww_acquire_ctx *ww_ctx)
268{
269 struct regulator_dev *c_rdev;
270 int i, err;
271
272 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274
275 if (!c_rdev)
276 continue;
277
278 if (c_rdev != *old_contended_rdev) {
279 err = regulator_lock_nested(c_rdev, ww_ctx);
280 if (err) {
281 if (err == -EDEADLK) {
282 *new_contended_rdev = c_rdev;
283 goto err_unlock;
284 }
285
286 /* shouldn't happen */
287 WARN_ON_ONCE(err != -EALREADY);
288 }
289 } else {
290 *old_contended_rdev = NULL;
291 }
292
293 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294 err = regulator_lock_recursive(c_rdev->supply->rdev,
295 new_contended_rdev,
296 old_contended_rdev,
297 ww_ctx);
298 if (err) {
299 regulator_unlock(c_rdev);
300 goto err_unlock;
301 }
302 }
303 }
304
305 return 0;
306
307err_unlock:
308 regulator_unlock_recursive(rdev, i);
309
310 return err;
311}
312
313/**
314 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315 * regulators
316 * @rdev: regulator source
317 * @ww_ctx: w/w mutex acquire context
318 *
319 * Unlock all regulators related with rdev by coupling or supplying.
320 */
321static void regulator_unlock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323{
324 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325 ww_acquire_fini(ww_ctx);
326}
327
328/**
329 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330 * @rdev: regulator source
331 * @ww_ctx: w/w mutex acquire context
332 *
333 * This function as a wrapper on regulator_lock_recursive(), which locks
334 * all regulators related with rdev by coupling or supplying.
335 */
336static void regulator_lock_dependent(struct regulator_dev *rdev,
337 struct ww_acquire_ctx *ww_ctx)
338{
339 struct regulator_dev *new_contended_rdev = NULL;
340 struct regulator_dev *old_contended_rdev = NULL;
341 int err;
342
343 mutex_lock(&regulator_list_mutex);
344
345 ww_acquire_init(ww_ctx, &regulator_ww_class);
346
347 do {
348 if (new_contended_rdev) {
349 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350 old_contended_rdev = new_contended_rdev;
351 old_contended_rdev->ref_cnt++;
352 }
353
354 err = regulator_lock_recursive(rdev,
355 &new_contended_rdev,
356 &old_contended_rdev,
357 ww_ctx);
358
359 if (old_contended_rdev)
360 regulator_unlock(old_contended_rdev);
361
362 } while (err == -EDEADLK);
363
364 ww_acquire_done(ww_ctx);
365
366 mutex_unlock(&regulator_list_mutex);
367}
368
369/**
370 * of_get_child_regulator - get a child regulator device node
371 * based on supply name
372 * @parent: Parent device node
373 * @prop_name: Combination regulator supply name and "-supply"
374 *
375 * Traverse all child nodes.
376 * Extract the child regulator device node corresponding to the supply name.
377 * returns the device node corresponding to the regulator if found, else
378 * returns NULL.
379 */
380static struct device_node *of_get_child_regulator(struct device_node *parent,
381 const char *prop_name)
382{
383 struct device_node *regnode = NULL;
384 struct device_node *child = NULL;
385
386 for_each_child_of_node(parent, child) {
387 regnode = of_parse_phandle(child, prop_name, 0);
388
389 if (!regnode) {
390 regnode = of_get_child_regulator(child, prop_name);
391 if (regnode)
392 return regnode;
393 } else {
394 return regnode;
395 }
396 }
397 return NULL;
398}
399
400/**
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
404 *
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
408 */
409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410{
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
413
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
423
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
427 }
428 return regnode;
429}
430
431/* Platform voltage constraint check */
432static int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
434{
435 BUG_ON(*min_uV > *max_uV);
436
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
440 }
441
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
446
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
451 }
452
453 return 0;
454}
455
456/* return 0 if the state is valid */
457static int regulator_check_states(suspend_state_t state)
458{
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460}
461
462/* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
464 */
465static int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
468{
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
471
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = &regulator->voltage[state];
474 /*
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
477 */
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
480
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
485 }
486
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496/* current constraint check */
497static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
499{
500 BUG_ON(*min_uA > *max_uA);
501
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
505 }
506
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
511
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* operating mode constraint check */
522static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
524{
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
534 }
535
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
539 }
540
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
548 }
549
550 return -EINVAL;
551}
552
553static inline struct regulator_state *
554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555{
556 if (rdev->constraints == NULL)
557 return NULL;
558
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
568 }
569}
570
571static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
573{
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 ssize_t ret;
576
577 regulator_lock(rdev);
578 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
579 regulator_unlock(rdev);
580
581 return ret;
582}
583static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
584
585static ssize_t regulator_uA_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
591}
592static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
593
594static ssize_t name_show(struct device *dev, struct device_attribute *attr,
595 char *buf)
596{
597 struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599 return sprintf(buf, "%s\n", rdev_get_name(rdev));
600}
601static DEVICE_ATTR_RO(name);
602
603static const char *regulator_opmode_to_str(int mode)
604{
605 switch (mode) {
606 case REGULATOR_MODE_FAST:
607 return "fast";
608 case REGULATOR_MODE_NORMAL:
609 return "normal";
610 case REGULATOR_MODE_IDLE:
611 return "idle";
612 case REGULATOR_MODE_STANDBY:
613 return "standby";
614 }
615 return "unknown";
616}
617
618static ssize_t regulator_print_opmode(char *buf, int mode)
619{
620 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
621}
622
623static ssize_t regulator_opmode_show(struct device *dev,
624 struct device_attribute *attr, char *buf)
625{
626 struct regulator_dev *rdev = dev_get_drvdata(dev);
627
628 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
629}
630static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
631
632static ssize_t regulator_print_state(char *buf, int state)
633{
634 if (state > 0)
635 return sprintf(buf, "enabled\n");
636 else if (state == 0)
637 return sprintf(buf, "disabled\n");
638 else
639 return sprintf(buf, "unknown\n");
640}
641
642static ssize_t regulator_state_show(struct device *dev,
643 struct device_attribute *attr, char *buf)
644{
645 struct regulator_dev *rdev = dev_get_drvdata(dev);
646 ssize_t ret;
647
648 regulator_lock(rdev);
649 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
650 regulator_unlock(rdev);
651
652 return ret;
653}
654static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
655
656static ssize_t regulator_status_show(struct device *dev,
657 struct device_attribute *attr, char *buf)
658{
659 struct regulator_dev *rdev = dev_get_drvdata(dev);
660 int status;
661 char *label;
662
663 status = rdev->desc->ops->get_status(rdev);
664 if (status < 0)
665 return status;
666
667 switch (status) {
668 case REGULATOR_STATUS_OFF:
669 label = "off";
670 break;
671 case REGULATOR_STATUS_ON:
672 label = "on";
673 break;
674 case REGULATOR_STATUS_ERROR:
675 label = "error";
676 break;
677 case REGULATOR_STATUS_FAST:
678 label = "fast";
679 break;
680 case REGULATOR_STATUS_NORMAL:
681 label = "normal";
682 break;
683 case REGULATOR_STATUS_IDLE:
684 label = "idle";
685 break;
686 case REGULATOR_STATUS_STANDBY:
687 label = "standby";
688 break;
689 case REGULATOR_STATUS_BYPASS:
690 label = "bypass";
691 break;
692 case REGULATOR_STATUS_UNDEFINED:
693 label = "undefined";
694 break;
695 default:
696 return -ERANGE;
697 }
698
699 return sprintf(buf, "%s\n", label);
700}
701static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
702
703static ssize_t regulator_min_uA_show(struct device *dev,
704 struct device_attribute *attr, char *buf)
705{
706 struct regulator_dev *rdev = dev_get_drvdata(dev);
707
708 if (!rdev->constraints)
709 return sprintf(buf, "constraint not defined\n");
710
711 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
712}
713static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
714
715static ssize_t regulator_max_uA_show(struct device *dev,
716 struct device_attribute *attr, char *buf)
717{
718 struct regulator_dev *rdev = dev_get_drvdata(dev);
719
720 if (!rdev->constraints)
721 return sprintf(buf, "constraint not defined\n");
722
723 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
724}
725static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
726
727static ssize_t regulator_min_uV_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729{
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
734
735 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
736}
737static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
738
739static ssize_t regulator_max_uV_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
741{
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
746
747 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
748}
749static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
750
751static ssize_t regulator_total_uA_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
753{
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
755 struct regulator *regulator;
756 int uA = 0;
757
758 regulator_lock(rdev);
759 list_for_each_entry(regulator, &rdev->consumer_list, list) {
760 if (regulator->enable_count)
761 uA += regulator->uA_load;
762 }
763 regulator_unlock(rdev);
764 return sprintf(buf, "%d\n", uA);
765}
766static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
767
768static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
769 char *buf)
770{
771 struct regulator_dev *rdev = dev_get_drvdata(dev);
772 return sprintf(buf, "%d\n", rdev->use_count);
773}
774static DEVICE_ATTR_RO(num_users);
775
776static ssize_t type_show(struct device *dev, struct device_attribute *attr,
777 char *buf)
778{
779 struct regulator_dev *rdev = dev_get_drvdata(dev);
780
781 switch (rdev->desc->type) {
782 case REGULATOR_VOLTAGE:
783 return sprintf(buf, "voltage\n");
784 case REGULATOR_CURRENT:
785 return sprintf(buf, "current\n");
786 }
787 return sprintf(buf, "unknown\n");
788}
789static DEVICE_ATTR_RO(type);
790
791static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
792 struct device_attribute *attr, char *buf)
793{
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
797}
798static DEVICE_ATTR(suspend_mem_microvolts, 0444,
799 regulator_suspend_mem_uV_show, NULL);
800
801static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
802 struct device_attribute *attr, char *buf)
803{
804 struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
807}
808static DEVICE_ATTR(suspend_disk_microvolts, 0444,
809 regulator_suspend_disk_uV_show, NULL);
810
811static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
817}
818static DEVICE_ATTR(suspend_standby_microvolts, 0444,
819 regulator_suspend_standby_uV_show, NULL);
820
821static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return regulator_print_opmode(buf,
827 rdev->constraints->state_mem.mode);
828}
829static DEVICE_ATTR(suspend_mem_mode, 0444,
830 regulator_suspend_mem_mode_show, NULL);
831
832static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
833 struct device_attribute *attr, char *buf)
834{
835 struct regulator_dev *rdev = dev_get_drvdata(dev);
836
837 return regulator_print_opmode(buf,
838 rdev->constraints->state_disk.mode);
839}
840static DEVICE_ATTR(suspend_disk_mode, 0444,
841 regulator_suspend_disk_mode_show, NULL);
842
843static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845{
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_standby.mode);
850}
851static DEVICE_ATTR(suspend_standby_mode, 0444,
852 regulator_suspend_standby_mode_show, NULL);
853
854static ssize_t regulator_suspend_mem_state_show(struct device *dev,
855 struct device_attribute *attr, char *buf)
856{
857 struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859 return regulator_print_state(buf,
860 rdev->constraints->state_mem.enabled);
861}
862static DEVICE_ATTR(suspend_mem_state, 0444,
863 regulator_suspend_mem_state_show, NULL);
864
865static ssize_t regulator_suspend_disk_state_show(struct device *dev,
866 struct device_attribute *attr, char *buf)
867{
868 struct regulator_dev *rdev = dev_get_drvdata(dev);
869
870 return regulator_print_state(buf,
871 rdev->constraints->state_disk.enabled);
872}
873static DEVICE_ATTR(suspend_disk_state, 0444,
874 regulator_suspend_disk_state_show, NULL);
875
876static ssize_t regulator_suspend_standby_state_show(struct device *dev,
877 struct device_attribute *attr, char *buf)
878{
879 struct regulator_dev *rdev = dev_get_drvdata(dev);
880
881 return regulator_print_state(buf,
882 rdev->constraints->state_standby.enabled);
883}
884static DEVICE_ATTR(suspend_standby_state, 0444,
885 regulator_suspend_standby_state_show, NULL);
886
887static ssize_t regulator_bypass_show(struct device *dev,
888 struct device_attribute *attr, char *buf)
889{
890 struct regulator_dev *rdev = dev_get_drvdata(dev);
891 const char *report;
892 bool bypass;
893 int ret;
894
895 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
896
897 if (ret != 0)
898 report = "unknown";
899 else if (bypass)
900 report = "enabled";
901 else
902 report = "disabled";
903
904 return sprintf(buf, "%s\n", report);
905}
906static DEVICE_ATTR(bypass, 0444,
907 regulator_bypass_show, NULL);
908
909/* Calculate the new optimum regulator operating mode based on the new total
910 * consumer load. All locks held by caller */
911static int drms_uA_update(struct regulator_dev *rdev)
912{
913 struct regulator *sibling;
914 int current_uA = 0, output_uV, input_uV, err;
915 unsigned int mode;
916
917 /*
918 * first check to see if we can set modes at all, otherwise just
919 * tell the consumer everything is OK.
