1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17#define pr_fmt(fmt) "%s: " fmt, __func__
18
19#include <linux/delay.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/panic_notifier.h>
24#include <linux/slab.h>
25#include <linux/mutex.h>
26#include <linux/dma-mapping.h>
27#include <linux/firmware.h>
28#include <linux/string.h>
29#include <linux/debugfs.h>
30#include <linux/rculist.h>
31#include <linux/remoteproc.h>
32#include <linux/iommu.h>
33#include <linux/idr.h>
34#include <linux/elf.h>
35#include <linux/crc32.h>
36#include <linux/of_reserved_mem.h>
37#include <linux/virtio_ids.h>
38#include <linux/virtio_ring.h>
39#include <asm/byteorder.h>
40#include <linux/platform_device.h>
41
42#include "remoteproc_internal.h"
43
44#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45
46static DEFINE_MUTEX(rproc_list_mutex);
47static LIST_HEAD(rproc_list);
48static struct notifier_block rproc_panic_nb;
49
50typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 void *, int offset, int avail);
52
53static int rproc_alloc_carveout(struct rproc *rproc,
54 struct rproc_mem_entry *mem);
55static int rproc_release_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
57
58/* Unique indices for remoteproc devices */
59static DEFINE_IDA(rproc_dev_index);
60static struct workqueue_struct *rproc_recovery_wq;
61
62static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
66};
67
68/* translate rproc_crash_type to string */
69static const char *rproc_crash_to_string(enum rproc_crash_type type)
70{
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
74}
75
76/*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
86{
87 struct rproc *rproc = token;
88
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91 rproc_report_crash(rproc, type: RPROC_MMUFAULT);
92
93 /*
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
96 */
97 return -ENOSYS;
98}
99
100static int rproc_enable_iommu(struct rproc *rproc)
101{
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
105
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(bus: dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, handler: rproc_iommu_fault, token: rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129free_domain:
130 iommu_domain_free(domain);
131 return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144}
145
146phys_addr_t rproc_va_to_pa(void *cpu_addr)
147{
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(x: cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(address: cpu_addr);
160}
161EXPORT_SYMBOL(rproc_va_to_pa);
162
163/**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169 *
170 * Some remote processors will ask us to allocate them physically contiguous
171 * memory regions (which we call "carveouts"), and map them to specific
172 * device addresses (which are hardcoded in the firmware). They may also have
173 * dedicated memory regions internal to the processors, and use them either
174 * exclusively or alongside carveouts.
175 *
176 * They may then ask us to copy objects into specific device addresses (e.g.
177 * code/data sections) or expose us certain symbols in other device address
178 * (e.g. their trace buffer).
179 *
180 * This function is a helper function with which we can go over the allocated
181 * carveouts and translate specific device addresses to kernel virtual addresses
182 * so we can access the referenced memory. This function also allows to perform
183 * translations on the internal remoteproc memory regions through a platform
184 * implementation specific da_to_va ops, if present.
185 *
186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187 * but only on kernel direct mapped RAM memory. Instead, we're just using
188 * here the output of the DMA API for the carveouts, which should be more
189 * correct.
190 *
191 * Return: a valid kernel address on success or NULL on failure
192 */
193void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194{
195 struct rproc_mem_entry *carveout;
196 void *ptr = NULL;
197
198 if (rproc->ops->da_to_va) {
199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 if (ptr)
201 goto out;
202 }
203
204 list_for_each_entry(carveout, &rproc->carveouts, node) {
205 int offset = da - carveout->da;
206
207 /* Verify that carveout is allocated */
208 if (!carveout->va)
209 continue;
210
211 /* try next carveout if da is too small */
212 if (offset < 0)
213 continue;
214
215 /* try next carveout if da is too large */
216 if (offset + len > carveout->len)
217 continue;
218
219 ptr = carveout->va + offset;
220
221 if (is_iomem)
222 *is_iomem = carveout->is_iomem;
223
224 break;
225 }
226
227out:
228 return ptr;
229}
230EXPORT_SYMBOL(rproc_da_to_va);
231
232/**
233 * rproc_find_carveout_by_name() - lookup the carveout region by a name
234 * @rproc: handle of a remote processor
235 * @name: carveout name to find (format string)
236 * @...: optional parameters matching @name string
237 *
238 * Platform driver has the capability to register some pre-allacoted carveout
239 * (physically contiguous memory regions) before rproc firmware loading and
240 * associated resource table analysis. These regions may be dedicated memory
241 * regions internal to the coprocessor or specified DDR region with specific
242 * attributes
243 *
244 * This function is a helper function with which we can go over the
245 * allocated carveouts and return associated region characteristics like
246 * coprocessor address, length or processor virtual address.
247 *
248 * Return: a valid pointer on carveout entry on success or NULL on failure.
249 */
250__printf(2, 3)
251struct rproc_mem_entry *
252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253{
254 va_list args;
255 char _name[32];
256 struct rproc_mem_entry *carveout, *mem = NULL;
257
258 if (!name)
259 return NULL;
260
261 va_start(args, name);
262 vsnprintf(buf: _name, size: sizeof(_name), fmt: name, args);
263 va_end(args);
264
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
268 mem = carveout;
269 break;
270 }
271 }
272
273 return mem;
274}
275
276/**
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
282 *
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286 * checked.
287 *
288 * Return: 0 if carveout matches request else error
289 */
290static int rproc_check_carveout_da(struct rproc *rproc,
291 struct rproc_mem_entry *mem, u32 da, u32 len)
292{
293 struct device *dev = &rproc->dev;
294 int delta;
295
296 /* Check requested resource length */
297 if (len > mem->len) {
298 dev_err(dev, "Registered carveout doesn't fit len request\n");
299 return -EINVAL;
300 }
301
302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 /* Address doesn't match registered carveout configuration */
304 return -EINVAL;
305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 delta = da - mem->da;
307
308 /* Check requested resource belongs to registered carveout */
309 if (delta < 0) {
310 dev_err(dev,
311 "Registered carveout doesn't fit da request\n");
312 return -EINVAL;
313 }
314
315 if (delta + len > mem->len) {
316 dev_err(dev,
317 "Registered carveout doesn't fit len request\n");
318 return -EINVAL;
319 }
320 }
321
322 return 0;
323}
324
325int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326{
327 struct rproc *rproc = rvdev->rproc;
328 struct device *dev = &rproc->dev;
329 struct rproc_vring *rvring = &rvdev->vring[i];
330 struct fw_rsc_vdev *rsc;
331 int ret, notifyid;
332 struct rproc_mem_entry *mem;
333 size_t size;
334
335 /* actual size of vring (in bytes) */
336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337
338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339
340 /* Search for pre-registered carveout */
341 mem = rproc_find_carveout_by_name(rproc, name: "vdev%dvring%d", rvdev->index,
342 i);
343 if (mem) {
344 if (rproc_check_carveout_da(rproc, mem, da: rsc->vring[i].da, len: size))
345 return -ENOMEM;
346 } else {
347 /* Register carveout in list */
348 mem = rproc_mem_entry_init(dev, NULL, dma: 0,
349 len: size, da: rsc->vring[i].da,
350 alloc: rproc_alloc_carveout,
351 release: rproc_release_carveout,
352 name: "vdev%dvring%d",
353 rvdev->index, i);
354 if (!mem) {
355 dev_err(dev, "Can't allocate memory entry structure\n");
356 return -ENOMEM;
357 }
358
359 rproc_add_carveout(rproc, mem);
360 }
361
362 /*
363 * Assign an rproc-wide unique index for this vring
364 * TODO: assign a notifyid for rvdev updates as well
365 * TODO: support predefined notifyids (via resource table)
366 */
367 ret = idr_alloc(&rproc->notifyids, ptr: rvring, start: 0, end: 0, GFP_KERNEL);
368 if (ret < 0) {
369 dev_err(dev, "idr_alloc failed: %d\n", ret);
370 return ret;
371 }
372 notifyid = ret;
373
374 /* Potentially bump max_notifyid */
375 if (notifyid > rproc->max_notifyid)
376 rproc->max_notifyid = notifyid;
377
378 rvring->notifyid = notifyid;
379
380 /* Let the rproc know the notifyid of this vring.*/
381 rsc->vring[i].notifyid = notifyid;
382 return 0;
383}
384
385int
386rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387{
388 struct rproc *rproc = rvdev->rproc;
389 struct device *dev = &rproc->dev;
390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 struct rproc_vring *rvring = &rvdev->vring[i];
392
393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 i, vring->da, vring->num, vring->align);
395
396 /* verify queue size and vring alignment are sane */
397 if (!vring->num || !vring->align) {
398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 vring->num, vring->align);
400 return -EINVAL;
401 }
402
403 rvring->num = vring->num;
404 rvring->align = vring->align;
405 rvring->rvdev = rvdev;
406
407 return 0;
408}
409
410void rproc_free_vring(struct rproc_vring *rvring)
411{
412 struct rproc *rproc = rvring->rvdev->rproc;
413 int idx = rvring - rvring->rvdev->vring;
414 struct fw_rsc_vdev *rsc;
415
416 idr_remove(&rproc->notifyids, id: rvring->notifyid);
417
418 /*
419 * At this point rproc_stop() has been called and the installed resource
420 * table in the remote processor memory may no longer be accessible. As
421 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 * resource table (rproc->cached_table). The cached resource table is
423 * only available when a remote processor has been booted by the
424 * remoteproc core, otherwise it is NULL.
425 *
426 * Based on the above, reset the virtio device section in the cached
427 * resource table only if there is one to work with.
428 */
429 if (rproc->table_ptr) {
430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 rsc->vring[idx].da = 0;
432 rsc->vring[idx].notifyid = -1;
433 }
434}
435
436void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437{
438 if (rvdev && rproc)
439 list_add_tail(new: &rvdev->node, head: &rproc->rvdevs);
440}
441
442void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443{
444 if (rvdev)
445 list_del(entry: &rvdev->node);
446}
447/**
448 * rproc_handle_vdev() - handle a vdev fw resource
449 * @rproc: the remote processor
450 * @ptr: the vring resource descriptor
451 * @offset: offset of the resource entry
452 * @avail: size of available data (for sanity checking the image)
453 *
454 * This resource entry requests the host to statically register a virtio
455 * device (vdev), and setup everything needed to support it. It contains
456 * everything needed to make it possible: the virtio device id, virtio
457 * device features, vrings information, virtio config space, etc...
