1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12#include <linux/bio.h>
13#include <linux/bitops.h>
14#include <linux/blkdev.h>
15#include <linux/completion.h>
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23#include <linux/blk-mq.h>
24#include <linux/blk-integrity.h>
25#include <linux/ratelimit.h>
26#include <asm/unaligned.h>
27
28#include <scsi/scsi.h>
29#include <scsi/scsi_cmnd.h>
30#include <scsi/scsi_dbg.h>
31#include <scsi/scsi_device.h>
32#include <scsi/scsi_driver.h>
33#include <scsi/scsi_eh.h>
34#include <scsi/scsi_host.h>
35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36#include <scsi/scsi_dh.h>
37
38#include <trace/events/scsi.h>
39
40#include "scsi_debugfs.h"
41#include "scsi_priv.h"
42#include "scsi_logging.h"
43
44/*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48#ifdef CONFIG_ARCH_NO_SG_CHAIN
49#define SCSI_INLINE_PROT_SG_CNT 0
50#define SCSI_INLINE_SG_CNT 0
51#else
52#define SCSI_INLINE_PROT_SG_CNT 1
53#define SCSI_INLINE_SG_CNT 2
54#endif
55
56static struct kmem_cache *scsi_sense_cache;
57static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61int scsi_init_sense_cache(struct Scsi_Host *shost)
62{
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy(name: "scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, align: 0, SLAB_HWCACHE_ALIGN,
70 useroffset: 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(lock: &scsi_sense_cache_mutex);
75 return ret;
76}
77
78static void
79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80{
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(sdev: device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(v: &host->host_blocked, i: host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(v: &device->device_blocked,
105 i: device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(v: &starget->target_blocked,
109 i: starget->max_target_blocked);
110 break;
111 }
112}
113
114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115{
116 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, kick_requeue_list: false);
126 if (!scsi_host_in_recovery(shost: cmd->device->host))
127 blk_mq_delay_kick_requeue_list(q: rq->q, msecs);
128}
129
130/**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143{
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(sdev: device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(rq: scsi_cmd_to_rq(scmd: cmd),
167 kick_requeue_list: !scsi_host_in_recovery(shost: cmd->device->host));
168}
169
170/**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183{
184 __scsi_queue_insert(cmd, reason, unbusy: true);
185}
186
187/**
188 * scsi_execute_cmd - insert request and wait for the result
189 * @sdev: scsi_device
190 * @cmd: scsi command
191 * @opf: block layer request cmd_flags
192 * @buffer: data buffer
193 * @bufflen: len of buffer
194 * @timeout: request timeout in HZ
195 * @retries: number of times to retry request
196 * @args: Optional args. See struct definition for field descriptions
197 *
198 * Returns the scsi_cmnd result field if a command was executed, or a negative
199 * Linux error code if we didn't get that far.
200 */
201int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 blk_opf_t opf, void *buffer, unsigned int bufflen,
203 int timeout, int retries,
204 const struct scsi_exec_args *args)
205{
206 static const struct scsi_exec_args default_args;
207 struct request *req;
208 struct scsi_cmnd *scmd;
209 int ret;
210
211 if (!args)
212 args = &default_args;
213 else if (WARN_ON_ONCE(args->sense &&
214 args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 return -EINVAL;
216
217 req = scsi_alloc_request(q: sdev->request_queue, opf, flags: args->req_flags);
218 if (IS_ERR(ptr: req))
219 return PTR_ERR(ptr: req);
220
221 if (bufflen) {
222 ret = blk_rq_map_kern(sdev->request_queue, req,
223 buffer, bufflen, GFP_NOIO);
224 if (ret)
225 goto out;
226 }
227 scmd = blk_mq_rq_to_pdu(rq: req);
228 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 scmd->allowed = retries;
231 scmd->flags |= args->scmd_flags;
232 req->timeout = timeout;
233 req->rq_flags |= RQF_QUIET;
234
235 /*
236 * head injection *required* here otherwise quiesce won't work
237 */
238 blk_execute_rq(rq: req, at_head: true);
239
240 /*
241 * Some devices (USB mass-storage in particular) may transfer
242 * garbage data together with a residue indicating that the data
243 * is invalid. Prevent the garbage from being misinterpreted
244 * and prevent security leaks by zeroing out the excess data.
245 */
246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249 if (args->resid)
250 *args->resid = scmd->resid_len;
251 if (args->sense)
252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 if (args->sshdr)
254 scsi_normalize_sense(sense_buffer: scmd->sense_buffer, sb_len: scmd->sense_len,
255 sshdr: args->sshdr);
256
257 ret = scmd->result;
258 out:
259 blk_mq_free_request(rq: req);
260
261 return ret;
262}
263EXPORT_SYMBOL(scsi_execute_cmd);
264
265/*
266 * Wake up the error handler if necessary. Avoid as follows that the error
267 * handler is not woken up if host in-flight requests number ==
268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269 * with an RCU read lock in this function to ensure that this function in
270 * its entirety either finishes before scsi_eh_scmd_add() increases the
271 * host_failed counter or that it notices the shost state change made by
272 * scsi_eh_scmd_add().
273 */
274static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275{
276 unsigned long flags;
277
278 rcu_read_lock();
279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 if (unlikely(scsi_host_in_recovery(shost))) {
281 spin_lock_irqsave(shost->host_lock, flags);
282 if (shost->host_failed || shost->host_eh_scheduled)
283 scsi_eh_wakeup(shost);
284 spin_unlock_irqrestore(lock: shost->host_lock, flags);
285 }
286 rcu_read_unlock();
287}
288
289void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
290{
291 struct Scsi_Host *shost = sdev->host;
292 struct scsi_target *starget = scsi_target(sdev);
293
294 scsi_dec_host_busy(shost, cmd);
295
296 if (starget->can_queue > 0)
297 atomic_dec(v: &starget->target_busy);
298
299 sbitmap_put(sb: &sdev->budget_map, bitnr: cmd->budget_token);
300 cmd->budget_token = -1;
301}
302
303/*
304 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
305 * interrupts disabled.
306 */
307static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
308{
309 struct scsi_device *current_sdev = data;
310
311 if (sdev != current_sdev)
312 blk_mq_run_hw_queues(q: sdev->request_queue, async: true);
313}
314
315/*
316 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
317 * and call blk_run_queue for all the scsi_devices on the target -
318 * including current_sdev first.
319 *
320 * Called with *no* scsi locks held.
321 */
322static void scsi_single_lun_run(struct scsi_device *current_sdev)
323{
324 struct Scsi_Host *shost = current_sdev->host;
325 struct scsi_target *starget = scsi_target(sdev: current_sdev);
326 unsigned long flags;
327
328 spin_lock_irqsave(shost->host_lock, flags);
329 starget->starget_sdev_user = NULL;
330 spin_unlock_irqrestore(lock: shost->host_lock, flags);
331
332 /*
333 * Call blk_run_queue for all LUNs on the target, starting with
334 * current_sdev. We race with others (to set starget_sdev_user),
335 * but in most cases, we will be first. Ideally, each LU on the
336 * target would get some limited time or requests on the target.
337 */
338 blk_mq_run_hw_queues(q: current_sdev->request_queue,
339 async: shost->queuecommand_may_block);
340
341 spin_lock_irqsave(shost->host_lock, flags);
342 if (!starget->starget_sdev_user)
343 __starget_for_each_device(starget, current_sdev,
344 fn: scsi_kick_sdev_queue);
345 spin_unlock_irqrestore(lock: shost->host_lock, flags);
346}
347
348static inline bool scsi_device_is_busy(struct scsi_device *sdev)
349{
350 if (scsi_device_busy(sdev) >= sdev->queue_depth)
351 return true;
352 if (atomic_read(v: &sdev->device_blocked) > 0)
353 return true;
354 return false;
355}
356
357static inline bool scsi_target_is_busy(struct scsi_target *starget)
358{
359 if (starget->can_queue > 0) {
360 if (atomic_read(v: &starget->target_busy) >= starget->can_queue)
361 return true;
362 if (atomic_read(v: &starget->target_blocked) > 0)
363 return true;
364 }
365 return false;
366}
367
368static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
369{
370 if (atomic_read(v: &shost->host_blocked) > 0)
371 return true;
372 if (shost->host_self_blocked)
373 return true;
374 return false;
375}
376
377static void scsi_starved_list_run(struct Scsi_Host *shost)
378{
379 LIST_HEAD(starved_list);
380 struct scsi_device *sdev;
381 unsigned long flags;
382
383 spin_lock_irqsave(shost->host_lock, flags);
384 list_splice_init(list: &shost->starved_list, head: &starved_list);
385
386 while (!list_empty(head: &starved_list)) {
387 struct request_queue *slq;
388
389 /*
390 * As long as shost is accepting commands and we have
391 * starved queues, call blk_run_queue. scsi_request_fn
392 * drops the queue_lock and can add us back to the
393 * starved_list.
394 *
395 * host_lock protects the starved_list and starved_entry.
396 * scsi_request_fn must get the host_lock before checking
397 * or modifying starved_list or starved_entry.