920 */
921 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
922 rdev_dbg(rdev, "DRMS operation not allowed\n");
923 return 0;
924 }
925
926 if (!rdev->desc->ops->get_optimum_mode &&
927 !rdev->desc->ops->set_load)
928 return 0;
929
930 if (!rdev->desc->ops->set_mode &&
931 !rdev->desc->ops->set_load)
932 return -EINVAL;
933
934 /* calc total requested load */
935 list_for_each_entry(sibling, &rdev->consumer_list, list) {
936 if (sibling->enable_count)
937 current_uA += sibling->uA_load;
938 }
939
940 current_uA += rdev->constraints->system_load;
941
942 if (rdev->desc->ops->set_load) {
943 /* set the optimum mode for our new total regulator load */
944 err = rdev->desc->ops->set_load(rdev, current_uA);
945 if (err < 0)
946 rdev_err(rdev, "failed to set load %d\n", current_uA);
947 } else {
948 /* get output voltage */
949 output_uV = _regulator_get_voltage(rdev);
950 if (output_uV <= 0) {
951 rdev_err(rdev, "invalid output voltage found\n");
952 return -EINVAL;
953 }
954
955 /* get input voltage */
956 input_uV = 0;
957 if (rdev->supply)
958 input_uV = regulator_get_voltage(rdev->supply);
959 if (input_uV <= 0)
960 input_uV = rdev->constraints->input_uV;
961 if (input_uV <= 0) {
962 rdev_err(rdev, "invalid input voltage found\n");
963 return -EINVAL;
964 }
965
966 /* now get the optimum mode for our new total regulator load */
967 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
968 output_uV, current_uA);
969
970 /* check the new mode is allowed */
971 err = regulator_mode_constrain(rdev, &mode);
972 if (err < 0) {
973 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
974 current_uA, input_uV, output_uV);
975 return err;
976 }
977
978 err = rdev->desc->ops->set_mode(rdev, mode);
979 if (err < 0)
980 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
981 }
982
983 return err;
984}
985
986static int suspend_set_state(struct regulator_dev *rdev,
987 suspend_state_t state)
988{
989 int ret = 0;
990 struct regulator_state *rstate;
991
992 rstate = regulator_get_suspend_state(rdev, state);
993 if (rstate == NULL)
994 return 0;
995
996 /* If we have no suspend mode configuration don't set anything;
997 * only warn if the driver implements set_suspend_voltage or
998 * set_suspend_mode callback.
999 */
1000 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1001 rstate->enabled != DISABLE_IN_SUSPEND) {
1002 if (rdev->desc->ops->set_suspend_voltage ||
1003 rdev->desc->ops->set_suspend_mode)
1004 rdev_warn(rdev, "No configuration\n");
1005 return 0;
1006 }
1007
1008 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1009 rdev->desc->ops->set_suspend_enable)
1010 ret = rdev->desc->ops->set_suspend_enable(rdev);
1011 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1012 rdev->desc->ops->set_suspend_disable)
1013 ret = rdev->desc->ops->set_suspend_disable(rdev);
1014 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1015 ret = 0;
1016
1017 if (ret < 0) {
1018 rdev_err(rdev, "failed to enabled/disable\n");
1019 return ret;
1020 }
1021
1022 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1023 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1024 if (ret < 0) {
1025 rdev_err(rdev, "failed to set voltage\n");
1026 return ret;
1027 }
1028 }
1029
1030 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1031 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1032 if (ret < 0) {
1033 rdev_err(rdev, "failed to set mode\n");
1034 return ret;
1035 }
1036 }
1037
1038 return ret;
1039}
1040
1041static void print_constraints(struct regulator_dev *rdev)
1042{
1043 struct regulation_constraints *constraints = rdev->constraints;
1044 char buf[160] = "";
1045 size_t len = sizeof(buf) - 1;
1046 int count = 0;
1047 int ret;
1048
1049 if (constraints->min_uV && constraints->max_uV) {
1050 if (constraints->min_uV == constraints->max_uV)
1051 count += scnprintf(buf + count, len - count, "%d mV ",
1052 constraints->min_uV / 1000);
1053 else
1054 count += scnprintf(buf + count, len - count,
1055 "%d <--> %d mV ",
1056 constraints->min_uV / 1000,
1057 constraints->max_uV / 1000);
1058 }
1059
1060 if (!constraints->min_uV ||
1061 constraints->min_uV != constraints->max_uV) {
1062 ret = _regulator_get_voltage(rdev);
1063 if (ret > 0)
1064 count += scnprintf(buf + count, len - count,
1065 "at %d mV ", ret / 1000);
1066 }
1067
1068 if (constraints->uV_offset)
1069 count += scnprintf(buf + count, len - count, "%dmV offset ",
1070 constraints->uV_offset / 1000);
1071
1072 if (constraints->min_uA && constraints->max_uA) {
1073 if (constraints->min_uA == constraints->max_uA)
1074 count += scnprintf(buf + count, len - count, "%d mA ",
1075 constraints->min_uA / 1000);
1076 else
1077 count += scnprintf(buf + count, len - count,
1078 "%d <--> %d mA ",
1079 constraints->min_uA / 1000,
1080 constraints->max_uA / 1000);
1081 }
1082
1083 if (!constraints->min_uA ||
1084 constraints->min_uA != constraints->max_uA) {
1085 ret = _regulator_get_current_limit(rdev);
1086 if (ret > 0)
1087 count += scnprintf(buf + count, len - count,
1088 "at %d mA ", ret / 1000);
1089 }
1090
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1092 count += scnprintf(buf + count, len - count, "fast ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1094 count += scnprintf(buf + count, len - count, "normal ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1096 count += scnprintf(buf + count, len - count, "idle ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1098 count += scnprintf(buf + count, len - count, "standby");
1099
1100 if (!count)
1101 scnprintf(buf, len, "no parameters");
1102
1103 rdev_dbg(rdev, "%s\n", buf);
1104
1105 if ((constraints->min_uV != constraints->max_uV) &&
1106 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1107 rdev_warn(rdev,
1108 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109}
1110
1111static int machine_constraints_voltage(struct regulator_dev *rdev,
1112 struct regulation_constraints *constraints)
1113{
1114 const struct regulator_ops *ops = rdev->desc->ops;
1115 int ret;
1116
1117 /* do we need to apply the constraint voltage */
1118 if (rdev->constraints->apply_uV &&
1119 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1120 int target_min, target_max;
1121 int current_uV = _regulator_get_voltage(rdev);
1122
1123 if (current_uV == -ENOTRECOVERABLE) {
1124 /* This regulator can't be read and must be initialized */
1125 rdev_info(rdev, "Setting %d-%duV\n",
1126 rdev->constraints->min_uV,
1127 rdev->constraints->max_uV);
1128 _regulator_do_set_voltage(rdev,
1129 rdev->constraints->min_uV,
1130 rdev->constraints->max_uV);
1131 current_uV = _regulator_get_voltage(rdev);
1132 }
1133
1134 if (current_uV < 0) {
1135 rdev_err(rdev,
1136 "failed to get the current voltage(%d)\n",
1137 current_uV);
1138 return current_uV;
1139 }
1140
1141 /*
1142 * If we're below the minimum voltage move up to the
1143 * minimum voltage, if we're above the maximum voltage
1144 * then move down to the maximum.
1145 */
1146 target_min = current_uV;
1147 target_max = current_uV;
1148
1149 if (current_uV < rdev->constraints->min_uV) {
1150 target_min = rdev->constraints->min_uV;
1151 target_max = rdev->constraints->min_uV;
1152 }
1153
1154 if (current_uV > rdev->constraints->max_uV) {
1155 target_min = rdev->constraints->max_uV;
1156 target_max = rdev->constraints->max_uV;
1157 }
1158
1159 if (target_min != current_uV || target_max != current_uV) {
1160 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1161 current_uV, target_min, target_max);
1162 ret = _regulator_do_set_voltage(
1163 rdev, target_min, target_max);
1164 if (ret < 0) {
1165 rdev_err(rdev,
1166 "failed to apply %d-%duV constraint(%d)\n",
1167 target_min, target_max, ret);
1168 return ret;
1169 }
1170 }
1171 }
1172
1173 /* constrain machine-level voltage specs to fit
1174 * the actual range supported by this regulator.
1175 */
1176 if (ops->list_voltage && rdev->desc->n_voltages) {
1177 int count = rdev->desc->n_voltages;
1178 int i;
1179 int min_uV = INT_MAX;
1180 int max_uV = INT_MIN;
1181 int cmin = constraints->min_uV;
1182 int cmax = constraints->max_uV;
1183
1184 /* it's safe to autoconfigure fixed-voltage supplies
1185 and the constraints are used by list_voltage. */
1186 if (count == 1 && !cmin) {
1187 cmin = 1;
1188 cmax = INT_MAX;
1189 constraints->min_uV = cmin;
1190 constraints->max_uV = cmax;
1191 }
1192
1193 /* voltage constraints are optional */
1194 if ((cmin == 0) && (cmax == 0))
1195 return 0;
1196
1197 /* else require explicit machine-level constraints */
1198 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1199 rdev_err(rdev, "invalid voltage constraints\n");
1200 return -EINVAL;
1201 }
1202
1203 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1204 for (i = 0; i < count; i++) {
1205 int value;
1206
1207 value = ops->list_voltage(rdev, i);
1208 if (value <= 0)
1209 continue;
1210
1211 /* maybe adjust [min_uV..max_uV] */
1212 if (value >= cmin && value < min_uV)
1213 min_uV = value;
1214 if (value <= cmax && value > max_uV)
1215 max_uV = value;
1216 }
1217
1218 /* final: [min_uV..max_uV] valid iff constraints valid */
1219 if (max_uV < min_uV) {
1220 rdev_err(rdev,
1221 "unsupportable voltage constraints %u-%uuV\n",
1222 min_uV, max_uV);
1223 return -EINVAL;
1224 }
1225
1226 /* use regulator's subset of machine constraints */
1227 if (constraints->min_uV < min_uV) {
1228 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1229 constraints->min_uV, min_uV);
1230 constraints->min_uV = min_uV;
1231 }
1232 if (constraints->max_uV > max_uV) {
1233 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1234 constraints->max_uV, max_uV);
1235 constraints->max_uV = max_uV;
1236 }
1237 }
1238
1239 return 0;
1240}
1241
1242static int machine_constraints_current(struct regulator_dev *rdev,
1243 struct regulation_constraints *constraints)
1244{
1245 const struct regulator_ops *ops = rdev->desc->ops;
1246 int ret;
1247
1248 if (!constraints->min_uA && !constraints->max_uA)
1249 return 0;
1250
1251 if (constraints->min_uA > constraints->max_uA) {
1252 rdev_err(rdev, "Invalid current constraints\n");
1253 return -EINVAL;
1254 }
1255
1256 if (!ops->set_current_limit || !ops->get_current_limit) {
1257 rdev_warn(rdev, "Operation of current configuration missing\n");
1258 return 0;
1259 }
1260
1261 /* Set regulator current in constraints range */
1262 ret = ops->set_current_limit(rdev, constraints->min_uA,
1263 constraints->max_uA);
1264 if (ret < 0) {
1265 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1266 return ret;
1267 }
1268
1269 return 0;
1270}
1271
1272static int _regulator_do_enable(struct regulator_dev *rdev);
1273
1274/**
1275 * set_machine_constraints - sets regulator constraints
1276 * @rdev: regulator source
1277 * @constraints: constraints to apply
1278 *
1279 * Allows platform initialisation code to define and constrain
1280 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1281 * Constraints *must* be set by platform code in order for some
1282 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283 * set_mode.