458 *
459 * Before registering the vdev, the vrings are allocated from non-cacheable
460 * physically contiguous memory. Currently we only support two vrings per
461 * remote processor (temporary limitation). We might also want to consider
462 * doing the vring allocation only later when ->find_vqs() is invoked, and
463 * then release them upon ->del_vqs().
464 *
465 * Note: @da is currently not really handled correctly: we dynamically
466 * allocate it using the DMA API, ignoring requested hard coded addresses,
467 * and we don't take care of any required IOMMU programming. This is all
468 * going to be taken care of when the generic iommu-based DMA API will be
469 * merged. Meanwhile, statically-addressed iommu-based firmware images should
470 * use RSC_DEVMEM resource entries to map their required @da to the physical
471 * address of their base CMA region (ouch, hacky!).
472 *
473 * Return: 0 on success, or an appropriate error code otherwise
474 */
475static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 int offset, int avail)
477{
478 struct fw_rsc_vdev *rsc = ptr;
479 struct device *dev = &rproc->dev;
480 struct rproc_vdev *rvdev;
481 size_t rsc_size;
482 struct rproc_vdev_data rvdev_data;
483 struct platform_device *pdev;
484
485 /* make sure resource isn't truncated */
486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 if (size_add(addend1: rsc_size, addend2: rsc->config_len) > avail) {
488 dev_err(dev, "vdev rsc is truncated\n");
489 return -EINVAL;
490 }
491
492 /* make sure reserved bytes are zeroes */
493 if (rsc->reserved[0] || rsc->reserved[1]) {
494 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 return -EINVAL;
496 }
497
498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500
501 /* we currently support only two vrings per rvdev */
502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 return -EINVAL;
505 }
506
507 rvdev_data.id = rsc->id;
508 rvdev_data.index = rproc->nb_vdev++;
509 rvdev_data.rsc_offset = offset;
510 rvdev_data.rsc = rsc;
511
512 /*
513 * When there is more than one remote processor, rproc->nb_vdev number is
514 * same for each separate instances of "rproc". If rvdev_data.index is used
515 * as device id, then we get duplication in sysfs, so need to use
516 * PLATFORM_DEVID_AUTO to auto select device id.
517 */
518 pdev = platform_device_register_data(parent: dev, name: "rproc-virtio", PLATFORM_DEVID_AUTO, data: &rvdev_data,
519 size: sizeof(rvdev_data));
520 if (IS_ERR(ptr: pdev)) {
521 dev_err(dev, "failed to create rproc-virtio device\n");
522 return PTR_ERR(ptr: pdev);
523 }
524
525 return 0;
526}
527
528/**
529 * rproc_handle_trace() - handle a shared trace buffer resource
530 * @rproc: the remote processor
531 * @ptr: the trace resource descriptor
532 * @offset: offset of the resource entry
533 * @avail: size of available data (for sanity checking the image)
534 *
535 * In case the remote processor dumps trace logs into memory,
536 * export it via debugfs.
537 *
538 * Currently, the 'da' member of @rsc should contain the device address
539 * where the remote processor is dumping the traces. Later we could also
540 * support dynamically allocating this address using the generic
541 * DMA API (but currently there isn't a use case for that).
542 *
543 * Return: 0 on success, or an appropriate error code otherwise
544 */
545static int rproc_handle_trace(struct rproc *rproc, void *ptr,
546 int offset, int avail)
547{
548 struct fw_rsc_trace *rsc = ptr;
549 struct rproc_debug_trace *trace;
550 struct device *dev = &rproc->dev;
551 char name[15];
552
553 if (sizeof(*rsc) > avail) {
554 dev_err(dev, "trace rsc is truncated\n");
555 return -EINVAL;
556 }
557
558 /* make sure reserved bytes are zeroes */
559 if (rsc->reserved) {
560 dev_err(dev, "trace rsc has non zero reserved bytes\n");
561 return -EINVAL;
562 }
563
564 trace = kzalloc(size: sizeof(*trace), GFP_KERNEL);
565 if (!trace)
566 return -ENOMEM;
567
568 /* set the trace buffer dma properties */
569 trace->trace_mem.len = rsc->len;
570 trace->trace_mem.da = rsc->da;
571
572 /* set pointer on rproc device */
573 trace->rproc = rproc;
574
575 /* make sure snprintf always null terminates, even if truncating */
576 snprintf(buf: name, size: sizeof(name), fmt: "trace%d", rproc->num_traces);
577
578 /* create the debugfs entry */
579 trace->tfile = rproc_create_trace_file(name, rproc, trace);
580
581 list_add_tail(new: &trace->node, head: &rproc->traces);
582
583 rproc->num_traces++;
584
585 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
586 name, rsc->da, rsc->len);
587
588 return 0;
589}
590
591/**
592 * rproc_handle_devmem() - handle devmem resource entry
593 * @rproc: remote processor handle
594 * @ptr: the devmem resource entry
595 * @offset: offset of the resource entry
596 * @avail: size of available data (for sanity checking the image)
597 *
598 * Remote processors commonly need to access certain on-chip peripherals.
599 *
600 * Some of these remote processors access memory via an iommu device,
601 * and might require us to configure their iommu before they can access
602 * the on-chip peripherals they need.
603 *
604 * This resource entry is a request to map such a peripheral device.
605 *
606 * These devmem entries will contain the physical address of the device in
607 * the 'pa' member. If a specific device address is expected, then 'da' will
608 * contain it (currently this is the only use case supported). 'len' will
609 * contain the size of the physical region we need to map.
610 *
611 * Currently we just "trust" those devmem entries to contain valid physical
612 * addresses, but this is going to change: we want the implementations to
613 * tell us ranges of physical addresses the firmware is allowed to request,
614 * and not allow firmwares to request access to physical addresses that
615 * are outside those ranges.
616 *
617 * Return: 0 on success, or an appropriate error code otherwise
618 */
619static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
620 int offset, int avail)
621{
622 struct fw_rsc_devmem *rsc = ptr;
623 struct rproc_mem_entry *mapping;
624 struct device *dev = &rproc->dev;
625 int ret;
626
627 /* no point in handling this resource without a valid iommu domain */
628 if (!rproc->domain)
629 return -EINVAL;
630
631 if (sizeof(*rsc) > avail) {
632 dev_err(dev, "devmem rsc is truncated\n");
633 return -EINVAL;
634 }
635
636 /* make sure reserved bytes are zeroes */
637 if (rsc->reserved) {
638 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
639 return -EINVAL;
640 }
641
642 mapping = kzalloc(size: sizeof(*mapping), GFP_KERNEL);
643 if (!mapping)
644 return -ENOMEM;
645
646 ret = iommu_map(domain: rproc->domain, iova: rsc->da, paddr: rsc->pa, size: rsc->len, prot: rsc->flags,
647 GFP_KERNEL);
648 if (ret) {
649 dev_err(dev, "failed to map devmem: %d\n", ret);
650 goto out;
651 }
652
653 /*
654 * We'll need this info later when we'll want to unmap everything
655 * (e.g. on shutdown).
656 *
657 * We can't trust the remote processor not to change the resource
658 * table, so we must maintain this info independently.
659 */
660 mapping->da = rsc->da;
661 mapping->len = rsc->len;
662 list_add_tail(new: &mapping->node, head: &rproc->mappings);
663
664 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
665 rsc->pa, rsc->da, rsc->len);
666
667 return 0;
668
669out:
670 kfree(objp: mapping);
671 return ret;
672}
673
674/**
675 * rproc_alloc_carveout() - allocated specified carveout
676 * @rproc: rproc handle
677 * @mem: the memory entry to allocate
678 *
679 * This function allocate specified memory entry @mem using
680 * dma_alloc_coherent() as default allocator
681 *
682 * Return: 0 on success, or an appropriate error code otherwise
683 */
684static int rproc_alloc_carveout(struct rproc *rproc,
685 struct rproc_mem_entry *mem)
686{
687 struct rproc_mem_entry *mapping = NULL;
688 struct device *dev = &rproc->dev;
689 dma_addr_t dma;
690 void *va;
691 int ret;
692
693 va = dma_alloc_coherent(dev: dev->parent, size: mem->len, dma_handle: &dma, GFP_KERNEL);
694 if (!va) {
695 dev_err(dev->parent,
696 "failed to allocate dma memory: len 0x%zx\n",
697 mem->len);
698 return -ENOMEM;
699 }
700
701 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
702 va, &dma, mem->len);
703
704 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
705 /*
706 * Check requested da is equal to dma address
707 * and print a warn message in case of missalignment.
708 * Don't stop rproc_start sequence as coprocessor may
709 * build pa to da translation on its side.
710 */
711 if (mem->da != (u32)dma)
712 dev_warn(dev->parent,
713 "Allocated carveout doesn't fit device address request\n");
714 }
715
716 /*
717 * Ok, this is non-standard.
718 *
719 * Sometimes we can't rely on the generic iommu-based DMA API
720 * to dynamically allocate the device address and then set the IOMMU
721 * tables accordingly, because some remote processors might
722 * _require_ us to use hard coded device addresses that their
723 * firmware was compiled with.
724 *
725 * In this case, we must use the IOMMU API directly and map
726 * the memory to the device address as expected by the remote
727 * processor.
728 *
729 * Obviously such remote processor devices should not be configured
730 * to use the iommu-based DMA API: we expect 'dma' to contain the
731 * physical address in this case.
732 */
733 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
734 mapping = kzalloc(size: sizeof(*mapping), GFP_KERNEL);
735 if (!mapping) {
736 ret = -ENOMEM;
737 goto dma_free;
738 }
739
740 ret = iommu_map(domain: rproc->domain, iova: mem->da, paddr: dma, size: mem->len,
741 prot: mem->flags, GFP_KERNEL);
742 if (ret) {
743 dev_err(dev, "iommu_map failed: %d\n", ret);
744 goto free_mapping;
745 }
746
747 /*
748 * We'll need this info later when we'll want to unmap
749 * everything (e.g. on shutdown).
750 *
751 * We can't trust the remote processor not to change the
752 * resource table, so we must maintain this info independently.
