1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14#define KMSG_COMPONENT "ap"
15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17#include <linux/kernel_stat.h>
18#include <linux/moduleparam.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/freezer.h>
23#include <linux/interrupt.h>
24#include <linux/workqueue.h>
25#include <linux/slab.h>
26#include <linux/notifier.h>
27#include <linux/kthread.h>
28#include <linux/mutex.h>
29#include <asm/airq.h>
30#include <asm/tpi.h>
31#include <linux/atomic.h>
32#include <asm/isc.h>
33#include <linux/hrtimer.h>
34#include <linux/ktime.h>
35#include <asm/facility.h>
36#include <linux/crypto.h>
37#include <linux/mod_devicetable.h>
38#include <linux/debugfs.h>
39#include <linux/ctype.h>
40#include <linux/module.h>
41
42#include "ap_bus.h"
43#include "ap_debug.h"
44
45/*
46 * Module parameters; note though this file itself isn't modular.
47 */
48int ap_domain_index = -1; /* Adjunct Processor Domain Index */
49static DEFINE_SPINLOCK(ap_domain_lock);
50module_param_named(domain, ap_domain_index, int, 0440);
51MODULE_PARM_DESC(domain, "domain index for ap devices");
52EXPORT_SYMBOL(ap_domain_index);
53
54static int ap_thread_flag;
55module_param_named(poll_thread, ap_thread_flag, int, 0440);
56MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57
58static char *apm_str;
59module_param_named(apmask, apm_str, charp, 0440);
60MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61
62static char *aqm_str;
63module_param_named(aqmask, aqm_str, charp, 0440);
64MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65
66static int ap_useirq = 1;
67module_param_named(useirq, ap_useirq, int, 0440);
68MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69
70atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71EXPORT_SYMBOL(ap_max_msg_size);
72
73static struct device *ap_root_device;
74
75/* Hashtable of all queue devices on the AP bus */
76DEFINE_HASHTABLE(ap_queues, 8);
77/* lock used for the ap_queues hashtable */
78DEFINE_SPINLOCK(ap_queues_lock);
79
80/* Default permissions (ioctl, card and domain masking) */
81struct ap_perms ap_perms;
82EXPORT_SYMBOL(ap_perms);
83DEFINE_MUTEX(ap_perms_mutex);
84EXPORT_SYMBOL(ap_perms_mutex);
85
86/* # of bus scans since init */
87static atomic64_t ap_scan_bus_count;
88
89/* # of bindings complete since init */
90static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92/* completion for initial APQN bindings complete */
93static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94
95static struct ap_config_info *ap_qci_info;
96static struct ap_config_info *ap_qci_info_old;
97
98/*
99 * AP bus related debug feature things.
100 */
101debug_info_t *ap_dbf_info;
102
103/*
104 * Workqueue timer for bus rescan.
105 */
106static struct timer_list ap_config_timer;
107static int ap_config_time = AP_CONFIG_TIME;
108static void ap_scan_bus(struct work_struct *);
109static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110
111/*
112 * Tasklet & timer for AP request polling and interrupts
113 */
114static void ap_tasklet_fn(unsigned long);
115static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117static struct task_struct *ap_poll_kthread;
118static DEFINE_MUTEX(ap_poll_thread_mutex);
119static DEFINE_SPINLOCK(ap_poll_timer_lock);
120static struct hrtimer ap_poll_timer;
121/*
122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124 */
125static unsigned long poll_high_timeout = 250000UL;
126
127/*
128 * Some state machine states only require a low frequency polling.
129 * We use 25 Hz frequency for these.
130 */
131static unsigned long poll_low_timeout = 40000000UL;
132
133/* Maximum domain id, if not given via qci */
134static int ap_max_domain_id = 15;
135/* Maximum adapter id, if not given via qci */
136static int ap_max_adapter_id = 63;
137
138static struct bus_type ap_bus_type;
139
140/* Adapter interrupt definitions */
141static void ap_interrupt_handler(struct airq_struct *airq,
142 struct tpi_info *tpi_info);
143
144static bool ap_irq_flag;
145
146static struct airq_struct ap_airq = {
147 .handler = ap_interrupt_handler,
148 .isc = AP_ISC,
149};
150
151/**
152 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
153 *
154 * Returns the address of the local-summary-indicator of the adapter
155 * interrupt handler for AP, or NULL if adapter interrupts are not
156 * available.
157 */
158void *ap_airq_ptr(void)
159{
160 if (ap_irq_flag)
161 return ap_airq.lsi_ptr;
162 return NULL;
163}
164
165/**
166 * ap_interrupts_available(): Test if AP interrupts are available.
167 *
168 * Returns 1 if AP interrupts are available.
169 */
170static int ap_interrupts_available(void)
171{
172 return test_facility(65);
173}
174
175/**
176 * ap_qci_available(): Test if AP configuration
177 * information can be queried via QCI subfunction.
178 *
179 * Returns 1 if subfunction PQAP(QCI) is available.
180 */
181static int ap_qci_available(void)
182{
183 return test_facility(12);
184}
185
186/**
187 * ap_apft_available(): Test if AP facilities test (APFT)
188 * facility is available.
189 *
190 * Returns 1 if APFT is available.
191 */
192static int ap_apft_available(void)
193{
194 return test_facility(15);
195}
196
197/*
198 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
199 *
200 * Returns 1 if the QACT subfunction is available.
201 */
202static inline int ap_qact_available(void)
203{
204 if (ap_qci_info)
205 return ap_qci_info->qact;
206 return 0;
207}
208
209/*
210 * ap_sb_available(): Test if the AP secure binding facility is available.
211 *
212 * Returns 1 if secure binding facility is available.
213 */
214int ap_sb_available(void)
215{
216 if (ap_qci_info)
217 return ap_qci_info->apsb;
218 return 0;
219}
220
221/*
222 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
223 */
224bool ap_is_se_guest(void)
225{
226 return is_prot_virt_guest() && ap_sb_available();
227}
228EXPORT_SYMBOL(ap_is_se_guest);
229
230/*
231 * ap_fetch_qci_info(): Fetch cryptographic config info
232 *
233 * Returns the ap configuration info fetched via PQAP(QCI).
234 * On success 0 is returned, on failure a negative errno
235 * is returned, e.g. if the PQAP(QCI) instruction is not
236 * available, the return value will be -EOPNOTSUPP.
237 */
238static inline int ap_fetch_qci_info(struct ap_config_info *info)
239{
240 if (!ap_qci_available())
241 return -EOPNOTSUPP;
242 if (!info)
243 return -EINVAL;
244 return ap_qci(info);
245}
246
247/**
248 * ap_init_qci_info(): Allocate and query qci config info.
249 * Does also update the static variables ap_max_domain_id
250 * and ap_max_adapter_id if this info is available.
251 */
252static void __init ap_init_qci_info(void)
253{
254 if (!ap_qci_available()) {
255 AP_DBF_INFO("%s QCI not supported\n", __func__);
256 return;
257 }
258
259 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
260 if (!ap_qci_info)
261 return;
262 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
263 if (!ap_qci_info_old) {
264 kfree(objp: ap_qci_info);
265 ap_qci_info = NULL;
266 return;
267 }
268 if (ap_fetch_qci_info(info: ap_qci_info) != 0) {
269 kfree(objp: ap_qci_info);
270 kfree(objp: ap_qci_info_old);
271 ap_qci_info = NULL;
272 ap_qci_info_old = NULL;
273 return;
274 }
275 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
276
277 if (ap_qci_info->apxa) {
278 if (ap_qci_info->na) {
279 ap_max_adapter_id = ap_qci_info->na;
280 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
281 __func__, ap_max_adapter_id);
282 }
283 if (ap_qci_info->nd) {
284 ap_max_domain_id = ap_qci_info->nd;
285 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
286 __func__, ap_max_domain_id);
287 }
288 }
289
290 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
291}
292
293/*
294 * ap_test_config(): helper function to extract the nrth bit
295 * within the unsigned int array field.
296 */
297static inline int ap_test_config(unsigned int *field, unsigned int nr)
298{
299 return ap_test_bit(ptr: (field + (nr >> 5)), nr: (nr & 0x1f));
300}
301
302/*
303 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
304 *
305 * Returns 0 if the card is not configured
306 * 1 if the card is configured or
307 * if the configuration information is not available
308 */
309static inline int ap_test_config_card_id(unsigned int id)
310{
311 if (id > ap_max_adapter_id)
312 return 0;
313 if (ap_qci_info)
314 return ap_test_config(field: ap_qci_info->apm, nr: id);
315 return 1;
316}
317
318/*
319 * ap_test_config_usage_domain(): Test, whether an AP usage domain
320 * is configured.
321 *
322 * Returns 0 if the usage domain is not configured
323 * 1 if the usage domain is configured or
324 * if the configuration information is not available
325 */
326int ap_test_config_usage_domain(unsigned int domain)
327{
328 if (domain > ap_max_domain_id)
329 return 0;
330 if (ap_qci_info)
331 return ap_test_config(field: ap_qci_info->aqm, nr: domain);
332 return 1;
333}
334EXPORT_SYMBOL(ap_test_config_usage_domain);
335
336/*
337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
338 * is configured.