398 */
399 if (scsi_host_is_busy(shost))
400 break;
401
402 sdev = list_entry(starved_list.next,
403 struct scsi_device, starved_entry);
404 list_del_init(entry: &sdev->starved_entry);
405 if (scsi_target_is_busy(starget: scsi_target(sdev))) {
406 list_move_tail(list: &sdev->starved_entry,
407 head: &shost->starved_list);
408 continue;
409 }
410
411 /*
412 * Once we drop the host lock, a racing scsi_remove_device()
413 * call may remove the sdev from the starved list and destroy
414 * it and the queue. Mitigate by taking a reference to the
415 * queue and never touching the sdev again after we drop the
416 * host lock. Note: if __scsi_remove_device() invokes
417 * blk_mq_destroy_queue() before the queue is run from this
418 * function then blk_run_queue() will return immediately since
419 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
420 */
421 slq = sdev->request_queue;
422 if (!blk_get_queue(slq))
423 continue;
424 spin_unlock_irqrestore(lock: shost->host_lock, flags);
425
426 blk_mq_run_hw_queues(q: slq, async: false);
427 blk_put_queue(slq);
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 }
431 /* put any unprocessed entries back */
432 list_splice(list: &starved_list, head: &shost->starved_list);
433 spin_unlock_irqrestore(lock: shost->host_lock, flags);
434}
435
436/**
437 * scsi_run_queue - Select a proper request queue to serve next.
438 * @q: last request's queue
439 *
440 * The previous command was completely finished, start a new one if possible.
441 */
442static void scsi_run_queue(struct request_queue *q)
443{
444 struct scsi_device *sdev = q->queuedata;
445
446 if (scsi_target(sdev)->single_lun)
447 scsi_single_lun_run(current_sdev: sdev);
448 if (!list_empty(head: &sdev->host->starved_list))
449 scsi_starved_list_run(shost: sdev->host);
450
451 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
452 blk_mq_kick_requeue_list(q);
453}
454
455void scsi_requeue_run_queue(struct work_struct *work)
456{
457 struct scsi_device *sdev;
458 struct request_queue *q;
459
460 sdev = container_of(work, struct scsi_device, requeue_work);
461 q = sdev->request_queue;
462 scsi_run_queue(q);
463}
464
465void scsi_run_host_queues(struct Scsi_Host *shost)
466{
467 struct scsi_device *sdev;
468
469 shost_for_each_device(sdev, shost)
470 scsi_run_queue(q: sdev->request_queue);
471}
472
473static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
474{
475 if (!blk_rq_is_passthrough(rq: scsi_cmd_to_rq(scmd: cmd))) {
476 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
477
478 if (drv->uninit_command)
479 drv->uninit_command(cmd);
480 }
481}
482
483void scsi_free_sgtables(struct scsi_cmnd *cmd)
484{
485 if (cmd->sdb.table.nents)
486 sg_free_table_chained(table: &cmd->sdb.table,
487 SCSI_INLINE_SG_CNT);
488 if (scsi_prot_sg_count(cmd))
489 sg_free_table_chained(table: &cmd->prot_sdb->table,
490 SCSI_INLINE_PROT_SG_CNT);
491}
492EXPORT_SYMBOL_GPL(scsi_free_sgtables);
493
494static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
495{
496 scsi_free_sgtables(cmd);
497 scsi_uninit_cmd(cmd);
498}
499
500static void scsi_run_queue_async(struct scsi_device *sdev)
501{
502 if (scsi_host_in_recovery(shost: sdev->host))
503 return;
504
505 if (scsi_target(sdev)->single_lun ||
506 !list_empty(head: &sdev->host->starved_list)) {
507 kblockd_schedule_work(work: &sdev->requeue_work);
508 } else {
509 /*
510 * smp_mb() present in sbitmap_queue_clear() or implied in
511 * .end_io is for ordering writing .device_busy in
512 * scsi_device_unbusy() and reading sdev->restarts.
513 */
514 int old = atomic_read(v: &sdev->restarts);
515
516 /*
517 * ->restarts has to be kept as non-zero if new budget
518 * contention occurs.
519 *
520 * No need to run queue when either another re-run
521 * queue wins in updating ->restarts or a new budget
522 * contention occurs.
523 */
524 if (old && atomic_cmpxchg(v: &sdev->restarts, old, new: 0) == old)
525 blk_mq_run_hw_queues(q: sdev->request_queue, async: true);
526 }
527}
528
529/* Returns false when no more bytes to process, true if there are more */
530static bool scsi_end_request(struct request *req, blk_status_t error,
531 unsigned int bytes)
532{
533 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
534 struct scsi_device *sdev = cmd->device;
535 struct request_queue *q = sdev->request_queue;
536
537 if (blk_update_request(rq: req, error, nr_bytes: bytes))
538 return true;
539
540 // XXX:
541 if (blk_queue_add_random(q))
542 add_disk_randomness(disk: req->q->disk);
543
544 if (!blk_rq_is_passthrough(rq: req)) {
545 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
546 cmd->flags &= ~SCMD_INITIALIZED;
547 }
548
549 /*
550 * Calling rcu_barrier() is not necessary here because the
551 * SCSI error handler guarantees that the function called by
552 * call_rcu() has been called before scsi_end_request() is
553 * called.
554 */
555 destroy_rcu_head(head: &cmd->rcu);
556
557 /*
558 * In the MQ case the command gets freed by __blk_mq_end_request,
559 * so we have to do all cleanup that depends on it earlier.
560 *
561 * We also can't kick the queues from irq context, so we
562 * will have to defer it to a workqueue.
563 */
564 scsi_mq_uninit_cmd(cmd);
565
566 /*
567 * queue is still alive, so grab the ref for preventing it
568 * from being cleaned up during running queue.
569 */
570 percpu_ref_get(ref: &q->q_usage_counter);
571
572 __blk_mq_end_request(rq: req, error);
573
574 scsi_run_queue_async(sdev);
575
576 percpu_ref_put(ref: &q->q_usage_counter);
577 return false;
578}
579
580/**
581 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
582 * @result: scsi error code
583 *
584 * Translate a SCSI result code into a blk_status_t value.
585 */
586static blk_status_t scsi_result_to_blk_status(int result)
587{
588 /*
589 * Check the scsi-ml byte first in case we converted a host or status
590 * byte.
591 */
592 switch (scsi_ml_byte(result)) {
593 case SCSIML_STAT_OK:
594 break;
595 case SCSIML_STAT_RESV_CONFLICT:
596 return BLK_STS_RESV_CONFLICT;
597 case SCSIML_STAT_NOSPC:
598 return BLK_STS_NOSPC;
599 case SCSIML_STAT_MED_ERROR:
600 return BLK_STS_MEDIUM;
601 case SCSIML_STAT_TGT_FAILURE:
602 return BLK_STS_TARGET;
603 case SCSIML_STAT_DL_TIMEOUT:
604 return BLK_STS_DURATION_LIMIT;
605 }
606
607 switch (host_byte(result)) {
608 case DID_OK:
609 if (scsi_status_is_good(status: result))
610 return BLK_STS_OK;
611 return BLK_STS_IOERR;
612 case DID_TRANSPORT_FAILFAST:
613 case DID_TRANSPORT_MARGINAL:
614 return BLK_STS_TRANSPORT;
615 default:
616 return BLK_STS_IOERR;
617 }
618}
619
620/**
621 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
622 * @rq: request to examine
623 *
624 * Description:
625 * A request could be merge of IOs which require different failure
626 * handling. This function determines the number of bytes which
627 * can be failed from the beginning of the request without
628 * crossing into area which need to be retried further.
629 *
630 * Return:
631 * The number of bytes to fail.
632 */
633static unsigned int scsi_rq_err_bytes(const struct request *rq)
634{
635 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
636 unsigned int bytes = 0;
637 struct bio *bio;
638
639 if (!(rq->rq_flags & RQF_MIXED_MERGE))
640 return blk_rq_bytes(rq);
641
642 /*
643 * Currently the only 'mixing' which can happen is between
644 * different fastfail types. We can safely fail portions
645 * which have all the failfast bits that the first one has -
646 * the ones which are at least as eager to fail as the first
647 * one.
648 */
649 for (bio = rq->bio; bio; bio = bio->bi_next) {
650 if ((bio->bi_opf & ff) != ff)
651 break;
652 bytes += bio->bi_iter.bi_size;
653 }
654
655 /* this could lead to infinite loop */
656 BUG_ON(blk_rq_bytes(rq) && !bytes);
657 return bytes;
658}
659
660static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661{
662 struct request *req = scsi_cmd_to_rq(scmd: cmd);
663 unsigned long wait_for;
664
665 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666 return false;
667
668 wait_for = (cmd->allowed + 1) * req->timeout;
669 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671 wait_for/HZ);
672 return true;
673 }
674 return false;
675}
676
677/*
678 * When ALUA transition state is returned, reprep the cmd to
679 * use the ALUA handler's transition timeout. Delay the reprep
680 * 1 sec to avoid aggressive retries of the target in that
681 * state.