753 */
754 mapping->da = mem->da;
755 mapping->len = mem->len;
756 list_add_tail(new: &mapping->node, head: &rproc->mappings);
757
758 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
759 mem->da, &dma);
760 }
761
762 if (mem->da == FW_RSC_ADDR_ANY) {
763 /* Update device address as undefined by requester */
764 if ((u64)dma & HIGH_BITS_MASK)
765 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
766
767 mem->da = (u32)dma;
768 }
769
770 mem->dma = dma;
771 mem->va = va;
772
773 return 0;
774
775free_mapping:
776 kfree(objp: mapping);
777dma_free:
778 dma_free_coherent(dev: dev->parent, size: mem->len, cpu_addr: va, dma_handle: dma);
779 return ret;
780}
781
782/**
783 * rproc_release_carveout() - release acquired carveout
784 * @rproc: rproc handle
785 * @mem: the memory entry to release
786 *
787 * This function releases specified memory entry @mem allocated via
788 * rproc_alloc_carveout() function by @rproc.
789 *
790 * Return: 0 on success, or an appropriate error code otherwise
791 */
792static int rproc_release_carveout(struct rproc *rproc,
793 struct rproc_mem_entry *mem)
794{
795 struct device *dev = &rproc->dev;
796
797 /* clean up carveout allocations */
798 dma_free_coherent(dev: dev->parent, size: mem->len, cpu_addr: mem->va, dma_handle: mem->dma);
799 return 0;
800}
801
802/**
803 * rproc_handle_carveout() - handle phys contig memory allocation requests
804 * @rproc: rproc handle
805 * @ptr: the resource entry
806 * @offset: offset of the resource entry
807 * @avail: size of available data (for image validation)
808 *
809 * This function will handle firmware requests for allocation of physically
810 * contiguous memory regions.
811 *
812 * These request entries should come first in the firmware's resource table,
813 * as other firmware entries might request placing other data objects inside
814 * these memory regions (e.g. data/code segments, trace resource entries, ...).
815 *
816 * Allocating memory this way helps utilizing the reserved physical memory
817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
819 * pressure is important; it may have a substantial impact on performance.
820 *
821 * Return: 0 on success, or an appropriate error code otherwise
822 */
823static int rproc_handle_carveout(struct rproc *rproc,
824 void *ptr, int offset, int avail)
825{
826 struct fw_rsc_carveout *rsc = ptr;
827 struct rproc_mem_entry *carveout;
828 struct device *dev = &rproc->dev;
829
830 if (sizeof(*rsc) > avail) {
831 dev_err(dev, "carveout rsc is truncated\n");
832 return -EINVAL;
833 }
834
835 /* make sure reserved bytes are zeroes */
836 if (rsc->reserved) {
837 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
838 return -EINVAL;
839 }
840
841 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
842 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
843
844 /*
845 * Check carveout rsc already part of a registered carveout,
846 * Search by name, then check the da and length
847 */
848 carveout = rproc_find_carveout_by_name(rproc, name: rsc->name);
849
850 if (carveout) {
851 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
852 dev_err(dev,
853 "Carveout already associated to resource table\n");
854 return -ENOMEM;
855 }
856
857 if (rproc_check_carveout_da(rproc, mem: carveout, da: rsc->da, len: rsc->len))
858 return -ENOMEM;
859
860 /* Update memory carveout with resource table info */
861 carveout->rsc_offset = offset;
862 carveout->flags = rsc->flags;
863
864 return 0;
865 }
866
867 /* Register carveout in list */
868 carveout = rproc_mem_entry_init(dev, NULL, dma: 0, len: rsc->len, da: rsc->da,
869 alloc: rproc_alloc_carveout,
870 release: rproc_release_carveout, name: rsc->name);
871 if (!carveout) {
872 dev_err(dev, "Can't allocate memory entry structure\n");
873 return -ENOMEM;
874 }
875
876 carveout->flags = rsc->flags;
877 carveout->rsc_offset = offset;
878 rproc_add_carveout(rproc, mem: carveout);
879
880 return 0;
881}
882
883/**
884 * rproc_add_carveout() - register an allocated carveout region
885 * @rproc: rproc handle
886 * @mem: memory entry to register
887 *
888 * This function registers specified memory entry in @rproc carveouts list.
889 * Specified carveout should have been allocated before registering.
890 */
891void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
892{
893 list_add_tail(new: &mem->node, head: &rproc->carveouts);
894}
895EXPORT_SYMBOL(rproc_add_carveout);
896
897/**
898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
899 * @dev: pointer on device struct
900 * @va: virtual address
901 * @dma: dma address
902 * @len: memory carveout length
903 * @da: device address
904 * @alloc: memory carveout allocation function
905 * @release: memory carveout release function
906 * @name: carveout name
907 *
908 * This function allocates a rproc_mem_entry struct and fill it with parameters
909 * provided by client.
910 *
911 * Return: a valid pointer on success, or NULL on failure
912 */
913__printf(8, 9)
914struct rproc_mem_entry *
915rproc_mem_entry_init(struct device *dev,
916 void *va, dma_addr_t dma, size_t len, u32 da,
917 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
918 int (*release)(struct rproc *, struct rproc_mem_entry *),
919 const char *name, ...)
920{
921 struct rproc_mem_entry *mem;
922 va_list args;
923
924 mem = kzalloc(size: sizeof(*mem), GFP_KERNEL);
925 if (!mem)
926 return mem;
927
928 mem->va = va;
929 mem->dma = dma;
930 mem->da = da;
931 mem->len = len;
932 mem->alloc = alloc;
933 mem->release = release;
934 mem->rsc_offset = FW_RSC_ADDR_ANY;
935 mem->of_resm_idx = -1;
936
937 va_start(args, name);
938 vsnprintf(buf: mem->name, size: sizeof(mem->name), fmt: name, args);
939 va_end(args);
940
941 return mem;
942}
943EXPORT_SYMBOL(rproc_mem_entry_init);
944
945/**
946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947 * from a reserved memory phandle
948 * @dev: pointer on device struct
949 * @of_resm_idx: reserved memory phandle index in "memory-region"
950 * @len: memory carveout length
951 * @da: device address
952 * @name: carveout name
953 *
954 * This function allocates a rproc_mem_entry struct and fill it with parameters
955 * provided by client.
956 *
957 * Return: a valid pointer on success, or NULL on failure
958 */
959__printf(5, 6)
960struct rproc_mem_entry *
961rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
962 u32 da, const char *name, ...)
963{
964 struct rproc_mem_entry *mem;
965 va_list args;
966
967 mem = kzalloc(size: sizeof(*mem), GFP_KERNEL);
968 if (!mem)
969 return mem;
970
971 mem->da = da;
972 mem->len = len;
973 mem->rsc_offset = FW_RSC_ADDR_ANY;
974 mem->of_resm_idx = of_resm_idx;
975
976 va_start(args, name);
977 vsnprintf(buf: mem->name, size: sizeof(mem->name), fmt: name, args);
978 va_end(args);
979
980 return mem;
981}
982EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
983
984/**
985 * rproc_of_parse_firmware() - parse and return the firmware-name
986 * @dev: pointer on device struct representing a rproc
987 * @index: index to use for the firmware-name retrieval
988 * @fw_name: pointer to a character string, in which the firmware
989 * name is returned on success and unmodified otherwise.
990 *
991 * This is an OF helper function that parses a device's DT node for
992 * the "firmware-name" property and returns the firmware name pointer
993 * in @fw_name on success.
994 *
995 * Return: 0 on success, or an appropriate failure.
996 */
997int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
998{
999 int ret;
1000
1001 ret = of_property_read_string_index(np: dev->of_node, propname: "firmware-name",
1002 index, output: fw_name);
1003 return ret ? ret : 0;
1004}
1005EXPORT_SYMBOL(rproc_of_parse_firmware);
1006
1007/*
1008 * A lookup table for resource handlers. The indices are defined in
1009 * enum fw_resource_type.
1010 */
1011static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1012 [RSC_CARVEOUT] = rproc_handle_carveout,
1013 [RSC_DEVMEM] = rproc_handle_devmem,
1014 [RSC_TRACE] = rproc_handle_trace,
1015 [RSC_VDEV] = rproc_handle_vdev,
1016};
1017
1018/* handle firmware resource entries before booting the remote processor */
1019static int rproc_handle_resources(struct rproc *rproc,
1020 rproc_handle_resource_t handlers[RSC_LAST])
1021{
1022 struct device *dev = &rproc->dev;
1023 rproc_handle_resource_t handler;
1024 int ret = 0, i;
1025
1026 if (!rproc->table_ptr)
1027 return 0;
1028
1029 for (i = 0; i < rproc->table_ptr->num; i++) {
1030 int offset = rproc->table_ptr->offset[i];
1031 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1032 int avail = rproc->table_sz - offset - sizeof(*hdr);
1033 void *rsc = (void *)hdr + sizeof(*hdr);
1034
1035 /* make sure table isn't truncated */
1036 if (avail < 0) {
1037 dev_err(dev, "rsc table is truncated\n");
1038 return -EINVAL;
1039 }
1040
1041 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1042
1043 if (hdr->type >= RSC_VENDOR_START &&
1044 hdr->type <= RSC_VENDOR_END) {
1045 ret = rproc_handle_rsc(rproc, rsc_type: hdr->type, rsc,
1046 offset: offset + sizeof(*hdr), avail);
1047 if (ret == RSC_HANDLED)
1048 continue;
1049 else if (ret < 0)
1050 break;
1051
1052 dev_warn(dev, "unsupported vendor resource %d\n",
1053 hdr->type);
1054 continue;
1055 }
1056
1057 if (hdr->type >= RSC_LAST) {
1058 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1059 continue;
1060 }
1061
1062 handler = handlers[hdr->type];
1063 if (!handler)
1064 continue;
1065
1066 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1067 if (ret)
1068 break;
1069 }
1070
1071 return ret;
1072}
1073
1074static int rproc_prepare_subdevices(struct rproc *rproc)
1075{
1076 struct rproc_subdev *subdev;
1077 int ret;
1078
1079 list_for_each_entry(subdev, &rproc->subdevs, node) {
1080 if (subdev->prepare) {
1081 ret = subdev->prepare(subdev);
1082 if (ret)
1083 goto unroll_preparation;
1084 }
1085 }
1086
1087 return 0;
1088
1089unroll_preparation:
1090 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1091 if (subdev->unprepare)
1092 subdev->unprepare(subdev);
1093 }
1094
1095 return ret;
1096}
1097
1098static int rproc_start_subdevices(struct rproc *rproc)
1099{
1100 struct rproc_subdev *subdev;
1101 int ret;
1102
1103 list_for_each_entry(subdev, &rproc->subdevs, node) {
1104 if (subdev->start) {
1105 ret = subdev->start(subdev);
1106 if (ret)
1107 goto unroll_registration;
1108 }
1109 }
1110
1111 return 0;
1112
1113unroll_registration:
1114 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1115 if (subdev->stop)
1116 subdev->stop(subdev, true);
1117 }
1118
1119 return ret;
1120}
1121
1122static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1123{
1124 struct rproc_subdev *subdev;
1125
1126 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1127 if (subdev->stop)
1128 subdev->stop(subdev, crashed);
1129 }
1130}
1131
1132static void rproc_unprepare_subdevices(struct rproc *rproc)
1133{
1134 struct rproc_subdev *subdev;
1135
1136 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137 if (subdev->unprepare)
1138 subdev->unprepare(subdev);
1139 }
1140}
1141
1142/**
1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1144 * in the list
1145 * @rproc: the remote processor handle
1146 *
1147 * This function parses registered carveout list, performs allocation
1148 * if alloc() ops registered and updates resource table information
1149 * if rsc_offset set.