339 * @domain AP control domain ID
340 *
341 * Returns 1 if the control domain is configured
342 * 0 in all other cases
343 */
344int ap_test_config_ctrl_domain(unsigned int domain)
345{
346 if (!ap_qci_info || domain > ap_max_domain_id)
347 return 0;
348 return ap_test_config(field: ap_qci_info->adm, nr: domain);
349}
350EXPORT_SYMBOL(ap_test_config_ctrl_domain);
351
352/*
353 * ap_queue_info(): Check and get AP queue info.
354 * Returns: 1 if APQN exists and info is filled,
355 * 0 if APQN seems to exist but there is no info
356 * available (eg. caused by an asynch pending error)
357 * -1 invalid APQN, TAPQ error or AP queue status which
358 * indicates there is no APQN.
359 */
360static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
361 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
362{
363 struct ap_queue_status status;
364 struct ap_tapq_gr2 tapq_info;
365
366 tapq_info.value = 0;
367
368 /* make sure we don't run into a specifiation exception */
369 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
370 AP_QID_QUEUE(qid) > ap_max_domain_id)
371 return -1;
372
373 /* call TAPQ on this APQN */
374 status = ap_test_queue(qid, ap_apft_available(), &tapq_info);
375
376 switch (status.response_code) {
377 case AP_RESPONSE_NORMAL:
378 case AP_RESPONSE_RESET_IN_PROGRESS:
379 case AP_RESPONSE_DECONFIGURED:
380 case AP_RESPONSE_CHECKSTOPPED:
381 case AP_RESPONSE_BUSY:
382 /* For all these RCs the tapq info should be available */
383 break;
384 default:
385 /* On a pending async error the info should be available */
386 if (!status.async)
387 return -1;
388 break;
389 }
390
391 /* There should be at least one of the mode bits set */
392 if (WARN_ON_ONCE(!tapq_info.value))
393 return 0;
394
395 *q_type = tapq_info.at;
396 *q_fac = tapq_info.fac;
397 *q_depth = tapq_info.qd;
398 *q_ml = tapq_info.ml;
399 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
400 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
401
402 return 1;
403}
404
405void ap_wait(enum ap_sm_wait wait)
406{
407 ktime_t hr_time;
408
409 switch (wait) {
410 case AP_SM_WAIT_AGAIN:
411 case AP_SM_WAIT_INTERRUPT:
412 if (ap_irq_flag)
413 break;
414 if (ap_poll_kthread) {
415 wake_up(&ap_poll_wait);
416 break;
417 }
418 fallthrough;
419 case AP_SM_WAIT_LOW_TIMEOUT:
420 case AP_SM_WAIT_HIGH_TIMEOUT:
421 spin_lock_bh(lock: &ap_poll_timer_lock);
422 if (!hrtimer_is_queued(timer: &ap_poll_timer)) {
423 hr_time =
424 wait == AP_SM_WAIT_LOW_TIMEOUT ?
425 poll_low_timeout : poll_high_timeout;
426 hrtimer_forward_now(timer: &ap_poll_timer, interval: hr_time);
427 hrtimer_restart(timer: &ap_poll_timer);
428 }
429 spin_unlock_bh(lock: &ap_poll_timer_lock);
430 break;
431 case AP_SM_WAIT_NONE:
432 default:
433 break;
434 }
435}
436
437/**
438 * ap_request_timeout(): Handling of request timeouts
439 * @t: timer making this callback
440 *
441 * Handles request timeouts.
442 */
443void ap_request_timeout(struct timer_list *t)
444{
445 struct ap_queue *aq = from_timer(aq, t, timeout);
446
447 spin_lock_bh(lock: &aq->lock);
448 ap_wait(wait: ap_sm_event(aq, event: AP_SM_EVENT_TIMEOUT));
449 spin_unlock_bh(lock: &aq->lock);
450}
451
452/**
453 * ap_poll_timeout(): AP receive polling for finished AP requests.
454 * @unused: Unused pointer.
455 *
456 * Schedules the AP tasklet using a high resolution timer.
457 */
458static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
459{
460 tasklet_schedule(t: &ap_tasklet);
461 return HRTIMER_NORESTART;
462}
463
464/**
465 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
466 * @airq: pointer to adapter interrupt descriptor
467 * @tpi_info: ignored
468 */
469static void ap_interrupt_handler(struct airq_struct *airq,
470 struct tpi_info *tpi_info)
471{
472 inc_irq_stat(IRQIO_APB);
473 tasklet_schedule(t: &ap_tasklet);
474}
475
476/**
477 * ap_tasklet_fn(): Tasklet to poll all AP devices.
478 * @dummy: Unused variable
479 *
480 * Poll all AP devices on the bus.
481 */
482static void ap_tasklet_fn(unsigned long dummy)
483{
484 int bkt;
485 struct ap_queue *aq;
486 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
487
488 /* Reset the indicator if interrupts are used. Thus new interrupts can
489 * be received. Doing it in the beginning of the tasklet is therefore
490 * important that no requests on any AP get lost.
491 */
492 if (ap_irq_flag)
493 xchg(ap_airq.lsi_ptr, 0);
494
495 spin_lock_bh(lock: &ap_queues_lock);
496 hash_for_each(ap_queues, bkt, aq, hnode) {
497 spin_lock_bh(lock: &aq->lock);
498 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
499 spin_unlock_bh(lock: &aq->lock);
500 }
501 spin_unlock_bh(lock: &ap_queues_lock);
502
503 ap_wait(wait);
504}
505
506static int ap_pending_requests(void)
507{
508 int bkt;
509 struct ap_queue *aq;
510
511 spin_lock_bh(lock: &ap_queues_lock);
512 hash_for_each(ap_queues, bkt, aq, hnode) {
513 if (aq->queue_count == 0)
514 continue;
515 spin_unlock_bh(lock: &ap_queues_lock);
516 return 1;
517 }
518 spin_unlock_bh(lock: &ap_queues_lock);
519 return 0;
520}
521
522/**
523 * ap_poll_thread(): Thread that polls for finished requests.
524 * @data: Unused pointer
525 *
526 * AP bus poll thread. The purpose of this thread is to poll for
527 * finished requests in a loop if there is a "free" cpu - that is
528 * a cpu that doesn't have anything better to do. The polling stops
529 * as soon as there is another task or if all messages have been
530 * delivered.
531 */
532static int ap_poll_thread(void *data)
533{
534 DECLARE_WAITQUEUE(wait, current);
535
536 set_user_nice(current, MAX_NICE);
537 set_freezable();
538 while (!kthread_should_stop()) {
539 add_wait_queue(wq_head: &ap_poll_wait, wq_entry: &wait);
540 set_current_state(TASK_INTERRUPTIBLE);
541 if (!ap_pending_requests()) {
542 schedule();
543 try_to_freeze();
544 }
545 set_current_state(TASK_RUNNING);
546 remove_wait_queue(wq_head: &ap_poll_wait, wq_entry: &wait);
547 if (need_resched()) {
548 schedule();
549 try_to_freeze();
550 continue;
551 }
552 ap_tasklet_fn(dummy: 0);
553 }
554
555 return 0;
556}
557
558static int ap_poll_thread_start(void)
559{
560 int rc;
561
562 if (ap_irq_flag || ap_poll_kthread)
563 return 0;
564 mutex_lock(&ap_poll_thread_mutex);
565 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
566 rc = PTR_ERR_OR_ZERO(ptr: ap_poll_kthread);
567 if (rc)
568 ap_poll_kthread = NULL;
569 mutex_unlock(lock: &ap_poll_thread_mutex);
570 return rc;
571}
572
573static void ap_poll_thread_stop(void)
574{
575 if (!ap_poll_kthread)
576 return;
577 mutex_lock(&ap_poll_thread_mutex);
578 kthread_stop(k: ap_poll_kthread);
579 ap_poll_kthread = NULL;
580 mutex_unlock(lock: &ap_poll_thread_mutex);
581}
582
583#define is_card_dev(x) ((x)->parent == ap_root_device)
584#define is_queue_dev(x) ((x)->parent != ap_root_device)
585
586/**
587 * ap_bus_match()
588 * @dev: Pointer to device
589 * @drv: Pointer to device_driver
590 *
591 * AP bus driver registration/unregistration.
592 */
593static int ap_bus_match(struct device *dev, struct device_driver *drv)
594{
595 struct ap_driver *ap_drv = to_ap_drv(drv);
596 struct ap_device_id *id;
597
598 /*
599 * Compare device type of the device with the list of
600 * supported types of the device_driver.
601 */
602 for (id = ap_drv->ids; id->match_flags; id++) {
603 if (is_card_dev(dev) &&
604 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
605 id->dev_type == to_ap_dev(dev)->device_type)
606 return 1;
607 if (is_queue_dev(dev) &&
608 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
609 id->dev_type == to_ap_dev(dev)->device_type)
610 return 1;
611 }
612 return 0;
613}
614
615/**
616 * ap_uevent(): Uevent function for AP devices.
