1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2009-2013 LSI Corporation
6 * Copyright (c) 2013-2016 Avago Technologies
7 * Copyright (c) 2016-2018 Broadcom Inc.
8 *
9 * FILE: megaraid_sas_fp.c
10 *
11 * Authors: Broadcom Inc.
12 * Sumant Patro
13 * Varad Talamacki
14 * Manoj Jose
15 * Kashyap Desai <kashyap.desai@broadcom.com>
16 * Sumit Saxena <sumit.saxena@broadcom.com>
17 *
18 * Send feedback to: megaraidlinux.pdl@broadcom.com
19 */
20
21#include <linux/kernel.h>
22#include <linux/types.h>
23#include <linux/pci.h>
24#include <linux/list.h>
25#include <linux/moduleparam.h>
26#include <linux/module.h>
27#include <linux/spinlock.h>
28#include <linux/interrupt.h>
29#include <linux/delay.h>
30#include <linux/uio.h>
31#include <linux/uaccess.h>
32#include <linux/fs.h>
33#include <linux/compat.h>
34#include <linux/blkdev.h>
35#include <linux/poll.h>
36#include <linux/irq_poll.h>
37
38#include <scsi/scsi.h>
39#include <scsi/scsi_cmnd.h>
40#include <scsi/scsi_device.h>
41#include <scsi/scsi_host.h>
42
43#include "megaraid_sas_fusion.h"
44#include "megaraid_sas.h"
45#include <asm/div64.h>
46
47#define LB_PENDING_CMDS_DEFAULT 4
48static unsigned int lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
49module_param(lb_pending_cmds, int, 0444);
50MODULE_PARM_DESC(lb_pending_cmds, "Change raid-1 load balancing outstanding "
51 "threshold. Valid Values are 1-128. Default: 4");
52
53
54#define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a)))
55#define MR_LD_STATE_OPTIMAL 3
56
57#define SPAN_ROW_SIZE(map, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowSize)
58#define SPAN_ROW_DATA_SIZE(map_, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize)
59#define SPAN_INVALID 0xff
60
61/* Prototypes */
62static void mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map,
63 PLD_SPAN_INFO ldSpanInfo);
64static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld,
65 u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info,
66 struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map);
67static u64 get_row_from_strip(struct megasas_instance *instance, u32 ld,
68 u64 strip, struct MR_DRV_RAID_MAP_ALL *map);
69
70u32 mega_mod64(u64 dividend, u32 divisor)
71{
72 u64 d;
73 u32 remainder;
74
75 if (!divisor)
76 printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n");
77 d = dividend;
78 remainder = do_div(d, divisor);
79 return remainder;
80}
81
82/**
83 * mega_div64_32 - Do a 64-bit division
84 * @dividend: Dividend
85 * @divisor: Divisor
86 *
87 * @return quotient
88 **/
89static u64 mega_div64_32(uint64_t dividend, uint32_t divisor)
90{
91 u64 d = dividend;
92
93 if (!divisor)
94 printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n");
95
96 do_div(d, divisor);
97
98 return d;
99}
100
101struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_DRV_RAID_MAP_ALL *map)
102{
103 return &map->raidMap.ldSpanMap[ld].ldRaid;
104}
105
106static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld,
107 struct MR_DRV_RAID_MAP_ALL
108 *map)
109{
110 return &map->raidMap.ldSpanMap[ld].spanBlock[0];
111}
112
113static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_DRV_RAID_MAP_ALL *map)
114{
115 return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
116}
117
118u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_DRV_RAID_MAP_ALL *map)
119{
120 return le16_to_cpu(map->raidMap.arMapInfo[ar].pd[arm]);
121}
122
123u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_DRV_RAID_MAP_ALL *map)
124{
125 return le16_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef);
126}
127
128__le16 MR_PdDevHandleGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map)
129{
130 return map->raidMap.devHndlInfo[pd].curDevHdl;
131}
132
133static u8 MR_PdInterfaceTypeGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map)
134{
135 return map->raidMap.devHndlInfo[pd].interfaceType;
136}
137
138u16 MR_GetLDTgtId(u32 ld, struct MR_DRV_RAID_MAP_ALL *map)
139{
140 return le16_to_cpu(map->raidMap.ldSpanMap[ld].ldRaid.targetId);
141}
142
143u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_DRV_RAID_MAP_ALL *map)
144{
145 return map->raidMap.ldTgtIdToLd[ldTgtId];
146}
147
148static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span,
149 struct MR_DRV_RAID_MAP_ALL *map)
150{
151 return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
152}
153
154/*
155 * This function will Populate Driver Map using firmware raid map
156 */
157static int MR_PopulateDrvRaidMap(struct megasas_instance *instance, u64 map_id)
158{
159 struct fusion_context *fusion = instance->ctrl_context;
160 struct MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
161 struct MR_FW_RAID_MAP *pFwRaidMap = NULL;
162 int i, j;
163 u16 ld_count;
164 struct MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn;
165 struct MR_FW_RAID_MAP_EXT *fw_map_ext;
166 struct MR_RAID_MAP_DESC_TABLE *desc_table;
167
168
169 struct MR_DRV_RAID_MAP_ALL *drv_map =
170 fusion->ld_drv_map[(map_id & 1)];
171 struct MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
172 void *raid_map_data = NULL;
173
174 memset(drv_map, 0, fusion->drv_map_sz);
175 memset(pDrvRaidMap->ldTgtIdToLd,
176 0xff, (sizeof(u16) * MAX_LOGICAL_DRIVES_DYN));
177
178 if (instance->max_raid_mapsize) {
179 fw_map_dyn = fusion->ld_map[(map_id & 1)];
180 desc_table =
181 (struct MR_RAID_MAP_DESC_TABLE *)((void *)fw_map_dyn + le32_to_cpu(fw_map_dyn->desc_table_offset));
182 if (desc_table != fw_map_dyn->raid_map_desc_table)
183 dev_dbg(&instance->pdev->dev, "offsets of desc table are not matching desc %p original %p\n",
184 desc_table, fw_map_dyn->raid_map_desc_table);
185
186 ld_count = (u16)le16_to_cpu(fw_map_dyn->ld_count);
187 pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
