1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Mike Turquette <mturquette@ti.com>
7 *
8 * Copyright (C) 2012-2013 Texas Instruments, Inc.
9 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com>
10 * Nishanth Menon <nm@ti.com>
11 */
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/err.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/platform_device.h>
19#include <linux/regulator/driver.h>
20#include <linux/regulator/machine.h>
21#include <linux/regulator/of_regulator.h>
22
23/*
24 * ABB LDO operating states:
25 * NOMINAL_OPP: bypasses the ABB LDO
26 * FAST_OPP: sets ABB LDO to Forward Body-Bias
27 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias
28 */
29#define TI_ABB_NOMINAL_OPP 0
30#define TI_ABB_FAST_OPP 1
31#define TI_ABB_SLOW_OPP 3
32
33/**
34 * struct ti_abb_info - ABB information per voltage setting
35 * @opp_sel: one of TI_ABB macro
36 * @vset: (optional) vset value that LDOVBB needs to be overridden with.
37 *
38 * Array of per voltage entries organized in the same order as regulator_desc's
39 * volt_table list. (selector is used to index from this array)
40 */
41struct ti_abb_info {
42 u32 opp_sel;
43 u32 vset;
44};
45
46/**
47 * struct ti_abb_reg - Register description for ABB block
48 * @setup_off: setup register offset from base
49 * @control_off: control register offset from base
50 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask
51 * @fbb_sel_mask: setup register- FBB sel mask
52 * @rbb_sel_mask: setup register- RBB sel mask
53 * @sr2_en_mask: setup register- enable mask
54 * @opp_change_mask: control register - mask to trigger LDOVBB change
55 * @opp_sel_mask: control register - mask for mode to operate
56 */
57struct ti_abb_reg {
58 u32 setup_off;
59 u32 control_off;
60
61 /* Setup register fields */
62 u32 sr2_wtcnt_value_mask;
63 u32 fbb_sel_mask;
64 u32 rbb_sel_mask;
65 u32 sr2_en_mask;
66
67 /* Control register fields */
68 u32 opp_change_mask;
69 u32 opp_sel_mask;
70};
71
72/**
73 * struct ti_abb - ABB instance data
74 * @rdesc: regulator descriptor
75 * @clk: clock(usually sysclk) supplying ABB block
76 * @base: base address of ABB block
77 * @setup_reg: setup register of ABB block
78 * @control_reg: control register of ABB block
79 * @int_base: interrupt register base address
80 * @efuse_base: (optional) efuse base address for ABB modes
81 * @ldo_base: (optional) LDOVBB vset override base address
82 * @regs: pointer to struct ti_abb_reg for ABB block
83 * @txdone_mask: mask on int_base for tranxdone interrupt
84 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB
85 * vset with value from efuse
86 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override
87 * @info: array to per voltage ABB configuration
88 * @current_info_idx: current index to info
89 * @settling_time: SoC specific settling time for LDO VBB
90 */
91struct ti_abb {
92 struct regulator_desc rdesc;
93 struct clk *clk;
94 void __iomem *base;
95 void __iomem *setup_reg;
96 void __iomem *control_reg;
97 void __iomem *int_base;
98 void __iomem *efuse_base;
99 void __iomem *ldo_base;
100
101 const struct ti_abb_reg *regs;
102 u32 txdone_mask;
103 u32 ldovbb_override_mask;
104 u32 ldovbb_vset_mask;
105
106 struct ti_abb_info *info;
107 int current_info_idx;
108
109 u32 settling_time;
110};
111
112/**
113 * ti_abb_rmw() - handy wrapper to set specific register bits
114 * @mask: mask for register field
115 * @value: value shifted to mask location and written
116 * @reg: register address
117 *
118 * Return: final register value (may be unused)
119 */
120static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg)
121{
122 u32 val;
123
124 val = readl(addr: reg);
125 val &= ~mask;
126 val |= (value << __ffs(mask)) & mask;