617 * @dev: Pointer to device
618 * @env: Pointer to kobj_uevent_env
619 *
620 * It sets up a single environment variable DEV_TYPE which contains the
621 * hardware device type.
622 */
623static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
624{
625 int rc = 0;
626 const struct ap_device *ap_dev = to_ap_dev(dev);
627
628 /* Uevents from ap bus core don't need extensions to the env */
629 if (dev == ap_root_device)
630 return 0;
631
632 if (is_card_dev(dev)) {
633 struct ap_card *ac = to_ap_card(&ap_dev->device);
634
635 /* Set up DEV_TYPE environment variable. */
636 rc = add_uevent_var(env, format: "DEV_TYPE=%04X", ap_dev->device_type);
637 if (rc)
638 return rc;
639 /* Add MODALIAS= */
640 rc = add_uevent_var(env, format: "MODALIAS=ap:t%02X", ap_dev->device_type);
641 if (rc)
642 return rc;
643
644 /* Add MODE=<accel|cca|ep11> */
645 if (ap_test_bit(ptr: &ac->functions, AP_FUNC_ACCEL))
646 rc = add_uevent_var(env, format: "MODE=accel");
647 else if (ap_test_bit(ptr: &ac->functions, AP_FUNC_COPRO))
648 rc = add_uevent_var(env, format: "MODE=cca");
649 else if (ap_test_bit(ptr: &ac->functions, AP_FUNC_EP11))
650 rc = add_uevent_var(env, format: "MODE=ep11");
651 if (rc)
652 return rc;
653 } else {
654 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
655
656 /* Add MODE=<accel|cca|ep11> */
657 if (ap_test_bit(ptr: &aq->card->functions, AP_FUNC_ACCEL))
658 rc = add_uevent_var(env, format: "MODE=accel");
659 else if (ap_test_bit(ptr: &aq->card->functions, AP_FUNC_COPRO))
660 rc = add_uevent_var(env, format: "MODE=cca");
661 else if (ap_test_bit(ptr: &aq->card->functions, AP_FUNC_EP11))
662 rc = add_uevent_var(env, format: "MODE=ep11");
663 if (rc)
664 return rc;
665 }
666
667 return 0;
668}
669
670static void ap_send_init_scan_done_uevent(void)
671{
672 char *envp[] = { "INITSCAN=done", NULL };
673
674 kobject_uevent_env(kobj: &ap_root_device->kobj, action: KOBJ_CHANGE, envp);
675}
676
677static void ap_send_bindings_complete_uevent(void)
678{
679 char buf[32];
680 char *envp[] = { "BINDINGS=complete", buf, NULL };
681
682 snprintf(buf, size: sizeof(buf), fmt: "COMPLETECOUNT=%llu",
683 atomic64_inc_return(v: &ap_bindings_complete_count));
684 kobject_uevent_env(kobj: &ap_root_device->kobj, action: KOBJ_CHANGE, envp);
685}
686
687void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
688{
689 char buf[16];
690 char *envp[] = { buf, NULL };
691
692 snprintf(buf, size: sizeof(buf), fmt: "CONFIG=%d", cfg ? 1 : 0);
693
694 kobject_uevent_env(kobj: &ap_dev->device.kobj, action: KOBJ_CHANGE, envp);
695}
696EXPORT_SYMBOL(ap_send_config_uevent);
697
698void ap_send_online_uevent(struct ap_device *ap_dev, int online)
699{
700 char buf[16];
701 char *envp[] = { buf, NULL };
702
703 snprintf(buf, size: sizeof(buf), fmt: "ONLINE=%d", online ? 1 : 0);
704
705 kobject_uevent_env(kobj: &ap_dev->device.kobj, action: KOBJ_CHANGE, envp);
706}
707EXPORT_SYMBOL(ap_send_online_uevent);
708
709static void ap_send_mask_changed_uevent(unsigned long *newapm,
710 unsigned long *newaqm)
711{
712 char buf[100];
713 char *envp[] = { buf, NULL };
714
715 if (newapm)
716 snprintf(buf, size: sizeof(buf),
717 fmt: "APMASK=0x%016lx%016lx%016lx%016lx\n",
718 newapm[0], newapm[1], newapm[2], newapm[3]);
719 else
720 snprintf(buf, size: sizeof(buf),
721 fmt: "AQMASK=0x%016lx%016lx%016lx%016lx\n",
722 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
723
724 kobject_uevent_env(kobj: &ap_root_device->kobj, action: KOBJ_CHANGE, envp);
725}
726
727/*
728 * calc # of bound APQNs
729 */
730
731struct __ap_calc_ctrs {
732 unsigned int apqns;
733 unsigned int bound;
734};
735
736static int __ap_calc_helper(struct device *dev, void *arg)
737{
738 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
739
740 if (is_queue_dev(dev)) {
741 pctrs->apqns++;
742 if (dev->driver)
743 pctrs->bound++;
744 }
745
746 return 0;
747}
748
749static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
750{
751 struct __ap_calc_ctrs ctrs;
752
753 memset(&ctrs, 0, sizeof(ctrs));
754 bus_for_each_dev(bus: &ap_bus_type, NULL, data: (void *)&ctrs, fn: __ap_calc_helper);
755
756 *apqns = ctrs.apqns;
757 *bound = ctrs.bound;
758}
759
760/*
761 * After initial ap bus scan do check if all existing APQNs are
762 * bound to device drivers.
763 */
764static void ap_check_bindings_complete(void)
765{
766 unsigned int apqns, bound;
767
768 if (atomic64_read(v: &ap_scan_bus_count) >= 1) {
769 ap_calc_bound_apqns(apqns: &apqns, bound: &bound);
770 if (bound == apqns) {
771 if (!completion_done(x: &ap_init_apqn_bindings_complete)) {
772 complete_all(&ap_init_apqn_bindings_complete);
773 AP_DBF_INFO("%s complete\n", __func__);
774 }
775 ap_send_bindings_complete_uevent();
776 }
777 }
778}
779
780/*
781 * Interface to wait for the AP bus to have done one initial ap bus
782 * scan and all detected APQNs have been bound to device drivers.
783 * If these both conditions are not fulfilled, this function blocks
784 * on a condition with wait_for_completion_interruptible_timeout().
785 * If these both conditions are fulfilled (before the timeout hits)
786 * the return value is 0. If the timeout (in jiffies) hits instead
787 * -ETIME is returned. On failures negative return values are
788 * returned to the caller.
789 */
790int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
791{
792 long l;
793
794 if (completion_done(x: &ap_init_apqn_bindings_complete))
795 return 0;
796
797 if (timeout)
798 l = wait_for_completion_interruptible_timeout(
799 x: &ap_init_apqn_bindings_complete, timeout);
800 else
801 l = wait_for_completion_interruptible(
802 x: &ap_init_apqn_bindings_complete);
803 if (l < 0)
804 return l == -ERESTARTSYS ? -EINTR : l;
805 else if (l == 0 && timeout)
806 return -ETIME;
807
808 return 0;
809}
810EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
811
812static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
813{
814 if (is_queue_dev(dev) &&
815 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
816 device_unregister(dev);
817 return 0;
818}
819
820static int __ap_revise_reserved(struct device *dev, void *dummy)
821{
822 int rc, card, queue, devres, drvres;
823
824 if (is_queue_dev(dev)) {
825 card = AP_QID_CARD(to_ap_queue(dev)->qid);
826 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
827 mutex_lock(&ap_perms_mutex);
828 devres = test_bit_inv(card, ap_perms.apm) &&
829 test_bit_inv(queue, ap_perms.aqm);
830 mutex_unlock(lock: &ap_perms_mutex);
831 drvres = to_ap_drv(dev->driver)->flags
832 & AP_DRIVER_FLAG_DEFAULT;
833 if (!!devres != !!drvres) {
834 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
835 __func__, card, queue);
836 rc = device_reprobe(dev);
837 if (rc)
838 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
839 __func__, card, queue);
840 }
841 }
842
843 return 0;
844}
845
846static void ap_bus_revise_bindings(void)
847{
848 bus_for_each_dev(bus: &ap_bus_type, NULL, NULL, fn: __ap_revise_reserved);
849}
850
851/**
852 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
853 * default host driver or not.
854 * @card: the APID of the adapter card to check
855 * @queue: the APQI of the queue to check
856 *
857 * Note: the ap_perms_mutex must be locked by the caller of this function.
858 *
859 * Return: an int specifying whether the AP adapter is reserved for the host (1)
860 * or not (0).
861 */
862int ap_owned_by_def_drv(int card, int queue)
863{
864 int rc = 0;
865
866 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
867 return -EINVAL;
868
869 if (test_bit_inv(card, ap_perms.apm) &&
870 test_bit_inv(queue, ap_perms.aqm))
871 rc = 1;
872
873 return rc;
874}
875EXPORT_SYMBOL(ap_owned_by_def_drv);
876
877/**
878 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
879 * a set is reserved for the host drivers
880 * or not.
881 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
882 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
883 *
884 * Note: the ap_perms_mutex must be locked by the caller of this function.