188 pDrvRaidMap->fpPdIoTimeoutSec =
189 fw_map_dyn->fp_pd_io_timeout_sec;
190 pDrvRaidMap->totalSize =
191 cpu_to_le32(sizeof(struct MR_DRV_RAID_MAP_ALL));
192 /* point to actual data starting point*/
193 raid_map_data = (void *)fw_map_dyn +
194 le32_to_cpu(fw_map_dyn->desc_table_offset) +
195 le32_to_cpu(fw_map_dyn->desc_table_size);
196
197 for (i = 0; i < le32_to_cpu(fw_map_dyn->desc_table_num_elements); ++i) {
198 switch (le32_to_cpu(desc_table->raid_map_desc_type)) {
199 case RAID_MAP_DESC_TYPE_DEVHDL_INFO:
200 fw_map_dyn->dev_hndl_info =
201 (struct MR_DEV_HANDLE_INFO *)(raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset));
202 memcpy(pDrvRaidMap->devHndlInfo,
203 fw_map_dyn->dev_hndl_info,
204 sizeof(struct MR_DEV_HANDLE_INFO) *
205 le32_to_cpu(desc_table->raid_map_desc_elements));
206 break;
207 case RAID_MAP_DESC_TYPE_TGTID_INFO:
208 fw_map_dyn->ld_tgt_id_to_ld =
209 (u16 *)(raid_map_data +
210 le32_to_cpu(desc_table->raid_map_desc_offset));
211 for (j = 0; j < le32_to_cpu(desc_table->raid_map_desc_elements); j++) {
212 pDrvRaidMap->ldTgtIdToLd[j] =
213 le16_to_cpu(fw_map_dyn->ld_tgt_id_to_ld[j]);
214 }
215 break;
216 case RAID_MAP_DESC_TYPE_ARRAY_INFO:
217 fw_map_dyn->ar_map_info =
218 (struct MR_ARRAY_INFO *)
219 (raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset));
220 memcpy(pDrvRaidMap->arMapInfo,
221 fw_map_dyn->ar_map_info,
222 sizeof(struct MR_ARRAY_INFO) *
223 le32_to_cpu(desc_table->raid_map_desc_elements));
224 break;
225 case RAID_MAP_DESC_TYPE_SPAN_INFO:
226 fw_map_dyn->ld_span_map =
227 (struct MR_LD_SPAN_MAP *)
228 (raid_map_data +
229 le32_to_cpu(desc_table->raid_map_desc_offset));
230 memcpy(pDrvRaidMap->ldSpanMap,
231 fw_map_dyn->ld_span_map,
232 sizeof(struct MR_LD_SPAN_MAP) *
233 le32_to_cpu(desc_table->raid_map_desc_elements));
234 break;
235 default:
236 dev_dbg(&instance->pdev->dev, "wrong number of desctableElements %d\n",
237 fw_map_dyn->desc_table_num_elements);
238 }
239 ++desc_table;
240 }
241
242 } else if (instance->supportmax256vd) {
243 fw_map_ext =
244 (struct MR_FW_RAID_MAP_EXT *)fusion->ld_map[(map_id & 1)];
245 ld_count = (u16)le16_to_cpu(fw_map_ext->ldCount);
246 if (ld_count > MAX_LOGICAL_DRIVES_EXT) {
247 dev_dbg(&instance->pdev->dev, "megaraid_sas: LD count exposed in RAID map in not valid\n");
248 return 1;
249 }
250
251 pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
252 pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec;
253 for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++)
254 pDrvRaidMap->ldTgtIdToLd[i] =
255 (u16)fw_map_ext->ldTgtIdToLd[i];
256 memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap,
257 sizeof(struct MR_LD_SPAN_MAP) * ld_count);
258 memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo,
259 sizeof(struct MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT);
260 memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo,
261 sizeof(struct MR_DEV_HANDLE_INFO) *
262 MAX_RAIDMAP_PHYSICAL_DEVICES);
263
264 /* New Raid map will not set totalSize, so keep expected value
265 * for legacy code in ValidateMapInfo
266 */
267 pDrvRaidMap->totalSize =
268 cpu_to_le32(sizeof(struct MR_FW_RAID_MAP_EXT));
269 } else {
270 fw_map_old = (struct MR_FW_RAID_MAP_ALL *)
271 fusion->ld_map[(map_id & 1)];
272 pFwRaidMap = &fw_map_old->raidMap;
273 ld_count = (u16)le32_to_cpu(pFwRaidMap->ldCount);
274 if (ld_count > MAX_LOGICAL_DRIVES) {
275 dev_dbg(&instance->pdev->dev,
276 "LD count exposed in RAID map in not valid\n");
277 return 1;
278 }
279
280 pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
281 pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count);
282 pDrvRaidMap->fpPdIoTimeoutSec = pFwRaidMap->fpPdIoTimeoutSec;
283 for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++)
284 pDrvRaidMap->ldTgtIdToLd[i] =
285 (u8)pFwRaidMap->ldTgtIdToLd[i];
286 for (i = 0; i < ld_count; i++) {
287 pDrvRaidMap->ldSpanMap[i] = pFwRaidMap->ldSpanMap[i];
288 }
289 memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
290 sizeof(struct MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
291 memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
292 sizeof(struct MR_DEV_HANDLE_INFO) *
293 MAX_RAIDMAP_PHYSICAL_DEVICES);
294 }
295
296 return 0;
297}
298
299/*
300 * This function will validate Map info data provided by FW
301 */
302u8 MR_ValidateMapInfo(struct megasas_instance *instance, u64 map_id)
303{
304 struct fusion_context *fusion;
305 struct MR_DRV_RAID_MAP_ALL *drv_map;
306 struct MR_DRV_RAID_MAP *pDrvRaidMap;
307 struct LD_LOAD_BALANCE_INFO *lbInfo;
308 PLD_SPAN_INFO ldSpanInfo;
309 struct MR_LD_RAID *raid;
310 u16 num_lds, i;
311 u16 ld;
312 u32 expected_size;
313
314 if (MR_PopulateDrvRaidMap(instance, map_id))
315 return 0;
316
317 fusion = instance->ctrl_context;
318 drv_map = fusion->ld_drv_map[(map_id & 1)];
319 pDrvRaidMap = &drv_map->raidMap;
320
321 lbInfo = fusion->load_balance_info;
322 ldSpanInfo = fusion->log_to_span;
323
324 if (instance->max_raid_mapsize)
325 expected_size = sizeof(struct MR_DRV_RAID_MAP_ALL);
326 else if (instance->supportmax256vd)
327 expected_size = sizeof(struct MR_FW_RAID_MAP_EXT);
328 else
329 expected_size = struct_size_t(struct MR_FW_RAID_MAP,
330 ldSpanMap,
331 le16_to_cpu(pDrvRaidMap->ldCount));
332
333 if (le32_to_cpu(pDrvRaidMap->totalSize) != expected_size) {
334 dev_dbg(&instance->pdev->dev, "megasas: map info structure size 0x%x",
335 le32_to_cpu(pDrvRaidMap->totalSize));
336 dev_dbg(&instance->pdev->dev, "is not matching expected size 0x%x\n",
337 (unsigned int)expected_size);
338 dev_err(&instance->pdev->dev, "megasas: span map %x, pDrvRaidMap->totalSize : %x\n",
339 (unsigned int)sizeof(struct MR_LD_SPAN_MAP),