682 */
683#define ALUA_TRANSITION_REPREP_DELAY 1000
684
685/* Helper for scsi_io_completion() when special action required. */
686static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
687{
688 struct request *req = scsi_cmd_to_rq(scmd: cmd);
689 int level = 0;
690 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
691 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
692 struct scsi_sense_hdr sshdr;
693 bool sense_valid;
694 bool sense_current = true; /* false implies "deferred sense" */
695 blk_status_t blk_stat;
696
697 sense_valid = scsi_command_normalize_sense(cmd, sshdr: &sshdr);
698 if (sense_valid)
699 sense_current = !scsi_sense_is_deferred(sshdr: &sshdr);
700
701 blk_stat = scsi_result_to_blk_status(result);
702
703 if (host_byte(result) == DID_RESET) {
704 /* Third party bus reset or reset for error recovery
705 * reasons. Just retry the command and see what
706 * happens.
707 */
708 action = ACTION_RETRY;
709 } else if (sense_valid && sense_current) {
710 switch (sshdr.sense_key) {
711 case UNIT_ATTENTION:
712 if (cmd->device->removable) {
713 /* Detected disc change. Set a bit
714 * and quietly refuse further access.
715 */
716 cmd->device->changed = 1;
717 action = ACTION_FAIL;
718 } else {
719 /* Must have been a power glitch, or a
720 * bus reset. Could not have been a
721 * media change, so we just retry the
722 * command and see what happens.
723 */
724 action = ACTION_RETRY;
725 }
726 break;
727 case ILLEGAL_REQUEST:
728 /* If we had an ILLEGAL REQUEST returned, then
729 * we may have performed an unsupported
730 * command. The only thing this should be
731 * would be a ten byte read where only a six
732 * byte read was supported. Also, on a system
733 * where READ CAPACITY failed, we may have
734 * read past the end of the disk.
735 */
736 if ((cmd->device->use_10_for_rw &&
737 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
738 (cmd->cmnd[0] == READ_10 ||
739 cmd->cmnd[0] == WRITE_10)) {
740 /* This will issue a new 6-byte command. */
741 cmd->device->use_10_for_rw = 0;
742 action = ACTION_REPREP;
743 } else if (sshdr.asc == 0x10) /* DIX */ {
744 action = ACTION_FAIL;
745 blk_stat = BLK_STS_PROTECTION;
746 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
747 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
748 action = ACTION_FAIL;
749 blk_stat = BLK_STS_TARGET;
750 } else
751 action = ACTION_FAIL;
752 break;
753 case ABORTED_COMMAND:
754 action = ACTION_FAIL;
755 if (sshdr.asc == 0x10) /* DIF */
756 blk_stat = BLK_STS_PROTECTION;
757 break;
758 case NOT_READY:
759 /* If the device is in the process of becoming
760 * ready, or has a temporary blockage, retry.
761 */
762 if (sshdr.asc == 0x04) {
763 switch (sshdr.ascq) {
764 case 0x01: /* becoming ready */
765 case 0x04: /* format in progress */
766 case 0x05: /* rebuild in progress */
767 case 0x06: /* recalculation in progress */
768 case 0x07: /* operation in progress */
769 case 0x08: /* Long write in progress */
770 case 0x09: /* self test in progress */
771 case 0x11: /* notify (enable spinup) required */
772 case 0x14: /* space allocation in progress */
773 case 0x1a: /* start stop unit in progress */
774 case 0x1b: /* sanitize in progress */
775 case 0x1d: /* configuration in progress */
776 case 0x24: /* depopulation in progress */
777 case 0x25: /* depopulation restore in progress */
778 action = ACTION_DELAYED_RETRY;
779 break;
780 case 0x0a: /* ALUA state transition */
781 action = ACTION_DELAYED_REPREP;
782 break;
783 default:
784 action = ACTION_FAIL;
785 break;
786 }
787 } else
788 action = ACTION_FAIL;
789 break;
790 case VOLUME_OVERFLOW:
791 /* See SSC3rXX or current. */
792 action = ACTION_FAIL;
793 break;
794 case DATA_PROTECT:
795 action = ACTION_FAIL;
796 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
797 (sshdr.asc == 0x55 &&
798 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
799 /* Insufficient zone resources */
800 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
801 }
802 break;
803 case COMPLETED:
804 fallthrough;
805 default:
806 action = ACTION_FAIL;
807 break;
808 }
809 } else
810 action = ACTION_FAIL;
811
812 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
813 action = ACTION_FAIL;
814
815 switch (action) {
816 case ACTION_FAIL:
817 /* Give up and fail the remainder of the request */
818 if (!(req->rq_flags & RQF_QUIET)) {
819 static DEFINE_RATELIMIT_STATE(_rs,
820 DEFAULT_RATELIMIT_INTERVAL,
821 DEFAULT_RATELIMIT_BURST);
822
823 if (unlikely(scsi_logging_level))
824 level =
825 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
826 SCSI_LOG_MLCOMPLETE_BITS);
827
828 /*
829 * if logging is enabled the failure will be printed
830 * in scsi_log_completion(), so avoid duplicate messages
831 */
832 if (!level && __ratelimit(&_rs)) {
833 scsi_print_result(cmd, NULL, FAILED);
834 if (sense_valid)
835 scsi_print_sense(cmd);
836 scsi_print_command(cmd);
837 }
838 }
839 if (!scsi_end_request(req, error: blk_stat, bytes: scsi_rq_err_bytes(rq: req)))
840 return;
841 fallthrough;
842 case ACTION_REPREP:
843 scsi_mq_requeue_cmd(cmd, msecs: 0);
844 break;
845 case ACTION_DELAYED_REPREP:
846 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
847 break;
848 case ACTION_RETRY:
849 /* Retry the same command immediately */
850 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, unbusy: false);
851 break;
852 case ACTION_DELAYED_RETRY:
853 /* Retry the same command after a delay */
854 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, unbusy: false);
855 break;
856 }
857}
858
859/*
860 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
861 * new result that may suppress further error checking. Also modifies
862 * *blk_statp in some cases.
863 */
864static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
865 blk_status_t *blk_statp)
866{
867 bool sense_valid;
868 bool sense_current = true; /* false implies "deferred sense" */
869 struct request *req = scsi_cmd_to_rq(scmd: cmd);
870 struct scsi_sense_hdr sshdr;
871
872 sense_valid = scsi_command_normalize_sense(cmd, sshdr: &sshdr);
873 if (sense_valid)
874 sense_current = !scsi_sense_is_deferred(sshdr: &sshdr);
875
876 if (blk_rq_is_passthrough(rq: req)) {
877 if (sense_valid) {
878 /*
879 * SG_IO wants current and deferred errors
880 */
881 cmd->sense_len = min(8 + cmd->sense_buffer[7],
882 SCSI_SENSE_BUFFERSIZE);
883 }
884 if (sense_current)
885 *blk_statp = scsi_result_to_blk_status(result);
886 } else if (blk_rq_bytes(rq: req) == 0 && sense_current) {
887 /*
888 * Flush commands do not transfers any data, and thus cannot use
889 * good_bytes != blk_rq_bytes(req) as the signal for an error.
890 * This sets *blk_statp explicitly for the problem case.
891 */
892 *blk_statp = scsi_result_to_blk_status(result);
893 }
894 /*
895 * Recovered errors need reporting, but they're always treated as
896 * success, so fiddle the result code here. For passthrough requests
897 * we already took a copy of the original into sreq->result which
898 * is what gets returned to the user
899 */
900 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
901 bool do_print = true;
902 /*
903 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
904 * skip print since caller wants ATA registers. Only occurs
905 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
906 */
907 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
908 do_print = false;
909 else if (req->rq_flags & RQF_QUIET)
910 do_print = false;
911 if (do_print)
912 scsi_print_sense(cmd);
913 result = 0;
914 /* for passthrough, *blk_statp may be set */
915 *blk_statp = BLK_STS_OK;
916 }
917 /*
918 * Another corner case: the SCSI status byte is non-zero but 'good'.
919 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
920 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
921 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
922 * intermediate statuses (both obsolete in SAM-4) as good.
923 */
924 if ((result & 0xff) && scsi_status_is_good(status: result)) {
925 result = 0;
926 *blk_statp = BLK_STS_OK;
927 }
928 return result;
929}
930
931/**
932 * scsi_io_completion - Completion processing for SCSI commands.
933 * @cmd: command that is finished.
934 * @good_bytes: number of processed bytes.
935 *
936 * We will finish off the specified number of sectors. If we are done, the
937 * command block will be released and the queue function will be goosed. If we
938 * are not done then we have to figure out what to do next:
939 *
940 * a) We can call scsi_mq_requeue_cmd(). The request will be
941 * unprepared and put back on the queue. Then a new command will
942 * be created for it. This should be used if we made forward
943 * progress, or if we want to switch from READ(10) to READ(6) for
944 * example.
945 *
946 * b) We can call scsi_io_completion_action(). The request will be
947 * put back on the queue and retried using the same command as
948 * before, possibly after a delay.
949 *
950 * c) We can call scsi_end_request() with blk_stat other than
951 * BLK_STS_OK, to fail the remainder of the request.
952 */
953void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
954{
955 int result = cmd->result;
956 struct request *req = scsi_cmd_to_rq(scmd: cmd);
957 blk_status_t blk_stat = BLK_STS_OK;
958
959 if (unlikely(result)) /* a nz result may or may not be an error */
960 result = scsi_io_completion_nz_result(cmd, result, blk_statp: &blk_stat);
961
962 /*
963 * Next deal with any sectors which we were able to correctly
964 * handle.