1284 */
1285static int set_machine_constraints(struct regulator_dev *rdev,
1286 const struct regulation_constraints *constraints)
1287{
1288 int ret = 0;
1289 const struct regulator_ops *ops = rdev->desc->ops;
1290
1291 if (constraints)
1292 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1293 GFP_KERNEL);
1294 else
1295 rdev->constraints = kzalloc(sizeof(*constraints),
1296 GFP_KERNEL);
1297 if (!rdev->constraints)
1298 return -ENOMEM;
1299
1300 ret = machine_constraints_voltage(rdev, rdev->constraints);
1301 if (ret != 0)
1302 return ret;
1303
1304 ret = machine_constraints_current(rdev, rdev->constraints);
1305 if (ret != 0)
1306 return ret;
1307
1308 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1309 ret = ops->set_input_current_limit(rdev,
1310 rdev->constraints->ilim_uA);
1311 if (ret < 0) {
1312 rdev_err(rdev, "failed to set input limit\n");
1313 return ret;
1314 }
1315 }
1316
1317 /* do we need to setup our suspend state */
1318 if (rdev->constraints->initial_state) {
1319 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1320 if (ret < 0) {
1321 rdev_err(rdev, "failed to set suspend state\n");
1322 return ret;
1323 }
1324 }
1325
1326 if (rdev->constraints->initial_mode) {
1327 if (!ops->set_mode) {
1328 rdev_err(rdev, "no set_mode operation\n");
1329 return -EINVAL;
1330 }
1331
1332 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1333 if (ret < 0) {
1334 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1335 return ret;
1336 }
1337 } else if (rdev->constraints->system_load) {
1338 /*
1339 * We'll only apply the initial system load if an
1340 * initial mode wasn't specified.
1341 */
1342 regulator_lock(rdev);
1343 drms_uA_update(rdev);
1344 regulator_unlock(rdev);
1345 }
1346
1347 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348 && ops->set_ramp_delay) {
1349 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350 if (ret < 0) {
1351 rdev_err(rdev, "failed to set ramp_delay\n");
1352 return ret;
1353 }
1354 }
1355
1356 if (rdev->constraints->pull_down && ops->set_pull_down) {
1357 ret = ops->set_pull_down(rdev);
1358 if (ret < 0) {
1359 rdev_err(rdev, "failed to set pull down\n");
1360 return ret;
1361 }
1362 }
1363
1364 if (rdev->constraints->soft_start && ops->set_soft_start) {
1365 ret = ops->set_soft_start(rdev);
1366 if (ret < 0) {
1367 rdev_err(rdev, "failed to set soft start\n");
1368 return ret;
1369 }
1370 }
1371
1372 if (rdev->constraints->over_current_protection
1373 && ops->set_over_current_protection) {
1374 ret = ops->set_over_current_protection(rdev);
1375 if (ret < 0) {
1376 rdev_err(rdev, "failed to set over current protection\n");
1377 return ret;
1378 }
1379 }
1380
1381 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382 bool ad_state = (rdev->constraints->active_discharge ==
1383 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385 ret = ops->set_active_discharge(rdev, ad_state);
1386 if (ret < 0) {
1387 rdev_err(rdev, "failed to set active discharge\n");
1388 return ret;
1389 }
1390 }
1391
1392 /* If the constraints say the regulator should be on at this point
1393 * and we have control then make sure it is enabled.
1394 */
1395 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396 if (rdev->supply) {
1397 ret = regulator_enable(rdev->supply);
1398 if (ret < 0) {
1399 _regulator_put(rdev->supply);
1400 rdev->supply = NULL;
1401 return ret;
1402 }
1403 }
1404
1405 ret = _regulator_do_enable(rdev);
1406 if (ret < 0 && ret != -EINVAL) {
1407 rdev_err(rdev, "failed to enable\n");
1408 return ret;
1409 }
1410 rdev->use_count++;
1411 }
1412
1413 print_constraints(rdev);
1414 return 0;
1415}
1416
1417/**
1418 * set_supply - set regulator supply regulator
1419 * @rdev: regulator name
1420 * @supply_rdev: supply regulator name
1421 *
1422 * Called by platform initialisation code to set the supply regulator for this
1423 * regulator. This ensures that a regulators supply will also be enabled by the
1424 * core if it's child is enabled.
1425 */
1426static int set_supply(struct regulator_dev *rdev,
1427 struct regulator_dev *supply_rdev)
1428{
1429 int err;
1430
1431 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1432
1433 if (!try_module_get(supply_rdev->owner))
1434 return -ENODEV;
1435
1436 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1437 if (rdev->supply == NULL) {
1438 err = -ENOMEM;
1439 return err;
1440 }
1441 supply_rdev->open_count++;
1442
1443 return 0;
1444}
1445
1446/**
1447 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1448 * @rdev: regulator source
1449 * @consumer_dev_name: dev_name() string for device supply applies to
1450 * @supply: symbolic name for supply
1451 *
1452 * Allows platform initialisation code to map physical regulator
1453 * sources to symbolic names for supplies for use by devices. Devices
1454 * should use these symbolic names to request regulators, avoiding the
1455 * need to provide board-specific regulator names as platform data.
1456 */
1457static int set_consumer_device_supply(struct regulator_dev *rdev,
1458 const char *consumer_dev_name,
1459 const char *supply)
1460{
1461 struct regulator_map *node;
1462 int has_dev;
1463
1464 if (supply == NULL)
1465 return -EINVAL;
1466
1467 if (consumer_dev_name != NULL)
1468 has_dev = 1;
1469 else
1470 has_dev = 0;
1471
1472 list_for_each_entry(node, &regulator_map_list, list) {
1473 if (node->dev_name && consumer_dev_name) {
1474 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1475 continue;
1476 } else if (node->dev_name || consumer_dev_name) {
1477 continue;
1478 }
1479
1480 if (strcmp(node->supply, supply) != 0)
1481 continue;
1482
1483 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1484 consumer_dev_name,
1485 dev_name(&node->regulator->dev),
1486 node->regulator->desc->name,
1487 supply,
1488 dev_name(&rdev->dev), rdev_get_name(rdev));
1489 return -EBUSY;
1490 }
1491
1492 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1493 if (node == NULL)
1494 return -ENOMEM;
1495
1496 node->regulator = rdev;
1497 node->supply = supply;
1498
1499 if (has_dev) {
1500 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1501 if (node->dev_name == NULL) {
1502 kfree(node);
1503 return -ENOMEM;
1504 }
1505 }
1506
1507 list_add(&node->list, &regulator_map_list);
1508 return 0;
1509}
1510
1511static void unset_regulator_supplies(struct regulator_dev *rdev)
1512{
1513 struct regulator_map *node, *n;
1514
1515 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1516 if (rdev == node->regulator) {
1517 list_del(&node->list);
1518 kfree(node->dev_name);
1519 kfree(node);
1520 }
1521 }
1522}
1523
1524#ifdef CONFIG_DEBUG_FS
1525static ssize_t constraint_flags_read_file(struct file *file,
1526 char __user *user_buf,
1527 size_t count, loff_t *ppos)
1528{
1529 const struct regulator *regulator = file->private_data;
1530 const struct regulation_constraints *c = regulator->rdev->constraints;
1531 char *buf;
1532 ssize_t ret;
1533
1534 if (!c)
1535 return 0;
1536
1537 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1538 if (!buf)
1539 return -ENOMEM;
1540
1541 ret = snprintf(buf, PAGE_SIZE,
1542 "always_on: %u\n"
1543 "boot_on: %u\n"
1544 "apply_uV: %u\n"
1545 "ramp_disable: %u\n"
1546 "soft_start: %u\n"
1547 "pull_down: %u\n"
1548 "over_current_protection: %u\n",
1549 c->always_on,
1550 c->boot_on,
1551 c->apply_uV,
1552 c->ramp_disable,
1553 c->soft_start,
1554 c->pull_down,
1555 c->over_current_protection);
1556
1557 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1558 kfree(buf);
1559
1560 return ret;
1561}
1562
1563#endif
1564
1565static const struct file_operations constraint_flags_fops = {
1566#ifdef CONFIG_DEBUG_FS
1567 .open = simple_open,
1568 .read = constraint_flags_read_file,
1569 .llseek = default_llseek,
1570#endif
1571};
1572
1573#define REG_STR_SIZE 64
1574
1575static struct regulator *create_regulator(struct regulator_dev *rdev,
1576 struct device *dev,
1577 const char *supply_name)
1578{
1579 struct regulator *regulator;
1580 char buf[REG_STR_SIZE];
1581 int err, size;
1582
1583 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1584 if (regulator == NULL)
1585 return NULL;
1586
1587 regulator_lock(rdev);
1588 regulator->rdev = rdev;
1589 list_add(&regulator->list, &rdev->consumer_list);
1590
1591 if (dev) {
1592 regulator->dev = dev;
1593
1594 /* Add a link to the device sysfs entry */
1595 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1596 dev->kobj.name, supply_name);
1597 if (size >= REG_STR_SIZE)
1598 goto overflow_err;
1599
1600 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1601 if (regulator->supply_name == NULL)
1602 goto overflow_err;
1603
1604 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1605 buf);
1606 if (err) {
1607 rdev_dbg(rdev, "could not add device link %s err %d\n",
1608 dev->kobj.name, err);
1609 /* non-fatal */
1610 }
1611 } else {
1612 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1613 if (regulator->supply_name == NULL)
1614 goto overflow_err;
1615 }
1616
1617 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1618 rdev->debugfs);
1619 if (!regulator->debugfs) {
1620 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1621 } else {
1622 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1623 &regulator->uA_load);
1624 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1625 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1626 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1627 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1628 debugfs_create_file("constraint_flags", 0444,
1629 regulator->debugfs, regulator,
1630 &constraint_flags_fops);
1631 }
1632
1633 /*
1634 * Check now if the regulator is an always on regulator - if
1635 * it is then we don't need to do nearly so much work for
1636 * enable/disable calls.