1150 *
1151 * Return: 0 on success
1152 */
1153static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1154{
1155 struct rproc_mem_entry *entry, *tmp;
1156 struct fw_rsc_carveout *rsc;
1157 struct device *dev = &rproc->dev;
1158 u64 pa;
1159 int ret;
1160
1161 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1162 if (entry->alloc) {
1163 ret = entry->alloc(rproc, entry);
1164 if (ret) {
1165 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1166 entry->name, ret);
1167 return -ENOMEM;
1168 }
1169 }
1170
1171 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1172 /* update resource table */
1173 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1174
1175 /*
1176 * Some remote processors might need to know the pa
1177 * even though they are behind an IOMMU. E.g., OMAP4's
1178 * remote M3 processor needs this so it can control
1179 * on-chip hardware accelerators that are not behind
1180 * the IOMMU, and therefor must know the pa.
1181 *
1182 * Generally we don't want to expose physical addresses
1183 * if we don't have to (remote processors are generally
1184 * _not_ trusted), so we might want to do this only for
1185 * remote processor that _must_ have this (e.g. OMAP4's
1186 * dual M3 subsystem).
1187 *
1188 * Non-IOMMU processors might also want to have this info.
1189 * In this case, the device address and the physical address
1190 * are the same.
1191 */
1192
1193 /* Use va if defined else dma to generate pa */
1194 if (entry->va)
1195 pa = (u64)rproc_va_to_pa(entry->va);
1196 else
1197 pa = (u64)entry->dma;
1198
1199 if (((u64)pa) & HIGH_BITS_MASK)
1200 dev_warn(dev,
1201 "Physical address cast in 32bit to fit resource table format\n");
1202
1203 rsc->pa = (u32)pa;
1204 rsc->da = entry->da;
1205 rsc->len = entry->len;
1206 }
1207 }
1208
1209 return 0;
1210}
1211
1212
1213/**
1214 * rproc_resource_cleanup() - clean up and free all acquired resources
1215 * @rproc: rproc handle
1216 *
1217 * This function will free all resources acquired for @rproc, and it
1218 * is called whenever @rproc either shuts down or fails to boot.
1219 */
1220void rproc_resource_cleanup(struct rproc *rproc)
1221{
1222 struct rproc_mem_entry *entry, *tmp;
1223 struct rproc_debug_trace *trace, *ttmp;
1224 struct rproc_vdev *rvdev, *rvtmp;
1225 struct device *dev = &rproc->dev;
1226
1227 /* clean up debugfs trace entries */
1228 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1229 rproc_remove_trace_file(tfile: trace->tfile);
1230 rproc->num_traces--;
1231 list_del(entry: &trace->node);
1232 kfree(objp: trace);
1233 }
1234
1235 /* clean up iommu mapping entries */
1236 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1237 size_t unmapped;
1238
1239 unmapped = iommu_unmap(domain: rproc->domain, iova: entry->da, size: entry->len);
1240 if (unmapped != entry->len) {
1241 /* nothing much to do besides complaining */
1242 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1243 unmapped);
1244 }
1245
1246 list_del(entry: &entry->node);
1247 kfree(objp: entry);
1248 }
1249
1250 /* clean up carveout allocations */
1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252 if (entry->release)
1253 entry->release(rproc, entry);
1254 list_del(entry: &entry->node);
1255 kfree(objp: entry);
1256 }
1257
1258 /* clean up remote vdev entries */
1259 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1260 platform_device_unregister(rvdev->pdev);
1261
1262 rproc_coredump_cleanup(rproc);
1263}
1264EXPORT_SYMBOL(rproc_resource_cleanup);
1265
1266static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1267{
1268 struct resource_table *loaded_table;
1269 struct device *dev = &rproc->dev;
1270 int ret;
1271
1272 /* load the ELF segments to memory */
1273 ret = rproc_load_segments(rproc, fw);
1274 if (ret) {
1275 dev_err(dev, "Failed to load program segments: %d\n", ret);
1276 return ret;
1277 }
1278
1279 /*
1280 * The starting device has been given the rproc->cached_table as the
1281 * resource table. The address of the vring along with the other
1282 * allocated resources (carveouts etc) is stored in cached_table.
1283 * In order to pass this information to the remote device we must copy
1284 * this information to device memory. We also update the table_ptr so
1285 * that any subsequent changes will be applied to the loaded version.
1286 */
1287 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1288 if (loaded_table) {
1289 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1290 rproc->table_ptr = loaded_table;
1291 }
1292
1293 ret = rproc_prepare_subdevices(rproc);
1294 if (ret) {
1295 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1296 rproc->name, ret);
1297 goto reset_table_ptr;
1298 }
1299
1300 /* power up the remote processor */
1301 ret = rproc->ops->start(rproc);
1302 if (ret) {
1303 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1304 goto unprepare_subdevices;
1305 }
1306
1307 /* Start any subdevices for the remote processor */
1308 ret = rproc_start_subdevices(rproc);
1309 if (ret) {
1310 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1311 rproc->name, ret);
1312 goto stop_rproc;
1313 }
1314
1315 rproc->state = RPROC_RUNNING;
1316
1317 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1318
1319 return 0;
1320
1321stop_rproc:
1322 rproc->ops->stop(rproc);
1323unprepare_subdevices:
1324 rproc_unprepare_subdevices(rproc);
1325reset_table_ptr:
1326 rproc->table_ptr = rproc->cached_table;
1327
1328 return ret;
1329}
1330
1331static int __rproc_attach(struct rproc *rproc)
1332{
1333 struct device *dev = &rproc->dev;
1334 int ret;
1335
1336 ret = rproc_prepare_subdevices(rproc);
1337 if (ret) {
1338 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1339 rproc->name, ret);
1340 goto out;
1341 }
1342
1343 /* Attach to the remote processor */
1344 ret = rproc_attach_device(rproc);
1345 if (ret) {
1346 dev_err(dev, "can't attach to rproc %s: %d\n",
1347 rproc->name, ret);
1348 goto unprepare_subdevices;
1349 }
1350
1351 /* Start any subdevices for the remote processor */
1352 ret = rproc_start_subdevices(rproc);
1353 if (ret) {
1354 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355 rproc->name, ret);
1356 goto stop_rproc;
1357 }
1358
1359 rproc->state = RPROC_ATTACHED;
1360
1361 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1362
1363 return 0;
1364
1365stop_rproc:
1366 rproc->ops->stop(rproc);
1367unprepare_subdevices:
1368 rproc_unprepare_subdevices(rproc);
1369out:
1370 return ret;
1371}
1372
1373/*
1374 * take a firmware and boot a remote processor with it.
1375 */
1376static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1377{
1378 struct device *dev = &rproc->dev;
1379 const char *name = rproc->firmware;
1380 int ret;
1381
1382 ret = rproc_fw_sanity_check(rproc, fw);
1383 if (ret)
1384 return ret;
1385
1386 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1387
1388 /*
1389 * if enabling an IOMMU isn't relevant for this rproc, this is
1390 * just a nop
1391 */
1392 ret = rproc_enable_iommu(rproc);
1393 if (ret) {
1394 dev_err(dev, "can't enable iommu: %d\n", ret);
1395 return ret;
1396 }
1397
1398 /* Prepare rproc for firmware loading if needed */
1399 ret = rproc_prepare_device(rproc);
1400 if (ret) {
1401 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1402 goto disable_iommu;
1403 }
1404
1405 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1406
1407 /* Load resource table, core dump segment list etc from the firmware */
1408 ret = rproc_parse_fw(rproc, fw);
1409 if (ret)
1410 goto unprepare_rproc;
1411
1412 /* reset max_notifyid */
1413 rproc->max_notifyid = -1;
1414
1415 /* reset handled vdev */
1416 rproc->nb_vdev = 0;
1417
1418 /* handle fw resources which are required to boot rproc */
1419 ret = rproc_handle_resources(rproc, handlers: rproc_loading_handlers);
1420 if (ret) {
1421 dev_err(dev, "Failed to process resources: %d\n", ret);
1422 goto clean_up_resources;
1423 }
1424
1425 /* Allocate carveout resources associated to rproc */
1426 ret = rproc_alloc_registered_carveouts(rproc);
1427 if (ret) {
1428 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1429 ret);
1430 goto clean_up_resources;
1431 }
1432
1433 ret = rproc_start(rproc, fw);
1434 if (ret)
1435 goto clean_up_resources;
1436
1437 return 0;
1438
1439clean_up_resources:
1440 rproc_resource_cleanup(rproc);
1441 kfree(objp: rproc->cached_table);
1442 rproc->cached_table = NULL;
1443 rproc->table_ptr = NULL;
1444unprepare_rproc:
1445 /* release HW resources if needed */
1446 rproc_unprepare_device(rproc);
1447disable_iommu:
1448 rproc_disable_iommu(rproc);
1449 return ret;
1450}
1451
1452static int rproc_set_rsc_table(struct rproc *rproc)
1453{
1454 struct resource_table *table_ptr;
1455 struct device *dev = &rproc->dev;
1456 size_t table_sz;
1457 int ret;
1458
1459 table_ptr = rproc_get_loaded_rsc_table(rproc, size: &table_sz);
1460 if (!table_ptr) {
1461 /* Not having a resource table is acceptable */
1462 return 0;
1463 }
1464
1465 if (IS_ERR(ptr: table_ptr)) {
1466 ret = PTR_ERR(ptr: table_ptr);
1467 dev_err(dev, "can't load resource table: %d\n", ret);
1468 return ret;
1469 }
1470
1471 /*
1472 * If it is possible to detach the remote processor, keep an untouched
1473 * copy of the resource table. That way we can start fresh again when
1474 * the remote processor is re-attached, that is:
1475 *
1476 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1477 *
1478 * Free'd in rproc_reset_rsc_table_on_detach() and
1479 * rproc_reset_rsc_table_on_stop().