340 le32_to_cpu(pDrvRaidMap->totalSize));
341 return 0;
342 }
343
344 if (instance->UnevenSpanSupport)
345 mr_update_span_set(map: drv_map, ldSpanInfo);
346
347 if (lbInfo)
348 mr_update_load_balance_params(map: drv_map, lbInfo);
349
350 num_lds = le16_to_cpu(drv_map->raidMap.ldCount);
351
352 memcpy(instance->ld_ids_prev,
353 instance->ld_ids_from_raidmap,
354 sizeof(instance->ld_ids_from_raidmap));
355 memset(instance->ld_ids_from_raidmap, 0xff, MEGASAS_MAX_LD_IDS);
356 /*Convert Raid capability values to CPU arch */
357 for (i = 0; (num_lds > 0) && (i < MAX_LOGICAL_DRIVES_EXT); i++) {
358 ld = MR_TargetIdToLdGet(ldTgtId: i, map: drv_map);
359
360 /* For non existing VDs, iterate to next VD*/
361 if (ld >= MEGASAS_MAX_SUPPORTED_LD_IDS)
362 continue;
363
364 raid = MR_LdRaidGet(ld, map: drv_map);
365 le32_to_cpus((u32 *)&raid->capability);
366 instance->ld_ids_from_raidmap[i] = i;
367 num_lds--;
368 }
369
370 return 1;
371}
372
373static u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk,
374 struct MR_DRV_RAID_MAP_ALL *map)
375{
376 struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
377 struct MR_QUAD_ELEMENT *quad;
378 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
379 u32 span, j;
380
381 for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
382
383 for (j = 0; j < le32_to_cpu(pSpanBlock->block_span_info.noElements); j++) {
384 quad = &pSpanBlock->block_span_info.quad[j];
385
386 if (le32_to_cpu(quad->diff) == 0)
387 return SPAN_INVALID;
388 if (le64_to_cpu(quad->logStart) <= row && row <=
389 le64_to_cpu(quad->logEnd) && (mega_mod64(dividend: row - le64_to_cpu(quad->logStart),
390 le32_to_cpu(quad->diff))) == 0) {
391 if (span_blk != NULL) {
392 u64 blk;
393 blk = mega_div64_32(dividend: (row-le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff));
394
395 blk = (blk + le64_to_cpu(quad->offsetInSpan)) << raid->stripeShift;
396 *span_blk = blk;
397 }
398 return span;
399 }
400 }
401 }
402 return SPAN_INVALID;
403}
404
405/*
406******************************************************************************
407*
408* This routine calculates the Span block for given row using spanset.
409*
410* Inputs :
411* instance - HBA instance
412* ld - Logical drive number
413* row - Row number
414* map - LD map
415*
416* Outputs :
417*
418* span - Span number
419* block - Absolute Block number in the physical disk
420* div_error - Devide error code.
421*/
422
423static u32 mr_spanset_get_span_block(struct megasas_instance *instance,
424 u32 ld, u64 row, u64 *span_blk, struct MR_DRV_RAID_MAP_ALL *map)
425{
426 struct fusion_context *fusion = instance->ctrl_context;
427 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
428 LD_SPAN_SET *span_set;
429 struct MR_QUAD_ELEMENT *quad;
430 u32 span, info;
431 PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
432
433 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
434 span_set = &(ldSpanInfo[ld].span_set[info]);
435
436 if (span_set->span_row_data_width == 0)
437 break;
438
439 if (row > span_set->data_row_end)
440 continue;
441
442 for (span = 0; span < raid->spanDepth; span++)
443 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
444 block_span_info.noElements) >= info+1) {
445 quad = &map->raidMap.ldSpanMap[ld].
446 spanBlock[span].
447 block_span_info.quad[info];
448 if (le32_to_cpu(quad->diff) == 0)
449 return SPAN_INVALID;
450 if (le64_to_cpu(quad->logStart) <= row &&
451 row <= le64_to_cpu(quad->logEnd) &&
452 (mega_mod64(dividend: row - le64_to_cpu(quad->logStart),
453 le32_to_cpu(quad->diff))) == 0) {
454 if (span_blk != NULL) {
455 u64 blk;
456 blk = mega_div64_32
457 (dividend: (row - le64_to_cpu(quad->logStart)),
458 le32_to_cpu(quad->diff));
459 blk = (blk + le64_to_cpu(quad->offsetInSpan))
460 << raid->stripeShift;
461 *span_blk = blk;
462 }
463 return span;
464 }
465 }
466 }
467 return SPAN_INVALID;
468}
469
470/*
471******************************************************************************
472*
473* This routine calculates the row for given strip using spanset.
474*
475* Inputs :
476* instance - HBA instance
477* ld - Logical drive number
478* Strip - Strip
479* map - LD map
480*
481* Outputs :
482*
483* row - row associated with strip
484*/
485
486static u64 get_row_from_strip(struct megasas_instance *instance,
487 u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map)
488{
489 struct fusion_context *fusion = instance->ctrl_context;
490 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
491 LD_SPAN_SET *span_set;
492 PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
493 u32 info, strip_offset, span, span_offset;
494 u64 span_set_Strip, span_set_Row, retval;
495
496 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
497 span_set = &(ldSpanInfo[ld].span_set[info]);
498
499 if (span_set->span_row_data_width == 0)
500 break;
501 if (strip > span_set->data_strip_end)
502 continue;
503
504 span_set_Strip = strip - span_set->data_strip_start;
505 strip_offset = mega_mod64(dividend: span_set_Strip,
506 divisor: span_set->span_row_data_width);
507 span_set_Row = mega_div64_32(dividend: span_set_Strip,
508 divisor: span_set->span_row_data_width) * span_set->diff;
509 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
510 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
511 block_span_info.noElements) >= info+1) {
512 if (strip_offset >=
513 span_set->strip_offset[span])
514 span_offset++;
515 else
516 break;
517 }
518
519 retval = (span_set->data_row_start + span_set_Row +
520 (span_offset - 1));
521 return retval;
522 }
523 return -1LLU;
524}
525
526
527/*
528******************************************************************************
529*
530* This routine calculates the Start Strip for given row using spanset.