127 writel(val, addr: reg);
128
129 return val;
130}
131
132/**
133 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status
134 * @abb: pointer to the abb instance
135 *
136 * Return: true or false
137 */
138static inline bool ti_abb_check_txdone(const struct ti_abb *abb)
139{
140 return !!(readl(addr: abb->int_base) & abb->txdone_mask);
141}
142
143/**
144 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status
145 * @abb: pointer to the abb instance
146 */
147static inline void ti_abb_clear_txdone(const struct ti_abb *abb)
148{
149 writel(val: abb->txdone_mask, addr: abb->int_base);
150};
151
152/**
153 * ti_abb_wait_txdone() - waits for ABB tranxdone event
154 * @dev: device
155 * @abb: pointer to the abb instance
156 *
157 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
158 */
159static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb)
160{
161 int timeout = 0;
162 bool status;
163
164 while (timeout++ <= abb->settling_time) {
165 status = ti_abb_check_txdone(abb);
166 if (status)
167 return 0;
168
169 udelay(1);
170 }
171
172 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
173 __func__, timeout, readl(abb->int_base));
174 return -ETIMEDOUT;
175}
176
177/**
178 * ti_abb_clear_all_txdone() - clears ABB tranxdone event
179 * @dev: device
180 * @abb: pointer to the abb instance
181 *
182 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
183 */
184static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb)
185{
186 int timeout = 0;
187 bool status;
188
189 while (timeout++ <= abb->settling_time) {
190 ti_abb_clear_txdone(abb);
191
192 status = ti_abb_check_txdone(abb);
193 if (!status)
194 return 0;
195
196 udelay(1);
197 }
198
199 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
200 __func__, timeout, readl(abb->int_base));
201 return -ETIMEDOUT;
202}
203
204/**
205 * ti_abb_program_ldovbb() - program LDOVBB register for override value
206 * @dev: device
207 * @abb: pointer to the abb instance
208 * @info: ABB info to program
209 */
210static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb,
211 struct ti_abb_info *info)
212{
213 u32 val;
214
215 val = readl(addr: abb->ldo_base);
216 /* clear up previous values */
217 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask);
218
219 switch (info->opp_sel) {
220 case TI_ABB_SLOW_OPP:
221 case TI_ABB_FAST_OPP:
222 val |= abb->ldovbb_override_mask;
223 val |= info->vset << __ffs(abb->ldovbb_vset_mask);
224 break;
225 }
226
227 writel(val, addr: abb->ldo_base);
228}
229
230/**
231 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias
232 * @rdev: regulator device
233 * @abb: pointer to the abb instance
234 * @info: ABB info to program
235 *
236 * Return: 0 on success or appropriate error value when fails
237 */
238static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb,
239 struct ti_abb_info *info)
240{
241 const struct ti_abb_reg *regs = abb->regs;
242 struct device *dev = &rdev->dev;
243 int ret;
244
245 ret = ti_abb_clear_all_txdone(dev, abb);
246 if (ret)
247 goto out;
248
249 ti_abb_rmw(mask: regs->fbb_sel_mask | regs->rbb_sel_mask, value: 0, reg: abb->setup_reg);
250
251 switch (info->opp_sel) {
252 case TI_ABB_SLOW_OPP:
253 ti_abb_rmw(mask: regs->rbb_sel_mask, value: 1, reg: abb->setup_reg);
254 break;
255 case TI_ABB_FAST_OPP:
256 ti_abb_rmw(mask: regs->fbb_sel_mask, value: 1, reg: abb->setup_reg);
257 break;
258 }
259
260 /* program next state of ABB ldo */
261 ti_abb_rmw(mask: regs->opp_sel_mask, value: info->opp_sel, reg: abb->control_reg);
262
263 /*
264 * program LDO VBB vset override if needed for !bypass mode
265 * XXX: Do not switch sequence - for !bypass, LDO override reset *must*
266 * be performed *before* switch to bias mode else VBB glitches.