885 *
886 * Return: an int specifying whether each APQN is reserved for the host (1) or
887 * not (0)
888 */
889int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
890 unsigned long *aqm)
891{
892 int card, queue, rc = 0;
893
894 for (card = 0; !rc && card < AP_DEVICES; card++)
895 if (test_bit_inv(card, apm) &&
896 test_bit_inv(card, ap_perms.apm))
897 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
898 if (test_bit_inv(queue, aqm) &&
899 test_bit_inv(queue, ap_perms.aqm))
900 rc = 1;
901
902 return rc;
903}
904EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
905
906static int ap_device_probe(struct device *dev)
907{
908 struct ap_device *ap_dev = to_ap_dev(dev);
909 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
910 int card, queue, devres, drvres, rc = -ENODEV;
911
912 if (!get_device(dev))
913 return rc;
914
915 if (is_queue_dev(dev)) {
916 /*
917 * If the apqn is marked as reserved/used by ap bus and
918 * default drivers, only probe with drivers with the default
919 * flag set. If it is not marked, only probe with drivers
920 * with the default flag not set.
921 */
922 card = AP_QID_CARD(to_ap_queue(dev)->qid);
923 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
924 mutex_lock(&ap_perms_mutex);
925 devres = test_bit_inv(card, ap_perms.apm) &&
926 test_bit_inv(queue, ap_perms.aqm);
927 mutex_unlock(lock: &ap_perms_mutex);
928 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
929 if (!!devres != !!drvres)
930 goto out;
931 }
932
933 /* Add queue/card to list of active queues/cards */
934 spin_lock_bh(lock: &ap_queues_lock);
935 if (is_queue_dev(dev))
936 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
937 to_ap_queue(dev)->qid);
938 spin_unlock_bh(lock: &ap_queues_lock);
939
940 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
941
942 if (rc) {
943 spin_lock_bh(lock: &ap_queues_lock);
944 if (is_queue_dev(dev))
945 hash_del(node: &to_ap_queue(dev)->hnode);
946 spin_unlock_bh(lock: &ap_queues_lock);
947 } else {
948 ap_check_bindings_complete();
949 }
950
951out:
952 if (rc)
953 put_device(dev);
954 return rc;
955}
956
957static void ap_device_remove(struct device *dev)
958{
959 struct ap_device *ap_dev = to_ap_dev(dev);
960 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
961
962 /* prepare ap queue device removal */
963 if (is_queue_dev(dev))
964 ap_queue_prepare_remove(to_ap_queue(dev));
965
966 /* driver's chance to clean up gracefully */
967 if (ap_drv->remove)
968 ap_drv->remove(ap_dev);
969
970 /* now do the ap queue device remove */
971 if (is_queue_dev(dev))
972 ap_queue_remove(to_ap_queue(dev));
973
974 /* Remove queue/card from list of active queues/cards */
975 spin_lock_bh(lock: &ap_queues_lock);
976 if (is_queue_dev(dev))
977 hash_del(node: &to_ap_queue(dev)->hnode);
978 spin_unlock_bh(lock: &ap_queues_lock);
979
980 put_device(dev);
981}
982
983struct ap_queue *ap_get_qdev(ap_qid_t qid)
984{
985 int bkt;
986 struct ap_queue *aq;
987
988 spin_lock_bh(lock: &ap_queues_lock);
989 hash_for_each(ap_queues, bkt, aq, hnode) {
990 if (aq->qid == qid) {
991 get_device(dev: &aq->ap_dev.device);
992 spin_unlock_bh(lock: &ap_queues_lock);
993 return aq;
994 }
995 }
996 spin_unlock_bh(lock: &ap_queues_lock);
997
998 return NULL;
999}
1000EXPORT_SYMBOL(ap_get_qdev);
1001
1002int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1003 char *name)
1004{
1005 struct device_driver *drv = &ap_drv->driver;
1006
1007 drv->bus = &ap_bus_type;
1008 drv->owner = owner;
1009 drv->name = name;
1010 return driver_register(drv);
1011}
1012EXPORT_SYMBOL(ap_driver_register);
1013
1014void ap_driver_unregister(struct ap_driver *ap_drv)
1015{
1016 driver_unregister(drv: &ap_drv->driver);
1017}
1018EXPORT_SYMBOL(ap_driver_unregister);
1019
1020void ap_bus_force_rescan(void)
1021{
1022 /* Only trigger AP bus scans after the initial scan is done */
1023 if (atomic64_read(v: &ap_scan_bus_count) <= 0)
1024 return;
1025
1026 /* processing a asynchronous bus rescan */
1027 del_timer(timer: &ap_config_timer);
1028 queue_work(wq: system_long_wq, work: &ap_scan_work);
1029 flush_work(work: &ap_scan_work);
1030}
1031EXPORT_SYMBOL(ap_bus_force_rescan);
1032
1033/*
1034 * A config change has happened, force an ap bus rescan.
1035 */
1036void ap_bus_cfg_chg(void)
1037{
1038 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1039
1040 ap_bus_force_rescan();
1041}
1042
1043/*
1044 * hex2bitmap() - parse hex mask string and set bitmap.
1045 * Valid strings are "0x012345678" with at least one valid hex number.
1046 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1047 * within the string, the leading 0x may be omitted.
1048 * Returns the bitmask with exactly the bits set as given by the hex
1049 * string (both in big endian order).
1050 */
1051static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1052{
1053 int i, n, b;
1054
1055 /* bits needs to be a multiple of 8 */
1056 if (bits & 0x07)
1057 return -EINVAL;
1058
1059 if (str[0] == '0' && str[1] == 'x')
1060 str++;
1061 if (*str == 'x')
1062 str++;
1063
1064 for (i = 0; isxdigit(*str) && i < bits; str++) {
1065 b = hex_to_bin(ch: *str);
1066 for (n = 0; n < 4; n++)
1067 if (b & (0x08 >> n))
1068 set_bit_inv(i + n, bitmap);
1069 i += 4;
1070 }
1071
1072 if (*str == '\n')
1073 str++;
1074 if (*str)
1075 return -EINVAL;
1076 return 0;
1077}
1078
1079/*
1080 * modify_bitmap() - parse bitmask argument and modify an existing
1081 * bit mask accordingly. A concatenation (done with ',') of these
1082 * terms is recognized:
1083 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1084 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1085 * 0...bits-1; the leading + or - is required. Here are some examples:
1086 * +0-15,+32,-128,-0xFF
1087 * -0-255,+1-16,+0x128
1088 * +1,+2,+3,+4,-5,-7-10
1089 * Returns the new bitmap after all changes have been applied. Every
1090 * positive value in the string will set a bit and every negative value
1091 * in the string will clear a bit. As a bit may be touched more than once,
1092 * the last 'operation' wins:
1093 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1094 * cleared again. All other bits are unmodified.
1095 */
1096static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1097{
1098 int a, i, z;
1099 char *np, sign;
1100
1101 /* bits needs to be a multiple of 8 */
1102 if (bits & 0x07)
1103 return -EINVAL;
1104
1105 while (*str) {
1106 sign = *str++;
1107 if (sign != '+' && sign != '-')
1108 return -EINVAL;
1109 a = z = simple_strtoul(str, &np, 0);
1110 if (str == np || a >= bits)
1111 return -EINVAL;
1112 str = np;
1113 if (*str == '-') {
1114 z = simple_strtoul(++str, &np, 0);
1115 if (str == np || a > z || z >= bits)
1116 return -EINVAL;
1117 str = np;
1118 }
1119 for (i = a; i <= z; i++)
1120 if (sign == '+')
1121 set_bit_inv(i, bitmap);
1122 else
1123 clear_bit_inv(i, bitmap);
1124 while (*str == ',' || *str == '\n')
1125 str++;
1126 }
1127
1128 return 0;
1129}
1130
1131static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1132 unsigned long *newmap)
1133{
1134 unsigned long size;
1135 int rc;
1136
1137 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1138 if (*str == '+' || *str == '-') {
1139 memcpy(newmap, bitmap, size);
1140 rc = modify_bitmap(str, bitmap: newmap, bits);
1141 } else {
1142 memset(newmap, 0, size);
1143 rc = hex2bitmap(str, bitmap: newmap, bits);
1144 }
1145 return rc;
1146}
1147
1148int ap_parse_mask_str(const char *str,
1149 unsigned long *bitmap, int bits,
1150 struct mutex *lock)
1151{
1152 unsigned long *newmap, size;
1153 int rc;
1154
1155 /* bits needs to be a multiple of 8 */
1156 if (bits & 0x07)
1157 return -EINVAL;
1158
1159 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1160 newmap = kmalloc(size, GFP_KERNEL);
1161 if (!newmap)
1162 return -ENOMEM;
1163 if (mutex_lock_interruptible(lock)) {
1164 kfree(objp: newmap);
1165 return -ERESTARTSYS;
1166 }
1167 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1168 if (rc == 0)
1169 memcpy(bitmap, newmap, size);
1170 mutex_unlock(lock);
1171 kfree(objp: newmap);
1172 return rc;
1173}
1174EXPORT_SYMBOL(ap_parse_mask_str);
1175
1176/*
1177 * AP bus attributes.
