1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/devcoredump.h>
37#include <linux/remoteproc.h>
38#include <linux/iommu.h>
39#include <linux/idr.h>
40#include <linux/elf.h>
41#include <linux/crc32.h>
42#include <linux/of_reserved_mem.h>
43#include <linux/virtio_ids.h>
44#include <linux/virtio_ring.h>
45#include <asm/byteorder.h>
46#include <linux/platform_device.h>
47
48#include "remoteproc_internal.h"
49
50#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
51
52static DEFINE_MUTEX(rproc_list_mutex);
53static LIST_HEAD(rproc_list);
54
55typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
56 struct resource_table *table, int len);
57typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
58 void *, int offset, int avail);
59
60static int rproc_alloc_carveout(struct rproc *rproc,
61 struct rproc_mem_entry *mem);
62static int rproc_release_carveout(struct rproc *rproc,
63 struct rproc_mem_entry *mem);
64
65/* Unique indices for remoteproc devices */
66static DEFINE_IDA(rproc_dev_index);
67
68static const char * const rproc_crash_names[] = {
69 [RPROC_MMUFAULT] = "mmufault",
70 [RPROC_WATCHDOG] = "watchdog",
71 [RPROC_FATAL_ERROR] = "fatal error",
72};
73
74/* translate rproc_crash_type to string */
75static const char *rproc_crash_to_string(enum rproc_crash_type type)
76{
77 if (type < ARRAY_SIZE(rproc_crash_names))
78 return rproc_crash_names[type];
79 return "unknown";
80}
81
82/*
83 * This is the IOMMU fault handler we register with the IOMMU API
84 * (when relevant; not all remote processors access memory through
85 * an IOMMU).
86 *
87 * IOMMU core will invoke this handler whenever the remote processor
88 * will try to access an unmapped device address.
89 */
90static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
91 unsigned long iova, int flags, void *token)
92{
93 struct rproc *rproc = token;
94
95 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
96
97 rproc_report_crash(rproc, RPROC_MMUFAULT);
98
99 /*
100 * Let the iommu core know we're not really handling this fault;
101 * we just used it as a recovery trigger.
102 */
103 return -ENOSYS;
104}
105
106static int rproc_enable_iommu(struct rproc *rproc)
107{
108 struct iommu_domain *domain;
109 struct device *dev = rproc->dev.parent;
110 int ret;
111
112 if (!rproc->has_iommu) {
113 dev_dbg(dev, "iommu not present\n");
114 return 0;
115 }
116
117 domain = iommu_domain_alloc(dev->bus);
118 if (!domain) {
119 dev_err(dev, "can't alloc iommu domain\n");
120 return -ENOMEM;
121 }
122
123 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
124
125 ret = iommu_attach_device(domain, dev);
126 if (ret) {
127 dev_err(dev, "can't attach iommu device: %d\n", ret);
128 goto free_domain;
129 }
130
131 rproc->domain = domain;
132
133 return 0;
134
135free_domain:
136 iommu_domain_free(domain);
137 return ret;
138}
139
140static void rproc_disable_iommu(struct rproc *rproc)
141{
142 struct iommu_domain *domain = rproc->domain;
143 struct device *dev = rproc->dev.parent;
144
145 if (!domain)
146 return;
147
148 iommu_detach_device(domain, dev);
149 iommu_domain_free(domain);
150}
151
152phys_addr_t rproc_va_to_pa(void *cpu_addr)
153{
154 /*
155 * Return physical address according to virtual address location
156 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
157 * - in kernel: if region allocated in generic dma memory pool
158 */
159 if (is_vmalloc_addr(cpu_addr)) {
160 return page_to_phys(vmalloc_to_page(cpu_addr)) +
161 offset_in_page(cpu_addr);
162 }
163
164 WARN_ON(!virt_addr_valid(cpu_addr));
165 return virt_to_phys(cpu_addr);
166}
167EXPORT_SYMBOL(rproc_va_to_pa);
168
169/**
170 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
171 * @rproc: handle of a remote processor
172 * @da: remoteproc device address to translate
173 * @len: length of the memory region @da is pointing to
174 *
175 * Some remote processors will ask us to allocate them physically contiguous
176 * memory regions (which we call "carveouts"), and map them to specific
177 * device addresses (which are hardcoded in the firmware). They may also have
178 * dedicated memory regions internal to the processors, and use them either
179 * exclusively or alongside carveouts.
180 *
181 * They may then ask us to copy objects into specific device addresses (e.g.
182 * code/data sections) or expose us certain symbols in other device address
183 * (e.g. their trace buffer).
184 *
185 * This function is a helper function with which we can go over the allocated
186 * carveouts and translate specific device addresses to kernel virtual addresses
187 * so we can access the referenced memory. This function also allows to perform
188 * translations on the internal remoteproc memory regions through a platform
189 * implementation specific da_to_va ops, if present.
190 *
191 * The function returns a valid kernel address on success or NULL on failure.
192 *
193 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
194 * but only on kernel direct mapped RAM memory. Instead, we're just using
195 * here the output of the DMA API for the carveouts, which should be more
196 * correct.
197 */
198void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
199{
200 struct rproc_mem_entry *carveout;
201 void *ptr = NULL;
202
203 if (rproc->ops->da_to_va) {
204 ptr = rproc->ops->da_to_va(rproc, da, len);
205 if (ptr)
206 goto out;
207 }
208
209 list_for_each_entry(carveout, &rproc->carveouts, node) {
210 int offset = da - carveout->da;
211
212 /* Verify that carveout is allocated */
213 if (!carveout->va)
214 continue;
215
216 /* try next carveout if da is too small */
217 if (offset < 0)
218 continue;
219
220 /* try next carveout if da is too large */
221 if (offset + len > carveout->len)
222 continue;
223
224 ptr = carveout->va + offset;
225
226 break;
227 }
228
229out:
230 return ptr;
231}
232EXPORT_SYMBOL(rproc_da_to_va);
233
234/**
235 * rproc_find_carveout_by_name() - lookup the carveout region by a name
236 * @rproc: handle of a remote processor
237 * @name,..: carveout name to find (standard printf format)
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251struct rproc_mem_entry *
252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253{
254 va_list args;
255 char _name[32];
256 struct rproc_mem_entry *carveout, *mem = NULL;
257
258 if (!name)
259 return NULL;
260
261 va_start(args, name);
262 vsnprintf(_name, sizeof(_name), name, args);
263 va_end(args);
264
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
268 mem = carveout;
269 break;
270 }
271 }
272
273 return mem;
274}
275
276/**
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
282 *
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286 * checked.