965 */
966 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
967 "%u sectors total, %d bytes done.\n",
968 blk_rq_sectors(req), good_bytes));
969
970 /*
971 * Failed, zero length commands always need to drop down
972 * to retry code. Fast path should return in this block.
973 */
974 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
975 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
976 return; /* no bytes remaining */
977 }
978
979 /* Kill remainder if no retries. */
980 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
981 if (scsi_end_request(req, error: blk_stat, bytes: blk_rq_bytes(rq: req)))
982 WARN_ONCE(true,
983 "Bytes remaining after failed, no-retry command");
984 return;
985 }
986
987 /*
988 * If there had been no error, but we have leftover bytes in the
989 * request just queue the command up again.
990 */
991 if (likely(result == 0))
992 scsi_mq_requeue_cmd(cmd, msecs: 0);
993 else
994 scsi_io_completion_action(cmd, result);
995}
996
997static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
998 struct request *rq)
999{
1000 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1001 !op_is_write(op: req_op(req: rq)) &&
1002 sdev->host->hostt->dma_need_drain(rq);
1003}
1004
1005/**
1006 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1007 * @cmd: SCSI command data structure to initialize.
1008 *
1009 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1010 * for @cmd.
1011 *
1012 * Returns:
1013 * * BLK_STS_OK - on success
1014 * * BLK_STS_RESOURCE - if the failure is retryable
1015 * * BLK_STS_IOERR - if the failure is fatal
1016 */
1017blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1018{
1019 struct scsi_device *sdev = cmd->device;
1020 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1021 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1022 struct scatterlist *last_sg = NULL;
1023 blk_status_t ret;
1024 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1025 int count;
1026
1027 if (WARN_ON_ONCE(!nr_segs))
1028 return BLK_STS_IOERR;
1029
1030 /*
1031 * Make sure there is space for the drain. The driver must adjust
1032 * max_hw_segments to be prepared for this.
1033 */
1034 if (need_drain)
1035 nr_segs++;
1036
1037 /*
1038 * If sg table allocation fails, requeue request later.
1039 */
1040 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1041 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1042 return BLK_STS_RESOURCE;
1043
1044 /*
1045 * Next, walk the list, and fill in the addresses and sizes of
1046 * each segment.
1047 */
1048 count = __blk_rq_map_sg(q: rq->q, rq, sglist: cmd->sdb.table.sgl, last_sg: &last_sg);
1049
1050 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1051 unsigned int pad_len =
1052 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1053
1054 last_sg->length += pad_len;
1055 cmd->extra_len += pad_len;
1056 }
1057
1058 if (need_drain) {
1059 sg_unmark_end(sg: last_sg);
1060 last_sg = sg_next(last_sg);
1061 sg_set_buf(sg: last_sg, buf: sdev->dma_drain_buf, buflen: sdev->dma_drain_len);
1062 sg_mark_end(sg: last_sg);
1063
1064 cmd->extra_len += sdev->dma_drain_len;
1065 count++;
1066 }
1067
1068 BUG_ON(count > cmd->sdb.table.nents);
1069 cmd->sdb.table.nents = count;
1070 cmd->sdb.length = blk_rq_payload_bytes(rq);
1071
1072 if (blk_integrity_rq(rq)) {
1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 int ivecs;
1075
1076 if (WARN_ON_ONCE(!prot_sdb)) {
1077 /*
1078 * This can happen if someone (e.g. multipath)
1079 * queues a command to a device on an adapter
1080 * that does not support DIX.
1081 */
1082 ret = BLK_STS_IOERR;
1083 goto out_free_sgtables;
1084 }
1085
1086 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1087
1088 if (sg_alloc_table_chained(table: &prot_sdb->table, nents: ivecs,
1089 first_chunk: prot_sdb->table.sgl,
1090 SCSI_INLINE_PROT_SG_CNT)) {
1091 ret = BLK_STS_RESOURCE;
1092 goto out_free_sgtables;
1093 }
1094
1095 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1096 prot_sdb->table.sgl);
1097 BUG_ON(count > ivecs);
1098 BUG_ON(count > queue_max_integrity_segments(rq->q));
1099
1100 cmd->prot_sdb = prot_sdb;
1101 cmd->prot_sdb->table.nents = count;
1102 }
1103
1104 return BLK_STS_OK;
1105out_free_sgtables:
1106 scsi_free_sgtables(cmd);
1107 return ret;
1108}
1109EXPORT_SYMBOL(scsi_alloc_sgtables);
1110
1111/**
1112 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1113 * @rq: Request associated with the SCSI command to be initialized.
1114 *
1115 * This function initializes the members of struct scsi_cmnd that must be
1116 * initialized before request processing starts and that won't be
1117 * reinitialized if a SCSI command is requeued.
1118 */
1119static void scsi_initialize_rq(struct request *rq)
1120{
1121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1122
1123 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1124 cmd->cmd_len = MAX_COMMAND_SIZE;
1125 cmd->sense_len = 0;
1126 init_rcu_head(head: &cmd->rcu);
1127 cmd->jiffies_at_alloc = jiffies;
1128 cmd->retries = 0;
1129}
1130
1131struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1132 blk_mq_req_flags_t flags)
1133{
1134 struct request *rq;
1135
1136 rq = blk_mq_alloc_request(q, opf, flags);
1137 if (!IS_ERR(ptr: rq))
1138 scsi_initialize_rq(rq);
1139 return rq;
1140}
1141EXPORT_SYMBOL_GPL(scsi_alloc_request);
1142
1143/*
1144 * Only called when the request isn't completed by SCSI, and not freed by
1145 * SCSI
1146 */
1147static void scsi_cleanup_rq(struct request *rq)
1148{
1149 if (rq->rq_flags & RQF_DONTPREP) {
1150 scsi_mq_uninit_cmd(cmd: blk_mq_rq_to_pdu(rq));
1151 rq->rq_flags &= ~RQF_DONTPREP;
1152 }
1153}
1154
1155/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1156void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1157{
1158 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1159
1160 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1161 cmd->flags |= SCMD_INITIALIZED;
1162 scsi_initialize_rq(rq);
1163 }
1164
1165 cmd->device = dev;
1166 INIT_LIST_HEAD(list: &cmd->eh_entry);
1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168}
1169
1170static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1171 struct request *req)
1172{
1173 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
1174
1175 /*
1176 * Passthrough requests may transfer data, in which case they must
1177 * a bio attached to them. Or they might contain a SCSI command
1178 * that does not transfer data, in which case they may optionally
1179 * submit a request without an attached bio.
1180 */
1181 if (req->bio) {
1182 blk_status_t ret = scsi_alloc_sgtables(cmd);
1183 if (unlikely(ret != BLK_STS_OK))
1184 return ret;
1185 } else {
1186 BUG_ON(blk_rq_bytes(req));
1187
1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1189 }
1190
1191 cmd->transfersize = blk_rq_bytes(rq: req);
1192 return BLK_STS_OK;
1193}
1194
1195static blk_status_t
1196scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1197{
1198 switch (sdev->sdev_state) {
1199 case SDEV_CREATED:
1200 return BLK_STS_OK;
1201 case SDEV_OFFLINE:
1202 case SDEV_TRANSPORT_OFFLINE:
1203 /*
1204 * If the device is offline we refuse to process any
1205 * commands. The device must be brought online
1206 * before trying any recovery commands.
1207 */
1208 if (!sdev->offline_already) {
1209 sdev->offline_already = true;
1210 sdev_printk(KERN_ERR, sdev,
1211 "rejecting I/O to offline device\n");
1212 }
1213 return BLK_STS_IOERR;
1214 case SDEV_DEL:
1215 /*
1216 * If the device is fully deleted, we refuse to
1217 * process any commands as well.
1218 */
1219 sdev_printk(KERN_ERR, sdev,
1220 "rejecting I/O to dead device\n");
1221 return BLK_STS_IOERR;
1222 case SDEV_BLOCK:
1223 case SDEV_CREATED_BLOCK:
1224 return BLK_STS_RESOURCE;
1225 case SDEV_QUIESCE:
1226 /*
1227 * If the device is blocked we only accept power management
1228 * commands.
1229 */
1230 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1231 return BLK_STS_RESOURCE;
1232 return BLK_STS_OK;
1233 default:
1234 /*
1235 * For any other not fully online state we only allow
1236 * power management commands.
1237 */
1238 if (req && !(req->rq_flags & RQF_PM))
1239 return BLK_STS_OFFLINE;
1240 return BLK_STS_OK;
1241 }
1242}
1243
1244/*
1245 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1246 * and return the token else return -1.
1247 */
1248static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 struct scsi_device *sdev)
1250{
1251 int token;
1252
1253 token = sbitmap_get(sb: &sdev->budget_map);
1254 if (token < 0)
1255 return -1;
1256
1257 if (!atomic_read(v: &sdev->device_blocked))
1258 return token;
1259
1260 /*
1261 * Only unblock if no other commands are pending and
1262 * if device_blocked has decreased to zero
1263 */
1264 if (scsi_device_busy(sdev) > 1 ||
1265 atomic_dec_return(v: &sdev->device_blocked) > 0) {
1266 sbitmap_put(sb: &sdev->budget_map, bitnr: token);
1267 return -1;
1268 }
1269
1270 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1271 "unblocking device at zero depth\n"));
1272
1273 return token;
1274}
1275
1276/*
1277 * scsi_target_queue_ready: checks if there we can send commands to target
1278 * @sdev: scsi device on starget to check.