531*
532* Inputs :
533* instance - HBA instance
534* ld - Logical drive number
535* row - Row number
536* map - LD map
537*
538* Outputs :
539*
540* Strip - Start strip associated with row
541*/
542
543static u64 get_strip_from_row(struct megasas_instance *instance,
544 u32 ld, u64 row, struct MR_DRV_RAID_MAP_ALL *map)
545{
546 struct fusion_context *fusion = instance->ctrl_context;
547 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
548 LD_SPAN_SET *span_set;
549 struct MR_QUAD_ELEMENT *quad;
550 PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
551 u32 span, info;
552 u64 strip;
553
554 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
555 span_set = &(ldSpanInfo[ld].span_set[info]);
556
557 if (span_set->span_row_data_width == 0)
558 break;
559 if (row > span_set->data_row_end)
560 continue;
561
562 for (span = 0; span < raid->spanDepth; span++)
563 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
564 block_span_info.noElements) >= info+1) {
565 quad = &map->raidMap.ldSpanMap[ld].
566 spanBlock[span].block_span_info.quad[info];
567 if (le64_to_cpu(quad->logStart) <= row &&
568 row <= le64_to_cpu(quad->logEnd) &&
569 mega_mod64(dividend: (row - le64_to_cpu(quad->logStart)),
570 le32_to_cpu(quad->diff)) == 0) {
571 strip = mega_div64_32
572 (dividend: ((row - span_set->data_row_start)
573 - le64_to_cpu(quad->logStart)),
574 le32_to_cpu(quad->diff));
575 strip *= span_set->span_row_data_width;
576 strip += span_set->data_strip_start;
577 strip += span_set->strip_offset[span];
578 return strip;
579 }
580 }
581 }
582 dev_err(&instance->pdev->dev, "get_strip_from_row"
583 "returns invalid strip for ld=%x, row=%lx\n",
584 ld, (long unsigned int)row);
585 return -1;
586}
587
588/*
589******************************************************************************
590*
591* This routine calculates the Physical Arm for given strip using spanset.
592*
593* Inputs :
594* instance - HBA instance
595* ld - Logical drive number
596* strip - Strip
597* map - LD map
598*
599* Outputs :
600*
601* Phys Arm - Phys Arm associated with strip
602*/
603
604static u32 get_arm_from_strip(struct megasas_instance *instance,
605 u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map)
606{
607 struct fusion_context *fusion = instance->ctrl_context;
608 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
609 LD_SPAN_SET *span_set;
610 PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span;
611 u32 info, strip_offset, span, span_offset, retval;
612
613 for (info = 0 ; info < MAX_QUAD_DEPTH; info++) {
614 span_set = &(ldSpanInfo[ld].span_set[info]);
615
616 if (span_set->span_row_data_width == 0)
617 break;
618 if (strip > span_set->data_strip_end)
619 continue;
620
621 strip_offset = (uint)mega_mod64
622 (dividend: (strip - span_set->data_strip_start),
623 divisor: span_set->span_row_data_width);
624
625 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
626 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
627 block_span_info.noElements) >= info+1) {
628 if (strip_offset >=
629 span_set->strip_offset[span])
630 span_offset =
631 span_set->strip_offset[span];
632 else
633 break;
634 }
635
636 retval = (strip_offset - span_offset);
637 return retval;
638 }
639
640 dev_err(&instance->pdev->dev, "get_arm_from_strip"
641 "returns invalid arm for ld=%x strip=%lx\n",
642 ld, (long unsigned int)strip);
643
644 return -1;
645}
646
647/* This Function will return Phys arm */
648static u8 get_arm(struct megasas_instance *instance, u32 ld, u8 span, u64 stripe,
649 struct MR_DRV_RAID_MAP_ALL *map)
650{
651 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
652 /* Need to check correct default value */
653 u32 arm = 0;
654
655 switch (raid->level) {
656 case 0:
657 case 5:
658 case 6:
659 arm = mega_mod64(dividend: stripe, SPAN_ROW_SIZE(map, ld, span));
660 break;
661 case 1:
662 /* start with logical arm */
663 arm = get_arm_from_strip(instance, ld, strip: stripe, map);
664 if (arm != -1U)
665 arm *= 2;
666 break;
667 }
668
669 return arm;
670}
671
672
673/*
674******************************************************************************
675*
676* This routine calculates the arm, span and block for the specified stripe and
677* reference in stripe using spanset
678*
679* Inputs :
680*
681* ld - Logical drive number
682* stripRow - Stripe number
683* stripRef - Reference in stripe
684*
685* Outputs :
686*
687* span - Span number
688* block - Absolute Block number in the physical disk
689*/
690static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld,
691 u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info,
692 struct RAID_CONTEXT *pRAID_Context,
693 struct MR_DRV_RAID_MAP_ALL *map)
694{
695 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
696 u32 pd, arRef, r1_alt_pd;
697 u8 physArm, span;
698 u64 row;
699 u8 retval = true;
700 u64 *pdBlock = &io_info->pdBlock;
701 __le16 *pDevHandle = &io_info->devHandle;
702 u8 *pPdInterface = &io_info->pd_interface;
703 u32 logArm, rowMod, armQ, arm;
704
705 *pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID);
706
707 /*Get row and span from io_info for Uneven Span IO.*/
708 row = io_info->start_row;
709 span = io_info->start_span;
710
711
712 if (raid->level == 6) {
713 logArm = get_arm_from_strip(instance, ld, strip: stripRow, map);
714 if (logArm == -1U)
715 return false;
716 rowMod = mega_mod64(dividend: row, SPAN_ROW_SIZE(map, ld, span));
717 armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
718 arm = armQ + 1 + logArm;
719 if (arm >= SPAN_ROW_SIZE(map, ld, span))
720 arm -= SPAN_ROW_SIZE(map, ld, span);
721 physArm = (u8)arm;
722 } else
723 /* Calculate the arm */
724 physArm = get_arm(instance, ld, span, stripe: stripRow, map);
725 if (physArm == 0xFF)
726 return false;
727
728 arRef = MR_LdSpanArrayGet(ld, span, map);
729 pd = MR_ArPdGet(ar: arRef, arm: physArm, map);
730
731 if (pd != MR_PD_INVALID) {
732 *pDevHandle = MR_PdDevHandleGet(pd, map);
733 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
734 /* get second pd also for raid 1/10 fast path writes*/
735 if ((instance->adapter_type >= VENTURA_SERIES) &&
736 (raid->level == 1) &&
737 !io_info->isRead) {
738 r1_alt_pd = MR_ArPdGet(ar: arRef, arm: physArm + 1, map);
739 if (r1_alt_pd != MR_PD_INVALID)
740 io_info->r1_alt_dev_handle =
741 MR_PdDevHandleGet(pd: r1_alt_pd, map);
742 }
743 } else {
744 if ((raid->level >= 5) &&
745 ((instance->adapter_type == THUNDERBOLT_SERIES) ||
746 ((instance->adapter_type == INVADER_SERIES) &&
747 (raid->regTypeReqOnRead != REGION_TYPE_UNUSED))))
748 pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE;
749 else if (raid->level == 1) {
750 physArm = physArm + 1;
751 pd = MR_ArPdGet(ar: arRef, arm: physArm, map);
752 if (pd != MR_PD_INVALID) {
753 *pDevHandle = MR_PdDevHandleGet(pd, map);
754 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
755 }
756 }
757 }
758
759 *pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk);
760 if (instance->adapter_type >= VENTURA_SERIES) {
761 ((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm =
762 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
763 io_info->span_arm =
764 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
765 } else {
766 pRAID_Context->span_arm =
767 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
768 io_info->span_arm = pRAID_Context->span_arm;
769 }
770 io_info->pd_after_lb = pd;
771 return retval;
772}
773
774/*
775******************************************************************************
776*
777* This routine calculates the arm, span and block for the specified stripe and
778* reference in stripe.