1637 */
1638 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1639 _regulator_is_enabled(rdev))
1640 regulator->always_on = true;
1641
1642 regulator_unlock(rdev);
1643 return regulator;
1644overflow_err:
1645 list_del(&regulator->list);
1646 kfree(regulator);
1647 regulator_unlock(rdev);
1648 return NULL;
1649}
1650
1651static int _regulator_get_enable_time(struct regulator_dev *rdev)
1652{
1653 if (rdev->constraints && rdev->constraints->enable_time)
1654 return rdev->constraints->enable_time;
1655 if (!rdev->desc->ops->enable_time)
1656 return rdev->desc->enable_time;
1657 return rdev->desc->ops->enable_time(rdev);
1658}
1659
1660static struct regulator_supply_alias *regulator_find_supply_alias(
1661 struct device *dev, const char *supply)
1662{
1663 struct regulator_supply_alias *map;
1664
1665 list_for_each_entry(map, &regulator_supply_alias_list, list)
1666 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1667 return map;
1668
1669 return NULL;
1670}
1671
1672static void regulator_supply_alias(struct device **dev, const char **supply)
1673{
1674 struct regulator_supply_alias *map;
1675
1676 map = regulator_find_supply_alias(*dev, *supply);
1677 if (map) {
1678 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1679 *supply, map->alias_supply,
1680 dev_name(map->alias_dev));
1681 *dev = map->alias_dev;
1682 *supply = map->alias_supply;
1683 }
1684}
1685
1686static int regulator_match(struct device *dev, const void *data)
1687{
1688 struct regulator_dev *r = dev_to_rdev(dev);
1689
1690 return strcmp(rdev_get_name(r), data) == 0;
1691}
1692
1693static struct regulator_dev *regulator_lookup_by_name(const char *name)
1694{
1695 struct device *dev;
1696
1697 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1698
1699 return dev ? dev_to_rdev(dev) : NULL;
1700}
1701
1702/**
1703 * regulator_dev_lookup - lookup a regulator device.
1704 * @dev: device for regulator "consumer".
1705 * @supply: Supply name or regulator ID.
1706 *
1707 * If successful, returns a struct regulator_dev that corresponds to the name
1708 * @supply and with the embedded struct device refcount incremented by one.
1709 * The refcount must be dropped by calling put_device().
1710 * On failure one of the following ERR-PTR-encoded values is returned:
1711 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1712 * in the future.
1713 */
1714static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1715 const char *supply)
1716{
1717 struct regulator_dev *r = NULL;
1718 struct device_node *node;
1719 struct regulator_map *map;
1720 const char *devname = NULL;
1721
1722 regulator_supply_alias(&dev, &supply);
1723
1724 /* first do a dt based lookup */
1725 if (dev && dev->of_node) {
1726 node = of_get_regulator(dev, supply);
1727 if (node) {
1728 r = of_find_regulator_by_node(node);
1729 if (r)
1730 return r;
1731
1732 /*
1733 * We have a node, but there is no device.
1734 * assume it has not registered yet.
1735 */
1736 return ERR_PTR(-EPROBE_DEFER);
1737 }
1738 }
1739
1740 /* if not found, try doing it non-dt way */
1741 if (dev)
1742 devname = dev_name(dev);
1743
1744 mutex_lock(&regulator_list_mutex);
1745 list_for_each_entry(map, &regulator_map_list, list) {
1746 /* If the mapping has a device set up it must match */
1747 if (map->dev_name &&
1748 (!devname || strcmp(map->dev_name, devname)))
1749 continue;
1750
1751 if (strcmp(map->supply, supply) == 0 &&
1752 get_device(&map->regulator->dev)) {
1753 r = map->regulator;
1754 break;
1755 }
1756 }
1757 mutex_unlock(&regulator_list_mutex);
1758
1759 if (r)
1760 return r;
1761
1762 r = regulator_lookup_by_name(supply);
1763 if (r)
1764 return r;
1765
1766 return ERR_PTR(-ENODEV);
1767}
1768
1769static int regulator_resolve_supply(struct regulator_dev *rdev)
1770{
1771 struct regulator_dev *r;
1772 struct device *dev = rdev->dev.parent;
1773 int ret;
1774
1775 /* No supply to resolve? */
1776 if (!rdev->supply_name)
1777 return 0;
1778
1779 /* Supply already resolved? */
1780 if (rdev->supply)
1781 return 0;
1782
1783 r = regulator_dev_lookup(dev, rdev->supply_name);
1784 if (IS_ERR(r)) {
1785 ret = PTR_ERR(r);
1786
1787 /* Did the lookup explicitly defer for us? */
1788 if (ret == -EPROBE_DEFER)
1789 return ret;
1790
1791 if (have_full_constraints()) {
1792 r = dummy_regulator_rdev;
1793 get_device(&r->dev);
1794 } else {
1795 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1796 rdev->supply_name, rdev->desc->name);
1797 return -EPROBE_DEFER;
1798 }
1799 }
1800
1801 /*
1802 * If the supply's parent device is not the same as the
1803 * regulator's parent device, then ensure the parent device
1804 * is bound before we resolve the supply, in case the parent
1805 * device get probe deferred and unregisters the supply.
1806 */
1807 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1808 if (!device_is_bound(r->dev.parent)) {
1809 put_device(&r->dev);
1810 return -EPROBE_DEFER;
1811 }
1812 }
1813
1814 /* Recursively resolve the supply of the supply */
1815 ret = regulator_resolve_supply(r);
1816 if (ret < 0) {
1817 put_device(&r->dev);
1818 return ret;
1819 }
1820
1821 ret = set_supply(rdev, r);
1822 if (ret < 0) {
1823 put_device(&r->dev);
1824 return ret;
1825 }
1826
1827 /*
1828 * In set_machine_constraints() we may have turned this regulator on
1829 * but we couldn't propagate to the supply if it hadn't been resolved
1830 * yet. Do it now.
1831 */
1832 if (rdev->use_count) {
1833 ret = regulator_enable(rdev->supply);
1834 if (ret < 0) {
1835 _regulator_put(rdev->supply);
1836 rdev->supply = NULL;
1837 return ret;
1838 }
1839 }
1840
1841 return 0;
1842}
1843
1844/* Internal regulator request function */
1845struct regulator *_regulator_get(struct device *dev, const char *id,
1846 enum regulator_get_type get_type)
1847{
1848 struct regulator_dev *rdev;
1849 struct regulator *regulator;
1850 const char *devname = dev ? dev_name(dev) : "deviceless";
1851 int ret;
1852
1853 if (get_type >= MAX_GET_TYPE) {
1854 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1855 return ERR_PTR(-EINVAL);
1856 }
1857
1858 if (id == NULL) {
1859 pr_err("get() with no identifier\n");
1860 return ERR_PTR(-EINVAL);
1861 }
1862
1863 rdev = regulator_dev_lookup(dev, id);
1864 if (IS_ERR(rdev)) {
1865 ret = PTR_ERR(rdev);
1866
1867 /*
1868 * If regulator_dev_lookup() fails with error other
1869 * than -ENODEV our job here is done, we simply return it.
1870 */
1871 if (ret != -ENODEV)
1872 return ERR_PTR(ret);
1873
1874 if (!have_full_constraints()) {
1875 dev_warn(dev,
1876 "incomplete constraints, dummy supplies not allowed\n");
1877 return ERR_PTR(-ENODEV);
1878 }
1879
1880 switch (get_type) {
1881 case NORMAL_GET:
1882 /*
1883 * Assume that a regulator is physically present and
1884 * enabled, even if it isn't hooked up, and just
1885 * provide a dummy.
1886 */
1887 dev_warn(dev,
1888 "%s supply %s not found, using dummy regulator\n",
1889 devname, id);
1890 rdev = dummy_regulator_rdev;
1891 get_device(&rdev->dev);
1892 break;
1893
1894 case EXCLUSIVE_GET:
1895 dev_warn(dev,
1896 "dummy supplies not allowed for exclusive requests\n");
1897 /* fall through */
1898
1899 default:
1900 return ERR_PTR(-ENODEV);
1901 }
1902 }
1903
1904 if (rdev->exclusive) {
1905 regulator = ERR_PTR(-EPERM);
1906 put_device(&rdev->dev);
1907 return regulator;
1908 }
1909
1910 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911 regulator = ERR_PTR(-EBUSY);
1912 put_device(&rdev->dev);
1913 return regulator;
1914 }
1915
1916 mutex_lock(&regulator_list_mutex);
1917 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918 mutex_unlock(&regulator_list_mutex);
1919
1920 if (ret != 0) {
1921 regulator = ERR_PTR(-EPROBE_DEFER);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 ret = regulator_resolve_supply(rdev);
1927 if (ret < 0) {
1928 regulator = ERR_PTR(ret);
1929 put_device(&rdev->dev);
1930 return regulator;
1931 }
1932
1933 if (!try_module_get(rdev->owner)) {
1934 regulator = ERR_PTR(-EPROBE_DEFER);
1935 put_device(&rdev->dev);
1936 return regulator;
1937 }
1938
1939 regulator = create_regulator(rdev, dev, id);
1940 if (regulator == NULL) {
1941 regulator = ERR_PTR(-ENOMEM);
1942 put_device(&rdev->dev);
1943 module_put(rdev->owner);
1944 return regulator;
1945 }
1946
1947 rdev->open_count++;
1948 if (get_type == EXCLUSIVE_GET) {
1949 rdev->exclusive = 1;
1950
1951 ret = _regulator_is_enabled(rdev);
1952 if (ret > 0)
1953 rdev->use_count = 1;
1954 else
1955 rdev->use_count = 0;
1956 }
1957
1958 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959
1960 return regulator;
1961}
1962
1963/**
1964 * regulator_get - lookup and obtain a reference to a regulator.
1965 * @dev: device for regulator "consumer"
1966 * @id: Supply name or regulator ID.
1967 *
1968 * Returns a struct regulator corresponding to the regulator producer,
1969 * or IS_ERR() condition containing errno.
1970 *
1971 * Use of supply names configured via regulator_set_device_supply() is
1972 * strongly encouraged. It is recommended that the supply name used
1973 * should match the name used for the supply and/or the relevant
1974 * device pins in the datasheet.
1975 */
1976struct regulator *regulator_get(struct device *dev, const char *id)
1977{
1978 return _regulator_get(dev, id, NORMAL_GET);
1979}
1980EXPORT_SYMBOL_GPL(regulator_get);
1981
1982/**
1983 * regulator_get_exclusive - obtain exclusive access to a regulator.
1984 * @dev: device for regulator "consumer"
1985 * @id: Supply name or regulator ID.
1986 *
1987 * Returns a struct regulator corresponding to the regulator producer,
1988 * or IS_ERR() condition containing errno. Other consumers will be
1989 * unable to obtain this regulator while this reference is held and the
1990 * use count for the regulator will be initialised to reflect the current
1991 * state of the regulator.
1992 *
1993 * This is intended for use by consumers which cannot tolerate shared
1994 * use of the regulator such as those which need to force the
1995 * regulator off for correct operation of the hardware they are
1996 * controlling.
1997 *
1998 * Use of supply names configured via regulator_set_device_supply() is
1999 * strongly encouraged. It is recommended that the supply name used
2000 * should match the name used for the supply and/or the relevant
2001 * device pins in the datasheet.
2002 */
2003struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2004{
2005 return _regulator_get(dev, id, EXCLUSIVE_GET);
2006}
2007EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2008
2009/**
2010 * regulator_get_optional - obtain optional access to a regulator.