287 *
288 * Return: 0 if carveout matches request else error
289 */
290static int rproc_check_carveout_da(struct rproc *rproc,
291 struct rproc_mem_entry *mem, u32 da, u32 len)
292{
293 struct device *dev = &rproc->dev;
294 int delta;
295
296 /* Check requested resource length */
297 if (len > mem->len) {
298 dev_err(dev, "Registered carveout doesn't fit len request\n");
299 return -EINVAL;
300 }
301
302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 /* Address doesn't match registered carveout configuration */
304 return -EINVAL;
305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 delta = da - mem->da;
307
308 /* Check requested resource belongs to registered carveout */
309 if (delta < 0) {
310 dev_err(dev,
311 "Registered carveout doesn't fit da request\n");
312 return -EINVAL;
313 }
314
315 if (delta + len > mem->len) {
316 dev_err(dev,
317 "Registered carveout doesn't fit len request\n");
318 return -EINVAL;
319 }
320 }
321
322 return 0;
323}
324
325int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326{
327 struct rproc *rproc = rvdev->rproc;
328 struct device *dev = &rproc->dev;
329 struct rproc_vring *rvring = &rvdev->vring[i];
330 struct fw_rsc_vdev *rsc;
331 int ret, size, notifyid;
332 struct rproc_mem_entry *mem;
333
334 /* actual size of vring (in bytes) */
335 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
336
337 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
338
339 /* Search for pre-registered carveout */
340 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
341 i);
342 if (mem) {
343 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
344 return -ENOMEM;
345 } else {
346 /* Register carveout in in list */
347 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
348 rproc_alloc_carveout,
349 rproc_release_carveout,
350 "vdev%dvring%d",
351 rvdev->index, i);
352 if (!mem) {
353 dev_err(dev, "Can't allocate memory entry structure\n");
354 return -ENOMEM;
355 }
356
357 rproc_add_carveout(rproc, mem);
358 }
359
360 /*
361 * Assign an rproc-wide unique index for this vring
362 * TODO: assign a notifyid for rvdev updates as well
363 * TODO: support predefined notifyids (via resource table)
364 */
365 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
366 if (ret < 0) {
367 dev_err(dev, "idr_alloc failed: %d\n", ret);
368 return ret;
369 }
370 notifyid = ret;
371
372 /* Potentially bump max_notifyid */
373 if (notifyid > rproc->max_notifyid)
374 rproc->max_notifyid = notifyid;
375
376 rvring->notifyid = notifyid;
377
378 /* Let the rproc know the notifyid of this vring.*/
379 rsc->vring[i].notifyid = notifyid;
380 return 0;
381}
382
383static int
384rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
385{
386 struct rproc *rproc = rvdev->rproc;
387 struct device *dev = &rproc->dev;
388 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
389 struct rproc_vring *rvring = &rvdev->vring[i];
390
391 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
392 i, vring->da, vring->num, vring->align);
393
394 /* verify queue size and vring alignment are sane */
395 if (!vring->num || !vring->align) {
396 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
397 vring->num, vring->align);
398 return -EINVAL;
399 }
400
401 rvring->len = vring->num;
402 rvring->align = vring->align;
403 rvring->rvdev = rvdev;
404
405 return 0;
406}
407
408void rproc_free_vring(struct rproc_vring *rvring)
409{
410 struct rproc *rproc = rvring->rvdev->rproc;
411 int idx = rvring->rvdev->vring - rvring;
412 struct fw_rsc_vdev *rsc;
413
414 idr_remove(&rproc->notifyids, rvring->notifyid);
415
416 /* reset resource entry info */
417 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
418 rsc->vring[idx].da = 0;
419 rsc->vring[idx].notifyid = -1;
420}
421
422static int rproc_vdev_do_start(struct rproc_subdev *subdev)
423{
424 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
425
426 return rproc_add_virtio_dev(rvdev, rvdev->id);
427}
428
429static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
430{
431 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
432 int ret;
433
434 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
435 if (ret)
436 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
437}
438
439/**
440 * rproc_rvdev_release() - release the existence of a rvdev
441 *
442 * @dev: the subdevice's dev
443 */
444static void rproc_rvdev_release(struct device *dev)
445{
446 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
447
448 of_reserved_mem_device_release(dev);
449
450 kfree(rvdev);
451}
452
453/**
454 * rproc_handle_vdev() - handle a vdev fw resource
455 * @rproc: the remote processor
456 * @rsc: the vring resource descriptor
457 * @avail: size of available data (for sanity checking the image)
458 *
459 * This resource entry requests the host to statically register a virtio
460 * device (vdev), and setup everything needed to support it. It contains
461 * everything needed to make it possible: the virtio device id, virtio
462 * device features, vrings information, virtio config space, etc...
463 *
464 * Before registering the vdev, the vrings are allocated from non-cacheable
465 * physically contiguous memory. Currently we only support two vrings per
466 * remote processor (temporary limitation). We might also want to consider
467 * doing the vring allocation only later when ->find_vqs() is invoked, and
468 * then release them upon ->del_vqs().
469 *
470 * Note: @da is currently not really handled correctly: we dynamically
471 * allocate it using the DMA API, ignoring requested hard coded addresses,
472 * and we don't take care of any required IOMMU programming. This is all
473 * going to be taken care of when the generic iommu-based DMA API will be
474 * merged. Meanwhile, statically-addressed iommu-based firmware images should
475 * use RSC_DEVMEM resource entries to map their required @da to the physical
476 * address of their base CMA region (ouch, hacky!).
477 *
478 * Returns 0 on success, or an appropriate error code otherwise
479 */
480static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
481 int offset, int avail)
482{
483 struct device *dev = &rproc->dev;
484 struct rproc_vdev *rvdev;
485 int i, ret;
486 char name[16];
487
488 /* make sure resource isn't truncated */
489 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
490 + rsc->config_len > avail) {
491 dev_err(dev, "vdev rsc is truncated\n");
492 return -EINVAL;
493 }
494
495 /* make sure reserved bytes are zeroes */
496 if (rsc->reserved[0] || rsc->reserved[1]) {
497 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
498 return -EINVAL;
499 }
500
501 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
502 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
503
504 /* we currently support only two vrings per rvdev */
505 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
506 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
507 return -EINVAL;
508 }
509
510 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
511 if (!rvdev)
512 return -ENOMEM;
513
514 kref_init(&rvdev->refcount);
515
516 rvdev->id = rsc->id;
517 rvdev->rproc = rproc;
518 rvdev->index = rproc->nb_vdev++;
519
520 /* Initialise vdev subdevice */
521 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
522 rvdev->dev.parent = rproc->dev.parent;
523 rvdev->dev.release = rproc_rvdev_release;
524 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
525 dev_set_drvdata(&rvdev->dev, rvdev);
526
527 ret = device_register(&rvdev->dev);
528 if (ret) {
529 put_device(&rvdev->dev);
530 return ret;
531 }
532 /* Make device dma capable by inheriting from parent's capabilities */
533 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
534
535 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
536 dma_get_mask(rproc->dev.parent));
537 if (ret) {
538 dev_warn(dev,
539 "Failed to set DMA mask %llx. Trying to continue... %x\n",
540 dma_get_mask(rproc->dev.parent), ret);
541 }
542
543 /* parse the vrings */
544 for (i = 0; i < rsc->num_of_vrings; i++) {
545 ret = rproc_parse_vring(rvdev, rsc, i);
546 if (ret)
547 goto free_rvdev;
548 }
549
550 /* remember the resource offset*/
551 rvdev->rsc_offset = offset;
552
553 /* allocate the vring resources */
554 for (i = 0; i < rsc->num_of_vrings; i++) {
555 ret = rproc_alloc_vring(rvdev, i);
556 if (ret)
557 goto unwind_vring_allocations;
558 }
559
560 list_add_tail(&rvdev->node, &rproc->rvdevs);
561
562 rvdev->subdev.start = rproc_vdev_do_start;
563 rvdev->subdev.stop = rproc_vdev_do_stop;
564
565 rproc_add_subdev(rproc, &rvdev->subdev);
566
567 return 0;
568
569unwind_vring_allocations:
570 for (i--; i >= 0; i--)
571 rproc_free_vring(&rvdev->vring[i]);
572free_rvdev:
573 device_unregister(&rvdev->dev);
574 return ret;
575}
576
577void rproc_vdev_release(struct kref *ref)
578{
579 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
580 struct rproc_vring *rvring;
581 struct rproc *rproc = rvdev->rproc;
582 int id;
583
584 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
585 rvring = &rvdev->vring[id];
586 rproc_free_vring(rvring);
587 }
588
589 rproc_remove_subdev(rproc, &rvdev->subdev);
590 list_del(&rvdev->node);
591 device_unregister(&rvdev->dev);
592}
593
594/**
595 * rproc_handle_trace() - handle a shared trace buffer resource
596 * @rproc: the remote processor
597 * @rsc: the trace resource descriptor
598 * @avail: size of available data (for sanity checking the image)
599 *
600 * In case the remote processor dumps trace logs into memory,
601 * export it via debugfs.
602 *
603 * Currently, the 'da' member of @rsc should contain the device address
604 * where the remote processor is dumping the traces. Later we could also
605 * support dynamically allocating this address using the generic
606 * DMA API (but currently there isn't a use case for that).