779*
780* Inputs :
781*
782* ld - Logical drive number
783* stripRow - Stripe number
784* stripRef - Reference in stripe
785*
786* Outputs :
787*
788* span - Span number
789* block - Absolute Block number in the physical disk
790*/
791static u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow,
792 u16 stripRef, struct IO_REQUEST_INFO *io_info,
793 struct RAID_CONTEXT *pRAID_Context,
794 struct MR_DRV_RAID_MAP_ALL *map)
795{
796 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
797 u32 pd, arRef, r1_alt_pd;
798 u8 physArm, span;
799 u64 row;
800 u8 retval = true;
801 u64 *pdBlock = &io_info->pdBlock;
802 __le16 *pDevHandle = &io_info->devHandle;
803 u8 *pPdInterface = &io_info->pd_interface;
804
805 *pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID);
806
807 row = mega_div64_32(dividend: stripRow, divisor: raid->rowDataSize);
808
809 if (raid->level == 6) {
810 /* logical arm within row */
811 u32 logArm = mega_mod64(dividend: stripRow, divisor: raid->rowDataSize);
812 u32 rowMod, armQ, arm;
813
814 if (raid->rowSize == 0)
815 return false;
816 /* get logical row mod */
817 rowMod = mega_mod64(dividend: row, divisor: raid->rowSize);
818 armQ = raid->rowSize-1-rowMod; /* index of Q drive */
819 arm = armQ+1+logArm; /* data always logically follows Q */
820 if (arm >= raid->rowSize) /* handle wrap condition */
821 arm -= raid->rowSize;
822 physArm = (u8)arm;
823 } else {
824 if (raid->modFactor == 0)
825 return false;
826 physArm = MR_LdDataArmGet(ld, armIdx: mega_mod64(dividend: stripRow,
827 divisor: raid->modFactor),
828 map);
829 }
830
831 if (raid->spanDepth == 1) {
832 span = 0;
833 *pdBlock = row << raid->stripeShift;
834 } else {
835 span = (u8)MR_GetSpanBlock(ld, row, span_blk: pdBlock, map);
836 if (span == SPAN_INVALID)
837 return false;
838 }
839
840 /* Get the array on which this span is present */
841 arRef = MR_LdSpanArrayGet(ld, span, map);
842 pd = MR_ArPdGet(ar: arRef, arm: physArm, map); /* Get the pd */
843
844 if (pd != MR_PD_INVALID) {
845 /* Get dev handle from Pd. */
846 *pDevHandle = MR_PdDevHandleGet(pd, map);
847 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
848 /* get second pd also for raid 1/10 fast path writes*/
849 if ((instance->adapter_type >= VENTURA_SERIES) &&
850 (raid->level == 1) &&
851 !io_info->isRead) {
852 r1_alt_pd = MR_ArPdGet(ar: arRef, arm: physArm + 1, map);
853 if (r1_alt_pd != MR_PD_INVALID)
854 io_info->r1_alt_dev_handle =
855 MR_PdDevHandleGet(pd: r1_alt_pd, map);
856 }
857 } else {
858 if ((raid->level >= 5) &&
859 ((instance->adapter_type == THUNDERBOLT_SERIES) ||
860 ((instance->adapter_type == INVADER_SERIES) &&
861 (raid->regTypeReqOnRead != REGION_TYPE_UNUSED))))
862 pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE;
863 else if (raid->level == 1) {
864 /* Get alternate Pd. */
865 physArm = physArm + 1;
866 pd = MR_ArPdGet(ar: arRef, arm: physArm, map);
867 if (pd != MR_PD_INVALID) {
868 /* Get dev handle from Pd */
869 *pDevHandle = MR_PdDevHandleGet(pd, map);
870 *pPdInterface = MR_PdInterfaceTypeGet(pd, map);
871 }
872 }
873 }
874
875 *pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk);
876 if (instance->adapter_type >= VENTURA_SERIES) {
877 ((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm =
878 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
879 io_info->span_arm =
880 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
881 } else {
882 pRAID_Context->span_arm =
883 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
884 io_info->span_arm = pRAID_Context->span_arm;
885 }
886 io_info->pd_after_lb = pd;
887 return retval;
888}
889
890/*
891 * mr_get_phy_params_r56_rmw - Calculate parameters for R56 CTIO write operation
892 * @instance: Adapter soft state
893 * @ld: LD index
894 * @stripNo: Strip Number
895 * @io_info: IO info structure pointer
896 * pRAID_Context: RAID context pointer
897 * map: RAID map pointer
898 *
899 * This routine calculates the logical arm, data Arm, row number and parity arm
900 * for R56 CTIO write operation.