267 */
268 if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP)
269 ti_abb_program_ldovbb(dev, abb, info);
270
271 /* Initiate ABB ldo change */
272 ti_abb_rmw(mask: regs->opp_change_mask, value: 1, reg: abb->control_reg);
273
274 /* Wait for ABB LDO to complete transition to new Bias setting */
275 ret = ti_abb_wait_txdone(dev, abb);
276 if (ret)
277 goto out;
278
279 ret = ti_abb_clear_all_txdone(dev, abb);
280 if (ret)
281 goto out;
282
283 /*
284 * Reset LDO VBB vset override bypass mode
285 * XXX: Do not switch sequence - for bypass, LDO override reset *must*
286 * be performed *after* switch to bypass else VBB glitches.
287 */
288 if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP)
289 ti_abb_program_ldovbb(dev, abb, info);
290
291out:
292 return ret;
293}
294
295/**
296 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO
297 * @rdev: regulator device
298 * @sel: selector to index into required ABB LDO settings (maps to
299 * regulator descriptor's volt_table)
300 *
301 * Return: 0 on success or appropriate error value when fails
302 */
303static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned int sel)
304{
305 const struct regulator_desc *desc = rdev->desc;
306 struct ti_abb *abb = rdev_get_drvdata(rdev);
307 struct device *dev = &rdev->dev;
308 struct ti_abb_info *info, *oinfo;
309 int ret = 0;
310
311 if (!abb) {
312 dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
313 __func__);
314 return -ENODEV;
315 }
316
317 if (!desc->n_voltages || !abb->info) {
318 dev_err_ratelimited(dev,
319 "%s: No valid voltage table entries?\n",
320 __func__);
321 return -EINVAL;
322 }
323
324 if (sel >= desc->n_voltages) {
325 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__,
326 sel, desc->n_voltages);
327 return -EINVAL;
328 }
329
330 /* If we are in the same index as we were, nothing to do here! */
331 if (sel == abb->current_info_idx) {
332 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel);
333 return ret;
334 }
335
336 info = &abb->info[sel];
337 /*
338 * When Linux kernel is starting up, we aren't sure of the
339 * Bias configuration that bootloader has configured.
340 * So, we get to know the actual setting the first time
341 * we are asked to transition.
342 */
343 if (abb->current_info_idx == -EINVAL)
344 goto just_set_abb;
345
346 /* If data is exactly the same, then just update index, no change */
347 oinfo = &abb->info[abb->current_info_idx];
348 if (!memcmp(p: info, q: oinfo, size: sizeof(*info))) {
349 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__,
350 sel, abb->current_info_idx);
351 goto out;
352 }
353
354just_set_abb:
355 ret = ti_abb_set_opp(rdev, abb, info);
356
357out:
358 if (!ret)
359 abb->current_info_idx = sel;
360 else
361 dev_err_ratelimited(dev,
362 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n",
363 __func__, desc->volt_table[sel], sel,
364 info->opp_sel, ret);
365 return ret;
366}
367
368/**
369 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting
370 * @rdev: regulator device
371 *
372 * Return: 0 on success or appropriate error value when fails
373 */
374static int ti_abb_get_voltage_sel(struct regulator_dev *rdev)
375{
376 const struct regulator_desc *desc = rdev->desc;
377 struct ti_abb *abb = rdev_get_drvdata(rdev);
378 struct device *dev = &rdev->dev;
379
380 if (!abb) {
381 dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
382 __func__);
383 return -ENODEV;
384 }
385
386 if (!desc->n_voltages || !abb->info) {
387 dev_err_ratelimited(dev,
388 "%s: No valid voltage table entries?\n",
389 __func__);
390 return -EINVAL;
391 }
392
393 if (abb->current_info_idx >= (int)desc->n_voltages) {
394 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n",
395 __func__, abb->current_info_idx, desc->n_voltages);
396 return -EINVAL;
397 }
398
399 return abb->current_info_idx;
400}
401
402/**
403 * ti_abb_init_timings() - setup ABB clock timing for the current platform
404 * @dev: device
405 * @abb: pointer to the abb instance
406 *
407 * Return: 0 if timing is updated, else returns error result.