607 *
608 * Returns 0 on success, or an appropriate error code otherwise
609 */
610static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
611 int offset, int avail)
612{
613 struct rproc_debug_trace *trace;
614 struct device *dev = &rproc->dev;
615 char name[15];
616
617 if (sizeof(*rsc) > avail) {
618 dev_err(dev, "trace rsc is truncated\n");
619 return -EINVAL;
620 }
621
622 /* make sure reserved bytes are zeroes */
623 if (rsc->reserved) {
624 dev_err(dev, "trace rsc has non zero reserved bytes\n");
625 return -EINVAL;
626 }
627
628 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
629 if (!trace)
630 return -ENOMEM;
631
632 /* set the trace buffer dma properties */
633 trace->trace_mem.len = rsc->len;
634 trace->trace_mem.da = rsc->da;
635
636 /* set pointer on rproc device */
637 trace->rproc = rproc;
638
639 /* make sure snprintf always null terminates, even if truncating */
640 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
641
642 /* create the debugfs entry */
643 trace->tfile = rproc_create_trace_file(name, rproc, trace);
644 if (!trace->tfile) {
645 kfree(trace);
646 return -EINVAL;
647 }
648
649 list_add_tail(&trace->node, &rproc->traces);
650
651 rproc->num_traces++;
652
653 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
654 name, rsc->da, rsc->len);
655
656 return 0;
657}
658
659/**
660 * rproc_handle_devmem() - handle devmem resource entry
661 * @rproc: remote processor handle
662 * @rsc: the devmem resource entry
663 * @avail: size of available data (for sanity checking the image)
664 *
665 * Remote processors commonly need to access certain on-chip peripherals.
666 *
667 * Some of these remote processors access memory via an iommu device,
668 * and might require us to configure their iommu before they can access
669 * the on-chip peripherals they need.
670 *
671 * This resource entry is a request to map such a peripheral device.
672 *
673 * These devmem entries will contain the physical address of the device in
674 * the 'pa' member. If a specific device address is expected, then 'da' will
675 * contain it (currently this is the only use case supported). 'len' will
676 * contain the size of the physical region we need to map.
677 *
678 * Currently we just "trust" those devmem entries to contain valid physical
679 * addresses, but this is going to change: we want the implementations to
680 * tell us ranges of physical addresses the firmware is allowed to request,
681 * and not allow firmwares to request access to physical addresses that
682 * are outside those ranges.
683 */
684static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
685 int offset, int avail)
686{
687 struct rproc_mem_entry *mapping;
688 struct device *dev = &rproc->dev;
689 int ret;
690
691 /* no point in handling this resource without a valid iommu domain */
692 if (!rproc->domain)
693 return -EINVAL;
694
695 if (sizeof(*rsc) > avail) {
696 dev_err(dev, "devmem rsc is truncated\n");
697 return -EINVAL;
698 }
699
700 /* make sure reserved bytes are zeroes */
701 if (rsc->reserved) {
702 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
703 return -EINVAL;
704 }
705
706 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
707 if (!mapping)
708 return -ENOMEM;
709
710 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
711 if (ret) {
712 dev_err(dev, "failed to map devmem: %d\n", ret);
713 goto out;
714 }
715
716 /*
717 * We'll need this info later when we'll want to unmap everything
718 * (e.g. on shutdown).
719 *
720 * We can't trust the remote processor not to change the resource
721 * table, so we must maintain this info independently.
722 */
723 mapping->da = rsc->da;
724 mapping->len = rsc->len;
725 list_add_tail(&mapping->node, &rproc->mappings);
726
727 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
728 rsc->pa, rsc->da, rsc->len);
729
730 return 0;
731
732out:
733 kfree(mapping);
734 return ret;
735}
736
737/**
738 * rproc_alloc_carveout() - allocated specified carveout
739 * @rproc: rproc handle
740 * @mem: the memory entry to allocate
741 *
742 * This function allocate specified memory entry @mem using
743 * dma_alloc_coherent() as default allocator
744 */
745static int rproc_alloc_carveout(struct rproc *rproc,
746 struct rproc_mem_entry *mem)
747{
748 struct rproc_mem_entry *mapping = NULL;
749 struct device *dev = &rproc->dev;
750 dma_addr_t dma;
751 void *va;
752 int ret;
753
754 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
755 if (!va) {
756 dev_err(dev->parent,
757 "failed to allocate dma memory: len 0x%x\n", mem->len);
758 return -ENOMEM;
759 }
760
761 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
762 va, &dma, mem->len);
763
764 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
765 /*
766 * Check requested da is equal to dma address
767 * and print a warn message in case of missalignment.
768 * Don't stop rproc_start sequence as coprocessor may
769 * build pa to da translation on its side.
770 */
771 if (mem->da != (u32)dma)
772 dev_warn(dev->parent,
773 "Allocated carveout doesn't fit device address request\n");
774 }
775
776 /*
777 * Ok, this is non-standard.
778 *
779 * Sometimes we can't rely on the generic iommu-based DMA API
780 * to dynamically allocate the device address and then set the IOMMU
781 * tables accordingly, because some remote processors might
782 * _require_ us to use hard coded device addresses that their
783 * firmware was compiled with.
784 *
785 * In this case, we must use the IOMMU API directly and map
786 * the memory to the device address as expected by the remote
787 * processor.
788 *
789 * Obviously such remote processor devices should not be configured
790 * to use the iommu-based DMA API: we expect 'dma' to contain the
791 * physical address in this case.
792 */
793 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
794 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
795 if (!mapping) {
796 ret = -ENOMEM;
797 goto dma_free;
798 }
799
800 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
801 mem->flags);
802 if (ret) {
803 dev_err(dev, "iommu_map failed: %d\n", ret);
804 goto free_mapping;
805 }
806
807 /*
808 * We'll need this info later when we'll want to unmap
809 * everything (e.g. on shutdown).
810 *
811 * We can't trust the remote processor not to change the
812 * resource table, so we must maintain this info independently.
813 */
814 mapping->da = mem->da;
815 mapping->len = mem->len;
816 list_add_tail(&mapping->node, &rproc->mappings);
817
818 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
819 mem->da, &dma);
820 }
821
822 if (mem->da == FW_RSC_ADDR_ANY) {
823 /* Update device address as undefined by requester */
824 if ((u64)dma & HIGH_BITS_MASK)
825 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
826
827 mem->da = (u32)dma;
828 }
829
830 mem->dma = dma;
831 mem->va = va;
832
833 return 0;
834
835free_mapping:
836 kfree(mapping);
837dma_free:
838 dma_free_coherent(dev->parent, mem->len, va, dma);
839 return ret;
840}
841
842/**
843 * rproc_release_carveout() - release acquired carveout
844 * @rproc: rproc handle
845 * @mem: the memory entry to release
846 *
847 * This function releases specified memory entry @mem allocated via
848 * rproc_alloc_carveout() function by @rproc.
849 */
850static int rproc_release_carveout(struct rproc *rproc,
851 struct rproc_mem_entry *mem)
852{
853 struct device *dev = &rproc->dev;
854
855 /* clean up carveout allocations */
856 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
857 return 0;
858}
859
860/**
861 * rproc_handle_carveout() - handle phys contig memory allocation requests
862 * @rproc: rproc handle
863 * @rsc: the resource entry
864 * @avail: size of available data (for image validation)
865 *
866 * This function will handle firmware requests for allocation of physically
867 * contiguous memory regions.
868 *
869 * These request entries should come first in the firmware's resource table,
870 * as other firmware entries might request placing other data objects inside
871 * these memory regions (e.g. data/code segments, trace resource entries, ...).
872 *
873 * Allocating memory this way helps utilizing the reserved physical memory
874 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
875 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
876 * pressure is important; it may have a substantial impact on performance.