901 */
902static void mr_get_phy_params_r56_rmw(struct megasas_instance *instance,
903 u32 ld, u64 stripNo,
904 struct IO_REQUEST_INFO *io_info,
905 struct RAID_CONTEXT_G35 *pRAID_Context,
906 struct MR_DRV_RAID_MAP_ALL *map)
907{
908 struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
909 u8 span, dataArms, arms, dataArm, logArm;
910 s8 rightmostParityArm, PParityArm;
911 u64 rowNum;
912 u64 *pdBlock = &io_info->pdBlock;
913
914 dataArms = raid->rowDataSize;
915 arms = raid->rowSize;
916
917 rowNum = mega_div64_32(dividend: stripNo, divisor: dataArms);
918 /* parity disk arm, first arm is 0 */
919 rightmostParityArm = (arms - 1) - mega_mod64(dividend: rowNum, divisor: arms);
920
921 /* logical arm within row */
922 logArm = mega_mod64(dividend: stripNo, divisor: dataArms);
923 /* physical arm for data */
924 dataArm = mega_mod64(dividend: (rightmostParityArm + 1 + logArm), divisor: arms);
925
926 if (raid->spanDepth == 1) {
927 span = 0;
928 } else {
929 span = (u8)MR_GetSpanBlock(ld, row: rowNum, span_blk: pdBlock, map);
930 if (span == SPAN_INVALID)
931 return;
932 }
933
934 if (raid->level == 6) {
935 /* P Parity arm, note this can go negative adjust if negative */
936 PParityArm = (arms - 2) - mega_mod64(dividend: rowNum, divisor: arms);
937
938 if (PParityArm < 0)
939 PParityArm += arms;
940
941 /* rightmostParityArm is P-Parity for RAID 5 and Q-Parity for RAID */
942 pRAID_Context->flow_specific.r56_arm_map = rightmostParityArm;
943 pRAID_Context->flow_specific.r56_arm_map |=
944 (u16)(PParityArm << RAID_CTX_R56_P_ARM_SHIFT);
945 } else {
946 pRAID_Context->flow_specific.r56_arm_map |=
947 (u16)(rightmostParityArm << RAID_CTX_R56_P_ARM_SHIFT);
948 }
949
950 pRAID_Context->reg_lock_row_lba = cpu_to_le64(rowNum);
951 pRAID_Context->flow_specific.r56_arm_map |=
952 (u16)(logArm << RAID_CTX_R56_LOG_ARM_SHIFT);
953 cpu_to_le16s(&pRAID_Context->flow_specific.r56_arm_map);
954 pRAID_Context->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | dataArm;
955 pRAID_Context->raid_flags = (MR_RAID_FLAGS_IO_SUB_TYPE_R56_DIV_OFFLOAD <<
956 MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT);
957
958 return;
959}
960
961/*
962******************************************************************************
963*
964* MR_BuildRaidContext function
965*
966* This function will initiate command processing. The start/end row and strip
967* information is calculated then the lock is acquired.
968* This function will return 0 if region lock was acquired OR return num strips
969*/
970u8
971MR_BuildRaidContext(struct megasas_instance *instance,
972 struct IO_REQUEST_INFO *io_info,
973 struct RAID_CONTEXT *pRAID_Context,
974 struct MR_DRV_RAID_MAP_ALL *map, u8 **raidLUN)
975{
976 struct fusion_context *fusion;
977 struct MR_LD_RAID *raid;
978 u32 stripSize, stripe_mask;
979 u64 endLba, endStrip, endRow, start_row, start_strip;
980 u64 regStart;
981 u32 regSize;
982 u8 num_strips, numRows;
983 u16 ref_in_start_stripe, ref_in_end_stripe;
984 u64 ldStartBlock;
985 u32 numBlocks, ldTgtId;
986 u8 isRead;
987 u8 retval = 0;
988 u8 startlba_span = SPAN_INVALID;
989 u64 *pdBlock = &io_info->pdBlock;
990 u16 ld;
991
992 ldStartBlock = io_info->ldStartBlock;
993 numBlocks = io_info->numBlocks;
994 ldTgtId = io_info->ldTgtId;
995 isRead = io_info->isRead;
996 io_info->IoforUnevenSpan = 0;
997 io_info->start_span = SPAN_INVALID;
998 fusion = instance->ctrl_context;
999
1000 ld = MR_TargetIdToLdGet(ldTgtId, map);
1001 raid = MR_LdRaidGet(ld, map);
1002 /*check read ahead bit*/
1003 io_info->ra_capable = raid->capability.ra_capable;
1004
1005 /*
1006 * if rowDataSize @RAID map and spanRowDataSize @SPAN INFO are zero
1007 * return FALSE
1008 */
1009 if (raid->rowDataSize == 0) {
1010 if (MR_LdSpanPtrGet(ld, span: 0, map)->spanRowDataSize == 0)
1011 return false;
1012 else if (instance->UnevenSpanSupport) {
1013 io_info->IoforUnevenSpan = 1;
1014 } else {
1015 dev_info(&instance->pdev->dev,
1016 "raid->rowDataSize is 0, but has SPAN[0]"
1017 "rowDataSize = 0x%0x,"
1018 "but there is _NO_ UnevenSpanSupport\n",
1019 MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
1020 return false;
1021 }
1022 }
1023
1024 stripSize = 1 << raid->stripeShift;
1025 stripe_mask = stripSize-1;
1026
1027 io_info->data_arms = raid->rowDataSize;
1028
1029 /*
1030 * calculate starting row and stripe, and number of strips and rows
1031 */
1032 start_strip = ldStartBlock >> raid->stripeShift;
1033 ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask);
1034 endLba = ldStartBlock + numBlocks - 1;
1035 ref_in_end_stripe = (u16)(endLba & stripe_mask);
1036 endStrip = endLba >> raid->stripeShift;
1037 num_strips = (u8)(endStrip - start_strip + 1); /* End strip */
1038
1039 if (io_info->IoforUnevenSpan) {
1040 start_row = get_row_from_strip(instance, ld, strip: start_strip, map);
1041 endRow = get_row_from_strip(instance, ld, strip: endStrip, map);
1042 if (start_row == -1ULL || endRow == -1ULL) {
1043 dev_info(&instance->pdev->dev, "return from %s %d."
1044 "Send IO w/o region lock.\n",
1045 __func__, __LINE__);
1046 return false;
1047 }
1048
1049 if (raid->spanDepth == 1) {
1050 startlba_span = 0;
1051 *pdBlock = start_row << raid->stripeShift;
1052 } else
1053 startlba_span = (u8)mr_spanset_get_span_block(instance,
1054 ld, row: start_row, span_blk: pdBlock, map);
1055 if (startlba_span == SPAN_INVALID) {
1056 dev_info(&instance->pdev->dev, "return from %s %d"
1057 "for row 0x%llx,start strip %llx"
1058 "endSrip %llx\n", __func__, __LINE__,
1059 (unsigned long long)start_row,
1060 (unsigned long long)start_strip,
1061 (unsigned long long)endStrip);
1062 return false;
1063 }
1064 io_info->start_span = startlba_span;
1065 io_info->start_row = start_row;
1066 } else {
1067 start_row = mega_div64_32(dividend: start_strip, divisor: raid->rowDataSize);
1068 endRow = mega_div64_32(dividend: endStrip, divisor: raid->rowDataSize);
1069 }
1070 numRows = (u8)(endRow - start_row + 1);
1071
1072 /*
1073 * calculate region info.
1074 */
1075
1076 /* assume region is at the start of the first row */
1077 regStart = start_row << raid->stripeShift;
1078 /* assume this IO needs the full row - we'll adjust if not true */
1079 regSize = stripSize;
1080
1081 io_info->do_fp_rlbypass = raid->capability.fpBypassRegionLock;
1082
1083 /* Check if we can send this I/O via FastPath */
1084 if (raid->capability.fpCapable) {
1085 if (isRead)
1086 io_info->fpOkForIo = (raid->capability.fpReadCapable &&
1087 ((num_strips == 1) ||
1088 raid->capability.
1089 fpReadAcrossStripe));
1090 else
1091 io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
1092 ((num_strips == 1) ||
1093 raid->capability.