2011 * @dev: device for regulator "consumer"
2012 * @id: Supply name or regulator ID.
2013 *
2014 * Returns a struct regulator corresponding to the regulator producer,
2015 * or IS_ERR() condition containing errno.
2016 *
2017 * This is intended for use by consumers for devices which can have
2018 * some supplies unconnected in normal use, such as some MMC devices.
2019 * It can allow the regulator core to provide stub supplies for other
2020 * supplies requested using normal regulator_get() calls without
2021 * disrupting the operation of drivers that can handle absent
2022 * supplies.
2023 *
2024 * Use of supply names configured via regulator_set_device_supply() is
2025 * strongly encouraged. It is recommended that the supply name used
2026 * should match the name used for the supply and/or the relevant
2027 * device pins in the datasheet.
2028 */
2029struct regulator *regulator_get_optional(struct device *dev, const char *id)
2030{
2031 return _regulator_get(dev, id, OPTIONAL_GET);
2032}
2033EXPORT_SYMBOL_GPL(regulator_get_optional);
2034
2035/* regulator_list_mutex lock held by regulator_put() */
2036static void _regulator_put(struct regulator *regulator)
2037{
2038 struct regulator_dev *rdev;
2039
2040 if (IS_ERR_OR_NULL(regulator))
2041 return;
2042
2043 lockdep_assert_held_once(&regulator_list_mutex);
2044
2045 /* Docs say you must disable before calling regulator_put() */
2046 WARN_ON(regulator->enable_count);
2047
2048 rdev = regulator->rdev;
2049
2050 debugfs_remove_recursive(regulator->debugfs);
2051
2052 if (regulator->dev) {
2053 device_link_remove(regulator->dev, &rdev->dev);
2054
2055 /* remove any sysfs entries */
2056 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2057 }
2058
2059 regulator_lock(rdev);
2060 list_del(&regulator->list);
2061
2062 rdev->open_count--;
2063 rdev->exclusive = 0;
2064 put_device(&rdev->dev);
2065 regulator_unlock(rdev);
2066
2067 kfree_const(regulator->supply_name);
2068 kfree(regulator);
2069
2070 module_put(rdev->owner);
2071}
2072
2073/**
2074 * regulator_put - "free" the regulator source
2075 * @regulator: regulator source
2076 *
2077 * Note: drivers must ensure that all regulator_enable calls made on this
2078 * regulator source are balanced by regulator_disable calls prior to calling
2079 * this function.
2080 */
2081void regulator_put(struct regulator *regulator)
2082{
2083 mutex_lock(&regulator_list_mutex);
2084 _regulator_put(regulator);
2085 mutex_unlock(&regulator_list_mutex);
2086}
2087EXPORT_SYMBOL_GPL(regulator_put);
2088
2089/**
2090 * regulator_register_supply_alias - Provide device alias for supply lookup
2091 *
2092 * @dev: device that will be given as the regulator "consumer"
2093 * @id: Supply name or regulator ID
2094 * @alias_dev: device that should be used to lookup the supply
2095 * @alias_id: Supply name or regulator ID that should be used to lookup the
2096 * supply
2097 *
2098 * All lookups for id on dev will instead be conducted for alias_id on
2099 * alias_dev.
2100 */
2101int regulator_register_supply_alias(struct device *dev, const char *id,
2102 struct device *alias_dev,
2103 const char *alias_id)
2104{
2105 struct regulator_supply_alias *map;
2106
2107 map = regulator_find_supply_alias(dev, id);
2108 if (map)
2109 return -EEXIST;
2110
2111 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2112 if (!map)
2113 return -ENOMEM;
2114
2115 map->src_dev = dev;
2116 map->src_supply = id;
2117 map->alias_dev = alias_dev;
2118 map->alias_supply = alias_id;
2119
2120 list_add(&map->list, &regulator_supply_alias_list);
2121
2122 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2123 id, dev_name(dev), alias_id, dev_name(alias_dev));
2124
2125 return 0;
2126}
2127EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2128
2129/**
2130 * regulator_unregister_supply_alias - Remove device alias
2131 *
2132 * @dev: device that will be given as the regulator "consumer"
2133 * @id: Supply name or regulator ID
2134 *
2135 * Remove a lookup alias if one exists for id on dev.
2136 */
2137void regulator_unregister_supply_alias(struct device *dev, const char *id)
2138{
2139 struct regulator_supply_alias *map;
2140
2141 map = regulator_find_supply_alias(dev, id);
2142 if (map) {
2143 list_del(&map->list);
2144 kfree(map);
2145 }
2146}
2147EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2148
2149/**
2150 * regulator_bulk_register_supply_alias - register multiple aliases
2151 *
2152 * @dev: device that will be given as the regulator "consumer"
2153 * @id: List of supply names or regulator IDs
2154 * @alias_dev: device that should be used to lookup the supply
2155 * @alias_id: List of supply names or regulator IDs that should be used to
2156 * lookup the supply
2157 * @num_id: Number of aliases to register
2158 *
2159 * @return 0 on success, an errno on failure.
2160 *
2161 * This helper function allows drivers to register several supply
2162 * aliases in one operation. If any of the aliases cannot be
2163 * registered any aliases that were registered will be removed
2164 * before returning to the caller.
2165 */
2166int regulator_bulk_register_supply_alias(struct device *dev,
2167 const char *const *id,
2168 struct device *alias_dev,
2169 const char *const *alias_id,
2170 int num_id)
2171{
2172 int i;
2173 int ret;
2174
2175 for (i = 0; i < num_id; ++i) {
2176 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2177 alias_id[i]);
2178 if (ret < 0)
2179 goto err;
2180 }
2181
2182 return 0;
2183
2184err:
2185 dev_err(dev,
2186 "Failed to create supply alias %s,%s -> %s,%s\n",
2187 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2188
2189 while (--i >= 0)
2190 regulator_unregister_supply_alias(dev, id[i]);
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2195
2196/**
2197 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2198 *
2199 * @dev: device that will be given as the regulator "consumer"
2200 * @id: List of supply names or regulator IDs
2201 * @num_id: Number of aliases to unregister
2202 *
2203 * This helper function allows drivers to unregister several supply
2204 * aliases in one operation.
2205 */
2206void regulator_bulk_unregister_supply_alias(struct device *dev,
2207 const char *const *id,
2208 int num_id)
2209{
2210 int i;
2211
2212 for (i = 0; i < num_id; ++i)
2213 regulator_unregister_supply_alias(dev, id[i]);
2214}
2215EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2216
2217
2218/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2219static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2220 const struct regulator_config *config)
2221{
2222 struct regulator_enable_gpio *pin;
2223 struct gpio_desc *gpiod;
2224
2225 gpiod = config->ena_gpiod;
2226
2227 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2228 if (pin->gpiod == gpiod) {
2229 rdev_dbg(rdev, "GPIO is already used\n");
2230 goto update_ena_gpio_to_rdev;
2231 }
2232 }
2233
2234 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2235 if (pin == NULL)
2236 return -ENOMEM;
2237
2238 pin->gpiod = gpiod;
2239 list_add(&pin->list, &regulator_ena_gpio_list);
2240
2241update_ena_gpio_to_rdev:
2242 pin->request_count++;
2243 rdev->ena_pin = pin;
2244 return 0;
2245}
2246
2247static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2248{
2249 struct regulator_enable_gpio *pin, *n;
2250
2251 if (!rdev->ena_pin)
2252 return;
2253
2254 /* Free the GPIO only in case of no use */
2255 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2256 if (pin->gpiod == rdev->ena_pin->gpiod) {
2257 if (pin->request_count <= 1) {
2258 pin->request_count = 0;
2259 list_del(&pin->list);
2260 kfree(pin);
2261 rdev->ena_pin = NULL;
2262 return;
2263 } else {
2264 pin->request_count--;
2265 }
2266 }
2267 }
2268}
2269
2270/**
2271 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2272 * @rdev: regulator_dev structure
2273 * @enable: enable GPIO at initial use?
2274 *
2275 * GPIO is enabled in case of initial use. (enable_count is 0)
2276 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2277 */
2278static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2279{
2280 struct regulator_enable_gpio *pin = rdev->ena_pin;
2281
2282 if (!pin)
2283 return -EINVAL;
2284
2285 if (enable) {
2286 /* Enable GPIO at initial use */
2287 if (pin->enable_count == 0)
2288 gpiod_set_value_cansleep(pin->gpiod, 1);
2289
2290 pin->enable_count++;
2291 } else {
2292 if (pin->enable_count > 1) {
2293 pin->enable_count--;
2294 return 0;
2295 }
2296
2297 /* Disable GPIO if not used */
2298 if (pin->enable_count <= 1) {
2299 gpiod_set_value_cansleep(pin->gpiod, 0);
2300 pin->enable_count = 0;
2301 }
2302 }
2303
2304 return 0;
2305}
2306
2307/**
2308 * _regulator_enable_delay - a delay helper function
2309 * @delay: time to delay in microseconds
2310 *
2311 * Delay for the requested amount of time as per the guidelines in:
2312 *
2313 * Documentation/timers/timers-howto.txt
2314 *
2315 * The assumption here is that regulators will never be enabled in
2316 * atomic context and therefore sleeping functions can be used.
2317 */
2318static void _regulator_enable_delay(unsigned int delay)
2319{
2320 unsigned int ms = delay / 1000;
2321 unsigned int us = delay % 1000;
2322
2323 if (ms > 0) {
2324 /*
2325 * For small enough values, handle super-millisecond
2326 * delays in the usleep_range() call below.
2327 */
2328 if (ms < 20)
2329 us += ms * 1000;
2330 else
2331 msleep(ms);
2332 }
2333
2334 /*
2335 * Give the scheduler some room to coalesce with any other
2336 * wakeup sources. For delays shorter than 10 us, don't even
2337 * bother setting up high-resolution timers and just busy-
2338 * loop.
2339 */
2340 if (us >= 10)
2341 usleep_range(us, us + 100);
2342 else
2343 udelay(us);
2344}
2345
2346static int _regulator_do_enable(struct regulator_dev *rdev)
2347{
2348 int ret, delay;
2349
2350 /* Query before enabling in case configuration dependent. */
2351 ret = _regulator_get_enable_time(rdev);
2352 if (ret >= 0) {
2353 delay = ret;
2354 } else {
2355 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2356 delay = 0;
2357 }
2358
2359 trace_regulator_enable(rdev_get_name(rdev));
2360
2361 if (rdev->desc->off_on_delay) {
2362 /* if needed, keep a distance of off_on_delay from last time
2363 * this regulator was disabled.
2364 */
2365 unsigned long start_jiffy = jiffies;
2366 unsigned long intended, max_delay, remaining;
2367
2368 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2369 intended = rdev->last_off_jiffy + max_delay;
2370
2371 if (time_before(start_jiffy, intended)) {
2372 /* calc remaining jiffies to deal with one-time
2373 * timer wrapping.
2374 * in case of multiple timer wrapping, either it can be
2375 * detected by out-of-range remaining, or it cannot be
2376 * detected and we get a penalty of
2377 * _regulator_enable_delay().