877 */
878static int rproc_handle_carveout(struct rproc *rproc,
879 struct fw_rsc_carveout *rsc,
880 int offset, int avail)
881{
882 struct rproc_mem_entry *carveout;
883 struct device *dev = &rproc->dev;
884
885 if (sizeof(*rsc) > avail) {
886 dev_err(dev, "carveout rsc is truncated\n");
887 return -EINVAL;
888 }
889
890 /* make sure reserved bytes are zeroes */
891 if (rsc->reserved) {
892 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
893 return -EINVAL;
894 }
895
896 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
897 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
898
899 /*
900 * Check carveout rsc already part of a registered carveout,
901 * Search by name, then check the da and length
902 */
903 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
904
905 if (carveout) {
906 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
907 dev_err(dev,
908 "Carveout already associated to resource table\n");
909 return -ENOMEM;
910 }
911
912 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
913 return -ENOMEM;
914
915 /* Update memory carveout with resource table info */
916 carveout->rsc_offset = offset;
917 carveout->flags = rsc->flags;
918
919 return 0;
920 }
921
922 /* Register carveout in in list */
923 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
924 rproc_alloc_carveout,
925 rproc_release_carveout, rsc->name);
926 if (!carveout) {
927 dev_err(dev, "Can't allocate memory entry structure\n");
928 return -ENOMEM;
929 }
930
931 carveout->flags = rsc->flags;
932 carveout->rsc_offset = offset;
933 rproc_add_carveout(rproc, carveout);
934
935 return 0;
936}
937
938/**
939 * rproc_add_carveout() - register an allocated carveout region
940 * @rproc: rproc handle
941 * @mem: memory entry to register
942 *
943 * This function registers specified memory entry in @rproc carveouts list.
944 * Specified carveout should have been allocated before registering.
945 */
946void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
947{
948 list_add_tail(&mem->node, &rproc->carveouts);
949}
950EXPORT_SYMBOL(rproc_add_carveout);
951
952/**
953 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
954 * @dev: pointer on device struct
955 * @va: virtual address
956 * @dma: dma address
957 * @len: memory carveout length
958 * @da: device address
959 * @alloc: memory carveout allocation function
960 * @release: memory carveout release function
961 * @name: carveout name
962 *
963 * This function allocates a rproc_mem_entry struct and fill it with parameters
964 * provided by client.
965 */
966struct rproc_mem_entry *
967rproc_mem_entry_init(struct device *dev,
968 void *va, dma_addr_t dma, int len, u32 da,
969 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
970 int (*release)(struct rproc *, struct rproc_mem_entry *),
971 const char *name, ...)
972{
973 struct rproc_mem_entry *mem;
974 va_list args;
975
976 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
977 if (!mem)
978 return mem;
979
980 mem->va = va;
981 mem->dma = dma;
982 mem->da = da;
983 mem->len = len;
984 mem->alloc = alloc;
985 mem->release = release;
986 mem->rsc_offset = FW_RSC_ADDR_ANY;
987 mem->of_resm_idx = -1;
988
989 va_start(args, name);
990 vsnprintf(mem->name, sizeof(mem->name), name, args);
991 va_end(args);
992
993 return mem;
994}
995EXPORT_SYMBOL(rproc_mem_entry_init);
996
997/**
998 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
999 * from a reserved memory phandle
1000 * @dev: pointer on device struct
1001 * @of_resm_idx: reserved memory phandle index in "memory-region"
1002 * @len: memory carveout length
1003 * @da: device address
1004 * @name: carveout name
1005 *
1006 * This function allocates a rproc_mem_entry struct and fill it with parameters
1007 * provided by client.
1008 */
1009struct rproc_mem_entry *
1010rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1011 u32 da, const char *name, ...)
1012{
1013 struct rproc_mem_entry *mem;
1014 va_list args;
1015
1016 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1017 if (!mem)
1018 return mem;
1019
1020 mem->da = da;
1021 mem->len = len;
1022 mem->rsc_offset = FW_RSC_ADDR_ANY;
1023 mem->of_resm_idx = of_resm_idx;
1024
1025 va_start(args, name);
1026 vsnprintf(mem->name, sizeof(mem->name), name, args);
1027 va_end(args);
1028
1029 return mem;
1030}
1031EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1032
1033/**
1034 * A lookup table for resource handlers. The indices are defined in
1035 * enum fw_resource_type.
1036 */
1037static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1038 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1039 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1040 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1041 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1042};
1043
1044/* handle firmware resource entries before booting the remote processor */
1045static int rproc_handle_resources(struct rproc *rproc,
1046 rproc_handle_resource_t handlers[RSC_LAST])
1047{
1048 struct device *dev = &rproc->dev;
1049 rproc_handle_resource_t handler;
1050 int ret = 0, i;
1051
1052 if (!rproc->table_ptr)
1053 return 0;
1054
1055 for (i = 0; i < rproc->table_ptr->num; i++) {
1056 int offset = rproc->table_ptr->offset[i];
1057 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1058 int avail = rproc->table_sz - offset - sizeof(*hdr);
1059 void *rsc = (void *)hdr + sizeof(*hdr);
1060
1061 /* make sure table isn't truncated */
1062 if (avail < 0) {
1063 dev_err(dev, "rsc table is truncated\n");
1064 return -EINVAL;
1065 }
1066
1067 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1068
1069 if (hdr->type >= RSC_LAST) {
1070 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1071 continue;
1072 }
1073
1074 handler = handlers[hdr->type];
1075 if (!handler)
1076 continue;
1077
1078 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1079 if (ret)
1080 break;
1081 }
1082
1083 return ret;
1084}
1085
1086static int rproc_prepare_subdevices(struct rproc *rproc)
1087{
1088 struct rproc_subdev *subdev;
1089 int ret;
1090
1091 list_for_each_entry(subdev, &rproc->subdevs, node) {
1092 if (subdev->prepare) {
1093 ret = subdev->prepare(subdev);
1094 if (ret)
1095 goto unroll_preparation;
1096 }
1097 }
1098
1099 return 0;
1100
1101unroll_preparation:
1102 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1103 if (subdev->unprepare)
1104 subdev->unprepare(subdev);
1105 }
1106
1107 return ret;
1108}
1109
1110static int rproc_start_subdevices(struct rproc *rproc)
1111{
1112 struct rproc_subdev *subdev;
1113 int ret;
1114
1115 list_for_each_entry(subdev, &rproc->subdevs, node) {
1116 if (subdev->start) {
1117 ret = subdev->start(subdev);
1118 if (ret)
1119 goto unroll_registration;
1120 }
1121 }
1122
1123 return 0;
1124
1125unroll_registration:
1126 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1127 if (subdev->stop)
1128 subdev->stop(subdev, true);
1129 }
1130
1131 return ret;
1132}
1133
1134static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1135{
1136 struct rproc_subdev *subdev;
1137
1138 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1139 if (subdev->stop)
1140 subdev->stop(subdev, crashed);
1141 }
1142}
1143
1144static void rproc_unprepare_subdevices(struct rproc *rproc)
1145{
1146 struct rproc_subdev *subdev;
1147
1148 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1149 if (subdev->unprepare)
1150 subdev->unprepare(subdev);
1151 }
1152}
1153
1154/**
1155 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1156 * in the list
1157 * @rproc: the remote processor handle
1158 *
1159 * This function parses registered carveout list, performs allocation
1160 * if alloc() ops registered and updates resource table information
1161 * if rsc_offset set.
1162 *
1163 * Return: 0 on success
1164 */
1165static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1166{
1167 struct rproc_mem_entry *entry, *tmp;
1168 struct fw_rsc_carveout *rsc;
1169 struct device *dev = &rproc->dev;
1170 u64 pa;
1171 int ret;
1172
1173 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1174 if (entry->alloc) {
1175 ret = entry->alloc(rproc, entry);
1176 if (ret) {
1177 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1178 entry->name, ret);
1179 return -ENOMEM;
1180 }
1181 }
1182
1183 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1184 /* update resource table */
1185 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1186
1187 /*
1188 * Some remote processors might need to know the pa
1189 * even though they are behind an IOMMU. E.g., OMAP4's
1190 * remote M3 processor needs this so it can control
1191 * on-chip hardware accelerators that are not behind
1192 * the IOMMU, and therefor must know the pa.