1094 fpWriteAcrossStripe));
1095 } else
1096 io_info->fpOkForIo = false;
1097
1098 if (numRows == 1) {
1099 /* single-strip IOs can always lock only the data needed */
1100 if (num_strips == 1) {
1101 regStart += ref_in_start_stripe;
1102 regSize = numBlocks;
1103 }
1104 /* multi-strip IOs always need to full stripe locked */
1105 } else if (io_info->IoforUnevenSpan == 0) {
1106 /*
1107 * For Even span region lock optimization.
1108 * If the start strip is the last in the start row
1109 */
1110 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
1111 regStart += ref_in_start_stripe;
1112 /* initialize count to sectors from startref to end
1113 of strip */
1114 regSize = stripSize - ref_in_start_stripe;
1115 }
1116
1117 /* add complete rows in the middle of the transfer */
1118 if (numRows > 2)
1119 regSize += (numRows-2) << raid->stripeShift;
1120
1121 /* if IO ends within first strip of last row*/
1122 if (endStrip == endRow*raid->rowDataSize)
1123 regSize += ref_in_end_stripe+1;
1124 else
1125 regSize += stripSize;
1126 } else {
1127 /*
1128 * For Uneven span region lock optimization.
1129 * If the start strip is the last in the start row
1130 */
1131 if (start_strip == (get_strip_from_row(instance, ld, row: start_row, map) +
1132 SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
1133 regStart += ref_in_start_stripe;
1134 /* initialize count to sectors from
1135 * startRef to end of strip
1136 */
1137 regSize = stripSize - ref_in_start_stripe;
1138 }
1139 /* Add complete rows in the middle of the transfer*/
1140
1141 if (numRows > 2)
1142 /* Add complete rows in the middle of the transfer*/
1143 regSize += (numRows-2) << raid->stripeShift;
1144
1145 /* if IO ends within first strip of last row */
1146 if (endStrip == get_strip_from_row(instance, ld, row: endRow, map))
1147 regSize += ref_in_end_stripe + 1;
1148 else
1149 regSize += stripSize;
1150 }
1151
1152 pRAID_Context->timeout_value =
1153 cpu_to_le16(raid->fpIoTimeoutForLd ?
1154 raid->fpIoTimeoutForLd :
1155 map->raidMap.fpPdIoTimeoutSec);
1156 if (instance->adapter_type == INVADER_SERIES)
1157 pRAID_Context->reg_lock_flags = (isRead) ?
1158 raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
1159 else if (instance->adapter_type == THUNDERBOLT_SERIES)
1160 pRAID_Context->reg_lock_flags = (isRead) ?
1161 REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
1162 pRAID_Context->virtual_disk_tgt_id = raid->targetId;
1163 pRAID_Context->reg_lock_row_lba = cpu_to_le64(regStart);
1164 pRAID_Context->reg_lock_length = cpu_to_le32(regSize);
1165 pRAID_Context->config_seq_num = raid->seqNum;
1166 /* save pointer to raid->LUN array */
1167 *raidLUN = raid->LUN;
1168
1169 /* Aero R5/6 Division Offload for WRITE */
1170 if (fusion->r56_div_offload && (raid->level >= 5) && !isRead) {
1171 mr_get_phy_params_r56_rmw(instance, ld, stripNo: start_strip, io_info,
1172 pRAID_Context: (struct RAID_CONTEXT_G35 *)pRAID_Context,
1173 map);
1174 return true;
1175 }
1176
1177 /*Get Phy Params only if FP capable, or else leave it to MR firmware
1178 to do the calculation.*/
1179 if (io_info->fpOkForIo) {
1180 retval = io_info->IoforUnevenSpan ?
1181 mr_spanset_get_phy_params(instance, ld,
1182 stripRow: start_strip, stripRef: ref_in_start_stripe,
1183 io_info, pRAID_Context, map) :
1184 MR_GetPhyParams(instance, ld, stripRow: start_strip,
1185 stripRef: ref_in_start_stripe, io_info,
1186 pRAID_Context, map);
1187 /* If IO on an invalid Pd, then FP is not possible.*/
1188 if (io_info->devHandle == MR_DEVHANDLE_INVALID)
1189 io_info->fpOkForIo = false;
1190 return retval;
1191 } else if (isRead) {
1192 uint stripIdx;
1193 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
1194 retval = io_info->IoforUnevenSpan ?
1195 mr_spanset_get_phy_params(instance, ld,
1196 stripRow: start_strip + stripIdx,
1197 stripRef: ref_in_start_stripe, io_info,
1198 pRAID_Context, map) :
1199 MR_GetPhyParams(instance, ld,
1200 stripRow: start_strip + stripIdx, stripRef: ref_in_start_stripe,
1201 io_info, pRAID_Context, map);
1202 if (!retval)
1203 return true;
1204 }
1205 }
1206 return true;
1207}
1208
1209/*
1210******************************************************************************
1211*
1212* This routine pepare spanset info from Valid Raid map and store it into
1213* local copy of ldSpanInfo per instance data structure.
1214*
1215* Inputs :
1216* map - LD map
1217* ldSpanInfo - ldSpanInfo per HBA instance
1218*
1219*/
1220void mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map,
1221 PLD_SPAN_INFO ldSpanInfo)
1222{
1223 u8 span, count;
1224 u32 element, span_row_width;
1225 u64 span_row;
1226 struct MR_LD_RAID *raid;
1227 LD_SPAN_SET *span_set, *span_set_prev;
1228 struct MR_QUAD_ELEMENT *quad;
1229 int ldCount;
1230 u16 ld;
1231
1232
1233 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1234 ld = MR_TargetIdToLdGet(ldTgtId: ldCount, map);
1235 if (ld >= (MAX_LOGICAL_DRIVES_EXT - 1))
1236 continue;
1237 raid = MR_LdRaidGet(ld, map);
1238 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1239 for (span = 0; span < raid->spanDepth; span++) {
1240 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].
1241 block_span_info.noElements) <
1242 element + 1)
1243 continue;
1244 span_set = &(ldSpanInfo[ld].span_set[element]);
1245 quad = &map->raidMap.ldSpanMap[ld].
1246 spanBlock[span].block_span_info.
1247 quad[element];
1248
1249 span_set->diff = le32_to_cpu(quad->diff);
1250
1251 for (count = 0, span_row_width = 0;
1252 count < raid->spanDepth; count++) {
1253 if (le32_to_cpu(map->raidMap.ldSpanMap[ld].
1254 spanBlock[count].
1255 block_span_info.