1178 */
1179
1180static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1181{
1182 return sysfs_emit(buf, fmt: "%d\n", ap_domain_index);
1183}
1184
1185static ssize_t ap_domain_store(const struct bus_type *bus,
1186 const char *buf, size_t count)
1187{
1188 int domain;
1189
1190 if (sscanf(buf, "%i\n", &domain) != 1 ||
1191 domain < 0 || domain > ap_max_domain_id ||
1192 !test_bit_inv(domain, ap_perms.aqm))
1193 return -EINVAL;
1194
1195 spin_lock_bh(lock: &ap_domain_lock);
1196 ap_domain_index = domain;
1197 spin_unlock_bh(lock: &ap_domain_lock);
1198
1199 AP_DBF_INFO("%s stored new default domain=%d\n",
1200 __func__, domain);
1201
1202 return count;
1203}
1204
1205static BUS_ATTR_RW(ap_domain);
1206
1207static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1208{
1209 if (!ap_qci_info) /* QCI not supported */
1210 return sysfs_emit(buf, fmt: "not supported\n");
1211
1212 return sysfs_emit(buf, fmt: "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1213 ap_qci_info->adm[0], ap_qci_info->adm[1],
1214 ap_qci_info->adm[2], ap_qci_info->adm[3],
1215 ap_qci_info->adm[4], ap_qci_info->adm[5],
1216 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1217}
1218
1219static BUS_ATTR_RO(ap_control_domain_mask);
1220
1221static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1222{
1223 if (!ap_qci_info) /* QCI not supported */
1224 return sysfs_emit(buf, fmt: "not supported\n");
1225
1226 return sysfs_emit(buf, fmt: "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1227 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1228 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1229 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1230 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1231}
1232
1233static BUS_ATTR_RO(ap_usage_domain_mask);
1234
1235static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1236{
1237 if (!ap_qci_info) /* QCI not supported */
1238 return sysfs_emit(buf, fmt: "not supported\n");
1239
1240 return sysfs_emit(buf, fmt: "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1241 ap_qci_info->apm[0], ap_qci_info->apm[1],
1242 ap_qci_info->apm[2], ap_qci_info->apm[3],
1243 ap_qci_info->apm[4], ap_qci_info->apm[5],
1244 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1245}
1246
1247static BUS_ATTR_RO(ap_adapter_mask);
1248
1249static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1250{
1251 return sysfs_emit(buf, fmt: "%d\n", ap_irq_flag ? 1 : 0);
1252}
1253
1254static BUS_ATTR_RO(ap_interrupts);
1255
1256static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1257{
1258 return sysfs_emit(buf, fmt: "%d\n", ap_config_time);
1259}
1260
1261static ssize_t config_time_store(const struct bus_type *bus,
1262 const char *buf, size_t count)
1263{
1264 int time;
1265
1266 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1267 return -EINVAL;
1268 ap_config_time = time;
1269 mod_timer(timer: &ap_config_timer, expires: jiffies + ap_config_time * HZ);
1270 return count;
1271}
1272
1273static BUS_ATTR_RW(config_time);
1274
1275static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1276{
1277 return sysfs_emit(buf, fmt: "%d\n", ap_poll_kthread ? 1 : 0);
1278}
1279
1280static ssize_t poll_thread_store(const struct bus_type *bus,
1281 const char *buf, size_t count)
1282{
1283 bool value;
1284 int rc;
1285
1286 rc = kstrtobool(s: buf, res: &value);
1287 if (rc)
1288 return rc;
1289
1290 if (value) {
1291 rc = ap_poll_thread_start();
1292 if (rc)
1293 count = rc;
1294 } else {
1295 ap_poll_thread_stop();
1296 }
1297 return count;
1298}
1299
1300static BUS_ATTR_RW(poll_thread);
1301
1302static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1303{
1304 return sysfs_emit(buf, fmt: "%lu\n", poll_high_timeout);
1305}
1306
1307static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1308 size_t count)
1309{
1310 unsigned long value;
1311 ktime_t hr_time;
1312 int rc;
1313
1314 rc = kstrtoul(s: buf, base: 0, res: &value);
1315 if (rc)
1316 return rc;
1317
1318 /* 120 seconds = maximum poll interval */
1319 if (value > 120000000000UL)
1320 return -EINVAL;
1321 poll_high_timeout = value;
1322 hr_time = poll_high_timeout;
1323
1324 spin_lock_bh(lock: &ap_poll_timer_lock);
1325 hrtimer_cancel(timer: &ap_poll_timer);
1326 hrtimer_set_expires(timer: &ap_poll_timer, time: hr_time);
1327 hrtimer_start_expires(timer: &ap_poll_timer, mode: HRTIMER_MODE_ABS);
1328 spin_unlock_bh(lock: &ap_poll_timer_lock);
1329
1330 return count;
1331}
1332
1333static BUS_ATTR_RW(poll_timeout);
1334
1335static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1336{
1337 return sysfs_emit(buf, fmt: "%d\n", ap_max_domain_id);
1338}
1339
1340static BUS_ATTR_RO(ap_max_domain_id);
1341
1342static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1343{
1344 return sysfs_emit(buf, fmt: "%d\n", ap_max_adapter_id);
1345}
1346
1347static BUS_ATTR_RO(ap_max_adapter_id);
1348
1349static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1350{
1351 int rc;
1352
1353 if (mutex_lock_interruptible(&ap_perms_mutex))
1354 return -ERESTARTSYS;
1355 rc = sysfs_emit(buf, fmt: "0x%016lx%016lx%016lx%016lx\n",
1356 ap_perms.apm[0], ap_perms.apm[1],
1357 ap_perms.apm[2], ap_perms.apm[3]);
1358 mutex_unlock(lock: &ap_perms_mutex);
1359
1360 return rc;
1361}
1362
1363static int __verify_card_reservations(struct device_driver *drv, void *data)
1364{
1365 int rc = 0;
1366 struct ap_driver *ap_drv = to_ap_drv(drv);
1367 unsigned long *newapm = (unsigned long *)data;
1368
1369 /*
1370 * increase the driver's module refcounter to be sure it is not
1371 * going away when we invoke the callback function.
1372 */
1373 if (!try_module_get(module: drv->owner))
1374 return 0;
1375
1376 if (ap_drv->in_use) {
1377 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1378 if (rc)
1379 rc = -EBUSY;
1380 }
1381
1382 /* release the driver's module */
1383 module_put(module: drv->owner);
1384
1385 return rc;
1386}
1387
1388static int apmask_commit(unsigned long *newapm)
1389{
1390 int rc;
1391 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1392
1393 /*
1394 * Check if any bits in the apmask have been set which will
1395 * result in queues being removed from non-default drivers
1396 */
1397 if (bitmap_andnot(dst: reserved, src1: newapm, src2: ap_perms.apm, AP_DEVICES)) {
1398 rc = bus_for_each_drv(bus: &ap_bus_type, NULL, data: reserved,
1399 fn: __verify_card_reservations);
1400 if (rc)
1401 return rc;
1402 }
1403
1404 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1405
1406 return 0;
1407}
1408
1409static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1410 size_t count)
1411{
1412 int rc, changes = 0;
1413 DECLARE_BITMAP(newapm, AP_DEVICES);
1414
1415 if (mutex_lock_interruptible(&ap_perms_mutex))
1416 return -ERESTARTSYS;
1417
1418 rc = ap_parse_bitmap_str(str: buf, bitmap: ap_perms.apm, AP_DEVICES, newmap: newapm);
1419 if (rc)
1420 goto done;
1421
1422 changes = memcmp(p: ap_perms.apm, q: newapm, APMASKSIZE);
1423 if (changes)
1424 rc = apmask_commit(newapm);
1425
1426done:
1427 mutex_unlock(lock: &ap_perms_mutex);
1428 if (rc)
1429 return rc;
1430
1431 if (changes) {
1432 ap_bus_revise_bindings();
1433 ap_send_mask_changed_uevent(newapm, NULL);
1434 }
1435
1436 return count;
1437}
1438
1439static BUS_ATTR_RW(apmask);
1440
1441static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1442{
1443 int rc;
1444
1445 if (mutex_lock_interruptible(&ap_perms_mutex))
1446 return -ERESTARTSYS;
1447 rc = sysfs_emit(buf, fmt: "0x%016lx%016lx%016lx%016lx\n",
1448 ap_perms.aqm[0], ap_perms.aqm[1],
1449 ap_perms.aqm[2], ap_perms.aqm[3]);
1450 mutex_unlock(lock: &ap_perms_mutex);
1451
1452 return rc;
1453}
1454
1455static int __verify_queue_reservations(struct device_driver *drv, void *data)
1456{
1457 int rc = 0;
1458 struct ap_driver *ap_drv = to_ap_drv(drv);
1459 unsigned long *newaqm = (unsigned long *)data;
1460
1461 /*
1462 * increase the driver's module refcounter to be sure it is not
1463 * going away when we invoke the callback function.