1279 */
1280static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1281 struct scsi_device *sdev)
1282{
1283 struct scsi_target *starget = scsi_target(sdev);
1284 unsigned int busy;
1285
1286 if (starget->single_lun) {
1287 spin_lock_irq(lock: shost->host_lock);
1288 if (starget->starget_sdev_user &&
1289 starget->starget_sdev_user != sdev) {
1290 spin_unlock_irq(lock: shost->host_lock);
1291 return 0;
1292 }
1293 starget->starget_sdev_user = sdev;
1294 spin_unlock_irq(lock: shost->host_lock);
1295 }
1296
1297 if (starget->can_queue <= 0)
1298 return 1;
1299
1300 busy = atomic_inc_return(v: &starget->target_busy) - 1;
1301 if (atomic_read(v: &starget->target_blocked) > 0) {
1302 if (busy)
1303 goto starved;
1304
1305 /*
1306 * unblock after target_blocked iterates to zero
1307 */
1308 if (atomic_dec_return(v: &starget->target_blocked) > 0)
1309 goto out_dec;
1310
1311 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1312 "unblocking target at zero depth\n"));
1313 }
1314
1315 if (busy >= starget->can_queue)
1316 goto starved;
1317
1318 return 1;
1319
1320starved:
1321 spin_lock_irq(lock: shost->host_lock);
1322 list_move_tail(list: &sdev->starved_entry, head: &shost->starved_list);
1323 spin_unlock_irq(lock: shost->host_lock);
1324out_dec:
1325 if (starget->can_queue > 0)
1326 atomic_dec(v: &starget->target_busy);
1327 return 0;
1328}
1329
1330/*
1331 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1332 * return 0. We must end up running the queue again whenever 0 is
1333 * returned, else IO can hang.
1334 */
1335static inline int scsi_host_queue_ready(struct request_queue *q,
1336 struct Scsi_Host *shost,
1337 struct scsi_device *sdev,
1338 struct scsi_cmnd *cmd)
1339{
1340 if (atomic_read(v: &shost->host_blocked) > 0) {
1341 if (scsi_host_busy(shost) > 0)
1342 goto starved;
1343
1344 /*
1345 * unblock after host_blocked iterates to zero
1346 */
1347 if (atomic_dec_return(v: &shost->host_blocked) > 0)
1348 goto out_dec;
1349
1350 SCSI_LOG_MLQUEUE(3,
1351 shost_printk(KERN_INFO, shost,
1352 "unblocking host at zero depth\n"));
1353 }
1354
1355 if (shost->host_self_blocked)
1356 goto starved;
1357
1358 /* We're OK to process the command, so we can't be starved */
1359 if (!list_empty(head: &sdev->starved_entry)) {
1360 spin_lock_irq(lock: shost->host_lock);
1361 if (!list_empty(head: &sdev->starved_entry))
1362 list_del_init(entry: &sdev->starved_entry);
1363 spin_unlock_irq(lock: shost->host_lock);
1364 }
1365
1366 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1367
1368 return 1;
1369
1370starved:
1371 spin_lock_irq(lock: shost->host_lock);
1372 if (list_empty(head: &sdev->starved_entry))
1373 list_add_tail(new: &sdev->starved_entry, head: &shost->starved_list);
1374 spin_unlock_irq(lock: shost->host_lock);
1375out_dec:
1376 scsi_dec_host_busy(shost, cmd);
1377 return 0;
1378}
1379
1380/*
1381 * Busy state exporting function for request stacking drivers.
1382 *
1383 * For efficiency, no lock is taken to check the busy state of
1384 * shost/starget/sdev, since the returned value is not guaranteed and
1385 * may be changed after request stacking drivers call the function,
1386 * regardless of taking lock or not.
1387 *
1388 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1389 * needs to return 'not busy'. Otherwise, request stacking drivers
1390 * may hold requests forever.
1391 */
1392static bool scsi_mq_lld_busy(struct request_queue *q)
1393{
1394 struct scsi_device *sdev = q->queuedata;
1395 struct Scsi_Host *shost;
1396
1397 if (blk_queue_dying(q))
1398 return false;
1399
1400 shost = sdev->host;
1401
1402 /*
1403 * Ignore host/starget busy state.
1404 * Since block layer does not have a concept of fairness across
1405 * multiple queues, congestion of host/starget needs to be handled
1406 * in SCSI layer.
1407 */
1408 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1409 return true;
1410
1411 return false;
1412}
1413
1414/*
1415 * Block layer request completion callback. May be called from interrupt
1416 * context.
1417 */
1418static void scsi_complete(struct request *rq)
1419{
1420 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1421 enum scsi_disposition disposition;
1422
1423 INIT_LIST_HEAD(list: &cmd->eh_entry);
1424
1425 atomic_inc(v: &cmd->device->iodone_cnt);
1426 if (cmd->result)
1427 atomic_inc(v: &cmd->device->ioerr_cnt);
1428
1429 disposition = scsi_decide_disposition(cmd);
1430 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1431 disposition = SUCCESS;
1432
1433 scsi_log_completion(cmd, disposition);
1434
1435 switch (disposition) {
1436 case SUCCESS:
1437 scsi_finish_command(cmd);
1438 break;
1439 case NEEDS_RETRY:
1440 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1441 break;
1442 case ADD_TO_MLQUEUE:
1443 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1444 break;
1445 default:
1446 scsi_eh_scmd_add(cmd);
1447 break;
1448 }
1449}
1450
1451/**
1452 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1453 * @cmd: command block we are dispatching.
1454 *
1455 * Return: nonzero return request was rejected and device's queue needs to be
1456 * plugged.
1457 */
1458static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1459{
1460 struct Scsi_Host *host = cmd->device->host;
1461 int rtn = 0;
1462
1463 atomic_inc(v: &cmd->device->iorequest_cnt);
1464
1465 /* check if the device is still usable */
1466 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1467 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1468 * returns an immediate error upwards, and signals
1469 * that the device is no longer present */
1470 cmd->result = DID_NO_CONNECT << 16;
1471 goto done;
1472 }
1473
1474 /* Check to see if the scsi lld made this device blocked. */
1475 if (unlikely(scsi_device_blocked(cmd->device))) {
1476 /*
1477 * in blocked state, the command is just put back on
1478 * the device queue. The suspend state has already
1479 * blocked the queue so future requests should not
1480 * occur until the device transitions out of the
1481 * suspend state.
1482 */
1483 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1484 "queuecommand : device blocked\n"));
1485 atomic_dec(v: &cmd->device->iorequest_cnt);
1486 return SCSI_MLQUEUE_DEVICE_BUSY;
1487 }
1488
1489 /* Store the LUN value in cmnd, if needed. */
1490 if (cmd->device->lun_in_cdb)
1491 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1492 (cmd->device->lun << 5 & 0xe0);
1493
1494 scsi_log_send(cmd);
1495
1496 /*
1497 * Before we queue this command, check if the command
1498 * length exceeds what the host adapter can handle.
1499 */
1500 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1501 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1502 "queuecommand : command too long. "
1503 "cdb_size=%d host->max_cmd_len=%d\n",
1504 cmd->cmd_len, cmd->device->host->max_cmd_len));
1505 cmd->result = (DID_ABORT << 16);
1506 goto done;
1507 }
1508
1509 if (unlikely(host->shost_state == SHOST_DEL)) {
1510 cmd->result = (DID_NO_CONNECT << 16);
1511 goto done;
1512
1513 }
1514
1515 trace_scsi_dispatch_cmd_start(cmd);
1516 rtn = host->hostt->queuecommand(host, cmd);
1517 if (rtn) {
1518 atomic_dec(v: &cmd->device->iorequest_cnt);
1519 trace_scsi_dispatch_cmd_error(cmd, rtn);
1520 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522 rtn = SCSI_MLQUEUE_HOST_BUSY;
1523
1524 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525 "queuecommand : request rejected\n"));
1526 }
1527
1528 return rtn;
1529 done:
1530 scsi_done(cmd);
1531 return 0;
1532}
1533
1534/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536{
1537 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538 sizeof(struct scatterlist);
1539}
1540
1541static blk_status_t scsi_prepare_cmd(struct request *req)
1542{
1543 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
1544 struct scsi_device *sdev = req->q->queuedata;
1545 struct Scsi_Host *shost = sdev->host;
1546 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547 struct scatterlist *sg;
1548
1549 scsi_init_command(dev: sdev, cmd);
1550
1551 cmd->eh_eflags = 0;
1552 cmd->prot_type = 0;
1553 cmd->prot_flags = 0;
1554 cmd->submitter = 0;
1555 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556 cmd->underflow = 0;
1557 cmd->transfersize = 0;
1558 cmd->host_scribble = NULL;
1559 cmd->result = 0;
1560 cmd->extra_len = 0;
1561 cmd->state = 0;
1562 if (in_flight)
1563 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564
1565 /*
1566 * Only clear the driver-private command data if the LLD does not supply
1567 * a function to initialize that data.