408 */
409static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb)
410{
411 u32 clock_cycles;
412 u32 clk_rate, sr2_wt_cnt_val, cycle_rate;
413 const struct ti_abb_reg *regs = abb->regs;
414 int ret;
415 char *pname = "ti,settling-time";
416
417 /* read device tree properties */
418 ret = of_property_read_u32(np: dev->of_node, propname: pname, out_value: &abb->settling_time);
419 if (ret) {
420 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
421 return ret;
422 }
423
424 /* ABB LDO cannot be settle in 0 time */
425 if (!abb->settling_time) {
426 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
427 return -EINVAL;
428 }
429
430 pname = "ti,clock-cycles";
431 ret = of_property_read_u32(np: dev->of_node, propname: pname, out_value: &clock_cycles);
432 if (ret) {
433 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
434 return ret;
435 }
436 /* ABB LDO cannot be settle in 0 clock cycles */
437 if (!clock_cycles) {
438 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
439 return -EINVAL;
440 }
441
442 abb->clk = devm_clk_get(dev, NULL);
443 if (IS_ERR(ptr: abb->clk)) {
444 ret = PTR_ERR(ptr: abb->clk);
445 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret);
446 return ret;
447 }
448
449 /*
450 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a
451 * transition and must be programmed with the correct time at boot.
452 * The value programmed into the register is the number of SYS_CLK
453 * clock cycles that match a given wall time profiled for the ldo.
454 * This value depends on:
455 * settling time of ldo in micro-seconds (varies per OMAP family)
456 * # of clock cycles per SYS_CLK period (varies per OMAP family)
457 * the SYS_CLK frequency in MHz (varies per board)
458 * The formula is:
459 *
460 * ldo settling time (in micro-seconds)
461 * SR2_WTCNT_VALUE = ------------------------------------------
462 * (# system clock cycles) * (sys_clk period)
463 *
464 * Put another way:
465 *
466 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate))
467 *
468 * To avoid dividing by zero multiply both "# clock cycles" and
469 * "settling time" by 10 such that the final result is the one we want.
470 */
471
472 /* Convert SYS_CLK rate to MHz & prevent divide by zero */
473 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000);
474
475 /* Calculate cycle rate */
476 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate);
477
478 /* Calculate SR2_WTCNT_VALUE */
479 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate);
480
481 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__,
482 clk_get_rate(abb->clk), sr2_wt_cnt_val);
483
484 ti_abb_rmw(mask: regs->sr2_wtcnt_value_mask, value: sr2_wt_cnt_val, reg: abb->setup_reg);
485
486 return 0;
487}
488
489/**
490 * ti_abb_init_table() - Initialize ABB table from device tree
491 * @dev: device
492 * @abb: pointer to the abb instance
493 * @rinit_data: regulator initdata
494 *
495 * Return: 0 on success or appropriate error value when fails
496 */
497static int ti_abb_init_table(struct device *dev, struct ti_abb *abb,
498 struct regulator_init_data *rinit_data)
499{
500 struct ti_abb_info *info;
501 const u32 num_values = 6;
502 char *pname = "ti,abb_info";
503 u32 i;
504 unsigned int *volt_table;
505 int num_entries, min_uV = INT_MAX, max_uV = 0;
506 struct regulation_constraints *c = &rinit_data->constraints;
507
508 /*
509 * Each abb_info is a set of n-tuple, where n is num_values, consisting
510 * of voltage and a set of detection logic for ABB information for that
511 * voltage to apply.