1193 *
1194 * Generally we don't want to expose physical addresses
1195 * if we don't have to (remote processors are generally
1196 * _not_ trusted), so we might want to do this only for
1197 * remote processor that _must_ have this (e.g. OMAP4's
1198 * dual M3 subsystem).
1199 *
1200 * Non-IOMMU processors might also want to have this info.
1201 * In this case, the device address and the physical address
1202 * are the same.
1203 */
1204
1205 /* Use va if defined else dma to generate pa */
1206 if (entry->va)
1207 pa = (u64)rproc_va_to_pa(entry->va);
1208 else
1209 pa = (u64)entry->dma;
1210
1211 if (((u64)pa) & HIGH_BITS_MASK)
1212 dev_warn(dev,
1213 "Physical address cast in 32bit to fit resource table format\n");
1214
1215 rsc->pa = (u32)pa;
1216 rsc->da = entry->da;
1217 rsc->len = entry->len;
1218 }
1219 }
1220
1221 return 0;
1222}
1223
1224/**
1225 * rproc_coredump_cleanup() - clean up dump_segments list
1226 * @rproc: the remote processor handle
1227 */
1228static void rproc_coredump_cleanup(struct rproc *rproc)
1229{
1230 struct rproc_dump_segment *entry, *tmp;
1231
1232 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1233 list_del(&entry->node);
1234 kfree(entry);
1235 }
1236}
1237
1238/**
1239 * rproc_resource_cleanup() - clean up and free all acquired resources
1240 * @rproc: rproc handle
1241 *
1242 * This function will free all resources acquired for @rproc, and it
1243 * is called whenever @rproc either shuts down or fails to boot.
1244 */
1245static void rproc_resource_cleanup(struct rproc *rproc)
1246{
1247 struct rproc_mem_entry *entry, *tmp;
1248 struct rproc_debug_trace *trace, *ttmp;
1249 struct rproc_vdev *rvdev, *rvtmp;
1250 struct device *dev = &rproc->dev;
1251
1252 /* clean up debugfs trace entries */
1253 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1254 rproc_remove_trace_file(trace->tfile);
1255 rproc->num_traces--;
1256 list_del(&trace->node);
1257 kfree(trace);
1258 }
1259
1260 /* clean up iommu mapping entries */
1261 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1262 size_t unmapped;
1263
1264 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1265 if (unmapped != entry->len) {
1266 /* nothing much to do besides complaining */
1267 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1268 unmapped);
1269 }
1270
1271 list_del(&entry->node);
1272 kfree(entry);
1273 }
1274
1275 /* clean up carveout allocations */
1276 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1277 if (entry->release)
1278 entry->release(rproc, entry);
1279 list_del(&entry->node);
1280 kfree(entry);
1281 }
1282
1283 /* clean up remote vdev entries */
1284 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1285 kref_put(&rvdev->refcount, rproc_vdev_release);
1286
1287 rproc_coredump_cleanup(rproc);
1288}
1289
1290static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1291{
1292 struct resource_table *loaded_table;
1293 struct device *dev = &rproc->dev;
1294 int ret;
1295
1296 /* load the ELF segments to memory */
1297 ret = rproc_load_segments(rproc, fw);
1298 if (ret) {
1299 dev_err(dev, "Failed to load program segments: %d\n", ret);
1300 return ret;
1301 }
1302
1303 /*
1304 * The starting device has been given the rproc->cached_table as the
1305 * resource table. The address of the vring along with the other
1306 * allocated resources (carveouts etc) is stored in cached_table.
1307 * In order to pass this information to the remote device we must copy
1308 * this information to device memory. We also update the table_ptr so
1309 * that any subsequent changes will be applied to the loaded version.
1310 */
1311 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1312 if (loaded_table) {
1313 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1314 rproc->table_ptr = loaded_table;
1315 }
1316
1317 ret = rproc_prepare_subdevices(rproc);
1318 if (ret) {
1319 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1320 rproc->name, ret);
1321 goto reset_table_ptr;
1322 }
1323
1324 /* power up the remote processor */
1325 ret = rproc->ops->start(rproc);
1326 if (ret) {
1327 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1328 goto unprepare_subdevices;
1329 }
1330
1331 /* Start any subdevices for the remote processor */
1332 ret = rproc_start_subdevices(rproc);
1333 if (ret) {
1334 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1335 rproc->name, ret);
1336 goto stop_rproc;
1337 }
1338
1339 rproc->state = RPROC_RUNNING;
1340
1341 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1342
1343 return 0;
1344
1345stop_rproc:
1346 rproc->ops->stop(rproc);
1347unprepare_subdevices:
1348 rproc_unprepare_subdevices(rproc);
1349reset_table_ptr:
1350 rproc->table_ptr = rproc->cached_table;
1351
1352 return ret;
1353}
1354
1355/*
1356 * take a firmware and boot a remote processor with it.
1357 */
1358static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1359{
1360 struct device *dev = &rproc->dev;
1361 const char *name = rproc->firmware;
1362 int ret;
1363
1364 ret = rproc_fw_sanity_check(rproc, fw);
1365 if (ret)
1366 return ret;
1367
1368 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1369
1370 /*
1371 * if enabling an IOMMU isn't relevant for this rproc, this is
1372 * just a nop
1373 */
1374 ret = rproc_enable_iommu(rproc);
1375 if (ret) {
1376 dev_err(dev, "can't enable iommu: %d\n", ret);
1377 return ret;
1378 }
1379
1380 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1381
1382 /* Load resource table, core dump segment list etc from the firmware */
1383 ret = rproc_parse_fw(rproc, fw);
1384 if (ret)
1385 goto disable_iommu;
1386
1387 /* reset max_notifyid */
1388 rproc->max_notifyid = -1;
1389
1390 /* reset handled vdev */
1391 rproc->nb_vdev = 0;
1392
1393 /* handle fw resources which are required to boot rproc */
1394 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1395 if (ret) {
1396 dev_err(dev, "Failed to process resources: %d\n", ret);
1397 goto clean_up_resources;
1398 }
1399
1400 /* Allocate carveout resources associated to rproc */
1401 ret = rproc_alloc_registered_carveouts(rproc);
1402 if (ret) {
1403 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1404 ret);
1405 goto clean_up_resources;
1406 }
1407
1408 ret = rproc_start(rproc, fw);
1409 if (ret)
1410 goto clean_up_resources;
1411
1412 return 0;
1413
1414clean_up_resources:
1415 rproc_resource_cleanup(rproc);
1416 kfree(rproc->cached_table);
1417 rproc->cached_table = NULL;
1418 rproc->table_ptr = NULL;
1419disable_iommu:
1420 rproc_disable_iommu(rproc);
1421 return ret;
1422}
1423
1424/*
1425 * take a firmware and boot it up.
1426 *
1427 * Note: this function is called asynchronously upon registration of the
1428 * remote processor (so we must wait until it completes before we try
1429 * to unregister the device. one other option is just to use kref here,
1430 * that might be cleaner).
1431 */
1432static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1433{
1434 struct rproc *rproc = context;
1435
1436 rproc_boot(rproc);
1437
1438 release_firmware(fw);
1439}
1440
1441static int rproc_trigger_auto_boot(struct rproc *rproc)
1442{
1443 int ret;
1444
1445 /*
1446 * We're initiating an asynchronous firmware loading, so we can
1447 * be built-in kernel code, without hanging the boot process.