1568 */
1569 if (!shost->hostt->init_cmd_priv)
1570 memset(cmd + 1, 0, shost->hostt->cmd_size);
1571
1572 cmd->prot_op = SCSI_PROT_NORMAL;
1573 if (blk_rq_bytes(rq: req))
1574 cmd->sc_data_direction = rq_dma_dir(req);
1575 else
1576 cmd->sc_data_direction = DMA_NONE;
1577
1578 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579 cmd->sdb.table.sgl = sg;
1580
1581 if (scsi_host_get_prot(shost)) {
1582 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1583
1584 cmd->prot_sdb->table.sgl =
1585 (struct scatterlist *)(cmd->prot_sdb + 1);
1586 }
1587
1588 /*
1589 * Special handling for passthrough commands, which don't go to the ULP
1590 * at all:
1591 */
1592 if (blk_rq_is_passthrough(rq: req))
1593 return scsi_setup_scsi_cmnd(sdev, req);
1594
1595 if (sdev->handler && sdev->handler->prep_fn) {
1596 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597
1598 if (ret != BLK_STS_OK)
1599 return ret;
1600 }
1601
1602 /* Usually overridden by the ULP */
1603 cmd->allowed = 0;
1604 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606}
1607
1608static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609{
1610 struct request *req = scsi_cmd_to_rq(scmd: cmd);
1611
1612 switch (cmd->submitter) {
1613 case SUBMITTED_BY_BLOCK_LAYER:
1614 break;
1615 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616 return scsi_eh_done(scmd: cmd);
1617 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618 return;
1619 }
1620
1621 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622 return;
1623 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624 return;
1625 trace_scsi_dispatch_cmd_done(cmd);
1626
1627 if (complete_directly)
1628 blk_mq_complete_request_direct(rq: req, complete: scsi_complete);
1629 else
1630 blk_mq_complete_request(rq: req);
1631}
1632
1633void scsi_done(struct scsi_cmnd *cmd)
1634{
1635 scsi_done_internal(cmd, complete_directly: false);
1636}
1637EXPORT_SYMBOL(scsi_done);
1638
1639void scsi_done_direct(struct scsi_cmnd *cmd)
1640{
1641 scsi_done_internal(cmd, complete_directly: true);
1642}
1643EXPORT_SYMBOL(scsi_done_direct);
1644
1645static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646{
1647 struct scsi_device *sdev = q->queuedata;
1648
1649 sbitmap_put(sb: &sdev->budget_map, bitnr: budget_token);
1650}
1651
1652/*
1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654 * not change behaviour from the previous unplug mechanism, experimentation
1655 * may prove this needs changing.
1656 */
1657#define SCSI_QUEUE_DELAY 3
1658
1659static int scsi_mq_get_budget(struct request_queue *q)
1660{
1661 struct scsi_device *sdev = q->queuedata;
1662 int token = scsi_dev_queue_ready(q, sdev);
1663
1664 if (token >= 0)
1665 return token;
1666
1667 atomic_inc(v: &sdev->restarts);
1668
1669 /*
1670 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671 * .restarts must be incremented before .device_busy is read because the
1672 * code in scsi_run_queue_async() depends on the order of these operations.
1673 */
1674 smp_mb__after_atomic();
1675
1676 /*
1677 * If all in-flight requests originated from this LUN are completed
1678 * before reading .device_busy, sdev->device_busy will be observed as
1679 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680 * soon. Otherwise, completion of one of these requests will observe
1681 * the .restarts flag, and the request queue will be run for handling
1682 * this request, see scsi_end_request().
1683 */
1684 if (unlikely(scsi_device_busy(sdev) == 0 &&
1685 !scsi_device_blocked(sdev)))
1686 blk_mq_delay_run_hw_queues(q: sdev->request_queue, SCSI_QUEUE_DELAY);
1687 return -1;
1688}
1689
1690static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691{
1692 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
1693
1694 cmd->budget_token = token;
1695}
1696
1697static int scsi_mq_get_rq_budget_token(struct request *req)
1698{
1699 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
1700
1701 return cmd->budget_token;
1702}
1703
1704static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705 const struct blk_mq_queue_data *bd)
1706{
1707 struct request *req = bd->rq;
1708 struct request_queue *q = req->q;
1709 struct scsi_device *sdev = q->queuedata;
1710 struct Scsi_Host *shost = sdev->host;
1711 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq: req);
1712 blk_status_t ret;
1713 int reason;
1714
1715 WARN_ON_ONCE(cmd->budget_token < 0);
1716
1717 /*
1718 * If the device is not in running state we will reject some or all
1719 * commands.
1720 */
1721 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722 ret = scsi_device_state_check(sdev, req);
1723 if (ret != BLK_STS_OK)
1724 goto out_put_budget;
1725 }
1726
1727 ret = BLK_STS_RESOURCE;
1728 if (!scsi_target_queue_ready(shost, sdev))
1729 goto out_put_budget;
1730 if (unlikely(scsi_host_in_recovery(shost))) {
1731 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732 ret = BLK_STS_OFFLINE;
1733 goto out_dec_target_busy;
1734 }
1735 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736 goto out_dec_target_busy;
1737
1738 if (!(req->rq_flags & RQF_DONTPREP)) {
1739 ret = scsi_prepare_cmd(req);
1740 if (ret != BLK_STS_OK)
1741 goto out_dec_host_busy;
1742 req->rq_flags |= RQF_DONTPREP;
1743 } else {
1744 clear_bit(SCMD_STATE_COMPLETE, addr: &cmd->state);
1745 }
1746
1747 cmd->flags &= SCMD_PRESERVED_FLAGS;
1748 if (sdev->simple_tags)
1749 cmd->flags |= SCMD_TAGGED;
1750 if (bd->last)
1751 cmd->flags |= SCMD_LAST;
1752
1753 scsi_set_resid(cmd, resid: 0);
1754 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756
1757 blk_mq_start_request(rq: req);
1758 reason = scsi_dispatch_cmd(cmd);
1759 if (reason) {
1760 scsi_set_blocked(cmd, reason);
1761 ret = BLK_STS_RESOURCE;
1762 goto out_dec_host_busy;
1763 }
1764
1765 return BLK_STS_OK;
1766
1767out_dec_host_busy:
1768 scsi_dec_host_busy(shost, cmd);
1769out_dec_target_busy:
1770 if (scsi_target(sdev)->can_queue > 0)
1771 atomic_dec(v: &scsi_target(sdev)->target_busy);
1772out_put_budget:
1773 scsi_mq_put_budget(q, budget_token: cmd->budget_token);
1774 cmd->budget_token = -1;
1775 switch (ret) {
1776 case BLK_STS_OK:
1777 break;
1778 case BLK_STS_RESOURCE:
1779 case BLK_STS_ZONE_RESOURCE:
1780 if (scsi_device_blocked(sdev))
1781 ret = BLK_STS_DEV_RESOURCE;
1782 break;
1783 case BLK_STS_AGAIN:
1784 cmd->result = DID_BUS_BUSY << 16;
1785 if (req->rq_flags & RQF_DONTPREP)
1786 scsi_mq_uninit_cmd(cmd);
1787 break;
1788 default:
1789 if (unlikely(!scsi_device_online(sdev)))
1790 cmd->result = DID_NO_CONNECT << 16;
1791 else
1792 cmd->result = DID_ERROR << 16;
1793 /*
1794 * Make sure to release all allocated resources when
1795 * we hit an error, as we will never see this command
1796 * again.
1797 */
1798 if (req->rq_flags & RQF_DONTPREP)
1799 scsi_mq_uninit_cmd(cmd);
1800 scsi_run_queue_async(sdev);
1801 break;
1802 }
1803 return ret;
1804}
1805
1806static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1807 unsigned int hctx_idx, unsigned int numa_node)
1808{
1809 struct Scsi_Host *shost = set->driver_data;
1810 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1811 struct scatterlist *sg;
1812 int ret = 0;
1813
1814 cmd->sense_buffer =
1815 kmem_cache_alloc_node(s: scsi_sense_cache, GFP_KERNEL, node: numa_node);
1816 if (!cmd->sense_buffer)
1817 return -ENOMEM;
1818
1819 if (scsi_host_get_prot(shost)) {
1820 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1821 shost->hostt->cmd_size;
1822 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1823 }
1824
1825 if (shost->hostt->init_cmd_priv) {
1826 ret = shost->hostt->init_cmd_priv(shost, cmd);
1827 if (ret < 0)
1828 kmem_cache_free(s: scsi_sense_cache, objp: cmd->sense_buffer);
1829 }
1830
1831 return ret;
1832}
1833
1834static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1835 unsigned int hctx_idx)
1836{
1837 struct Scsi_Host *shost = set->driver_data;
1838 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1839
1840 if (shost->hostt->exit_cmd_priv)
1841 shost->hostt->exit_cmd_priv(shost, cmd);
1842 kmem_cache_free(s: scsi_sense_cache, objp: cmd->sense_buffer);
1843}
1844
1845
1846static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1847{
1848 struct Scsi_Host *shost = hctx->driver_data;
1849
1850 if (shost->hostt->mq_poll)
1851 return shost->hostt->mq_poll(shost, hctx->queue_num);
1852
1853 return 0;
1854}
1855
1856static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1857 unsigned int hctx_idx)
1858{
1859 struct Scsi_Host *shost = data;
1860
1861 hctx->driver_data = shost;
1862 return 0;
1863}
1864
1865static void scsi_map_queues(struct blk_mq_tag_set *set)
1866{
1867 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1868
1869 if (shost->hostt->map_queues)
1870 return shost->hostt->map_queues(shost);
1871 blk_mq_map_queues(qmap: &set->map[HCTX_TYPE_DEFAULT]);
1872}
1873
1874void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1875{
1876 struct device *dev = shost->dma_dev;
1877
1878 /*
1879 * this limit is imposed by hardware restrictions
1880 */
1881 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1882 SG_MAX_SEGMENTS));
1883
1884 if (scsi_host_prot_dma(shost)) {
1885 shost->sg_prot_tablesize =
1886 min_not_zero(shost->sg_prot_tablesize,
1887 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1888 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1889 blk_queue_max_integrity_segments(q, segs: shost->sg_prot_tablesize);
1890 }
1891
1892 blk_queue_max_hw_sectors(q, shost->max_sectors);
1893 blk_queue_segment_boundary(q, shost->dma_boundary);
1894 dma_set_seg_boundary(dev, mask: shost->dma_boundary);
1895
1896 blk_queue_max_segment_size(q, shost->max_segment_size);
1897 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1898 dma_set_max_seg_size(dev, size: queue_max_segment_size(q));
1899
1900 /*
1901 * Set a reasonable default alignment: The larger of 32-byte (dword),
1902 * which is a common minimum for HBAs, and the minimum DMA alignment,
1903 * which is set by the platform.