512 */
513 num_entries = of_property_count_u32_elems(np: dev->of_node, propname: pname);
514 if (num_entries < 0) {
515 dev_err(dev, "No '%s' property?\n", pname);
516 return num_entries;
517 }
518
519 if (!num_entries || (num_entries % num_values)) {
520 dev_err(dev, "All '%s' list entries need %d vals\n", pname,
521 num_values);
522 return -EINVAL;
523 }
524 num_entries /= num_values;
525
526 info = devm_kcalloc(dev, n: num_entries, size: sizeof(*info), GFP_KERNEL);
527 if (!info)
528 return -ENOMEM;
529
530 abb->info = info;
531
532 volt_table = devm_kcalloc(dev, n: num_entries, size: sizeof(unsigned int),
533 GFP_KERNEL);
534 if (!volt_table)
535 return -ENOMEM;
536
537 abb->rdesc.n_voltages = num_entries;
538 abb->rdesc.volt_table = volt_table;
539 /* We do not know where the OPP voltage is at the moment */
540 abb->current_info_idx = -EINVAL;
541
542 for (i = 0; i < num_entries; i++, info++, volt_table++) {
543 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask;
544 u32 efuse_val;
545
546 /* NOTE: num_values should equal to entries picked up here */
547 of_property_read_u32_index(np: dev->of_node, propname: pname, index: i * num_values,
548 out_value: volt_table);
549 of_property_read_u32_index(np: dev->of_node, propname: pname,
550 index: i * num_values + 1, out_value: &info->opp_sel);
551 of_property_read_u32_index(np: dev->of_node, propname: pname,
552 index: i * num_values + 2, out_value: &efuse_offset);
553 of_property_read_u32_index(np: dev->of_node, propname: pname,
554 index: i * num_values + 3, out_value: &rbb_mask);
555 of_property_read_u32_index(np: dev->of_node, propname: pname,
556 index: i * num_values + 4, out_value: &fbb_mask);
557 of_property_read_u32_index(np: dev->of_node, propname: pname,
558 index: i * num_values + 5, out_value: &vset_mask);
559
560 dev_dbg(dev,
561 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n",
562 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask,
563 fbb_mask, vset_mask);
564
565 /* Find min/max for voltage set */
566 if (min_uV > *volt_table)
567 min_uV = *volt_table;
568 if (max_uV < *volt_table)
569 max_uV = *volt_table;
570
571 if (!abb->efuse_base) {
572 /* Ignore invalid data, but warn to help cleanup */
573 if (efuse_offset || rbb_mask || fbb_mask || vset_mask)
574 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n",
575 pname, *volt_table);
576 goto check_abb;
577 }
578
579 efuse_val = readl(addr: abb->efuse_base + efuse_offset);
580
581 /* Use ABB recommendation from Efuse */
582 if (efuse_val & rbb_mask)
583 info->opp_sel = TI_ABB_SLOW_OPP;
584 else if (efuse_val & fbb_mask)
585 info->opp_sel = TI_ABB_FAST_OPP;
586 else if (rbb_mask || fbb_mask)
587 info->opp_sel = TI_ABB_NOMINAL_OPP;
588
589 dev_dbg(dev,
590 "[%d]v=%d efusev=0x%x final ABB=%d\n",
591 i, *volt_table, efuse_val, info->opp_sel);
592
593 /* Use recommended Vset bits from Efuse */
594 if (!abb->ldo_base) {
595 if (vset_mask)
596 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n",
597 pname, *volt_table, vset_mask);
598 continue;
599 }
600 info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask);
601 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset);
602check_abb:
603 switch (info->opp_sel) {
604 case TI_ABB_NOMINAL_OPP:
605 case TI_ABB_FAST_OPP:
606 case TI_ABB_SLOW_OPP:
607 /* Valid values */
608 break;
609 default:
610 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n",
611 __func__, i, *volt_table, info->opp_sel);
612 return -EINVAL;
613 }
614 }
615
616 /* Setup the min/max voltage constraints from the supported list */
617 c->min_uV = min_uV;
618 c->max_uV = max_uV;
619
620 return 0;
621}
622
623static const struct regulator_ops ti_abb_reg_ops = {