1464 */
1465 if (!try_module_get(module: drv->owner))
1466 return 0;
1467
1468 if (ap_drv->in_use) {
1469 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1470 if (rc)
1471 rc = -EBUSY;
1472 }
1473
1474 /* release the driver's module */
1475 module_put(module: drv->owner);
1476
1477 return rc;
1478}
1479
1480static int aqmask_commit(unsigned long *newaqm)
1481{
1482 int rc;
1483 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1484
1485 /*
1486 * Check if any bits in the aqmask have been set which will
1487 * result in queues being removed from non-default drivers
1488 */
1489 if (bitmap_andnot(dst: reserved, src1: newaqm, src2: ap_perms.aqm, AP_DOMAINS)) {
1490 rc = bus_for_each_drv(bus: &ap_bus_type, NULL, data: reserved,
1491 fn: __verify_queue_reservations);
1492 if (rc)
1493 return rc;
1494 }
1495
1496 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1497
1498 return 0;
1499}
1500
1501static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1502 size_t count)
1503{
1504 int rc, changes = 0;
1505 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1506
1507 if (mutex_lock_interruptible(&ap_perms_mutex))
1508 return -ERESTARTSYS;
1509
1510 rc = ap_parse_bitmap_str(str: buf, bitmap: ap_perms.aqm, AP_DOMAINS, newmap: newaqm);
1511 if (rc)
1512 goto done;
1513
1514 changes = memcmp(p: ap_perms.aqm, q: newaqm, APMASKSIZE);
1515 if (changes)
1516 rc = aqmask_commit(newaqm);
1517
1518done:
1519 mutex_unlock(lock: &ap_perms_mutex);
1520 if (rc)
1521 return rc;
1522
1523 if (changes) {
1524 ap_bus_revise_bindings();
1525 ap_send_mask_changed_uevent(NULL, newaqm);
1526 }
1527
1528 return count;
1529}
1530
1531static BUS_ATTR_RW(aqmask);
1532
1533static ssize_t scans_show(const struct bus_type *bus, char *buf)
1534{
1535 return sysfs_emit(buf, fmt: "%llu\n", atomic64_read(v: &ap_scan_bus_count));
1536}
1537
1538static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1539 size_t count)
1540{
1541 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1542
1543 ap_bus_force_rescan();
1544
1545 return count;
1546}
1547
1548static BUS_ATTR_RW(scans);
1549
1550static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1551{
1552 int rc;
1553 unsigned int apqns, n;
1554
1555 ap_calc_bound_apqns(apqns: &apqns, bound: &n);
1556 if (atomic64_read(v: &ap_scan_bus_count) >= 1 && n == apqns)
1557 rc = sysfs_emit(buf, fmt: "%u/%u (complete)\n", n, apqns);
1558 else
1559 rc = sysfs_emit(buf, fmt: "%u/%u\n", n, apqns);
1560
1561 return rc;
1562}
1563
1564static BUS_ATTR_RO(bindings);
1565
1566static ssize_t features_show(const struct bus_type *bus, char *buf)
1567{
1568 int n = 0;
1569
1570 if (!ap_qci_info) /* QCI not supported */
1571 return sysfs_emit(buf, fmt: "-\n");
1572
1573 if (ap_qci_info->apsc)
1574 n += sysfs_emit_at(buf, at: n, fmt: "APSC ");
1575 if (ap_qci_info->apxa)
1576 n += sysfs_emit_at(buf, at: n, fmt: "APXA ");
1577 if (ap_qci_info->qact)
1578 n += sysfs_emit_at(buf, at: n, fmt: "QACT ");
1579 if (ap_qci_info->rc8a)
1580 n += sysfs_emit_at(buf, at: n, fmt: "RC8A ");
1581 if (ap_qci_info->apsb)
1582 n += sysfs_emit_at(buf, at: n, fmt: "APSB ");
1583
1584 sysfs_emit_at(buf, at: n == 0 ? 0 : n - 1, fmt: "\n");
1585
1586 return n;
1587}
1588
1589static BUS_ATTR_RO(features);
1590
1591static struct attribute *ap_bus_attrs[] = {
1592 &bus_attr_ap_domain.attr,
1593 &bus_attr_ap_control_domain_mask.attr,
1594 &bus_attr_ap_usage_domain_mask.attr,
1595 &bus_attr_ap_adapter_mask.attr,
1596 &bus_attr_config_time.attr,
1597 &bus_attr_poll_thread.attr,
1598 &bus_attr_ap_interrupts.attr,
1599 &bus_attr_poll_timeout.attr,
1600 &bus_attr_ap_max_domain_id.attr,
1601 &bus_attr_ap_max_adapter_id.attr,
1602 &bus_attr_apmask.attr,
1603 &bus_attr_aqmask.attr,
1604 &bus_attr_scans.attr,
1605 &bus_attr_bindings.attr,
1606 &bus_attr_features.attr,
1607 NULL,
1608};
1609ATTRIBUTE_GROUPS(ap_bus);
1610
1611static struct bus_type ap_bus_type = {
1612 .name = "ap",
1613 .bus_groups = ap_bus_groups,
1614 .match = &ap_bus_match,
1615 .uevent = &ap_uevent,
1616 .probe = ap_device_probe,
1617 .remove = ap_device_remove,
1618};
1619
1620/**
1621 * ap_select_domain(): Select an AP domain if possible and we haven't
1622 * already done so before.
1623 */
1624static void ap_select_domain(void)
1625{
1626 struct ap_queue_status status;
1627 int card, dom;
1628
1629 /*
1630 * Choose the default domain. Either the one specified with
1631 * the "domain=" parameter or the first domain with at least
1632 * one valid APQN.
1633 */
1634 spin_lock_bh(lock: &ap_domain_lock);
1635 if (ap_domain_index >= 0) {
1636 /* Domain has already been selected. */
1637 goto out;
1638 }
1639 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1640 if (!ap_test_config_usage_domain(dom) ||
1641 !test_bit_inv(dom, ap_perms.aqm))
1642 continue;
1643 for (card = 0; card <= ap_max_adapter_id; card++) {
1644 if (!ap_test_config_card_id(id: card) ||
1645 !test_bit_inv(card, ap_perms.apm))
1646 continue;
1647 status = ap_test_queue(AP_MKQID(card, dom),
1648 ap_apft_available(),
1649 NULL);
1650 if (status.response_code == AP_RESPONSE_NORMAL)
1651 break;
1652 }
1653 if (card <= ap_max_adapter_id)
1654 break;
1655 }
1656 if (dom <= ap_max_domain_id) {
1657 ap_domain_index = dom;
1658 AP_DBF_INFO("%s new default domain is %d\n",
1659 __func__, ap_domain_index);
1660 }
1661out:
1662 spin_unlock_bh(lock: &ap_domain_lock);
1663}
1664
1665/*
1666 * This function checks the type and returns either 0 for not
1667 * supported or the highest compatible type value (which may
1668 * include the input type value).
1669 */
1670static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1671{
1672 int comp_type = 0;
1673
1674 /* < CEX4 is not supported */
1675 if (rawtype < AP_DEVICE_TYPE_CEX4) {
1676 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1677 __func__, AP_QID_CARD(qid),
1678 AP_QID_QUEUE(qid), rawtype);
1679 return 0;
1680 }
1681 /* up to CEX8 known and fully supported */
1682 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1683 return rawtype;
1684 /*
1685 * unknown new type > CEX8, check for compatibility
1686 * to the highest known and supported type which is
1687 * currently CEX8 with the help of the QACT function.
1688 */
1689 if (ap_qact_available()) {
1690 struct ap_queue_status status;
1691 union ap_qact_ap_info apinfo = {0};
1692
1693 apinfo.mode = (func >> 26) & 0x07;
1694 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1695 status = ap_qact(qid, 0, &apinfo);
1696 if (status.response_code == AP_RESPONSE_NORMAL &&
1697 apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1698 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1699 comp_type = apinfo.cat;
1700 }
1701 if (!comp_type)
1702 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1703 __func__, AP_QID_CARD(qid),
1704 AP_QID_QUEUE(qid), rawtype);
1705 else if (comp_type != rawtype)
1706 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1707 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1708 rawtype, comp_type);
1709 return comp_type;
1710}
1711
1712/*
1713 * Helper function to be used with bus_find_dev
1714 * matches for the card device with the given id
1715 */
1716static int __match_card_device_with_id(struct device *dev, const void *data)
1717{
1718 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1719}
1720
1721/*
1722 * Helper function to be used with bus_find_dev
1723 * matches for the queue device with a given qid
1724 */
1725static int __match_queue_device_with_qid(struct device *dev, const void *data)
1726{
1727 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1728}
1729
1730/*
1731 * Helper function to be used with bus_find_dev
1732 * matches any queue device with given queue id
1733 */
1734static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1735{
1736 return is_queue_dev(dev) &&
1737 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1738}
1739
1740/* Helper function for notify_config_changed */
1741static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1742{
1743 struct ap_driver *ap_drv = to_ap_drv(drv);
1744
1745 if (try_module_get(module: drv->owner)) {
1746 if (ap_drv->on_config_changed)
1747 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1748 module_put(module: drv->owner);
1749 }
1750
1751 return 0;
1752}
1753
1754/* Notify all drivers about an qci config change */
1755static inline void notify_config_changed(void)
1756{
1757 bus_for_each_drv(bus: &ap_bus_type, NULL, NULL,
1758 fn: __drv_notify_config_changed);
1759}
1760
1761/* Helper function for notify_scan_complete */
1762static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1763{
1764 struct ap_driver *ap_drv = to_ap_drv(drv);
1765
1766 if (try_module_get(module: drv->owner)) {
1767 if (ap_drv->on_scan_complete)
1768 ap_drv->on_scan_complete(ap_qci_info,
1769 ap_qci_info_old);
1770 module_put(module: drv->owner);
1771 }
1772
1773 return 0;
1774}
1775
1776/* Notify all drivers about bus scan complete */
1777static inline void notify_scan_complete(void)
1778{
1779 bus_for_each_drv(bus: &ap_bus_type, NULL, NULL,
1780 fn: __drv_notify_scan_complete);
1781}
1782
1783/*
1784 * Helper function for ap_scan_bus().