1448 */
1449 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1450 rproc->firmware, &rproc->dev, GFP_KERNEL,
1451 rproc, rproc_auto_boot_callback);
1452 if (ret < 0)
1453 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1454
1455 return ret;
1456}
1457
1458static int rproc_stop(struct rproc *rproc, bool crashed)
1459{
1460 struct device *dev = &rproc->dev;
1461 int ret;
1462
1463 /* Stop any subdevices for the remote processor */
1464 rproc_stop_subdevices(rproc, crashed);
1465
1466 /* the installed resource table is no longer accessible */
1467 rproc->table_ptr = rproc->cached_table;
1468
1469 /* power off the remote processor */
1470 ret = rproc->ops->stop(rproc);
1471 if (ret) {
1472 dev_err(dev, "can't stop rproc: %d\n", ret);
1473 return ret;
1474 }
1475
1476 rproc_unprepare_subdevices(rproc);
1477
1478 rproc->state = RPROC_OFFLINE;
1479
1480 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1481
1482 return 0;
1483}
1484
1485/**
1486 * rproc_coredump_add_segment() - add segment of device memory to coredump
1487 * @rproc: handle of a remote processor
1488 * @da: device address
1489 * @size: size of segment
1490 *
1491 * Add device memory to the list of segments to be included in a coredump for
1492 * the remoteproc.
1493 *
1494 * Return: 0 on success, negative errno on error.
1495 */
1496int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1497{
1498 struct rproc_dump_segment *segment;
1499
1500 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1501 if (!segment)
1502 return -ENOMEM;
1503
1504 segment->da = da;
1505 segment->size = size;
1506
1507 list_add_tail(&segment->node, &rproc->dump_segments);
1508
1509 return 0;
1510}
1511EXPORT_SYMBOL(rproc_coredump_add_segment);
1512
1513/**
1514 * rproc_coredump_add_custom_segment() - add custom coredump segment
1515 * @rproc: handle of a remote processor
1516 * @da: device address
1517 * @size: size of segment
1518 * @dumpfn: custom dump function called for each segment during coredump
1519 * @priv: private data
1520 *
1521 * Add device memory to the list of segments to be included in the coredump
1522 * and associate the segment with the given custom dump function and private
1523 * data.
1524 *
1525 * Return: 0 on success, negative errno on error.
1526 */
1527int rproc_coredump_add_custom_segment(struct rproc *rproc,
1528 dma_addr_t da, size_t size,
1529 void (*dumpfn)(struct rproc *rproc,
1530 struct rproc_dump_segment *segment,
1531 void *dest),
1532 void *priv)
1533{
1534 struct rproc_dump_segment *segment;
1535
1536 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1537 if (!segment)
1538 return -ENOMEM;
1539
1540 segment->da = da;
1541 segment->size = size;
1542 segment->priv = priv;
1543 segment->dump = dumpfn;
1544
1545 list_add_tail(&segment->node, &rproc->dump_segments);
1546
1547 return 0;
1548}
1549EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1550
1551/**
1552 * rproc_coredump() - perform coredump
1553 * @rproc: rproc handle
1554 *
1555 * This function will generate an ELF header for the registered segments
1556 * and create a devcoredump device associated with rproc.
1557 */
1558static void rproc_coredump(struct rproc *rproc)
1559{
1560 struct rproc_dump_segment *segment;
1561 struct elf32_phdr *phdr;
1562 struct elf32_hdr *ehdr;
1563 size_t data_size;
1564 size_t offset;
1565 void *data;
1566 void *ptr;
1567 int phnum = 0;
1568
1569 if (list_empty(&rproc->dump_segments))
1570 return;
1571
1572 data_size = sizeof(*ehdr);
1573 list_for_each_entry(segment, &rproc->dump_segments, node) {
1574 data_size += sizeof(*phdr) + segment->size;
1575
1576 phnum++;
1577 }
1578
1579 data = vmalloc(data_size);
1580 if (!data)
1581 return;
1582
1583 ehdr = data;
1584
1585 memset(ehdr, 0, sizeof(*ehdr));
1586 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1587 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1588 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1589 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1590 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1591 ehdr->e_type = ET_CORE;
1592 ehdr->e_machine = EM_NONE;
1593 ehdr->e_version = EV_CURRENT;
1594 ehdr->e_entry = rproc->bootaddr;
1595 ehdr->e_phoff = sizeof(*ehdr);
1596 ehdr->e_ehsize = sizeof(*ehdr);
1597 ehdr->e_phentsize = sizeof(*phdr);
1598 ehdr->e_phnum = phnum;
1599
1600 phdr = data + ehdr->e_phoff;
1601 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1602 list_for_each_entry(segment, &rproc->dump_segments, node) {
1603 memset(phdr, 0, sizeof(*phdr));
1604 phdr->p_type = PT_LOAD;
1605 phdr->p_offset = offset;
1606 phdr->p_vaddr = segment->da;
1607 phdr->p_paddr = segment->da;
1608 phdr->p_filesz = segment->size;
1609 phdr->p_memsz = segment->size;
1610 phdr->p_flags = PF_R | PF_W | PF_X;
1611 phdr->p_align = 0;
1612
1613 if (segment->dump) {
1614 segment->dump(rproc, segment, data + offset);
1615 } else {
1616 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1617 if (!ptr) {
1618 dev_err(&rproc->dev,
1619 "invalid coredump segment (%pad, %zu)\n",
1620 &segment->da, segment->size);
1621 memset(data + offset, 0xff, segment->size);
1622 } else {
1623 memcpy(data + offset, ptr, segment->size);
1624 }
1625 }
1626
1627 offset += phdr->p_filesz;
1628 phdr++;
1629 }
1630
1631 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1632}
1633
1634/**
1635 * rproc_trigger_recovery() - recover a remoteproc
1636 * @rproc: the remote processor
1637 *
1638 * The recovery is done by resetting all the virtio devices, that way all the
1639 * rpmsg drivers will be reseted along with the remote processor making the
1640 * remoteproc functional again.
1641 *
1642 * This function can sleep, so it cannot be called from atomic context.
1643 */
1644int rproc_trigger_recovery(struct rproc *rproc)
1645{
1646 const struct firmware *firmware_p;
1647 struct device *dev = &rproc->dev;
1648 int ret;
1649
1650 dev_err(dev, "recovering %s\n", rproc->name);
1651
1652 ret = mutex_lock_interruptible(&rproc->lock);
1653 if (ret)
1654 return ret;
1655
1656 ret = rproc_stop(rproc, true);
1657 if (ret)
1658 goto unlock_mutex;
1659
1660 /* generate coredump */
1661 rproc_coredump(rproc);
1662
1663 /* load firmware */
1664 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1665 if (ret < 0) {
1666 dev_err(dev, "request_firmware failed: %d\n", ret);
1667 goto unlock_mutex;
1668 }
1669
1670 /* boot the remote processor up again */
1671 ret = rproc_start(rproc, firmware_p);
1672
1673 release_firmware(firmware_p);
1674
1675unlock_mutex:
1676 mutex_unlock(&rproc->lock);
1677 return ret;
1678}
1679
1680/**
1681 * rproc_crash_handler_work() - handle a crash
1682 *
1683 * This function needs to handle everything related to a crash, like cpu
1684 * registers and stack dump, information to help to debug the fatal error, etc.
1685 */
1686static void rproc_crash_handler_work(struct work_struct *work)
1687{
1688 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1689 struct device *dev = &rproc->dev;
1690
1691 dev_dbg(dev, "enter %s\n", __func__);
1692
1693 mutex_lock(&rproc->lock);
1694
1695 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1696 /* handle only the first crash detected */
1697 mutex_unlock(&rproc->lock);
1698 return;
1699 }
1700
1701 rproc->state = RPROC_CRASHED;
1702 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1703 rproc->name);
1704
1705 mutex_unlock(&rproc->lock);
1706
1707 if (!rproc->recovery_disabled)
1708 rproc_trigger_recovery(rproc);
1709}
1710
1711/**
1712 * rproc_boot() - boot a remote processor
1713 * @rproc: handle of a remote processor
1714 *
1715 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1716 *
1717 * If the remote processor is already powered on, this function immediately
1718 * returns (successfully).
1719 *
1720 * Returns 0 on success, and an appropriate error value otherwise.