1480 */
1481 if (rproc->ops->detach) {
1482 rproc->clean_table = kmemdup(p: table_ptr, size: table_sz, GFP_KERNEL);
1483 if (!rproc->clean_table)
1484 return -ENOMEM;
1485 } else {
1486 rproc->clean_table = NULL;
1487 }
1488
1489 rproc->cached_table = NULL;
1490 rproc->table_ptr = table_ptr;
1491 rproc->table_sz = table_sz;
1492
1493 return 0;
1494}
1495
1496static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1497{
1498 struct resource_table *table_ptr;
1499
1500 /* A resource table was never retrieved, nothing to do here */
1501 if (!rproc->table_ptr)
1502 return 0;
1503
1504 /*
1505 * If we made it to this point a clean_table _must_ have been
1506 * allocated in rproc_set_rsc_table(). If one isn't present
1507 * something went really wrong and we must complain.
1508 */
1509 if (WARN_ON(!rproc->clean_table))
1510 return -EINVAL;
1511
1512 /* Remember where the external entity installed the resource table */
1513 table_ptr = rproc->table_ptr;
1514
1515 /*
1516 * If we made it here the remote processor was started by another
1517 * entity and a cache table doesn't exist. As such make a copy of
1518 * the resource table currently used by the remote processor and
1519 * use that for the rest of the shutdown process. The memory
1520 * allocated here is free'd in rproc_detach().
1521 */
1522 rproc->cached_table = kmemdup(p: rproc->table_ptr,
1523 size: rproc->table_sz, GFP_KERNEL);
1524 if (!rproc->cached_table)
1525 return -ENOMEM;
1526
1527 /*
1528 * Use a copy of the resource table for the remainder of the
1529 * shutdown process.
1530 */
1531 rproc->table_ptr = rproc->cached_table;
1532
1533 /*
1534 * Reset the memory area where the firmware loaded the resource table
1535 * to its original value. That way when we re-attach the remote
1536 * processor the resource table is clean and ready to be used again.
1537 */
1538 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1539
1540 /*
1541 * The clean resource table is no longer needed. Allocated in
1542 * rproc_set_rsc_table().
1543 */
1544 kfree(objp: rproc->clean_table);
1545
1546 return 0;
1547}
1548
1549static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1550{
1551 /* A resource table was never retrieved, nothing to do here */
1552 if (!rproc->table_ptr)
1553 return 0;
1554
1555 /*
1556 * If a cache table exists the remote processor was started by
1557 * the remoteproc core. That cache table should be used for
1558 * the rest of the shutdown process.
1559 */
1560 if (rproc->cached_table)
1561 goto out;
1562
1563 /*
1564 * If we made it here the remote processor was started by another
1565 * entity and a cache table doesn't exist. As such make a copy of
1566 * the resource table currently used by the remote processor and
1567 * use that for the rest of the shutdown process. The memory
1568 * allocated here is free'd in rproc_shutdown().
1569 */
1570 rproc->cached_table = kmemdup(p: rproc->table_ptr,
1571 size: rproc->table_sz, GFP_KERNEL);
1572 if (!rproc->cached_table)
1573 return -ENOMEM;
1574
1575 /*
1576 * Since the remote processor is being switched off the clean table
1577 * won't be needed. Allocated in rproc_set_rsc_table().
1578 */
1579 kfree(objp: rproc->clean_table);
1580
1581out:
1582 /*
1583 * Use a copy of the resource table for the remainder of the
1584 * shutdown process.
1585 */
1586 rproc->table_ptr = rproc->cached_table;
1587 return 0;
1588}
1589
1590/*
1591 * Attach to remote processor - similar to rproc_fw_boot() but without
1592 * the steps that deal with the firmware image.
1593 */
1594static int rproc_attach(struct rproc *rproc)
1595{
1596 struct device *dev = &rproc->dev;
1597 int ret;
1598
1599 /*
1600 * if enabling an IOMMU isn't relevant for this rproc, this is
1601 * just a nop
1602 */
1603 ret = rproc_enable_iommu(rproc);
1604 if (ret) {
1605 dev_err(dev, "can't enable iommu: %d\n", ret);
1606 return ret;
1607 }
1608
1609 /* Do anything that is needed to boot the remote processor */
1610 ret = rproc_prepare_device(rproc);
1611 if (ret) {
1612 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1613 goto disable_iommu;
1614 }
1615
1616 ret = rproc_set_rsc_table(rproc);
1617 if (ret) {
1618 dev_err(dev, "can't load resource table: %d\n", ret);
1619 goto unprepare_device;
1620 }
1621
1622 /* reset max_notifyid */
1623 rproc->max_notifyid = -1;
1624
1625 /* reset handled vdev */
1626 rproc->nb_vdev = 0;
1627
1628 /*
1629 * Handle firmware resources required to attach to a remote processor.
1630 * Because we are attaching rather than booting the remote processor,
1631 * we expect the platform driver to properly set rproc->table_ptr.
1632 */
1633 ret = rproc_handle_resources(rproc, handlers: rproc_loading_handlers);
1634 if (ret) {
1635 dev_err(dev, "Failed to process resources: %d\n", ret);
1636 goto unprepare_device;
1637 }
1638
1639 /* Allocate carveout resources associated to rproc */
1640 ret = rproc_alloc_registered_carveouts(rproc);
1641 if (ret) {
1642 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1643 ret);
1644 goto clean_up_resources;
1645 }
1646
1647 ret = __rproc_attach(rproc);
1648 if (ret)
1649 goto clean_up_resources;
1650
1651 return 0;
1652
1653clean_up_resources:
1654 rproc_resource_cleanup(rproc);
1655unprepare_device:
1656 /* release HW resources if needed */
1657 rproc_unprepare_device(rproc);
1658disable_iommu:
1659 rproc_disable_iommu(rproc);
1660 return ret;
1661}
1662
1663/*
1664 * take a firmware and boot it up.
1665 *
1666 * Note: this function is called asynchronously upon registration of the
1667 * remote processor (so we must wait until it completes before we try
1668 * to unregister the device. one other option is just to use kref here,
1669 * that might be cleaner).
1670 */
1671static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1672{
1673 struct rproc *rproc = context;
1674
1675 rproc_boot(rproc);
1676
1677 release_firmware(fw);
1678}
1679
1680static int rproc_trigger_auto_boot(struct rproc *rproc)
1681{
1682 int ret;
1683
1684 /*
1685 * Since the remote processor is in a detached state, it has already
1686 * been booted by another entity. As such there is no point in waiting
1687 * for a firmware image to be loaded, we can simply initiate the process
1688 * of attaching to it immediately.
1689 */
1690 if (rproc->state == RPROC_DETACHED)
1691 return rproc_boot(rproc);
1692
1693 /*
1694 * We're initiating an asynchronous firmware loading, so we can
1695 * be built-in kernel code, without hanging the boot process.
1696 */
1697 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1698 name: rproc->firmware, device: &rproc->dev, GFP_KERNEL,
1699 context: rproc, cont: rproc_auto_boot_callback);
1700 if (ret < 0)
1701 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1702
1703 return ret;
1704}
1705
1706static int rproc_stop(struct rproc *rproc, bool crashed)
1707{
1708 struct device *dev = &rproc->dev;
1709 int ret;
1710
1711 /* No need to continue if a stop() operation has not been provided */
1712 if (!rproc->ops->stop)
1713 return -EINVAL;
1714
1715 /* Stop any subdevices for the remote processor */
1716 rproc_stop_subdevices(rproc, crashed);
1717
1718 /* the installed resource table is no longer accessible */
1719 ret = rproc_reset_rsc_table_on_stop(rproc);
1720 if (ret) {
1721 dev_err(dev, "can't reset resource table: %d\n", ret);
1722 return ret;
1723 }
1724
1725
1726 /* power off the remote processor */
1727 ret = rproc->ops->stop(rproc);
1728 if (ret) {
1729 dev_err(dev, "can't stop rproc: %d\n", ret);
1730 return ret;
1731 }
1732
1733 rproc_unprepare_subdevices(rproc);
1734
1735 rproc->state = RPROC_OFFLINE;
1736
1737 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1738
1739 return 0;
1740}
1741
1742/*
1743 * __rproc_detach(): Does the opposite of __rproc_attach()
1744 */
1745static int __rproc_detach(struct rproc *rproc)
1746{
1747 struct device *dev = &rproc->dev;
1748 int ret;
1749
1750 /* No need to continue if a detach() operation has not been provided */
1751 if (!rproc->ops->detach)
1752 return -EINVAL;
1753
1754 /* Stop any subdevices for the remote processor */
1755 rproc_stop_subdevices(rproc, crashed: false);
1756
1757 /* the installed resource table is no longer accessible */
1758 ret = rproc_reset_rsc_table_on_detach(rproc);
1759 if (ret) {
1760 dev_err(dev, "can't reset resource table: %d\n", ret);
1761 return ret;
1762 }
1763
1764 /* Tell the remote processor the core isn't available anymore */
1765 ret = rproc->ops->detach(rproc);
1766 if (ret) {
1767 dev_err(dev, "can't detach from rproc: %d\n", ret);
1768 return ret;
1769 }
1770
1771 rproc_unprepare_subdevices(rproc);
1772
1773 rproc->state = RPROC_DETACHED;
1774
1775 dev_info(dev, "detached remote processor %s\n", rproc->name);
1776
1777 return 0;
1778}
1779
1780static int rproc_attach_recovery(struct rproc *rproc)
1781{
1782 int ret;
1783
1784 ret = __rproc_detach(rproc);
1785 if (ret)
1786 return ret;
1787
1788 return __rproc_attach(rproc);
1789}
1790
1791static int rproc_boot_recovery(struct rproc *rproc)
1792{
1793 const struct firmware *firmware_p;
1794 struct device *dev = &rproc->dev;
1795 int ret;
1796
1797 ret = rproc_stop(rproc, crashed: true);
1798 if (ret)
1799 return ret;
1800
1801 /* generate coredump */
1802 rproc->ops->coredump(rproc);
1803
1804 /* load firmware */
1805 ret = request_firmware(fw: &firmware_p, name: rproc->firmware, device: dev);
1806 if (ret < 0) {
1807 dev_err(dev, "request_firmware failed: %d\n", ret);
1808 return ret;
1809 }
1810
1811 /* boot the remote processor up again */
1812 ret = rproc_start(rproc, fw: firmware_p);
1813
1814 release_firmware(fw: firmware_p);
1815
1816 return ret;
1817}
1818
1819/**
1820 * rproc_trigger_recovery() - recover a remoteproc
1821 * @rproc: the remote processor
1822 *
1823 * The recovery is done by resetting all the virtio devices, that way all the
1824 * rpmsg drivers will be reseted along with the remote processor making the
1825 * remoteproc functional again.
