1// SPDX-License-Identifier: GPL-2.0
2/*
3 * rtc and date/time utility functions
4 *
5 * Copyright (C) 2005-06 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c and other bits
9 *
10 * Author: Cassio Neri <cassio.neri@gmail.com> (rtc_time64_to_tm)
11 */
12
13#include <linux/export.h>
14#include <linux/rtc.h>
15
16static const unsigned char rtc_days_in_month[] = {
17 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
18};
19
20static const unsigned short rtc_ydays[2][13] = {
21 /* Normal years */
22 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
23 /* Leap years */
24 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
25};
26
27/*
28 * The number of days in the month.
29 */
30int rtc_month_days(unsigned int month, unsigned int year)
31{
32 return rtc_days_in_month[month] + (is_leap_year(year) && month == 1);
33}
34EXPORT_SYMBOL(rtc_month_days);
35
36/*
37 * The number of days since January 1. (0 to 365)
38 */
39int rtc_year_days(unsigned int day, unsigned int month, unsigned int year)
40{
41 return rtc_ydays[is_leap_year(year)][month] + day - 1;
42}
43EXPORT_SYMBOL(rtc_year_days);
44
45/**
46 * rtc_time64_to_tm - converts time64_t to rtc_time.
47 *
48 * @time: The number of seconds since 01-01-1970 00:00:00.
49 * (Must be positive.)
50 * @tm: Pointer to the struct rtc_time.
51 */
52void rtc_time64_to_tm(time64_t time, struct rtc_time *tm)
53{
54 unsigned int secs;
55 int days;
56
57 u64 u64tmp;
58 u32 u32tmp, udays, century, day_of_century, year_of_century, year,
59 day_of_year, month, day;
60 bool is_Jan_or_Feb, is_leap_year;
61
62 /* time must be positive */
63 days = div_s64_rem(dividend: time, divisor: 86400, remainder: &secs);
64
65 /* day of the week, 1970-01-01 was a Thursday */
66 tm->tm_wday = (days + 4) % 7;
67
68 /*
69 * The following algorithm is, basically, Proposition 6.3 of Neri
70 * and Schneider [1]. In a few words: it works on the computational
71 * (fictitious) calendar where the year starts in March, month = 2
72 * (*), and finishes in February, month = 13. This calendar is
73 * mathematically convenient because the day of the year does not
74 * depend on whether the year is leap or not. For instance:
75 *
76 * March 1st 0-th day of the year;
77 * ...
78 * April 1st 31-st day of the year;
79 * ...
80 * January 1st 306-th day of the year; (Important!)
81 * ...
82 * February 28th 364-th day of the year;
83 * February 29th 365-th day of the year (if it exists).
84 *
85 * After having worked out the date in the computational calendar
86 * (using just arithmetics) it's easy to convert it to the
87 * corresponding date in the Gregorian calendar.
88 *
89 * [1] "Euclidean Affine Functions and Applications to Calendar
90 * Algorithms". https://arxiv.org/abs/2102.06959
91 *
92 * (*) The numbering of months follows rtc_time more closely and
93 * thus, is slightly different from [1].
94 */
95
96 udays = ((u32) days) + 719468;
97
98 u32tmp = 4 * udays + 3;
99 century = u32tmp / 146097;
100 day_of_century = u32tmp % 146097 / 4;
101
102 u32tmp = 4 * day_of_century + 3;
103 u64tmp = 2939745ULL * u32tmp;
104 year_of_century = upper_32_bits(u64tmp);
105 day_of_year = lower_32_bits(u64tmp) / 2939745 / 4;
106
107 year = 100 * century + year_of_century;
108 is_leap_year = year_of_century != 0 ?
109 year_of_century % 4 == 0 : century % 4 == 0;
110
111 u32tmp = 2141 * day_of_year + 132377;
112 month = u32tmp >> 16;
113 day = ((u16) u32tmp) / 2141;
114
115 /*
116 * Recall that January 01 is the 306-th day of the year in the
117 * computational (not Gregorian) calendar.
118 */
119 is_Jan_or_Feb = day_of_year >= 306;
120
121 /* Converts to the Gregorian calendar. */
122 year = year + is_Jan_or_Feb;
123 month = is_Jan_or_Feb ? month - 12 : month;
124 day = day + 1;
125
126 day_of_year = is_Jan_or_Feb ?
127 day_of_year - 306 : day_of_year + 31 + 28 + is_leap_year;
128
129 /* Converts to rtc_time's format. */
130 tm->tm_year = (int) (year - 1900);
131 tm->tm_mon = (int) month;
132 tm->tm_mday = (int) day;
133 tm->tm_yday = (int) day_of_year + 1;
134
135 tm->tm_hour = secs / 3600;
136 secs -= tm->tm_hour * 3600;
137 tm->tm_min = secs / 60;
138 tm->tm_sec = secs - tm->tm_min * 60;
139
140 tm->tm_isdst = 0;
141}
142EXPORT_SYMBOL(rtc_time64_to_tm);
143
144/*
145 * Does the rtc_time represent a valid date/time?
146 */
147int rtc_valid_tm(struct rtc_time *tm)
148{
149 if (tm->tm_year < 70 ||
150 tm->tm_year > (INT_MAX - 1900) ||
151 ((unsigned int)tm->tm_mon) >= 12 ||
152 tm->tm_mday < 1 ||
153 tm->tm_mday > rtc_month_days(tm->tm_mon,
154 ((unsigned int)tm->tm_year + 1900)) ||
155 ((unsigned int)tm->tm_hour) >= 24 ||
156 ((unsigned int)tm->tm_min) >= 60 ||
157 ((unsigned int)tm->tm_sec) >= 60)
158 return -EINVAL;
159
160 return 0;
161}
162EXPORT_SYMBOL(rtc_valid_tm);
163
164/*
165 * rtc_tm_to_time64 - Converts rtc_time to time64_t.
166 * Convert Gregorian date to seconds since 01-01-1970 00:00:00.
167 */
168time64_t rtc_tm_to_time64(struct rtc_time *tm)
169{
170 return mktime64(year: ((unsigned int)tm->tm_year + 1900), mon: tm->tm_mon + 1,
171 day: tm->tm_mday, hour: tm->tm_hour, min: tm->tm_min, sec: tm->tm_sec);
172}
173EXPORT_SYMBOL(rtc_tm_to_time64);
174
175/*
176 * Convert rtc_time to ktime
177 */
178ktime_t rtc_tm_to_ktime(struct rtc_time tm)
179{
180 return ktime_set(secs: rtc_tm_to_time64(&tm), nsecs: 0);
181}
182EXPORT_SYMBOL_GPL(rtc_tm_to_ktime);
183
184/*
185 * Convert ktime to rtc_time
186 */
187struct rtc_time rtc_ktime_to_tm(ktime_t kt)
188{
189 struct timespec64 ts;
190 struct rtc_time ret;
191
192 ts = ktime_to_timespec64(kt);
193 /* Round up any ns */
194 if (ts.tv_nsec)
195 ts.tv_sec++;
196 rtc_time64_to_tm(ts.tv_sec, &ret);
197 return ret;
198}
199EXPORT_SYMBOL_GPL(rtc_ktime_to_tm);
200

source code of linux/drivers/rtc/lib.c