2378 */
2379 remaining = intended - start_jiffy;
2380 if (remaining <= max_delay)
2381 _regulator_enable_delay(
2382 jiffies_to_usecs(remaining));
2383 }
2384 }
2385
2386 if (rdev->ena_pin) {
2387 if (!rdev->ena_gpio_state) {
2388 ret = regulator_ena_gpio_ctrl(rdev, true);
2389 if (ret < 0)
2390 return ret;
2391 rdev->ena_gpio_state = 1;
2392 }
2393 } else if (rdev->desc->ops->enable) {
2394 ret = rdev->desc->ops->enable(rdev);
2395 if (ret < 0)
2396 return ret;
2397 } else {
2398 return -EINVAL;
2399 }
2400
2401 /* Allow the regulator to ramp; it would be useful to extend
2402 * this for bulk operations so that the regulators can ramp
2403 * together. */
2404 trace_regulator_enable_delay(rdev_get_name(rdev));
2405
2406 _regulator_enable_delay(delay);
2407
2408 trace_regulator_enable_complete(rdev_get_name(rdev));
2409
2410 return 0;
2411}
2412
2413/**
2414 * _regulator_handle_consumer_enable - handle that a consumer enabled
2415 * @regulator: regulator source
2416 *
2417 * Some things on a regulator consumer (like the contribution towards total
2418 * load on the regulator) only have an effect when the consumer wants the
2419 * regulator enabled. Explained in example with two consumers of the same
2420 * regulator:
2421 * consumer A: set_load(100); => total load = 0
2422 * consumer A: regulator_enable(); => total load = 100
2423 * consumer B: set_load(1000); => total load = 100
2424 * consumer B: regulator_enable(); => total load = 1100
2425 * consumer A: regulator_disable(); => total_load = 1000
2426 *
2427 * This function (together with _regulator_handle_consumer_disable) is
2428 * responsible for keeping track of the refcount for a given regulator consumer
2429 * and applying / unapplying these things.
2430 *
2431 * Returns 0 upon no error; -error upon error.
2432 */
2433static int _regulator_handle_consumer_enable(struct regulator *regulator)
2434{
2435 struct regulator_dev *rdev = regulator->rdev;
2436
2437 lockdep_assert_held_once(&rdev->mutex.base);
2438
2439 regulator->enable_count++;
2440 if (regulator->uA_load && regulator->enable_count == 1)
2441 return drms_uA_update(rdev);
2442
2443 return 0;
2444}
2445
2446/**
2447 * _regulator_handle_consumer_disable - handle that a consumer disabled
2448 * @regulator: regulator source
2449 *
2450 * The opposite of _regulator_handle_consumer_enable().
2451 *
2452 * Returns 0 upon no error; -error upon error.
2453 */
2454static int _regulator_handle_consumer_disable(struct regulator *regulator)
2455{
2456 struct regulator_dev *rdev = regulator->rdev;
2457
2458 lockdep_assert_held_once(&rdev->mutex.base);
2459
2460 if (!regulator->enable_count) {
2461 rdev_err(rdev, "Underflow of regulator enable count\n");
2462 return -EINVAL;
2463 }
2464
2465 regulator->enable_count--;
2466 if (regulator->uA_load && regulator->enable_count == 0)
2467 return drms_uA_update(rdev);
2468
2469 return 0;
2470}
2471
2472/* locks held by regulator_enable() */
2473static int _regulator_enable(struct regulator *regulator)
2474{
2475 struct regulator_dev *rdev = regulator->rdev;
2476 int ret;
2477
2478 lockdep_assert_held_once(&rdev->mutex.base);
2479
2480 if (rdev->use_count == 0 && rdev->supply) {
2481 ret = _regulator_enable(rdev->supply);
2482 if (ret < 0)
2483 return ret;
2484 }
2485
2486 /* balance only if there are regulators coupled */
2487 if (rdev->coupling_desc.n_coupled > 1) {
2488 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2489 if (ret < 0)
2490 goto err_disable_supply;
2491 }
2492
2493 ret = _regulator_handle_consumer_enable(regulator);
2494 if (ret < 0)
2495 goto err_disable_supply;
2496
2497 if (rdev->use_count == 0) {
2498 /* The regulator may on if it's not switchable or left on */
2499 ret = _regulator_is_enabled(rdev);
2500 if (ret == -EINVAL || ret == 0) {
2501 if (!regulator_ops_is_valid(rdev,
2502 REGULATOR_CHANGE_STATUS)) {
2503 ret = -EPERM;
2504 goto err_consumer_disable;
2505 }
2506
2507 ret = _regulator_do_enable(rdev);
2508 if (ret < 0)
2509 goto err_consumer_disable;
2510
2511 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2512 NULL);
2513 } else if (ret < 0) {
2514 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2515 goto err_consumer_disable;
2516 }
2517 /* Fallthrough on positive return values - already enabled */
2518 }
2519
2520 rdev->use_count++;
2521
2522 return 0;
2523
2524err_consumer_disable:
2525 _regulator_handle_consumer_disable(regulator);
2526
2527err_disable_supply:
2528 if (rdev->use_count == 0 && rdev->supply)
2529 _regulator_disable(rdev->supply);
2530
2531 return ret;
2532}
2533
2534/**
2535 * regulator_enable - enable regulator output
2536 * @regulator: regulator source
2537 *
2538 * Request that the regulator be enabled with the regulator output at
2539 * the predefined voltage or current value. Calls to regulator_enable()
2540 * must be balanced with calls to regulator_disable().
2541 *
2542 * NOTE: the output value can be set by other drivers, boot loader or may be
2543 * hardwired in the regulator.
2544 */
2545int regulator_enable(struct regulator *regulator)
2546{
2547 struct regulator_dev *rdev = regulator->rdev;
2548 struct ww_acquire_ctx ww_ctx;
2549 int ret;
2550
2551 regulator_lock_dependent(rdev, &ww_ctx);
2552 ret = _regulator_enable(regulator);
2553 regulator_unlock_dependent(rdev, &ww_ctx);
2554
2555 return ret;
2556}
2557EXPORT_SYMBOL_GPL(regulator_enable);
2558
2559static int _regulator_do_disable(struct regulator_dev *rdev)
2560{
2561 int ret;
2562
2563 trace_regulator_disable(rdev_get_name(rdev));
2564
2565 if (rdev->ena_pin) {
2566 if (rdev->ena_gpio_state) {
2567 ret = regulator_ena_gpio_ctrl(rdev, false);
2568 if (ret < 0)
2569 return ret;
2570 rdev->ena_gpio_state = 0;
2571 }
2572
2573 } else if (rdev->desc->ops->disable) {
2574 ret = rdev->desc->ops->disable(rdev);
2575 if (ret != 0)
2576 return ret;
2577 }
2578
2579 /* cares about last_off_jiffy only if off_on_delay is required by
2580 * device.
2581 */
2582 if (rdev->desc->off_on_delay)
2583 rdev->last_off_jiffy = jiffies;
2584
2585 trace_regulator_disable_complete(rdev_get_name(rdev));
2586
2587 return 0;
2588}
2589
2590/* locks held by regulator_disable() */
2591static int _regulator_disable(struct regulator *regulator)
2592{
2593 struct regulator_dev *rdev = regulator->rdev;
2594 int ret = 0;
2595
2596 lockdep_assert_held_once(&rdev->mutex.base);
2597
2598 if (WARN(rdev->use_count <= 0,
2599 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2600 return -EIO;
2601
2602 /* are we the last user and permitted to disable ? */
2603 if (rdev->use_count == 1 &&
2604 (rdev->constraints && !rdev->constraints->always_on)) {
2605
2606 /* we are last user */
2607 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2608 ret = _notifier_call_chain(rdev,
2609 REGULATOR_EVENT_PRE_DISABLE,
2610 NULL);
2611 if (ret & NOTIFY_STOP_MASK)
2612 return -EINVAL;
2613
2614 ret = _regulator_do_disable(rdev);
2615 if (ret < 0) {
2616 rdev_err(rdev, "failed to disable\n");
2617 _notifier_call_chain(rdev,
2618 REGULATOR_EVENT_ABORT_DISABLE,
2619 NULL);
2620 return ret;
2621 }
2622 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2623 NULL);
2624 }
2625
2626 rdev->use_count = 0;
2627 } else if (rdev->use_count > 1) {
2628 rdev->use_count--;
2629 }
2630
2631 if (ret == 0)
2632 ret = _regulator_handle_consumer_disable(regulator);
2633
2634 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2635 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2636
2637 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2638 ret = _regulator_disable(rdev->supply);
2639
2640 return ret;
2641}
2642
2643/**
2644 * regulator_disable - disable regulator output
2645 * @regulator: regulator source
2646 *
2647 * Disable the regulator output voltage or current. Calls to
2648 * regulator_enable() must be balanced with calls to
2649 * regulator_disable().
2650 *
2651 * NOTE: this will only disable the regulator output if no other consumer
2652 * devices have it enabled, the regulator device supports disabling and
2653 * machine constraints permit this operation.
2654 */
2655int regulator_disable(struct regulator *regulator)
2656{
2657 struct regulator_dev *rdev = regulator->rdev;
2658 struct ww_acquire_ctx ww_ctx;
2659 int ret;
2660
2661 regulator_lock_dependent(rdev, &ww_ctx);
2662 ret = _regulator_disable(regulator);
2663 regulator_unlock_dependent(rdev, &ww_ctx);
2664
2665 return ret;
2666}
2667EXPORT_SYMBOL_GPL(regulator_disable);
2668
2669/* locks held by regulator_force_disable() */
2670static int _regulator_force_disable(struct regulator_dev *rdev)
2671{
2672 int ret = 0;
2673
2674 lockdep_assert_held_once(&rdev->mutex.base);
2675
2676 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2677 REGULATOR_EVENT_PRE_DISABLE, NULL);
2678 if (ret & NOTIFY_STOP_MASK)
2679 return -EINVAL;
2680
2681 ret = _regulator_do_disable(rdev);
2682 if (ret < 0) {
2683 rdev_err(rdev, "failed to force disable\n");
2684 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2685 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2686 return ret;
2687 }
2688
2689 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2690 REGULATOR_EVENT_DISABLE, NULL);
2691
2692 return 0;
2693}
2694
2695/**
2696 * regulator_force_disable - force disable regulator output
2697 * @regulator: regulator source
2698 *
2699 * Forcibly disable the regulator output voltage or current.
2700 * NOTE: this *will* disable the regulator output even if other consumer
2701 * devices have it enabled. This should be used for situations when device
2702 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2703 */
2704int regulator_force_disable(struct regulator *regulator)
2705{
2706 struct regulator_dev *rdev = regulator->rdev;
2707 struct ww_acquire_ctx ww_ctx;
2708 int ret;
2709
2710 regulator_lock_dependent(rdev, &ww_ctx);
2711
2712 ret = _regulator_force_disable(regulator->rdev);
2713
2714 if (rdev->coupling_desc.n_coupled > 1)
2715 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2716
2717 if (regulator->uA_load) {
2718 regulator->uA_load = 0;
2719 ret = drms_uA_update(rdev);
2720 }
2721
2722 if (rdev->use_count != 0 && rdev->supply)
2723 _regulator_disable(rdev->supply);
2724
2725 regulator_unlock_dependent(rdev, &ww_ctx);
2726
2727 return ret;
2728}
2729EXPORT_SYMBOL_GPL(regulator_force_disable);
2730
2731static void regulator_disable_work(struct work_struct *work)
2732{
2733 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2734 disable_work.work);
2735 struct ww_acquire_ctx ww_ctx;
2736 int count, i, ret;
2737 struct regulator *regulator;
2738 int total_count = 0;
2739
2740 regulator_lock_dependent(rdev, &ww_ctx);
2741
2742 /*
2743 * Workqueue functions queue the new work instance while the previous
2744 * work instance is being processed. Cancel the queued work instance
2745 * as the work instance under processing does the job of the queued
2746 * work instance.