1785 * Remove card device and associated queue devices.
1786 */
1787static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1788{
1789 bus_for_each_dev(bus: &ap_bus_type, NULL,
1790 data: (void *)(long)ac->id,
1791 fn: __ap_queue_devices_with_id_unregister);
1792 device_unregister(dev: &ac->ap_dev.device);
1793}
1794
1795/*
1796 * Helper function for ap_scan_bus().
1797 * Does the scan bus job for all the domains within
1798 * a valid adapter given by an ap_card ptr.
1799 */
1800static inline void ap_scan_domains(struct ap_card *ac)
1801{
1802 int rc, dom, depth, type, ml;
1803 bool decfg, chkstop;
1804 struct ap_queue *aq;
1805 struct device *dev;
1806 unsigned int func;
1807 ap_qid_t qid;
1808
1809 /*
1810 * Go through the configuration for the domains and compare them
1811 * to the existing queue devices. Also take care of the config
1812 * and error state for the queue devices.
1813 */
1814
1815 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1816 qid = AP_MKQID(ac->id, dom);
1817 dev = bus_find_device(&ap_bus_type, NULL,
1818 (void *)(long)qid,
1819 __match_queue_device_with_qid);
1820 aq = dev ? to_ap_queue(dev) : NULL;
1821 if (!ap_test_config_usage_domain(dom)) {
1822 if (dev) {
1823 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1824 __func__, ac->id, dom);
1825 device_unregister(dev);
1826 }
1827 goto put_dev_and_continue;
1828 }
1829 /* domain is valid, get info from this APQN */
1830 rc = ap_queue_info(qid, &type, &func, &depth,
1831 &ml, &decfg, &chkstop);
1832 switch (rc) {
1833 case -1:
1834 if (dev) {
1835 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1836 __func__, ac->id, dom);
1837 device_unregister(dev);
1838 }
1839 fallthrough;
1840 case 0:
1841 goto put_dev_and_continue;
1842 default:
1843 break;
1844 }
1845 /* if no queue device exists, create a new one */
1846 if (!aq) {
1847 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1848 if (!aq) {
1849 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1850 __func__, ac->id, dom);
1851 continue;
1852 }
1853 aq->card = ac;
1854 aq->config = !decfg;
1855 aq->chkstop = chkstop;
1856 dev = &aq->ap_dev.device;
1857 dev->bus = &ap_bus_type;
1858 dev->parent = &ac->ap_dev.device;
1859 dev_set_name(dev, name: "%02x.%04x", ac->id, dom);
1860 /* register queue device */
1861 rc = device_register(dev);
1862 if (rc) {
1863 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1864 __func__, ac->id, dom);
1865 goto put_dev_and_continue;
1866 }
1867 /* get it and thus adjust reference counter */
1868 get_device(dev);
1869 if (decfg) {
1870 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1871 __func__, ac->id, dom);
1872 } else if (chkstop) {
1873 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1874 __func__, ac->id, dom);
1875 } else {
1876 /* nudge the queue's state machine */
1877 ap_queue_init_state(aq);
1878 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1879 __func__, ac->id, dom);
1880 }
1881 goto put_dev_and_continue;
1882 }
1883 /* handle state changes on already existing queue device */
1884 spin_lock_bh(lock: &aq->lock);
1885 /* checkstop state */
1886 if (chkstop && !aq->chkstop) {
1887 /* checkstop on */
1888 aq->chkstop = true;
1889 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1890 aq->dev_state = AP_DEV_STATE_ERROR;
1891 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1892 }
1893 spin_unlock_bh(lock: &aq->lock);
1894 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1895 __func__, ac->id, dom);
1896 /* 'receive' pending messages with -EAGAIN */
1897 ap_flush_queue(aq);
1898 goto put_dev_and_continue;
1899 } else if (!chkstop && aq->chkstop) {
1900 /* checkstop off */
1901 aq->chkstop = false;
1902 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1903 _ap_queue_init_state(aq);
1904 spin_unlock_bh(lock: &aq->lock);
1905 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1906 __func__, ac->id, dom);
1907 goto put_dev_and_continue;
1908 }
1909 /* config state change */
1910 if (decfg && aq->config) {
1911 /* config off this queue device */
1912 aq->config = false;
1913 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1914 aq->dev_state = AP_DEV_STATE_ERROR;
1915 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1916 }
1917 spin_unlock_bh(lock: &aq->lock);
1918 AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1919 __func__, ac->id, dom);
1920 ap_send_config_uevent(&aq->ap_dev, aq->config);
1921 /* 'receive' pending messages with -EAGAIN */
1922 ap_flush_queue(aq);
1923 goto put_dev_and_continue;
1924 } else if (!decfg && !aq->config) {
1925 /* config on this queue device */
1926 aq->config = true;
1927 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1928 _ap_queue_init_state(aq);
1929 spin_unlock_bh(lock: &aq->lock);
1930 AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1931 __func__, ac->id, dom);
1932 ap_send_config_uevent(&aq->ap_dev, aq->config);
1933 goto put_dev_and_continue;
1934 }
1935 /* handle other error states */
1936 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1937 spin_unlock_bh(lock: &aq->lock);
1938 /* 'receive' pending messages with -EAGAIN */
1939 ap_flush_queue(aq);
1940 /* re-init (with reset) the queue device */
1941 ap_queue_init_state(aq);
1942 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1943 __func__, ac->id, dom);
1944 goto put_dev_and_continue;
1945 }
1946 spin_unlock_bh(lock: &aq->lock);
1947put_dev_and_continue:
1948 put_device(dev);
1949 }
1950}
1951
1952/*
1953 * Helper function for ap_scan_bus().
1954 * Does the scan bus job for the given adapter id.
1955 */
1956static inline void ap_scan_adapter(int ap)
1957{
1958 int rc, dom, depth, type, comp_type, ml;
1959 bool decfg, chkstop;
1960 struct ap_card *ac;
1961 struct device *dev;
1962 unsigned int func;
1963 ap_qid_t qid;
1964
1965 /* Is there currently a card device for this adapter ? */
1966 dev = bus_find_device(bus: &ap_bus_type, NULL,
1967 data: (void *)(long)ap,
1968 match: __match_card_device_with_id);
1969 ac = dev ? to_ap_card(dev) : NULL;
1970
1971 /* Adapter not in configuration ? */
1972 if (!ap_test_config_card_id(id: ap)) {
1973 if (ac) {
1974 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1975 __func__, ap);
1976 ap_scan_rm_card_dev_and_queue_devs(ac);
1977 put_device(dev);
1978 }
1979 return;
1980 }
1981
1982 /*
1983 * Adapter ap is valid in the current configuration. So do some checks:
1984 * If no card device exists, build one. If a card device exists, check
1985 * for type and functions changed. For all this we need to find a valid
1986 * APQN first.