1904 *
1905 * Devices that require a bigger alignment can increase it later.
1906 */
1907 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1908}
1909EXPORT_SYMBOL_GPL(__scsi_init_queue);
1910
1911static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1912 .get_budget = scsi_mq_get_budget,
1913 .put_budget = scsi_mq_put_budget,
1914 .queue_rq = scsi_queue_rq,
1915 .complete = scsi_complete,
1916 .timeout = scsi_timeout,
1917#ifdef CONFIG_BLK_DEBUG_FS
1918 .show_rq = scsi_show_rq,
1919#endif
1920 .init_request = scsi_mq_init_request,
1921 .exit_request = scsi_mq_exit_request,
1922 .cleanup_rq = scsi_cleanup_rq,
1923 .busy = scsi_mq_lld_busy,
1924 .map_queues = scsi_map_queues,
1925 .init_hctx = scsi_init_hctx,
1926 .poll = scsi_mq_poll,
1927 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1928 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1929};
1930
1931
1932static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1933{
1934 struct Scsi_Host *shost = hctx->driver_data;
1935
1936 shost->hostt->commit_rqs(shost, hctx->queue_num);
1937}
1938
1939static const struct blk_mq_ops scsi_mq_ops = {
1940 .get_budget = scsi_mq_get_budget,
1941 .put_budget = scsi_mq_put_budget,
1942 .queue_rq = scsi_queue_rq,
1943 .commit_rqs = scsi_commit_rqs,
1944 .complete = scsi_complete,
1945 .timeout = scsi_timeout,
1946#ifdef CONFIG_BLK_DEBUG_FS
1947 .show_rq = scsi_show_rq,
1948#endif
1949 .init_request = scsi_mq_init_request,
1950 .exit_request = scsi_mq_exit_request,
1951 .cleanup_rq = scsi_cleanup_rq,
1952 .busy = scsi_mq_lld_busy,
1953 .map_queues = scsi_map_queues,
1954 .init_hctx = scsi_init_hctx,
1955 .poll = scsi_mq_poll,
1956 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1957 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1958};
1959
1960int scsi_mq_setup_tags(struct Scsi_Host *shost)
1961{
1962 unsigned int cmd_size, sgl_size;
1963 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1964
1965 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1966 scsi_mq_inline_sgl_size(shost));
1967 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1968 if (scsi_host_get_prot(shost))
1969 cmd_size += sizeof(struct scsi_data_buffer) +
1970 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1971
1972 memset(tag_set, 0, sizeof(*tag_set));
1973 if (shost->hostt->commit_rqs)
1974 tag_set->ops = &scsi_mq_ops;
1975 else
1976 tag_set->ops = &scsi_mq_ops_no_commit;
1977 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1978 tag_set->nr_maps = shost->nr_maps ? : 1;
1979 tag_set->queue_depth = shost->can_queue;
1980 tag_set->cmd_size = cmd_size;
1981 tag_set->numa_node = dev_to_node(dev: shost->dma_dev);
1982 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1983 tag_set->flags |=
1984 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1985 if (shost->queuecommand_may_block)
1986 tag_set->flags |= BLK_MQ_F_BLOCKING;
1987 tag_set->driver_data = shost;
1988 if (shost->host_tagset)
1989 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1990
1991 return blk_mq_alloc_tag_set(set: tag_set);
1992}
1993
1994void scsi_mq_free_tags(struct kref *kref)
1995{
1996 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1997 tagset_refcnt);
1998
1999 blk_mq_free_tag_set(set: &shost->tag_set);
2000 complete(&shost->tagset_freed);
2001}
2002
2003/**
2004 * scsi_device_from_queue - return sdev associated with a request_queue
2005 * @q: The request queue to return the sdev from
2006 *
2007 * Return the sdev associated with a request queue or NULL if the
2008 * request_queue does not reference a SCSI device.
2009 */
2010struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2011{
2012 struct scsi_device *sdev = NULL;
2013
2014 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2015 q->mq_ops == &scsi_mq_ops)
2016 sdev = q->queuedata;
2017 if (!sdev || !get_device(dev: &sdev->sdev_gendev))
2018 sdev = NULL;
2019
2020 return sdev;
2021}
2022/*
2023 * pktcdvd should have been integrated into the SCSI layers, but for historical
2024 * reasons like the old IDE driver it isn't. This export allows it to safely
2025 * probe if a given device is a SCSI one and only attach to that.
2026 */
2027#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2028EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2029#endif
2030
2031/**
2032 * scsi_block_requests - Utility function used by low-level drivers to prevent
2033 * further commands from being queued to the device.
2034 * @shost: host in question
2035 *
2036 * There is no timer nor any other means by which the requests get unblocked
2037 * other than the low-level driver calling scsi_unblock_requests().
2038 */
2039void scsi_block_requests(struct Scsi_Host *shost)
2040{
2041 shost->host_self_blocked = 1;
2042}
2043EXPORT_SYMBOL(scsi_block_requests);
2044
2045/**
2046 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2047 * further commands to be queued to the device.
2048 * @shost: host in question
2049 *
2050 * There is no timer nor any other means by which the requests get unblocked
2051 * other than the low-level driver calling scsi_unblock_requests(). This is done
2052 * as an API function so that changes to the internals of the scsi mid-layer
2053 * won't require wholesale changes to drivers that use this feature.
2054 */
2055void scsi_unblock_requests(struct Scsi_Host *shost)
2056{
2057 shost->host_self_blocked = 0;
2058 scsi_run_host_queues(shost);
2059}
2060EXPORT_SYMBOL(scsi_unblock_requests);
2061
2062void scsi_exit_queue(void)
2063{
2064 kmem_cache_destroy(s: scsi_sense_cache);
2065}
2066
2067/**
2068 * scsi_mode_select - issue a mode select
2069 * @sdev: SCSI device to be queried
2070 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2071 * @sp: Save page bit (0 == don't save, 1 == save)
2072 * @buffer: request buffer (may not be smaller than eight bytes)
2073 * @len: length of request buffer.
2074 * @timeout: command timeout
2075 * @retries: number of retries before failing
2076 * @data: returns a structure abstracting the mode header data
2077 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2078 * must be SCSI_SENSE_BUFFERSIZE big.
2079 *
2080 * Returns zero if successful; negative error number or scsi
2081 * status on error
2082 *
2083 */
2084int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2085 unsigned char *buffer, int len, int timeout, int retries,
2086 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2087{
2088 unsigned char cmd[10];
2089 unsigned char *real_buffer;
2090 const struct scsi_exec_args exec_args = {
2091 .sshdr = sshdr,
2092 };
2093 int ret;
2094
2095 memset(cmd, 0, sizeof(cmd));
2096 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2097
2098 /*
2099 * Use MODE SELECT(10) if the device asked for it or if the mode page
2100 * and the mode select header cannot fit within the maximumm 255 bytes
2101 * of the MODE SELECT(6) command.