2747 */
2748 cancel_delayed_work(&rdev->disable_work);
2749
2750 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2751 count = regulator->deferred_disables;
2752
2753 if (!count)
2754 continue;
2755
2756 total_count += count;
2757 regulator->deferred_disables = 0;
2758
2759 for (i = 0; i < count; i++) {
2760 ret = _regulator_disable(regulator);
2761 if (ret != 0)
2762 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2763 }
2764 }
2765 WARN_ON(!total_count);
2766
2767 if (rdev->coupling_desc.n_coupled > 1)
2768 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2769
2770 regulator_unlock_dependent(rdev, &ww_ctx);
2771}
2772
2773/**
2774 * regulator_disable_deferred - disable regulator output with delay
2775 * @regulator: regulator source
2776 * @ms: milliseconds until the regulator is disabled
2777 *
2778 * Execute regulator_disable() on the regulator after a delay. This
2779 * is intended for use with devices that require some time to quiesce.
2780 *
2781 * NOTE: this will only disable the regulator output if no other consumer
2782 * devices have it enabled, the regulator device supports disabling and
2783 * machine constraints permit this operation.
2784 */
2785int regulator_disable_deferred(struct regulator *regulator, int ms)
2786{
2787 struct regulator_dev *rdev = regulator->rdev;
2788
2789 if (!ms)
2790 return regulator_disable(regulator);
2791
2792 regulator_lock(rdev);
2793 regulator->deferred_disables++;
2794 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2795 msecs_to_jiffies(ms));
2796 regulator_unlock(rdev);
2797
2798 return 0;
2799}
2800EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2801
2802static int _regulator_is_enabled(struct regulator_dev *rdev)
2803{
2804 /* A GPIO control always takes precedence */
2805 if (rdev->ena_pin)
2806 return rdev->ena_gpio_state;
2807
2808 /* If we don't know then assume that the regulator is always on */
2809 if (!rdev->desc->ops->is_enabled)
2810 return 1;
2811
2812 return rdev->desc->ops->is_enabled(rdev);
2813}
2814
2815static int _regulator_list_voltage(struct regulator_dev *rdev,
2816 unsigned selector, int lock)
2817{
2818 const struct regulator_ops *ops = rdev->desc->ops;
2819 int ret;
2820
2821 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2822 return rdev->desc->fixed_uV;
2823
2824 if (ops->list_voltage) {
2825 if (selector >= rdev->desc->n_voltages)
2826 return -EINVAL;
2827 if (lock)
2828 regulator_lock(rdev);
2829 ret = ops->list_voltage(rdev, selector);
2830 if (lock)
2831 regulator_unlock(rdev);
2832 } else if (rdev->is_switch && rdev->supply) {
2833 ret = _regulator_list_voltage(rdev->supply->rdev,
2834 selector, lock);
2835 } else {
2836 return -EINVAL;
2837 }
2838
2839 if (ret > 0) {
2840 if (ret < rdev->constraints->min_uV)
2841 ret = 0;
2842 else if (ret > rdev->constraints->max_uV)
2843 ret = 0;
2844 }
2845
2846 return ret;
2847}
2848
2849/**
2850 * regulator_is_enabled - is the regulator output enabled
2851 * @regulator: regulator source
2852 *
2853 * Returns positive if the regulator driver backing the source/client
2854 * has requested that the device be enabled, zero if it hasn't, else a
2855 * negative errno code.
2856 *
2857 * Note that the device backing this regulator handle can have multiple
2858 * users, so it might be enabled even if regulator_enable() was never
2859 * called for this particular source.
2860 */
2861int regulator_is_enabled(struct regulator *regulator)
2862{
2863 int ret;
2864
2865 if (regulator->always_on)
2866 return 1;
2867
2868 regulator_lock(regulator->rdev);
2869 ret = _regulator_is_enabled(regulator->rdev);
2870 regulator_unlock(regulator->rdev);
2871
2872 return ret;
2873}
2874EXPORT_SYMBOL_GPL(regulator_is_enabled);
2875
2876/**
2877 * regulator_count_voltages - count regulator_list_voltage() selectors
2878 * @regulator: regulator source
2879 *
2880 * Returns number of selectors, or negative errno. Selectors are
2881 * numbered starting at zero, and typically correspond to bitfields
2882 * in hardware registers.
2883 */
2884int regulator_count_voltages(struct regulator *regulator)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887
2888 if (rdev->desc->n_voltages)
2889 return rdev->desc->n_voltages;
2890
2891 if (!rdev->is_switch || !rdev->supply)
2892 return -EINVAL;
2893
2894 return regulator_count_voltages(rdev->supply);
2895}
2896EXPORT_SYMBOL_GPL(regulator_count_voltages);
2897
2898/**
2899 * regulator_list_voltage - enumerate supported voltages
2900 * @regulator: regulator source
2901 * @selector: identify voltage to list
2902 * Context: can sleep
2903 *
2904 * Returns a voltage that can be passed to @regulator_set_voltage(),
2905 * zero if this selector code can't be used on this system, or a
2906 * negative errno.
2907 */
2908int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2909{
2910 return _regulator_list_voltage(regulator->rdev, selector, 1);
2911}
2912EXPORT_SYMBOL_GPL(regulator_list_voltage);
2913
2914/**
2915 * regulator_get_regmap - get the regulator's register map
2916 * @regulator: regulator source
2917 *
2918 * Returns the register map for the given regulator, or an ERR_PTR value
2919 * if the regulator doesn't use regmap.
2920 */
2921struct regmap *regulator_get_regmap(struct regulator *regulator)
2922{
2923 struct regmap *map = regulator->rdev->regmap;
2924
2925 return map ? map : ERR_PTR(-EOPNOTSUPP);
2926}
2927
2928/**
2929 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2930 * @regulator: regulator source
2931 * @vsel_reg: voltage selector register, output parameter
2932 * @vsel_mask: mask for voltage selector bitfield, output parameter
2933 *
2934 * Returns the hardware register offset and bitmask used for setting the
2935 * regulator voltage. This might be useful when configuring voltage-scaling
2936 * hardware or firmware that can make I2C requests behind the kernel's back,
2937 * for example.
2938 *
2939 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2940 * and 0 is returned, otherwise a negative errno is returned.
2941 */
2942int regulator_get_hardware_vsel_register(struct regulator *regulator,
2943 unsigned *vsel_reg,
2944 unsigned *vsel_mask)
2945{
2946 struct regulator_dev *rdev = regulator->rdev;
2947 const struct regulator_ops *ops = rdev->desc->ops;
2948
2949 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2950 return -EOPNOTSUPP;
2951
2952 *vsel_reg = rdev->desc->vsel_reg;
2953 *vsel_mask = rdev->desc->vsel_mask;
2954
2955 return 0;
2956}
2957EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2958
2959/**
2960 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2961 * @regulator: regulator source
2962 * @selector: identify voltage to list
2963 *
2964 * Converts the selector to a hardware-specific voltage selector that can be
2965 * directly written to the regulator registers. The address of the voltage
2966 * register can be determined by calling @regulator_get_hardware_vsel_register.
2967 *
2968 * On error a negative errno is returned.
2969 */
2970int regulator_list_hardware_vsel(struct regulator *regulator,
2971 unsigned selector)
2972{
2973 struct regulator_dev *rdev = regulator->rdev;
2974 const struct regulator_ops *ops = rdev->desc->ops;
2975
2976 if (selector >= rdev->desc->n_voltages)
2977 return -EINVAL;
2978 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2979 return -EOPNOTSUPP;
2980
2981 return selector;
2982}
2983EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2984
2985/**
2986 * regulator_get_linear_step - return the voltage step size between VSEL values
2987 * @regulator: regulator source
2988 *
2989 * Returns the voltage step size between VSEL values for linear
2990 * regulators, or return 0 if the regulator isn't a linear regulator.
2991 */
2992unsigned int regulator_get_linear_step(struct regulator *regulator)
2993{
2994 struct regulator_dev *rdev = regulator->rdev;
2995
2996 return rdev->desc->uV_step;
2997}
2998EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2999
3000/**
3001 * regulator_is_supported_voltage - check if a voltage range can be supported
3002 *
3003 * @regulator: Regulator to check.
3004 * @min_uV: Minimum required voltage in uV.
3005 * @max_uV: Maximum required voltage in uV.
3006 *
3007 * Returns a boolean or a negative error code.
3008 */
3009int regulator_is_supported_voltage(struct regulator *regulator,
3010 int min_uV, int max_uV)
3011{
3012 struct regulator_dev *rdev = regulator->rdev;
3013 int i, voltages, ret;
3014
3015 /* If we can't change voltage check the current voltage */
3016 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3017 ret = regulator_get_voltage(regulator);
3018 if (ret >= 0)
3019 return min_uV <= ret && ret <= max_uV;
3020 else
3021 return ret;
3022 }
3023
3024 /* Any voltage within constrains range is fine? */
3025 if (rdev->desc->continuous_voltage_range)
3026 return min_uV >= rdev->constraints->min_uV &&
3027 max_uV <= rdev->constraints->max_uV;
3028
3029 ret = regulator_count_voltages(regulator);
3030 if (ret < 0)
3031 return ret;
3032 voltages = ret;
3033
3034 for (i = 0; i < voltages; i++) {
3035 ret = regulator_list_voltage(regulator, i);
3036
3037 if (ret >= min_uV && ret <= max_uV)
3038 return 1;
3039 }
3040
3041 return 0;
3042}
3043EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3044
3045static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3046 int max_uV)
3047{
3048 const struct regulator_desc *desc = rdev->desc;
3049
3050 if (desc->ops->map_voltage)
3051 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3052
3053 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3054 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3055
3056 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3057 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3058
3059 if (desc->ops->list_voltage ==
3060 regulator_list_voltage_pickable_linear_range)
3061 return regulator_map_voltage_pickable_linear_range(rdev,
3062 min_uV, max_uV);
3063
3064 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3065}
3066
3067static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3068 int min_uV, int max_uV,
3069 unsigned *selector)
3070{
3071 struct pre_voltage_change_data data;
3072 int ret;
3073
3074 data.old_uV = _regulator_get_voltage(rdev);
3075 data.min_uV = min_uV;
3076 data.max_uV = max_uV;
3077 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3078 &data);
3079 if (ret & NOTIFY_STOP_MASK)
3080 return -EINVAL;
3081
3082 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3083 if (ret >= 0)
3084 return ret;
3085
3086 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3087 (void *)data.old_uV);
3088
3089 return ret;
3090}
3091
3092static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3093 int uV, unsigned selector)
3094{
3095 struct pre_voltage_change_data data;
3096 int ret;
3097
3098 data.old_uV = _regulator_get_voltage(rdev);
3099 data.min_uV = uV;
3100 data.max_uV = uV;
3101 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3102 &data);
3103 if (ret & NOTIFY_STOP_MASK)
3104 return -EINVAL;
3105
3106 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3107 if (ret >= 0)
3108 return ret;
3109
3110 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3111 (void *)data.old_uV);
3112
3113 return ret;
3114}
3115
3116static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3117 int old_uV, int new_uV)
3118{
3119 unsigned int ramp_delay = 0;
3120
3121 if (rdev->constraints->ramp_delay)
3122 ramp_delay = rdev->constraints->ramp_delay;
3123 else if (rdev->desc->ramp_delay)
3124 ramp_delay = rdev->desc->ramp_delay;
3125 else if (rdev->constraints->settling_time)
3126 return rdev->constraints->settling_time;
3127 else if (rdev->constraints->settling_time_up &&
3128 (new_uV > old_uV))
3129 return rdev->constraints->settling_time_up;
3130 else if (rdev->constraints->settling_time_down &&
3131 (new_uV < old_uV))
3132 return rdev->constraints->settling_time_down;
3133
3134 if (ramp_delay == 0) {
3135 rdev_dbg(rdev, "ramp_delay not set\n");
3136 return 0;
3137 }
3138
3139 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3140}
3141
3142static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3143 int min_uV, int max_uV)
3144{
3145 int ret;
3146 int delay = 0;
3147 int best_val = 0;
3148 unsigned int selector;
3149 int old_selector = -1;
3150 const struct regulator_ops *ops = rdev->desc->ops;
3151 int old_uV = _regulator_get_voltage(rdev);
3152
3153 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3154
3155 min_uV += rdev->constraints->uV_offset;
3156 max_uV += rdev->constraints->uV_offset;
3157
3158 /*
3159 * If we can't obtain the old selector there is not enough
3160 * info to call set_voltage_time_sel().