1721 */
1722int rproc_boot(struct rproc *rproc)
1723{
1724 const struct firmware *firmware_p;
1725 struct device *dev;
1726 int ret;
1727
1728 if (!rproc) {
1729 pr_err("invalid rproc handle\n");
1730 return -EINVAL;
1731 }
1732
1733 dev = &rproc->dev;
1734
1735 ret = mutex_lock_interruptible(&rproc->lock);
1736 if (ret) {
1737 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1738 return ret;
1739 }
1740
1741 if (rproc->state == RPROC_DELETED) {
1742 ret = -ENODEV;
1743 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1744 goto unlock_mutex;
1745 }
1746
1747 /* skip the boot process if rproc is already powered up */
1748 if (atomic_inc_return(&rproc->power) > 1) {
1749 ret = 0;
1750 goto unlock_mutex;
1751 }
1752
1753 dev_info(dev, "powering up %s\n", rproc->name);
1754
1755 /* load firmware */
1756 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1757 if (ret < 0) {
1758 dev_err(dev, "request_firmware failed: %d\n", ret);
1759 goto downref_rproc;
1760 }
1761
1762 ret = rproc_fw_boot(rproc, firmware_p);
1763
1764 release_firmware(firmware_p);
1765
1766downref_rproc:
1767 if (ret)
1768 atomic_dec(&rproc->power);
1769unlock_mutex:
1770 mutex_unlock(&rproc->lock);
1771 return ret;
1772}
1773EXPORT_SYMBOL(rproc_boot);
1774
1775/**
1776 * rproc_shutdown() - power off the remote processor
1777 * @rproc: the remote processor
1778 *
1779 * Power off a remote processor (previously booted with rproc_boot()).
1780 *
1781 * In case @rproc is still being used by an additional user(s), then
1782 * this function will just decrement the power refcount and exit,
1783 * without really powering off the device.
1784 *
1785 * Every call to rproc_boot() must (eventually) be accompanied by a call
1786 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1787 *
1788 * Notes:
1789 * - we're not decrementing the rproc's refcount, only the power refcount.
1790 * which means that the @rproc handle stays valid even after rproc_shutdown()
1791 * returns, and users can still use it with a subsequent rproc_boot(), if
1792 * needed.
1793 */
1794void rproc_shutdown(struct rproc *rproc)
1795{
1796 struct device *dev = &rproc->dev;
1797 int ret;
1798
1799 ret = mutex_lock_interruptible(&rproc->lock);
1800 if (ret) {
1801 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1802 return;
1803 }
1804
1805 /* if the remote proc is still needed, bail out */
1806 if (!atomic_dec_and_test(&rproc->power))
1807 goto out;
1808
1809 ret = rproc_stop(rproc, false);
1810 if (ret) {
1811 atomic_inc(&rproc->power);
1812 goto out;
1813 }
1814
1815 /* clean up all acquired resources */
1816 rproc_resource_cleanup(rproc);
1817
1818 rproc_disable_iommu(rproc);
1819
1820 /* Free the copy of the resource table */
1821 kfree(rproc->cached_table);
1822 rproc->cached_table = NULL;
1823 rproc->table_ptr = NULL;
1824out:
1825 mutex_unlock(&rproc->lock);
1826}
1827EXPORT_SYMBOL(rproc_shutdown);
1828
1829/**
1830 * rproc_get_by_phandle() - find a remote processor by phandle
1831 * @phandle: phandle to the rproc
1832 *
1833 * Finds an rproc handle using the remote processor's phandle, and then
1834 * return a handle to the rproc.
1835 *
1836 * This function increments the remote processor's refcount, so always
1837 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1838 *
1839 * Returns the rproc handle on success, and NULL on failure.
1840 */
1841#ifdef CONFIG_OF
1842struct rproc *rproc_get_by_phandle(phandle phandle)
1843{
1844 struct rproc *rproc = NULL, *r;
1845 struct device_node *np;
1846
1847 np = of_find_node_by_phandle(phandle);
1848 if (!np)
1849 return NULL;
1850
1851 mutex_lock(&rproc_list_mutex);
1852 list_for_each_entry(r, &rproc_list, node) {
1853 if (r->dev.parent && r->dev.parent->of_node == np) {
1854 /* prevent underlying implementation from being removed */
1855 if (!try_module_get(r->dev.parent->driver->owner)) {
1856 dev_err(&r->dev, "can't get owner\n");
1857 break;
1858 }
1859
1860 rproc = r;
1861 get_device(&rproc->dev);
1862 break;
1863 }
1864 }
1865 mutex_unlock(&rproc_list_mutex);
1866
1867 of_node_put(np);
1868
1869 return rproc;
1870}
1871#else
1872struct rproc *rproc_get_by_phandle(phandle phandle)
1873{
1874 return NULL;
1875}
1876#endif
1877EXPORT_SYMBOL(rproc_get_by_phandle);
1878
1879/**
1880 * rproc_add() - register a remote processor
1881 * @rproc: the remote processor handle to register
1882 *
1883 * Registers @rproc with the remoteproc framework, after it has been
1884 * allocated with rproc_alloc().
1885 *
1886 * This is called by the platform-specific rproc implementation, whenever
1887 * a new remote processor device is probed.
1888 *
1889 * Returns 0 on success and an appropriate error code otherwise.
1890 *
1891 * Note: this function initiates an asynchronous firmware loading
1892 * context, which will look for virtio devices supported by the rproc's
1893 * firmware.
1894 *
1895 * If found, those virtio devices will be created and added, so as a result
1896 * of registering this remote processor, additional virtio drivers might be
1897 * probed.
1898 */
1899int rproc_add(struct rproc *rproc)
1900{
1901 struct device *dev = &rproc->dev;
1902 int ret;
1903
1904 ret = device_add(dev);
1905 if (ret < 0)
1906 return ret;
1907
1908 dev_info(dev, "%s is available\n", rproc->name);
1909
1910 /* create debugfs entries */
1911 rproc_create_debug_dir(rproc);
1912
1913 /* if rproc is marked always-on, request it to boot */
1914 if (rproc->auto_boot) {
1915 ret = rproc_trigger_auto_boot(rproc);
1916 if (ret < 0)
1917 return ret;
1918 }
1919
1920 /* expose to rproc_get_by_phandle users */
1921 mutex_lock(&rproc_list_mutex);
1922 list_add(&rproc->node, &rproc_list);
1923 mutex_unlock(&rproc_list_mutex);
1924
1925 return 0;
1926}
1927EXPORT_SYMBOL(rproc_add);
1928
1929/**
1930 * rproc_type_release() - release a remote processor instance
1931 * @dev: the rproc's device
1932 *
1933 * This function should _never_ be called directly.
1934 *
1935 * It will be called by the driver core when no one holds a valid pointer
1936 * to @dev anymore.
1937 */
1938static void rproc_type_release(struct device *dev)
1939{
1940 struct rproc *rproc = container_of(dev, struct rproc, dev);
1941
1942 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1943
1944 idr_destroy(&rproc->notifyids);
1945
1946 if (rproc->index >= 0)
1947 ida_simple_remove(&rproc_dev_index, rproc->index);
1948
1949 kfree(rproc->firmware);
1950 kfree(rproc->ops);
1951 kfree(rproc);
1952}
1953
1954static const struct device_type rproc_type = {
1955 .name = "remoteproc",
1956 .release = rproc_type_release,
1957};
1958
1959/**
1960 * rproc_alloc() - allocate a remote processor handle
1961 * @dev: the underlying device
1962 * @name: name of this remote processor
1963 * @ops: platform-specific handlers (mainly start/stop)
1964 * @firmware: name of firmware file to load, can be NULL
1965 * @len: length of private data needed by the rproc driver (in bytes)
1966 *
1967 * Allocates a new remote processor handle, but does not register
1968 * it yet. if @firmware is NULL, a default name is used.
1969 *
1970 * This function should be used by rproc implementations during initialization
1971 * of the remote processor.
1972 *
1973 * After creating an rproc handle using this function, and when ready,
1974 * implementations should then call rproc_add() to complete
1975 * the registration of the remote processor.