1256 noElements) >= element + 1) {
1257 span_set->strip_offset[count] =
1258 span_row_width;
1259 span_row_width +=
1260 MR_LdSpanPtrGet
1261 (ld, span: count, map)->spanRowDataSize;
1262 }
1263 }
1264
1265 span_set->span_row_data_width = span_row_width;
1266 span_row = mega_div64_32(dividend: ((le64_to_cpu(quad->logEnd) -
1267 le64_to_cpu(quad->logStart)) + le32_to_cpu(quad->diff)),
1268 le32_to_cpu(quad->diff));
1269
1270 if (element == 0) {
1271 span_set->log_start_lba = 0;
1272 span_set->log_end_lba =
1273 ((span_row << raid->stripeShift)
1274 * span_row_width) - 1;
1275
1276 span_set->span_row_start = 0;
1277 span_set->span_row_end = span_row - 1;
1278
1279 span_set->data_strip_start = 0;
1280 span_set->data_strip_end =
1281 (span_row * span_row_width) - 1;
1282
1283 span_set->data_row_start = 0;
1284 span_set->data_row_end =
1285 (span_row * le32_to_cpu(quad->diff)) - 1;
1286 } else {
1287 span_set_prev = &(ldSpanInfo[ld].
1288 span_set[element - 1]);
1289 span_set->log_start_lba =
1290 span_set_prev->log_end_lba + 1;
1291 span_set->log_end_lba =
1292 span_set->log_start_lba +
1293 ((span_row << raid->stripeShift)
1294 * span_row_width) - 1;
1295
1296 span_set->span_row_start =
1297 span_set_prev->span_row_end + 1;
1298 span_set->span_row_end =
1299 span_set->span_row_start + span_row - 1;
1300
1301 span_set->data_strip_start =
1302 span_set_prev->data_strip_end + 1;
1303 span_set->data_strip_end =
1304 span_set->data_strip_start +
1305 (span_row * span_row_width) - 1;
1306
1307 span_set->data_row_start =
1308 span_set_prev->data_row_end + 1;
1309 span_set->data_row_end =
1310 span_set->data_row_start +
1311 (span_row * le32_to_cpu(quad->diff)) - 1;
1312 }
1313 break;
1314 }
1315 if (span == raid->spanDepth)
1316 break;
1317 }
1318 }
1319}
1320
1321void mr_update_load_balance_params(struct MR_DRV_RAID_MAP_ALL *drv_map,
1322 struct LD_LOAD_BALANCE_INFO *lbInfo)
1323{
1324 int ldCount;
1325 u16 ld;
1326 struct MR_LD_RAID *raid;
1327
1328 if (lb_pending_cmds > 128 || lb_pending_cmds < 1)
1329 lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1330
1331 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1332 ld = MR_TargetIdToLdGet(ldTgtId: ldCount, map: drv_map);
1333 if (ld >= MAX_LOGICAL_DRIVES_EXT - 1) {
1334 lbInfo[ldCount].loadBalanceFlag = 0;
1335 continue;
1336 }
1337
1338 raid = MR_LdRaidGet(ld, map: drv_map);
1339 if ((raid->level != 1) ||
1340 (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1341 lbInfo[ldCount].loadBalanceFlag = 0;
1342 continue;
1343 }
1344 lbInfo[ldCount].loadBalanceFlag = 1;
1345 }
1346}
1347
1348static u8 megasas_get_best_arm_pd(struct megasas_instance *instance,
1349 struct LD_LOAD_BALANCE_INFO *lbInfo,
1350 struct IO_REQUEST_INFO *io_info,
1351 struct MR_DRV_RAID_MAP_ALL *drv_map)
1352{
1353 struct MR_LD_RAID *raid;
1354 u16 pd1_dev_handle;
1355 u16 pend0, pend1, ld;
1356 u64 diff0, diff1;
1357 u8 bestArm, pd0, pd1, span, arm;
1358 u32 arRef, span_row_size;
1359
1360 u64 block = io_info->ldStartBlock;
1361 u32 count = io_info->numBlocks;
1362
1363 span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1364 >> RAID_CTX_SPANARM_SPAN_SHIFT);
1365 arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1366
1367 ld = MR_TargetIdToLdGet(ldTgtId: io_info->ldTgtId, map: drv_map);
1368 raid = MR_LdRaidGet(ld, map: drv_map);
1369 span_row_size = instance->UnevenSpanSupport ?
1370 SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1371
1372 arRef = MR_LdSpanArrayGet(ld, span, map: drv_map);
1373 pd0 = MR_ArPdGet(ar: arRef, arm, map: drv_map);
1374 pd1 = MR_ArPdGet(ar: arRef, arm: (arm + 1) >= span_row_size ?
1375 (arm + 1 - span_row_size) : arm + 1, map: drv_map);
1376
1377 /* Get PD1 Dev Handle */
1378
1379 pd1_dev_handle = MR_PdDevHandleGet(pd: pd1, map: drv_map);
1380
1381 if (pd1_dev_handle == MR_DEVHANDLE_INVALID) {
1382 bestArm = arm;
1383 } else {
1384 /* get the pending cmds for the data and mirror arms */
1385 pend0 = atomic_read(v: &lbInfo->scsi_pending_cmds[pd0]);
1386 pend1 = atomic_read(v: &lbInfo->scsi_pending_cmds[pd1]);
1387
1388 /* Determine the disk whose head is nearer to the req. block */
1389 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1390 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1391 bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1392
1393 /* Make balance count from 16 to 4 to
1394 * keep driver in sync with Firmware
1395 */
1396 if ((bestArm == arm && pend0 > pend1 + lb_pending_cmds) ||
1397 (bestArm != arm && pend1 > pend0 + lb_pending_cmds))
1398 bestArm ^= 1;
1399
1400 /* Update the last accessed block on the correct pd */
1401 io_info->span_arm =
1402 (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1403 io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1404 }
1405
1406 lbInfo->last_accessed_block[io_info->pd_after_lb] = block + count - 1;
1407 return io_info->pd_after_lb;
1408}
1409
1410__le16 get_updated_dev_handle(struct megasas_instance *instance,
1411 struct LD_LOAD_BALANCE_INFO *lbInfo,
1412 struct IO_REQUEST_INFO *io_info,
1413 struct MR_DRV_RAID_MAP_ALL *drv_map)
1414{
1415 u8 arm_pd;
1416 __le16 devHandle;
1417
1418 /* get best new arm (PD ID) */
1419 arm_pd = megasas_get_best_arm_pd(instance, lbInfo, io_info, drv_map);
1420 devHandle = MR_PdDevHandleGet(pd: arm_pd, map: drv_map);
1421 io_info->pd_interface = MR_PdInterfaceTypeGet(pd: arm_pd, map: drv_map);
1422 atomic_inc(v: &lbInfo->scsi_pending_cmds[arm_pd]);
1423
1424 return devHandle;
1425}
1426

source code of linux/drivers/scsi/megaraid/megaraid_sas_fp.c