3161 */
3162 if (_regulator_is_enabled(rdev) &&
3163 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3164 old_selector = ops->get_voltage_sel(rdev);
3165 if (old_selector < 0)
3166 return old_selector;
3167 }
3168
3169 if (ops->set_voltage) {
3170 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3171 &selector);
3172
3173 if (ret >= 0) {
3174 if (ops->list_voltage)
3175 best_val = ops->list_voltage(rdev,
3176 selector);
3177 else
3178 best_val = _regulator_get_voltage(rdev);
3179 }
3180
3181 } else if (ops->set_voltage_sel) {
3182 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3183 if (ret >= 0) {
3184 best_val = ops->list_voltage(rdev, ret);
3185 if (min_uV <= best_val && max_uV >= best_val) {
3186 selector = ret;
3187 if (old_selector == selector)
3188 ret = 0;
3189 else
3190 ret = _regulator_call_set_voltage_sel(
3191 rdev, best_val, selector);
3192 } else {
3193 ret = -EINVAL;
3194 }
3195 }
3196 } else {
3197 ret = -EINVAL;
3198 }
3199
3200 if (ret)
3201 goto out;
3202
3203 if (ops->set_voltage_time_sel) {
3204 /*
3205 * Call set_voltage_time_sel if successfully obtained
3206 * old_selector
3207 */
3208 if (old_selector >= 0 && old_selector != selector)
3209 delay = ops->set_voltage_time_sel(rdev, old_selector,
3210 selector);
3211 } else {
3212 if (old_uV != best_val) {
3213 if (ops->set_voltage_time)
3214 delay = ops->set_voltage_time(rdev, old_uV,
3215 best_val);
3216 else
3217 delay = _regulator_set_voltage_time(rdev,
3218 old_uV,
3219 best_val);
3220 }
3221 }
3222
3223 if (delay < 0) {
3224 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3225 delay = 0;
3226 }
3227
3228 /* Insert any necessary delays */
3229 if (delay >= 1000) {
3230 mdelay(delay / 1000);
3231 udelay(delay % 1000);
3232 } else if (delay) {
3233 udelay(delay);
3234 }
3235
3236 if (best_val >= 0) {
3237 unsigned long data = best_val;
3238
3239 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3240 (void *)data);
3241 }
3242
3243out:
3244 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3245
3246 return ret;
3247}
3248
3249static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3250 int min_uV, int max_uV, suspend_state_t state)
3251{
3252 struct regulator_state *rstate;
3253 int uV, sel;
3254
3255 rstate = regulator_get_suspend_state(rdev, state);
3256 if (rstate == NULL)
3257 return -EINVAL;
3258
3259 if (min_uV < rstate->min_uV)
3260 min_uV = rstate->min_uV;
3261 if (max_uV > rstate->max_uV)
3262 max_uV = rstate->max_uV;
3263
3264 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3265 if (sel < 0)
3266 return sel;
3267
3268 uV = rdev->desc->ops->list_voltage(rdev, sel);
3269 if (uV >= min_uV && uV <= max_uV)
3270 rstate->uV = uV;
3271
3272 return 0;
3273}
3274
3275static int regulator_set_voltage_unlocked(struct regulator *regulator,
3276 int min_uV, int max_uV,
3277 suspend_state_t state)
3278{
3279 struct regulator_dev *rdev = regulator->rdev;
3280 struct regulator_voltage *voltage = &regulator->voltage[state];
3281 int ret = 0;
3282 int old_min_uV, old_max_uV;
3283 int current_uV;
3284
3285 /* If we're setting the same range as last time the change
3286 * should be a noop (some cpufreq implementations use the same
3287 * voltage for multiple frequencies, for example).
3288 */
3289 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3290 goto out;
3291
3292 /* If we're trying to set a range that overlaps the current voltage,
3293 * return successfully even though the regulator does not support
3294 * changing the voltage.
3295 */
3296 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3297 current_uV = _regulator_get_voltage(rdev);
3298 if (min_uV <= current_uV && current_uV <= max_uV) {
3299 voltage->min_uV = min_uV;
3300 voltage->max_uV = max_uV;
3301 goto out;
3302 }
3303 }
3304
3305 /* sanity check */
3306 if (!rdev->desc->ops->set_voltage &&
3307 !rdev->desc->ops->set_voltage_sel) {
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 /* constraints check */
3313 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3314 if (ret < 0)
3315 goto out;
3316
3317 /* restore original values in case of error */
3318 old_min_uV = voltage->min_uV;
3319 old_max_uV = voltage->max_uV;
3320 voltage->min_uV = min_uV;
3321 voltage->max_uV = max_uV;
3322
3323 /* for not coupled regulators this will just set the voltage */
3324 ret = regulator_balance_voltage(rdev, state);
3325 if (ret < 0)
3326 goto out2;
3327
3328out:
3329 return 0;
3330out2:
3331 voltage->min_uV = old_min_uV;
3332 voltage->max_uV = old_max_uV;
3333
3334 return ret;
3335}
3336
3337static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3338 int max_uV, suspend_state_t state)
3339{
3340 int best_supply_uV = 0;
3341 int supply_change_uV = 0;
3342 int ret;
3343
3344 if (rdev->supply &&
3345 regulator_ops_is_valid(rdev->supply->rdev,
3346 REGULATOR_CHANGE_VOLTAGE) &&
3347 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3348 rdev->desc->ops->get_voltage_sel))) {
3349 int current_supply_uV;
3350 int selector;
3351
3352 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3353 if (selector < 0) {
3354 ret = selector;
3355 goto out;
3356 }
3357
3358 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3359 if (best_supply_uV < 0) {
3360 ret = best_supply_uV;
3361 goto out;
3362 }
3363
3364 best_supply_uV += rdev->desc->min_dropout_uV;
3365
3366 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3367 if (current_supply_uV < 0) {
3368 ret = current_supply_uV;
3369 goto out;
3370 }
3371
3372 supply_change_uV = best_supply_uV - current_supply_uV;
3373 }
3374
3375 if (supply_change_uV > 0) {
3376 ret = regulator_set_voltage_unlocked(rdev->supply,
3377 best_supply_uV, INT_MAX, state);
3378 if (ret) {
3379 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3380 ret);
3381 goto out;
3382 }
3383 }
3384
3385 if (state == PM_SUSPEND_ON)
3386 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3387 else
3388 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3389 max_uV, state);
3390 if (ret < 0)
3391 goto out;
3392
3393 if (supply_change_uV < 0) {
3394 ret = regulator_set_voltage_unlocked(rdev->supply,
3395 best_supply_uV, INT_MAX, state);
3396 if (ret)
3397 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3398 ret);
3399 /* No need to fail here */
3400 ret = 0;
3401 }
3402
3403out:
3404 return ret;
3405}
3406
3407static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3408 int *current_uV, int *min_uV)
3409{
3410 struct regulation_constraints *constraints = rdev->constraints;
3411
3412 /* Limit voltage change only if necessary */
3413 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3414 return 1;
3415
3416 if (*current_uV < 0) {
3417 *current_uV = _regulator_get_voltage(rdev);
3418
3419 if (*current_uV < 0)
3420 return *current_uV;
3421 }
3422
3423 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3424 return 1;
3425
3426 /* Clamp target voltage within the given step */
3427 if (*current_uV < *min_uV)
3428 *min_uV = min(*current_uV + constraints->max_uV_step,
3429 *min_uV);
3430 else
3431 *min_uV = max(*current_uV - constraints->max_uV_step,
3432 *min_uV);
3433
3434 return 0;
3435}
3436
3437static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3438 int *current_uV,
3439 int *min_uV, int *max_uV,
3440 suspend_state_t state,
3441 int n_coupled)
3442{
3443 struct coupling_desc *c_desc = &rdev->coupling_desc;
3444 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3445 struct regulation_constraints *constraints = rdev->constraints;
3446 int max_spread = constraints->max_spread;
3447 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3448 int max_current_uV = 0, min_current_uV = INT_MAX;
3449 int highest_min_uV = 0, target_uV, possible_uV;
3450 int i, ret;
3451 bool done;
3452
3453 *current_uV = -1;
3454
3455 /*
3456 * If there are no coupled regulators, simply set the voltage
3457 * demanded by consumers.
3458 */
3459 if (n_coupled == 1) {
3460 /*
3461 * If consumers don't provide any demands, set voltage
3462 * to min_uV
3463 */
3464 desired_min_uV = constraints->min_uV;
3465 desired_max_uV = constraints->max_uV;
3466
3467 ret = regulator_check_consumers(rdev,
3468 &desired_min_uV,
3469 &desired_max_uV, state);
3470 if (ret < 0)
3471 return ret;
3472
3473 possible_uV = desired_min_uV;
3474 done = true;
3475
3476 goto finish;
3477 }
3478
3479 /* Find highest min desired voltage */
3480 for (i = 0; i < n_coupled; i++) {
3481 int tmp_min = 0;
3482 int tmp_max = INT_MAX;
3483
3484 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3485
3486 ret = regulator_check_consumers(c_rdevs[i],
3487 &tmp_min,
3488 &tmp_max, state);
3489 if (ret < 0)
3490 return ret;
3491
3492 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3493 if (ret < 0)
3494 return ret;
3495
3496 highest_min_uV = max(highest_min_uV, tmp_min);
3497
3498 if (i == 0) {
3499 desired_min_uV = tmp_min;
3500 desired_max_uV = tmp_max;
3501 }
3502 }
3503
3504 /*
3505 * Let target_uV be equal to the desired one if possible.
3506 * If not, set it to minimum voltage, allowed by other coupled
3507 * regulators.
3508 */
3509 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3510
3511 /*
3512 * Find min and max voltages, which currently aren't violating
3513 * max_spread.
3514 */
3515 for (i = 1; i < n_coupled; i++) {
3516 int tmp_act;
3517
3518 if (!_regulator_is_enabled(c_rdevs[i]))
3519 continue;
3520
3521 tmp_act = _regulator_get_voltage(c_rdevs[i]);
3522 if (tmp_act < 0)
3523 return tmp_act;
3524
3525 min_current_uV = min(tmp_act, min_current_uV);
3526 max_current_uV = max(tmp_act, max_current_uV);
3527 }
3528
3529 /* There aren't any other regulators enabled */
3530 if (max_current_uV == 0) {
3531 possible_uV = target_uV;
3532 } else {
3533 /*
3534 * Correct target voltage, so as it currently isn't
3535 * violating max_spread