624 .list_voltage = regulator_list_voltage_table,
625
626 .set_voltage_sel = ti_abb_set_voltage_sel,
627 .get_voltage_sel = ti_abb_get_voltage_sel,
628};
629
630/* Default ABB block offsets, IF this changes in future, create new one */
631static const struct ti_abb_reg abb_regs_v1 = {
632 /* WARNING: registers are wrongly documented in TRM */
633 .setup_off = 0x04,
634 .control_off = 0x00,
635
636 .sr2_wtcnt_value_mask = (0xff << 8),
637 .fbb_sel_mask = (0x01 << 2),
638 .rbb_sel_mask = (0x01 << 1),
639 .sr2_en_mask = (0x01 << 0),
640
641 .opp_change_mask = (0x01 << 2),
642 .opp_sel_mask = (0x03 << 0),
643};
644
645static const struct ti_abb_reg abb_regs_v2 = {
646 .setup_off = 0x00,
647 .control_off = 0x04,
648
649 .sr2_wtcnt_value_mask = (0xff << 8),
650 .fbb_sel_mask = (0x01 << 2),
651 .rbb_sel_mask = (0x01 << 1),
652 .sr2_en_mask = (0x01 << 0),
653
654 .opp_change_mask = (0x01 << 2),
655 .opp_sel_mask = (0x03 << 0),
656};
657
658static const struct ti_abb_reg abb_regs_generic = {
659 .sr2_wtcnt_value_mask = (0xff << 8),
660 .fbb_sel_mask = (0x01 << 2),
661 .rbb_sel_mask = (0x01 << 1),
662 .sr2_en_mask = (0x01 << 0),
663
664 .opp_change_mask = (0x01 << 2),
665 .opp_sel_mask = (0x03 << 0),
666};
667
668static const struct of_device_id ti_abb_of_match[] = {
669 {.compatible = "ti,abb-v1", .data = &abb_regs_v1},
670 {.compatible = "ti,abb-v2", .data = &abb_regs_v2},
671 {.compatible = "ti,abb-v3", .data = &abb_regs_generic},
672 { },
673};
674
675MODULE_DEVICE_TABLE(of, ti_abb_of_match);
676
677/**
678 * ti_abb_probe() - Initialize an ABB ldo instance
679 * @pdev: ABB platform device
680 *
681 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to
682 * additional bias supply to SoC modules for power savings or mandatory stability
683 * configuration at certain Operating Performance Points(OPPs).
684 *
685 * Return: 0 on success or appropriate error value when fails
686 */
687static int ti_abb_probe(struct platform_device *pdev)
688{
689 struct device *dev = &pdev->dev;
690 struct resource *res;
691 struct ti_abb *abb;
692 struct regulator_init_data *initdata = NULL;
693 struct regulator_dev *rdev = NULL;
694 struct regulator_desc *desc;
695 struct regulation_constraints *c;
696 struct regulator_config config = { };
697 char *pname;
698 int ret = 0;
699
700 abb = devm_kzalloc(dev, size: sizeof(struct ti_abb), GFP_KERNEL);
701 if (!abb)
702 return -ENOMEM;
703
704 abb->regs = device_get_match_data(dev);
705 if (!abb->regs) {
706 dev_err(dev, "%s: Bad data in match\n", __func__);
707 return -EINVAL;
708 }
709
710 /* Map ABB resources */
711 if (abb->regs->setup_off || abb->regs->control_off) {
712 abb->base = devm_platform_ioremap_resource_byname(pdev, name: "base-address");
713 if (IS_ERR(ptr: abb->base))
714 return PTR_ERR(ptr: abb->base);
715
716 abb->setup_reg = abb->base + abb->regs->setup_off;
717 abb->control_reg = abb->base + abb->regs->control_off;
718
719 } else {
720 abb->control_reg = devm_platform_ioremap_resource_byname(pdev, name: "control-address");
721 if (IS_ERR(ptr: abb->control_reg))
722 return PTR_ERR(ptr: abb->control_reg);
723
724 abb->setup_reg = devm_platform_ioremap_resource_byname(pdev, name: "setup-address");
725 if (IS_ERR(ptr: abb->setup_reg))
726 return PTR_ERR(ptr: abb->setup_reg);
727 }
728
729 abb->int_base = devm_platform_ioremap_resource_byname(pdev, name: "int-address");
730 if (IS_ERR(ptr: abb->int_base))
731 return PTR_ERR(ptr: abb->int_base);
732
733 /* Map Optional resources */
734 pname = "efuse-address";
735 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
736 if (!res) {
737 dev_dbg(dev, "Missing '%s' IO resource\n", pname);
738 ret = -ENODEV;
739 goto skip_opt;