1976 *
1977 * On success the new rproc is returned, and on failure, NULL.
1978 *
1979 * Note: _never_ directly deallocate @rproc, even if it was not registered
1980 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1981 */
1982struct rproc *rproc_alloc(struct device *dev, const char *name,
1983 const struct rproc_ops *ops,
1984 const char *firmware, int len)
1985{
1986 struct rproc *rproc;
1987 char *p, *template = "rproc-%s-fw";
1988 int name_len;
1989
1990 if (!dev || !name || !ops)
1991 return NULL;
1992
1993 if (!firmware) {
1994 /*
1995 * If the caller didn't pass in a firmware name then
1996 * construct a default name.
1997 */
1998 name_len = strlen(name) + strlen(template) - 2 + 1;
1999 p = kmalloc(name_len, GFP_KERNEL);
2000 if (!p)
2001 return NULL;
2002 snprintf(p, name_len, template, name);
2003 } else {
2004 p = kstrdup(firmware, GFP_KERNEL);
2005 if (!p)
2006 return NULL;
2007 }
2008
2009 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2010 if (!rproc) {
2011 kfree(p);
2012 return NULL;
2013 }
2014
2015 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2016 if (!rproc->ops) {
2017 kfree(p);
2018 kfree(rproc);
2019 return NULL;
2020 }
2021
2022 rproc->firmware = p;
2023 rproc->name = name;
2024 rproc->priv = &rproc[1];
2025 rproc->auto_boot = true;
2026
2027 device_initialize(&rproc->dev);
2028 rproc->dev.parent = dev;
2029 rproc->dev.type = &rproc_type;
2030 rproc->dev.class = &rproc_class;
2031 rproc->dev.driver_data = rproc;
2032
2033 /* Assign a unique device index and name */
2034 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2035 if (rproc->index < 0) {
2036 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2037 put_device(&rproc->dev);
2038 return NULL;
2039 }
2040
2041 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2042
2043 atomic_set(&rproc->power, 0);
2044
2045 /* Default to ELF loader if no load function is specified */
2046 if (!rproc->ops->load) {
2047 rproc->ops->load = rproc_elf_load_segments;
2048 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2049 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2050 rproc->ops->sanity_check = rproc_elf_sanity_check;
2051 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2052 }
2053
2054 mutex_init(&rproc->lock);
2055
2056 idr_init(&rproc->notifyids);
2057
2058 INIT_LIST_HEAD(&rproc->carveouts);
2059 INIT_LIST_HEAD(&rproc->mappings);
2060 INIT_LIST_HEAD(&rproc->traces);
2061 INIT_LIST_HEAD(&rproc->rvdevs);
2062 INIT_LIST_HEAD(&rproc->subdevs);
2063 INIT_LIST_HEAD(&rproc->dump_segments);
2064
2065 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2066
2067 rproc->state = RPROC_OFFLINE;
2068
2069 return rproc;
2070}
2071EXPORT_SYMBOL(rproc_alloc);
2072
2073/**
2074 * rproc_free() - unroll rproc_alloc()
2075 * @rproc: the remote processor handle
2076 *
2077 * This function decrements the rproc dev refcount.
2078 *
2079 * If no one holds any reference to rproc anymore, then its refcount would
2080 * now drop to zero, and it would be freed.
2081 */
2082void rproc_free(struct rproc *rproc)
2083{
2084 put_device(&rproc->dev);
2085}
2086EXPORT_SYMBOL(rproc_free);
2087
2088/**
2089 * rproc_put() - release rproc reference
2090 * @rproc: the remote processor handle
2091 *
2092 * This function decrements the rproc dev refcount.
2093 *
2094 * If no one holds any reference to rproc anymore, then its refcount would
2095 * now drop to zero, and it would be freed.
2096 */
2097void rproc_put(struct rproc *rproc)
2098{
2099 module_put(rproc->dev.parent->driver->owner);
2100 put_device(&rproc->dev);
2101}
2102EXPORT_SYMBOL(rproc_put);
2103
2104/**
2105 * rproc_del() - unregister a remote processor
2106 * @rproc: rproc handle to unregister
2107 *
2108 * This function should be called when the platform specific rproc
2109 * implementation decides to remove the rproc device. it should
2110 * _only_ be called if a previous invocation of rproc_add()
2111 * has completed successfully.
2112 *
2113 * After rproc_del() returns, @rproc isn't freed yet, because
2114 * of the outstanding reference created by rproc_alloc. To decrement that
2115 * one last refcount, one still needs to call rproc_free().
2116 *
2117 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2118 */
2119int rproc_del(struct rproc *rproc)
2120{
2121 if (!rproc)
2122 return -EINVAL;
2123
2124 /* if rproc is marked always-on, rproc_add() booted it */
2125 /* TODO: make sure this works with rproc->power > 1 */
2126 if (rproc->auto_boot)
2127 rproc_shutdown(rproc);
2128
2129 mutex_lock(&rproc->lock);
2130 rproc->state = RPROC_DELETED;
2131 mutex_unlock(&rproc->lock);
2132
2133 rproc_delete_debug_dir(rproc);
2134
2135 /* the rproc is downref'ed as soon as it's removed from the klist */
2136 mutex_lock(&rproc_list_mutex);
2137 list_del(&rproc->node);
2138 mutex_unlock(&rproc_list_mutex);
2139
2140 device_del(&rproc->dev);
2141
2142 return 0;
2143}
2144EXPORT_SYMBOL(rproc_del);
2145
2146/**
2147 * rproc_add_subdev() - add a subdevice to a remoteproc
2148 * @rproc: rproc handle to add the subdevice to
2149 * @subdev: subdev handle to register
2150 *
2151 * Caller is responsible for populating optional subdevice function pointers.
2152 */
2153void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2154{
2155 list_add_tail(&subdev->node, &rproc->subdevs);
2156}
2157EXPORT_SYMBOL(rproc_add_subdev);
2158
2159/**
2160 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2161 * @rproc: rproc handle to remove the subdevice from
2162 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2163 */
2164void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2165{
2166 list_del(&subdev->node);
2167}
2168EXPORT_SYMBOL(rproc_remove_subdev);
2169
2170/**
2171 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2172 * @dev: child device to find ancestor of
2173 *
2174 * Returns the ancestor rproc instance, or NULL if not found.
2175 */
2176struct rproc *rproc_get_by_child(struct device *dev)
2177{
2178 for (dev = dev->parent; dev; dev = dev->parent) {
2179 if (dev->type == &rproc_type)
2180 return dev->driver_data;
2181 }
2182
2183 return NULL;
2184}
2185EXPORT_SYMBOL(rproc_get_by_child);
2186
2187/**
2188 * rproc_report_crash() - rproc crash reporter function
2189 * @rproc: remote processor
2190 * @type: crash type
2191 *
2192 * This function must be called every time a crash is detected by the low-level
2193 * drivers implementing a specific remoteproc. This should not be called from a
2194 * non-remoteproc driver.
2195 *
2196 * This function can be called from atomic/interrupt context.
2197 */
2198void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2199{
2200 if (!rproc) {
2201 pr_err("NULL rproc pointer\n");
2202 return;
2203 }
2204
2205 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2206 rproc->name, rproc_crash_to_string(type));
2207
2208 /* create a new task to handle the error */
2209 schedule_work(&rproc->crash_handler);
2210}
2211EXPORT_SYMBOL(rproc_report_crash);
2212
2213static int __init remoteproc_init(void)
2214{
2215 rproc_init_sysfs();
2216 rproc_init_debugfs();
2217
2218 return 0;
2219}
2220module_init(remoteproc_init);
2221
2222static void __exit remoteproc_exit(void)
2223{
2224 ida_destroy(&rproc_dev_index);
2225
2226 rproc_exit_debugfs();
2227 rproc_exit_sysfs();
2228}
2229module_exit(remoteproc_exit);
2230
2231MODULE_LICENSE("GPL v2");
2232MODULE_DESCRIPTION("Generic Remote Processor Framework");
2233