1826 *
1827 * This function can sleep, so it cannot be called from atomic context.
1828 *
1829 * Return: 0 on success or a negative value upon failure
1830 */
1831int rproc_trigger_recovery(struct rproc *rproc)
1832{
1833 struct device *dev = &rproc->dev;
1834 int ret;
1835
1836 ret = mutex_lock_interruptible(&rproc->lock);
1837 if (ret)
1838 return ret;
1839
1840 /* State could have changed before we got the mutex */
1841 if (rproc->state != RPROC_CRASHED)
1842 goto unlock_mutex;
1843
1844 dev_err(dev, "recovering %s\n", rproc->name);
1845
1846 if (rproc_has_feature(rproc, feature: RPROC_FEAT_ATTACH_ON_RECOVERY))
1847 ret = rproc_attach_recovery(rproc);
1848 else
1849 ret = rproc_boot_recovery(rproc);
1850
1851unlock_mutex:
1852 mutex_unlock(lock: &rproc->lock);
1853 return ret;
1854}
1855
1856/**
1857 * rproc_crash_handler_work() - handle a crash
1858 * @work: work treating the crash
1859 *
1860 * This function needs to handle everything related to a crash, like cpu
1861 * registers and stack dump, information to help to debug the fatal error, etc.
1862 */
1863static void rproc_crash_handler_work(struct work_struct *work)
1864{
1865 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1866 struct device *dev = &rproc->dev;
1867
1868 dev_dbg(dev, "enter %s\n", __func__);
1869
1870 mutex_lock(&rproc->lock);
1871
1872 if (rproc->state == RPROC_CRASHED) {
1873 /* handle only the first crash detected */
1874 mutex_unlock(lock: &rproc->lock);
1875 return;
1876 }
1877
1878 if (rproc->state == RPROC_OFFLINE) {
1879 /* Don't recover if the remote processor was stopped */
1880 mutex_unlock(lock: &rproc->lock);
1881 goto out;
1882 }
1883
1884 rproc->state = RPROC_CRASHED;
1885 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1886 rproc->name);
1887
1888 mutex_unlock(lock: &rproc->lock);
1889
1890 if (!rproc->recovery_disabled)
1891 rproc_trigger_recovery(rproc);
1892
1893out:
1894 pm_relax(dev: rproc->dev.parent);
1895}
1896
1897/**
1898 * rproc_boot() - boot a remote processor
1899 * @rproc: handle of a remote processor
1900 *
1901 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1902 *
1903 * If the remote processor is already powered on, this function immediately
1904 * returns (successfully).
1905 *
1906 * Return: 0 on success, and an appropriate error value otherwise
1907 */
1908int rproc_boot(struct rproc *rproc)
1909{
1910 const struct firmware *firmware_p;
1911 struct device *dev;
1912 int ret;
1913
1914 if (!rproc) {
1915 pr_err("invalid rproc handle\n");
1916 return -EINVAL;
1917 }
1918
1919 dev = &rproc->dev;
1920
1921 ret = mutex_lock_interruptible(&rproc->lock);
1922 if (ret) {
1923 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1924 return ret;
1925 }
1926
1927 if (rproc->state == RPROC_DELETED) {
1928 ret = -ENODEV;
1929 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1930 goto unlock_mutex;
1931 }
1932
1933 /* skip the boot or attach process if rproc is already powered up */
1934 if (atomic_inc_return(v: &rproc->power) > 1) {
1935 ret = 0;
1936 goto unlock_mutex;
1937 }
1938
1939 if (rproc->state == RPROC_DETACHED) {
1940 dev_info(dev, "attaching to %s\n", rproc->name);
1941
1942 ret = rproc_attach(rproc);
1943 } else {
1944 dev_info(dev, "powering up %s\n", rproc->name);
1945
1946 /* load firmware */
1947 ret = request_firmware(fw: &firmware_p, name: rproc->firmware, device: dev);
1948 if (ret < 0) {
1949 dev_err(dev, "request_firmware failed: %d\n", ret);
1950 goto downref_rproc;
1951 }
1952
1953 ret = rproc_fw_boot(rproc, fw: firmware_p);
1954
1955 release_firmware(fw: firmware_p);
1956 }
1957
1958downref_rproc:
1959 if (ret)
1960 atomic_dec(v: &rproc->power);
1961unlock_mutex:
1962 mutex_unlock(lock: &rproc->lock);
1963 return ret;
1964}
1965EXPORT_SYMBOL(rproc_boot);
1966
1967/**
1968 * rproc_shutdown() - power off the remote processor
1969 * @rproc: the remote processor
1970 *
1971 * Power off a remote processor (previously booted with rproc_boot()).
1972 *
1973 * In case @rproc is still being used by an additional user(s), then
1974 * this function will just decrement the power refcount and exit,
1975 * without really powering off the device.
1976 *
1977 * Every call to rproc_boot() must (eventually) be accompanied by a call
1978 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1979 *
1980 * Notes:
1981 * - we're not decrementing the rproc's refcount, only the power refcount.
1982 * which means that the @rproc handle stays valid even after rproc_shutdown()
1983 * returns, and users can still use it with a subsequent rproc_boot(), if
1984 * needed.
1985 *
1986 * Return: 0 on success, and an appropriate error value otherwise
1987 */
1988int rproc_shutdown(struct rproc *rproc)
1989{
1990 struct device *dev = &rproc->dev;
1991 int ret = 0;
1992
1993 ret = mutex_lock_interruptible(&rproc->lock);
1994 if (ret) {
1995 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1996 return ret;
1997 }
1998
1999 if (rproc->state != RPROC_RUNNING &&
2000 rproc->state != RPROC_ATTACHED) {
2001 ret = -EINVAL;
2002 goto out;
2003 }
2004
2005 /* if the remote proc is still needed, bail out */
2006 if (!atomic_dec_and_test(v: &rproc->power))
2007 goto out;
2008
2009 ret = rproc_stop(rproc, crashed: false);
2010 if (ret) {
2011 atomic_inc(v: &rproc->power);
2012 goto out;
2013 }
2014
2015 /* clean up all acquired resources */
2016 rproc_resource_cleanup(rproc);
2017
2018 /* release HW resources if needed */
2019 rproc_unprepare_device(rproc);
2020
2021 rproc_disable_iommu(rproc);
2022
2023 /* Free the copy of the resource table */
2024 kfree(objp: rproc->cached_table);
2025 rproc->cached_table = NULL;
2026 rproc->table_ptr = NULL;
2027out:
2028 mutex_unlock(lock: &rproc->lock);
2029 return ret;
2030}
2031EXPORT_SYMBOL(rproc_shutdown);
2032
2033/**
2034 * rproc_detach() - Detach the remote processor from the
2035 * remoteproc core
2036 *
2037 * @rproc: the remote processor
2038 *
2039 * Detach a remote processor (previously attached to with rproc_attach()).
2040 *
2041 * In case @rproc is still being used by an additional user(s), then
2042 * this function will just decrement the power refcount and exit,
2043 * without disconnecting the device.
2044 *
2045 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2046 * processor know that services provided by the application processor are
2047 * no longer available. From there it should be possible to remove the
2048 * platform driver and even power cycle the application processor (if the HW
2049 * supports it) without needing to switch off the remote processor.
2050 *
2051 * Return: 0 on success, and an appropriate error value otherwise
2052 */
2053int rproc_detach(struct rproc *rproc)
2054{
2055 struct device *dev = &rproc->dev;
2056 int ret;
2057
2058 ret = mutex_lock_interruptible(&rproc->lock);
2059 if (ret) {
2060 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2061 return ret;
2062 }
2063
2064 if (rproc->state != RPROC_ATTACHED) {
2065 ret = -EINVAL;
2066 goto out;
2067 }
2068
2069 /* if the remote proc is still needed, bail out */
2070 if (!atomic_dec_and_test(v: &rproc->power)) {
2071 ret = 0;
2072 goto out;
2073 }
2074
2075 ret = __rproc_detach(rproc);
2076 if (ret) {
2077 atomic_inc(v: &rproc->power);
2078 goto out;
2079 }
2080
2081 /* clean up all acquired resources */
2082 rproc_resource_cleanup(rproc);
2083
2084 /* release HW resources if needed */
2085 rproc_unprepare_device(rproc);
2086
2087 rproc_disable_iommu(rproc);
2088
2089 /* Free the copy of the resource table */
2090 kfree(objp: rproc->cached_table);
2091 rproc->cached_table = NULL;
2092 rproc->table_ptr = NULL;
2093out:
2094 mutex_unlock(lock: &rproc->lock);
2095 return ret;
2096}
2097EXPORT_SYMBOL(rproc_detach);
2098
2099/**
2100 * rproc_get_by_phandle() - find a remote processor by phandle
2101 * @phandle: phandle to the rproc
2102 *
2103 * Finds an rproc handle using the remote processor's phandle, and then
2104 * return a handle to the rproc.