740 }
741
742 /*
743 * We may have shared efuse register offsets which are read-only
744 * between domains
745 */
746 abb->efuse_base = devm_ioremap(dev, offset: res->start,
747 size: resource_size(res));
748 if (!abb->efuse_base) {
749 dev_err(dev, "Unable to map '%s'\n", pname);
750 return -ENOMEM;
751 }
752
753 pname = "ldo-address";
754 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
755 if (!res) {
756 dev_dbg(dev, "Missing '%s' IO resource\n", pname);
757 ret = -ENODEV;
758 goto skip_opt;
759 }
760 abb->ldo_base = devm_ioremap_resource(dev, res);
761 if (IS_ERR(ptr: abb->ldo_base))
762 return PTR_ERR(ptr: abb->ldo_base);
763
764 /* IF ldo_base is set, the following are mandatory */
765 pname = "ti,ldovbb-override-mask";
766 ret =
767 of_property_read_u32(np: pdev->dev.of_node, propname: pname,
768 out_value: &abb->ldovbb_override_mask);
769 if (ret) {
770 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
771 return ret;
772 }
773 if (!abb->ldovbb_override_mask) {
774 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
775 return -EINVAL;
776 }
777
778 pname = "ti,ldovbb-vset-mask";
779 ret =
780 of_property_read_u32(np: pdev->dev.of_node, propname: pname,
781 out_value: &abb->ldovbb_vset_mask);
782 if (ret) {
783 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
784 return ret;
785 }
786 if (!abb->ldovbb_vset_mask) {
787 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
788 return -EINVAL;
789 }
790
791skip_opt:
792 pname = "ti,tranxdone-status-mask";
793 ret =
794 of_property_read_u32(np: pdev->dev.of_node, propname: pname,
795 out_value: &abb->txdone_mask);
796 if (ret) {
797 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
798 return ret;
799 }
800 if (!abb->txdone_mask) {
801 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
802 return -EINVAL;
803 }
804
805 initdata = of_get_regulator_init_data(dev, node: pdev->dev.of_node,
806 desc: &abb->rdesc);
807 if (!initdata) {
808 dev_err(dev, "%s: Unable to alloc regulator init data\n",
809 __func__);
810 return -ENOMEM;
811 }
812
813 /* init ABB opp_sel table */
814 ret = ti_abb_init_table(dev, abb, rinit_data: initdata);
815 if (ret)
816 return ret;
817
818 /* init ABB timing */
819 ret = ti_abb_init_timings(dev, abb);
820 if (ret)
821 return ret;
822
823 desc = &abb->rdesc;
824 desc->name = dev_name(dev);
825 desc->owner = THIS_MODULE;
826 desc->type = REGULATOR_VOLTAGE;
827 desc->ops = &ti_abb_reg_ops;
828
829 c = &initdata->constraints;
830 if (desc->n_voltages > 1)
831 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
832 c->always_on = true;
833
834 config.dev = dev;
835 config.init_data = initdata;
836 config.driver_data = abb;
837 config.of_node = pdev->dev.of_node;
838
839 rdev = devm_regulator_register(dev, regulator_desc: desc, config: &config);
840 if (IS_ERR(ptr: rdev)) {
841 ret = PTR_ERR(ptr: rdev);
842 dev_err(dev, "%s: failed to register regulator(%d)\n",
843 __func__, ret);
844 return ret;
845 }
846 platform_set_drvdata(pdev, data: rdev);
847
848 /* Enable the ldo if not already done by bootloader */
849 ti_abb_rmw(mask: abb->regs->sr2_en_mask, value: 1, reg: abb->setup_reg);
850
851 return 0;
852}
853
854MODULE_ALIAS("platform:ti_abb");
855
856static struct platform_driver ti_abb_driver = {
857 .probe = ti_abb_probe,
858 .driver = {
859 .name = "ti_abb",
860 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
861 .of_match_table = ti_abb_of_match,
862 },
863};
864module_platform_driver(ti_abb_driver);
865
866MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver");
867MODULE_AUTHOR("Texas Instruments Inc.");
868MODULE_LICENSE("GPL v2");
869

source code of linux/drivers/regulator/ti-abb-regulator.c