1987 */
1988
1989 for (dom = 0; dom <= ap_max_domain_id; dom++)
1990 if (ap_test_config_usage_domain(dom)) {
1991 qid = AP_MKQID(ap, dom);
1992 if (ap_queue_info(qid, &type, &func, &depth,
1993 &ml, &decfg, &chkstop) > 0)
1994 break;
1995 }
1996 if (dom > ap_max_domain_id) {
1997 /* Could not find one valid APQN for this adapter */
1998 if (ac) {
1999 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2000 __func__, ap);
2001 ap_scan_rm_card_dev_and_queue_devs(ac);
2002 put_device(dev);
2003 } else {
2004 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
2005 __func__, ap);
2006 }
2007 return;
2008 }
2009 if (!type) {
2010 /* No apdater type info available, an unusable adapter */
2011 if (ac) {
2012 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2013 __func__, ap);
2014 ap_scan_rm_card_dev_and_queue_devs(ac);
2015 put_device(dev);
2016 } else {
2017 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
2018 __func__, ap);
2019 }
2020 return;
2021 }
2022 if (ac) {
2023 /* Check APQN against existing card device for changes */
2024 if (ac->raw_hwtype != type) {
2025 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2026 __func__, ap, type);
2027 ap_scan_rm_card_dev_and_queue_devs(ac);
2028 put_device(dev);
2029 ac = NULL;
2030 } else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) !=
2031 (func & TAPQ_CARD_FUNC_CMP_MASK)) {
2032 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2033 __func__, ap, func);
2034 ap_scan_rm_card_dev_and_queue_devs(ac);
2035 put_device(dev);
2036 ac = NULL;
2037 } else {
2038 /* handle checkstop state change */
2039 if (chkstop && !ac->chkstop) {
2040 /* checkstop on */
2041 ac->chkstop = true;
2042 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2043 __func__, ap);
2044 } else if (!chkstop && ac->chkstop) {
2045 /* checkstop off */
2046 ac->chkstop = false;
2047 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2048 __func__, ap);
2049 }
2050 /* handle config state change */
2051 if (decfg && ac->config) {
2052 ac->config = false;
2053 AP_DBF_INFO("%s(%d) card dev config off\n",
2054 __func__, ap);
2055 ap_send_config_uevent(&ac->ap_dev, ac->config);
2056 } else if (!decfg && !ac->config) {
2057 ac->config = true;
2058 AP_DBF_INFO("%s(%d) card dev config on\n",
2059 __func__, ap);
2060 ap_send_config_uevent(&ac->ap_dev, ac->config);
2061 }
2062 }
2063 }
2064
2065 if (!ac) {
2066 /* Build a new card device */
2067 comp_type = ap_get_compatible_type(qid, type, func);
2068 if (!comp_type) {
2069 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2070 __func__, ap, type);
2071 return;
2072 }
2073 ac = ap_card_create(id: ap, queue_depth: depth, raw_type: type, comp_type, functions: func, ml);
2074 if (!ac) {
2075 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2076 __func__, ap);
2077 return;
2078 }
2079 ac->config = !decfg;
2080 ac->chkstop = chkstop;
2081 dev = &ac->ap_dev.device;
2082 dev->bus = &ap_bus_type;
2083 dev->parent = ap_root_device;
2084 dev_set_name(dev, name: "card%02x", ap);
2085 /* maybe enlarge ap_max_msg_size to support this card */
2086 if (ac->maxmsgsize > atomic_read(v: &ap_max_msg_size)) {
2087 atomic_set(v: &ap_max_msg_size, i: ac->maxmsgsize);
2088 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2089 __func__, ap,
2090 atomic_read(&ap_max_msg_size));
2091 }
2092 /* Register the new card device with AP bus */
2093 rc = device_register(dev);
2094 if (rc) {
2095 AP_DBF_WARN("%s(%d) device_register() failed\n",
2096 __func__, ap);
2097 put_device(dev);
2098 return;
2099 }
2100 /* get it and thus adjust reference counter */
2101 get_device(dev);
2102 if (decfg)
2103 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2104 __func__, ap, type, func);
2105 else if (chkstop)
2106 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2107 __func__, ap, type, func);
2108 else
2109 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2110 __func__, ap, type, func);
2111 }
2112
2113 /* Verify the domains and the queue devices for this card */
2114 ap_scan_domains(ac);
2115
2116 /* release the card device */
2117 put_device(dev: &ac->ap_dev.device);
2118}
2119
2120/**
2121 * ap_get_configuration - get the host AP configuration
2122 *
2123 * Stores the host AP configuration information returned from the previous call
2124 * to Query Configuration Information (QCI), then retrieves and stores the
2125 * current AP configuration returned from QCI.
2126 *
2127 * Return: true if the host AP configuration changed between calls to QCI;
2128 * otherwise, return false.
2129 */
2130static bool ap_get_configuration(void)
2131{
2132 if (!ap_qci_info) /* QCI not supported */
2133 return false;
2134
2135 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2136 ap_fetch_qci_info(info: ap_qci_info);
2137
2138 return memcmp(ap_qci_info, ap_qci_info_old,
2139 sizeof(struct ap_config_info)) != 0;
2140}
2141
2142/**
2143 * ap_scan_bus(): Scan the AP bus for new devices
2144 * Runs periodically, workqueue timer (ap_config_time)
2145 * @unused: Unused pointer.
2146 */
2147static void ap_scan_bus(struct work_struct *unused)
2148{
2149 int ap, config_changed = 0;
2150
2151 /* config change notify */
2152 config_changed = ap_get_configuration();
2153 if (config_changed)
2154 notify_config_changed();
2155 ap_select_domain();
2156
2157 AP_DBF_DBG("%s running\n", __func__);
2158
2159 /* loop over all possible adapters */
2160 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2161 ap_scan_adapter(ap);
2162
2163 /* scan complete notify */
2164 if (config_changed)
2165 notify_scan_complete();
2166
2167 /* check if there is at least one queue available with default domain */
2168 if (ap_domain_index >= 0) {
2169 struct device *dev =
2170 bus_find_device(bus: &ap_bus_type, NULL,
2171 data: (void *)(long)ap_domain_index,
2172 match: __match_queue_device_with_queue_id);
2173 if (dev)
2174 put_device(dev);
2175 else
2176 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2177 __func__, ap_domain_index);
2178 }
2179
2180 if (atomic64_inc_return(v: &ap_scan_bus_count) == 1) {
2181 AP_DBF_DBG("%s init scan complete\n", __func__);
2182 ap_send_init_scan_done_uevent();
2183 ap_check_bindings_complete();
2184 }
2185
2186 mod_timer(timer: &ap_config_timer, expires: jiffies + ap_config_time * HZ);
2187}
2188
2189static void ap_config_timeout(struct timer_list *unused)
2190{
2191 queue_work(wq: system_long_wq, work: &ap_scan_work);
2192}
2193
2194static int __init ap_debug_init(void)
2195{
2196 ap_dbf_info = debug_register("ap", 2, 1,
2197 DBF_MAX_SPRINTF_ARGS * sizeof(long));
2198 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2199 debug_set_level(ap_dbf_info, DBF_ERR);
2200
2201 return 0;
2202}
2203
2204static void __init ap_perms_init(void)
2205{
2206 /* all resources usable if no kernel parameter string given */
2207 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2208 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2209 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2210
2211 /* apm kernel parameter string */
2212 if (apm_str) {
2213 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2214 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2215 &ap_perms_mutex);
2216 }
2217
2218 /* aqm kernel parameter string */
2219 if (aqm_str) {
2220 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2221 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2222 &ap_perms_mutex);
2223 }
2224}
2225
2226/**
2227 * ap_module_init(): The module initialization code.
2228 *
2229 * Initializes the module.
2230 */
2231static int __init ap_module_init(void)
2232{
2233 int rc;
2234
2235 rc = ap_debug_init();
2236 if (rc)
2237 return rc;
2238
2239 if (!ap_instructions_available()) {
2240 pr_warn("The hardware system does not support AP instructions\n");
2241 return -ENODEV;
2242 }
2243
2244 /* init ap_queue hashtable */
2245 hash_init(ap_queues);
2246
2247 /* set up the AP permissions (ioctls, ap and aq masks) */
2248 ap_perms_init();
2249
2250 /* Get AP configuration data if available */
2251 ap_init_qci_info();
2252
2253 /* check default domain setting */
2254 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2255 (ap_domain_index >= 0 &&
2256 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2257 pr_warn("%d is not a valid cryptographic domain\n",
2258 ap_domain_index);
2259 ap_domain_index = -1;
2260 }
2261
2262 /* enable interrupts if available */
2263 if (ap_interrupts_available() && ap_useirq) {
2264 rc = register_adapter_interrupt(&ap_airq);
2265 ap_irq_flag = (rc == 0);
2266 }
2267
2268 /* Create /sys/bus/ap. */
2269 rc = bus_register(bus: &ap_bus_type);
2270 if (rc)
2271 goto out;
2272
2273 /* Create /sys/devices/ap. */
2274 ap_root_device = root_device_register("ap");
2275 rc = PTR_ERR_OR_ZERO(ptr: ap_root_device);
2276 if (rc)
2277 goto out_bus;
2278 ap_root_device->bus = &ap_bus_type;
2279
2280 /* Setup the AP bus rescan timer. */
2281 timer_setup(&ap_config_timer, ap_config_timeout, 0);
2282
2283 /*
2284 * Setup the high resolution poll timer.
2285 * If we are running under z/VM adjust polling to z/VM polling rate.
2286 */
2287 if (MACHINE_IS_VM)
2288 poll_high_timeout = 1500000;
2289 hrtimer_init(timer: &ap_poll_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_ABS);
2290 ap_poll_timer.function = ap_poll_timeout;
2291
2292 /* Start the low priority AP bus poll thread. */
2293 if (ap_thread_flag) {
2294 rc = ap_poll_thread_start();
2295 if (rc)
2296 goto out_work;
2297 }
2298
2299 queue_work(wq: system_long_wq, work: &ap_scan_work);
2300
2301 return 0;
2302
2303out_work:
2304 hrtimer_cancel(timer: &ap_poll_timer);
2305 root_device_unregister(root: ap_root_device);
2306out_bus:
2307 bus_unregister(bus: &ap_bus_type);
2308out:
2309 if (ap_irq_flag)
2310 unregister_adapter_interrupt(&ap_airq);
2311 kfree(objp: ap_qci_info);
2312 return rc;
2313}
2314device_initcall(ap_module_init);
2315

source code of linux/drivers/s390/crypto/ap_bus.c