2105 *
2106 * This function increments the remote processor's refcount, so always
2107 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2108 *
2109 * Return: rproc handle on success, and NULL on failure
2110 */
2111#ifdef CONFIG_OF
2112struct rproc *rproc_get_by_phandle(phandle phandle)
2113{
2114 struct rproc *rproc = NULL, *r;
2115 struct device_node *np;
2116
2117 np = of_find_node_by_phandle(handle: phandle);
2118 if (!np)
2119 return NULL;
2120
2121 rcu_read_lock();
2122 list_for_each_entry_rcu(r, &rproc_list, node) {
2123 if (r->dev.parent && device_match_of_node(dev: r->dev.parent, np)) {
2124 /* prevent underlying implementation from being removed */
2125 if (!try_module_get(module: r->dev.parent->driver->owner)) {
2126 dev_err(&r->dev, "can't get owner\n");
2127 break;
2128 }
2129
2130 rproc = r;
2131 get_device(dev: &rproc->dev);
2132 break;
2133 }
2134 }
2135 rcu_read_unlock();
2136
2137 of_node_put(node: np);
2138
2139 return rproc;
2140}
2141#else
2142struct rproc *rproc_get_by_phandle(phandle phandle)
2143{
2144 return NULL;
2145}
2146#endif
2147EXPORT_SYMBOL(rproc_get_by_phandle);
2148
2149/**
2150 * rproc_set_firmware() - assign a new firmware
2151 * @rproc: rproc handle to which the new firmware is being assigned
2152 * @fw_name: new firmware name to be assigned
2153 *
2154 * This function allows remoteproc drivers or clients to configure a custom
2155 * firmware name that is different from the default name used during remoteproc
2156 * registration. The function does not trigger a remote processor boot,
2157 * only sets the firmware name used for a subsequent boot. This function
2158 * should also be called only when the remote processor is offline.
2159 *
2160 * This allows either the userspace to configure a different name through
2161 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2162 * a specific firmware when it is controlling the boot and shutdown of the
2163 * remote processor.
2164 *
2165 * Return: 0 on success or a negative value upon failure
2166 */
2167int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2168{
2169 struct device *dev;
2170 int ret, len;
2171 char *p;
2172
2173 if (!rproc || !fw_name)
2174 return -EINVAL;
2175
2176 dev = rproc->dev.parent;
2177
2178 ret = mutex_lock_interruptible(&rproc->lock);
2179 if (ret) {
2180 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2181 return -EINVAL;
2182 }
2183
2184 if (rproc->state != RPROC_OFFLINE) {
2185 dev_err(dev, "can't change firmware while running\n");
2186 ret = -EBUSY;
2187 goto out;
2188 }
2189
2190 len = strcspn(fw_name, "\n");
2191 if (!len) {
2192 dev_err(dev, "can't provide empty string for firmware name\n");
2193 ret = -EINVAL;
2194 goto out;
2195 }
2196
2197 p = kstrndup(s: fw_name, len, GFP_KERNEL);
2198 if (!p) {
2199 ret = -ENOMEM;
2200 goto out;
2201 }
2202
2203 kfree_const(x: rproc->firmware);
2204 rproc->firmware = p;
2205
2206out:
2207 mutex_unlock(lock: &rproc->lock);
2208 return ret;
2209}
2210EXPORT_SYMBOL(rproc_set_firmware);
2211
2212static int rproc_validate(struct rproc *rproc)
2213{
2214 switch (rproc->state) {
2215 case RPROC_OFFLINE:
2216 /*
2217 * An offline processor without a start()
2218 * function makes no sense.
2219 */
2220 if (!rproc->ops->start)
2221 return -EINVAL;
2222 break;
2223 case RPROC_DETACHED:
2224 /*
2225 * A remote processor in a detached state without an
2226 * attach() function makes not sense.
2227 */
2228 if (!rproc->ops->attach)
2229 return -EINVAL;
2230 /*
2231 * When attaching to a remote processor the device memory
2232 * is already available and as such there is no need to have a
2233 * cached table.
2234 */
2235 if (rproc->cached_table)
2236 return -EINVAL;
2237 break;
2238 default:
2239 /*
2240 * When adding a remote processor, the state of the device
2241 * can be offline or detached, nothing else.
2242 */
2243 return -EINVAL;
2244 }
2245
2246 return 0;
2247}
2248
2249/**
2250 * rproc_add() - register a remote processor
2251 * @rproc: the remote processor handle to register
2252 *
2253 * Registers @rproc with the remoteproc framework, after it has been
2254 * allocated with rproc_alloc().
2255 *
2256 * This is called by the platform-specific rproc implementation, whenever
2257 * a new remote processor device is probed.
2258 *
2259 * Note: this function initiates an asynchronous firmware loading
2260 * context, which will look for virtio devices supported by the rproc's
2261 * firmware.
2262 *
2263 * If found, those virtio devices will be created and added, so as a result
2264 * of registering this remote processor, additional virtio drivers might be
2265 * probed.
2266 *
2267 * Return: 0 on success and an appropriate error code otherwise
2268 */
2269int rproc_add(struct rproc *rproc)
2270{
2271 struct device *dev = &rproc->dev;
2272 int ret;
2273
2274 ret = rproc_validate(rproc);
2275 if (ret < 0)
2276 return ret;
2277
2278 /* add char device for this remoteproc */
2279 ret = rproc_char_device_add(rproc);
2280 if (ret < 0)
2281 return ret;
2282
2283 ret = device_add(dev);
2284 if (ret < 0) {
2285 put_device(dev);
2286 goto rproc_remove_cdev;
2287 }
2288
2289 dev_info(dev, "%s is available\n", rproc->name);
2290
2291 /* create debugfs entries */
2292 rproc_create_debug_dir(rproc);
2293
2294 /* if rproc is marked always-on, request it to boot */
2295 if (rproc->auto_boot) {
2296 ret = rproc_trigger_auto_boot(rproc);
2297 if (ret < 0)
2298 goto rproc_remove_dev;
2299 }
2300
2301 /* expose to rproc_get_by_phandle users */
2302 mutex_lock(&rproc_list_mutex);
2303 list_add_rcu(new: &rproc->node, head: &rproc_list);
2304 mutex_unlock(lock: &rproc_list_mutex);
2305
2306 return 0;
2307
2308rproc_remove_dev:
2309 rproc_delete_debug_dir(rproc);
2310 device_del(dev);
2311rproc_remove_cdev:
2312 rproc_char_device_remove(rproc);
2313 return ret;
2314}
2315EXPORT_SYMBOL(rproc_add);
2316
2317static void devm_rproc_remove(void *rproc)
2318{
2319 rproc_del(rproc);
2320}
2321
2322/**
2323 * devm_rproc_add() - resource managed rproc_add()
2324 * @dev: the underlying device
2325 * @rproc: the remote processor handle to register
2326 *
2327 * This function performs like rproc_add() but the registered rproc device will
2328 * automatically be removed on driver detach.
2329 *
2330 * Return: 0 on success, negative errno on failure
2331 */
2332int devm_rproc_add(struct device *dev, struct rproc *rproc)
2333{
2334 int err;
2335
2336 err = rproc_add(rproc);
2337 if (err)
2338 return err;
2339
2340 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2341}
2342EXPORT_SYMBOL(devm_rproc_add);
2343
2344/**
2345 * rproc_type_release() - release a remote processor instance
2346 * @dev: the rproc's device
2347 *
2348 * This function should _never_ be called directly.
2349 *
2350 * It will be called by the driver core when no one holds a valid pointer
2351 * to @dev anymore.
2352 */
2353static void rproc_type_release(struct device *dev)
2354{
2355 struct rproc *rproc = container_of(dev, struct rproc, dev);
2356
2357 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2358
2359 idr_destroy(&rproc->notifyids);
2360
2361 if (rproc->index >= 0)
2362 ida_free(&rproc_dev_index, id: rproc->index);
2363
2364 kfree_const(x: rproc->firmware);
2365 kfree_const(x: rproc->name);
2366 kfree(objp: rproc->ops);
2367 kfree(objp: rproc);
2368}
2369
2370static const struct device_type rproc_type = {
2371 .name = "remoteproc",
2372 .release = rproc_type_release,
2373};
2374
2375static int rproc_alloc_firmware(struct rproc *rproc,
2376 const char *name, const char *firmware)
2377{
2378 const char *p;
2379
2380 /*
2381 * Allocate a firmware name if the caller gave us one to work
2382 * with. Otherwise construct a new one using a default pattern.
2383 */
2384 if (firmware)
2385 p = kstrdup_const(s: firmware, GFP_KERNEL);
2386 else
2387 p = kasprintf(GFP_KERNEL, fmt: "rproc-%s-fw", name);
2388
2389 if (!p)
2390 return -ENOMEM;
2391
2392 rproc->firmware = p;
2393
2394 return 0;
2395}
2396
2397static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2398{
2399 rproc->ops = kmemdup(p: ops, size: sizeof(*ops), GFP_KERNEL);
2400 if (!rproc->ops)
2401 return -ENOMEM;
2402
2403 /* Default to rproc_coredump if no coredump function is specified */
2404 if (!rproc->ops->coredump)
2405 rproc->ops->coredump = rproc_coredump;
2406
2407 if (rproc->ops->load)
2408 return 0;
2409
2410 /* Default to ELF loader if no load function is specified */
2411 rproc->ops->load = rproc_elf_load_segments;
2412 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2413 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2414 rproc->ops->sanity_check = rproc_elf_sanity_check;
2415 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2416
2417 return 0;
2418}
2419
2420/**
2421 * rproc_alloc() - allocate a remote processor handle
2422 * @dev: the underlying device
2423 * @name: name of this remote processor
2424 * @ops: platform-specific handlers (mainly start/stop)
2425 * @firmware: name of firmware file to load, can be NULL
2426 * @len: length of private data needed by the rproc driver (in bytes)
2427 *
2428 * Allocates a new remote processor handle, but does not register
2429 * it yet. if @firmware is NULL, a default name is used.
2430 *
2431 * This function should be used by rproc implementations during initialization
2432 * of the remote processor.
2433 *
2434 * After creating an rproc handle using this function, and when ready,
2435 * implementations should then call rproc_add() to complete
2436 * the registration of the remote processor.
2437 *
2438 * Note: _never_ directly deallocate @rproc, even if it was not registered
2439 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2440 *
2441 * Return: new rproc pointer on success, and NULL on failure
2442 */
2443struct rproc *rproc_alloc(struct device *dev, const char *name,
2444 const struct rproc_ops *ops,
2445 const char *firmware, int len)
2446{
2447 struct rproc *rproc;
2448
2449 if (!dev || !name || !ops)
2450 return NULL;
2451
2452 rproc = kzalloc(size: sizeof(struct rproc) + len, GFP_KERNEL);
2453 if (!rproc)
2454 return NULL;
2455
2456 rproc->priv = &rproc[1];
2457 rproc->auto_boot = true;
2458 rproc->elf_class = ELFCLASSNONE;
2459 rproc->elf_machine = EM_NONE;
2460
2461 device_initialize(dev: &rproc->dev);
2462 rproc->dev.parent = dev;
2463 rproc->dev.type = &rproc_type;
2464 rproc->dev.class = &rproc_class;
2465 rproc->dev.driver_data = rproc;
2466 idr_init(idr: &rproc->notifyids);
2467
2468 rproc->name = kstrdup_const(s: name, GFP_KERNEL);
2469 if (!rproc->name)
2470 goto put_device;
2471
2472 if (rproc_alloc_firmware(rproc, name, firmware))
2473 goto put_device;
2474
2475 if (rproc_alloc_ops(rproc, ops))
2476 goto put_device;
2477
2478 /* Assign a unique device index and name */
2479 rproc->index = ida_alloc(ida: &rproc_dev_index, GFP_KERNEL);
2480 if (rproc->index < 0) {
2481 dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2482 goto put_device;
2483 }
2484
2485 dev_set_name(dev: &rproc->dev, name: "remoteproc%d", rproc->index);
2486
2487 atomic_set(v: &rproc->power, i: 0);
2488
2489 mutex_init(&rproc->lock);
2490
2491 INIT_LIST_HEAD(list: &rproc->carveouts);
2492 INIT_LIST_HEAD(list: &rproc->mappings);
2493 INIT_LIST_HEAD(list: &rproc->traces);
2494 INIT_LIST_HEAD(list: &rproc->rvdevs);
2495 INIT_LIST_HEAD(list: &rproc->subdevs);
2496 INIT_LIST_HEAD(list: &rproc->dump_segments);
2497
2498 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2499
2500 rproc->state = RPROC_OFFLINE;
2501
2502 return rproc;
2503
2504put_device:
2505 put_device(dev: &rproc->dev);
2506 return NULL;
2507}
2508EXPORT_SYMBOL(rproc_alloc);
2509
2510/**
2511 * rproc_free() - unroll rproc_alloc()
2512 * @rproc: the remote processor handle
2513 *
2514 * This function decrements the rproc dev refcount.
2515 *
2516 * If no one holds any reference to rproc anymore, then its refcount would
2517 * now drop to zero, and it would be freed.
2518 */
2519void rproc_free(struct rproc *rproc)
2520{
2521 put_device(dev: &rproc->dev);
2522}
2523EXPORT_SYMBOL(rproc_free);
2524
2525/**
2526 * rproc_put() - release rproc reference
2527 * @rproc: the remote processor handle
2528 *
2529 * This function decrements the rproc dev refcount.
2530 *
2531 * If no one holds any reference to rproc anymore, then its refcount would
2532 * now drop to zero, and it would be freed.
2533 */
2534void rproc_put(struct rproc *rproc)
2535{
2536 module_put(module: rproc->dev.parent->driver->owner);
2537 put_device(dev: &rproc->dev);
2538}
2539EXPORT_SYMBOL(rproc_put);
2540
2541/**
2542 * rproc_del() - unregister a remote processor
2543 * @rproc: rproc handle to unregister
2544 *
2545 * This function should be called when the platform specific rproc
2546 * implementation decides to remove the rproc device. it should
2547 * _only_ be called if a previous invocation of rproc_add()
2548 * has completed successfully.
2549 *
2550 * After rproc_del() returns, @rproc isn't freed yet, because
2551 * of the outstanding reference created by rproc_alloc. To decrement that
2552 * one last refcount, one still needs to call rproc_free().
2553 *
2554 * Return: 0 on success and -EINVAL if @rproc isn't valid
2555 */
2556int rproc_del(struct rproc *rproc)
2557{
2558 if (!rproc)
2559 return -EINVAL;
2560
2561 /* TODO: make sure this works with rproc->power > 1 */
2562 rproc_shutdown(rproc);
2563
2564 mutex_lock(&rproc->lock);
2565 rproc->state = RPROC_DELETED;
2566 mutex_unlock(lock: &rproc->lock);
2567
2568 rproc_delete_debug_dir(rproc);
2569
2570 /* the rproc is downref'ed as soon as it's removed from the klist */
2571 mutex_lock(&rproc_list_mutex);
2572 list_del_rcu(entry: &rproc->node);
2573 mutex_unlock(lock: &rproc_list_mutex);
2574
2575 /* Ensure that no readers of rproc_list are still active */
2576 synchronize_rcu();
2577
2578 device_del(dev: &rproc->dev);
2579 rproc_char_device_remove(rproc);
2580
2581 return 0;
2582}
2583EXPORT_SYMBOL(rproc_del);
2584
2585static void devm_rproc_free(struct device *dev, void *res)
2586{
2587 rproc_free(*(struct rproc **)res);
2588}
2589
2590/**
2591 * devm_rproc_alloc() - resource managed rproc_alloc()
2592 * @dev: the underlying device
2593 * @name: name of this remote processor
2594 * @ops: platform-specific handlers (mainly start/stop)
2595 * @firmware: name of firmware file to load, can be NULL
2596 * @len: length of private data needed by the rproc driver (in bytes)
2597 *
2598 * This function performs like rproc_alloc() but the acquired rproc device will
2599 * automatically be released on driver detach.
2600 *
2601 * Return: new rproc instance, or NULL on failure
2602 */
2603struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2604 const struct rproc_ops *ops,
2605 const char *firmware, int len)
2606{
2607 struct rproc **ptr, *rproc;
2608
2609 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2610 if (!ptr)
2611 return NULL;
2612
2613 rproc = rproc_alloc(dev, name, ops, firmware, len);
2614 if (rproc) {
2615 *ptr = rproc;
2616 devres_add(dev, res: ptr);
2617 } else {
2618 devres_free(res: ptr);
2619 }
2620
2621 return rproc;
2622}
2623EXPORT_SYMBOL(devm_rproc_alloc);
2624
2625/**
2626 * rproc_add_subdev() - add a subdevice to a remoteproc
2627 * @rproc: rproc handle to add the subdevice to
2628 * @subdev: subdev handle to register
2629 *
2630 * Caller is responsible for populating optional subdevice function pointers.
2631 */
2632void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2633{
2634 list_add_tail(new: &subdev->node, head: &rproc->subdevs);
2635}
2636EXPORT_SYMBOL(rproc_add_subdev);
2637
2638/**
2639 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2640 * @rproc: rproc handle to remove the subdevice from
2641 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2642 */
2643void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2644{
2645 list_del(entry: &subdev->node);
2646}
2647EXPORT_SYMBOL(rproc_remove_subdev);
2648
2649/**
2650 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2651 * @dev: child device to find ancestor of
2652 *
2653 * Return: the ancestor rproc instance, or NULL if not found
2654 */
2655struct rproc *rproc_get_by_child(struct device *dev)
2656{
2657 for (dev = dev->parent; dev; dev = dev->parent) {
2658 if (dev->type == &rproc_type)
2659 return dev->driver_data;
2660 }
2661
2662 return NULL;
2663}
2664EXPORT_SYMBOL(rproc_get_by_child);
2665
2666/**
2667 * rproc_report_crash() - rproc crash reporter function
2668 * @rproc: remote processor
2669 * @type: crash type
2670 *
2671 * This function must be called every time a crash is detected by the low-level
2672 * drivers implementing a specific remoteproc. This should not be called from a
2673 * non-remoteproc driver.
2674 *
2675 * This function can be called from atomic/interrupt context.
2676 */
2677void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2678{
2679 if (!rproc) {
2680 pr_err("NULL rproc pointer\n");
2681 return;
2682 }
2683
2684 /* Prevent suspend while the remoteproc is being recovered */
2685 pm_stay_awake(dev: rproc->dev.parent);
2686
2687 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2688 rproc->name, rproc_crash_to_string(type));
2689
2690 queue_work(wq: rproc_recovery_wq, work: &rproc->crash_handler);
2691}
2692EXPORT_SYMBOL(rproc_report_crash);
2693
2694static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2695 void *ptr)
2696{
2697 unsigned int longest = 0;
2698 struct rproc *rproc;
2699 unsigned int d;
2700
2701 rcu_read_lock();
2702 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2703 if (!rproc->ops->panic)
2704 continue;
2705
2706 if (rproc->state != RPROC_RUNNING &&
2707 rproc->state != RPROC_ATTACHED)
2708 continue;
2709
2710 d = rproc->ops->panic(rproc);
2711 longest = max(longest, d);
2712 }
2713 rcu_read_unlock();
2714
2715 /*
2716 * Delay for the longest requested duration before returning. This can
2717 * be used by the remoteproc drivers to give the remote processor time
2718 * to perform any requested operations (such as flush caches), when
2719 * it's not possible to signal the Linux side due to the panic.
2720 */
2721 mdelay(longest);
2722
2723 return NOTIFY_DONE;
2724}
2725
2726static void __init rproc_init_panic(void)
2727{
2728 rproc_panic_nb.notifier_call = rproc_panic_handler;
2729 atomic_notifier_chain_register(nh: &panic_notifier_list, nb: &rproc_panic_nb);
2730}
2731
2732static void __exit rproc_exit_panic(void)
2733{
2734 atomic_notifier_chain_unregister(nh: &panic_notifier_list, nb: &rproc_panic_nb);
2735}
2736
2737static int __init remoteproc_init(void)
2738{
2739 rproc_recovery_wq = alloc_workqueue(fmt: "rproc_recovery_wq",
2740 flags: WQ_UNBOUND | WQ_FREEZABLE, max_active: 0);
2741 if (!rproc_recovery_wq) {
2742 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2743 return -ENOMEM;
2744 }
2745
2746 rproc_init_sysfs();
2747 rproc_init_debugfs();
2748 rproc_init_cdev();
2749 rproc_init_panic();
2750
2751 return 0;
2752}
2753subsys_initcall(remoteproc_init);
2754
2755static void __exit remoteproc_exit(void)
2756{
2757 ida_destroy(ida: &rproc_dev_index);
2758
2759 if (!rproc_recovery_wq)
2760 return;
2761
2762 rproc_exit_panic();
2763 rproc_exit_debugfs();
2764 rproc_exit_sysfs();
2765 destroy_workqueue(wq: rproc_recovery_wq);
2766}
2767module_exit(remoteproc_exit);
2768
2769MODULE_DESCRIPTION("Generic Remote Processor Framework");
2770

source code of linux/drivers/remoteproc/remoteproc_core.c