2102 */
2103 if (sdev->use_10_for_ms ||
2104 len + 4 > 255 ||
2105 data->block_descriptor_length > 255) {
2106 if (len > 65535 - 8)
2107 return -EINVAL;
2108 real_buffer = kmalloc(size: 8 + len, GFP_KERNEL);
2109 if (!real_buffer)
2110 return -ENOMEM;
2111 memcpy(real_buffer + 8, buffer, len);
2112 len += 8;
2113 real_buffer[0] = 0;
2114 real_buffer[1] = 0;
2115 real_buffer[2] = data->medium_type;
2116 real_buffer[3] = data->device_specific;
2117 real_buffer[4] = data->longlba ? 0x01 : 0;
2118 real_buffer[5] = 0;
2119 put_unaligned_be16(val: data->block_descriptor_length,
2120 p: &real_buffer[6]);
2121
2122 cmd[0] = MODE_SELECT_10;
2123 put_unaligned_be16(val: len, p: &cmd[7]);
2124 } else {
2125 if (data->longlba)
2126 return -EINVAL;
2127
2128 real_buffer = kmalloc(size: 4 + len, GFP_KERNEL);
2129 if (!real_buffer)
2130 return -ENOMEM;
2131 memcpy(real_buffer + 4, buffer, len);
2132 len += 4;
2133 real_buffer[0] = 0;
2134 real_buffer[1] = data->medium_type;
2135 real_buffer[2] = data->device_specific;
2136 real_buffer[3] = data->block_descriptor_length;
2137
2138 cmd[0] = MODE_SELECT;
2139 cmd[4] = len;
2140 }
2141
2142 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2143 timeout, retries, &exec_args);
2144 kfree(objp: real_buffer);
2145 return ret;
2146}
2147EXPORT_SYMBOL_GPL(scsi_mode_select);
2148
2149/**
2150 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2151 * @sdev: SCSI device to be queried
2152 * @dbd: set to prevent mode sense from returning block descriptors
2153 * @modepage: mode page being requested
2154 * @subpage: sub-page of the mode page being requested
2155 * @buffer: request buffer (may not be smaller than eight bytes)
2156 * @len: length of request buffer.
2157 * @timeout: command timeout
2158 * @retries: number of retries before failing
2159 * @data: returns a structure abstracting the mode header data
2160 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2161 * must be SCSI_SENSE_BUFFERSIZE big.
2162 *
2163 * Returns zero if successful, or a negative error number on failure
2164 */
2165int
2166scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2167 unsigned char *buffer, int len, int timeout, int retries,
2168 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2169{
2170 unsigned char cmd[12];
2171 int use_10_for_ms;
2172 int header_length;
2173 int result, retry_count = retries;
2174 struct scsi_sense_hdr my_sshdr;
2175 const struct scsi_exec_args exec_args = {
2176 /* caller might not be interested in sense, but we need it */
2177 .sshdr = sshdr ? : &my_sshdr,
2178 };
2179
2180 memset(data, 0, sizeof(*data));
2181 memset(&cmd[0], 0, 12);
2182
2183 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2184 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2185 cmd[2] = modepage;
2186 cmd[3] = subpage;
2187
2188 sshdr = exec_args.sshdr;
2189
2190 retry:
2191 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2192
2193 if (use_10_for_ms) {
2194 if (len < 8 || len > 65535)
2195 return -EINVAL;
2196
2197 cmd[0] = MODE_SENSE_10;
2198 put_unaligned_be16(val: len, p: &cmd[7]);
2199 header_length = 8;
2200 } else {
2201 if (len < 4)
2202 return -EINVAL;
2203
2204 cmd[0] = MODE_SENSE;
2205 cmd[4] = len;
2206 header_length = 4;
2207 }
2208
2209 memset(buffer, 0, len);
2210
2211 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2212 timeout, retries, &exec_args);
2213 if (result < 0)
2214 return result;
2215
2216 /* This code looks awful: what it's doing is making sure an
2217 * ILLEGAL REQUEST sense return identifies the actual command
2218 * byte as the problem. MODE_SENSE commands can return
2219 * ILLEGAL REQUEST if the code page isn't supported */
2220
2221 if (!scsi_status_is_good(status: result)) {
2222 if (scsi_sense_valid(sshdr)) {
2223 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2224 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2225 /*
2226 * Invalid command operation code: retry using
2227 * MODE SENSE(6) if this was a MODE SENSE(10)
2228 * request, except if the request mode page is
2229 * too large for MODE SENSE single byte
2230 * allocation length field.
2231 */
2232 if (use_10_for_ms) {
2233 if (len > 255)
2234 return -EIO;
2235 sdev->use_10_for_ms = 0;
2236 goto retry;
2237 }
2238 }
2239 if (scsi_status_is_check_condition(status: result) &&
2240 sshdr->sense_key == UNIT_ATTENTION &&
2241 retry_count) {
2242 retry_count--;
2243 goto retry;
2244 }
2245 }
2246 return -EIO;
2247 }
2248 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2249 (modepage == 6 || modepage == 8))) {
2250 /* Initio breakage? */
2251 header_length = 0;
2252 data->length = 13;
2253 data->medium_type = 0;
2254 data->device_specific = 0;
2255 data->longlba = 0;
2256 data->block_descriptor_length = 0;
2257 } else if (use_10_for_ms) {
2258 data->length = get_unaligned_be16(p: &buffer[0]) + 2;
2259 data->medium_type = buffer[2];
2260 data->device_specific = buffer[3];
2261 data->longlba = buffer[4] & 0x01;
2262 data->block_descriptor_length = get_unaligned_be16(p: &buffer[6]);
2263 } else {
2264 data->length = buffer[0] + 1;
2265 data->medium_type = buffer[1];
2266 data->device_specific = buffer[2];
2267 data->block_descriptor_length = buffer[3];
2268 }
2269 data->header_length = header_length;
2270
2271 return 0;
2272}
2273EXPORT_SYMBOL(scsi_mode_sense);
2274
2275/**
2276 * scsi_test_unit_ready - test if unit is ready
2277 * @sdev: scsi device to change the state of.
2278 * @timeout: command timeout
2279 * @retries: number of retries before failing
2280 * @sshdr: outpout pointer for decoded sense information.
2281 *
2282 * Returns zero if unsuccessful or an error if TUR failed. For
2283 * removable media, UNIT_ATTENTION sets ->changed flag.
2284 **/
2285int
2286scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2287 struct scsi_sense_hdr *sshdr)
2288{
2289 char cmd[] = {
2290 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2291 };
2292 const struct scsi_exec_args exec_args = {
2293 .sshdr = sshdr,
2294 };
2295 int result;
2296
2297 /* try to eat the UNIT_ATTENTION if there are enough retries */
2298 do {
2299 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2300 timeout, 1, &exec_args);
2301 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2302 sshdr->sense_key == UNIT_ATTENTION)
2303 sdev->changed = 1;
2304 } while (result > 0 && scsi_sense_valid(sshdr) &&
2305 sshdr->sense_key == UNIT_ATTENTION && --retries);
2306
2307 return result;
2308}
2309EXPORT_SYMBOL(scsi_test_unit_ready);
2310
2311/**
2312 * scsi_device_set_state - Take the given device through the device state model.
2313 * @sdev: scsi device to change the state of.
2314 * @state: state to change to.
2315 *
2316 * Returns zero if successful or an error if the requested
2317 * transition is illegal.
2318 */
2319int
2320scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2321{
2322 enum scsi_device_state oldstate = sdev->sdev_state;
2323
2324 if (state == oldstate)
2325 return 0;
2326
2327 switch (state) {
2328 case SDEV_CREATED:
2329 switch (oldstate) {
2330 case SDEV_CREATED_BLOCK:
2331 break;
2332 default:
2333 goto illegal;
2334 }
2335 break;
2336
2337 case SDEV_RUNNING:
2338 switch (oldstate) {
2339 case SDEV_CREATED:
2340 case SDEV_OFFLINE:
2341 case SDEV_TRANSPORT_OFFLINE:
2342 case SDEV_QUIESCE:
2343 case SDEV_BLOCK:
2344 break;
2345 default:
2346 goto illegal;
2347 }
2348 break;
2349
2350 case SDEV_QUIESCE:
2351 switch (oldstate) {
2352 case SDEV_RUNNING:
2353 case SDEV_OFFLINE:
2354 case SDEV_TRANSPORT_OFFLINE:
2355 break;
2356 default:
2357 goto illegal;
2358 }
2359 break;
2360
2361 case SDEV_OFFLINE:
2362 case SDEV_TRANSPORT_OFFLINE:
2363 switch (oldstate) {
2364 case SDEV_CREATED:
2365 case SDEV_RUNNING:
2366 case SDEV_QUIESCE:
2367 case SDEV_BLOCK:
2368 break;
2369 default:
2370 goto illegal;
2371 }
2372 break;
2373
2374 case SDEV_BLOCK:
2375 switch (oldstate) {
2376 case SDEV_RUNNING:
2377 case SDEV_CREATED_BLOCK:
2378 case SDEV_QUIESCE:
2379 case SDEV_OFFLINE:
2380 break;
2381 default:
2382 goto illegal;
2383 }
2384 break;
2385
2386 case SDEV_CREATED_BLOCK:
2387 switch (oldstate) {
2388 case SDEV_CREATED:
2389 break;
2390 default:
2391 goto illegal;
2392 }
2393 break;
2394
2395 case SDEV_CANCEL:
2396 switch (oldstate) {
2397 case SDEV_CREATED:
2398 case SDEV_RUNNING:
2399 case SDEV_QUIESCE:
2400 case SDEV_OFFLINE:
2401 case SDEV_TRANSPORT_OFFLINE:
2402 break;
2403 default:
2404 goto illegal;
2405 }
2406 break;
2407
2408 case SDEV_DEL:
2409 switch (oldstate) {
2410 case SDEV_CREATED:
2411 case SDEV_RUNNING:
2412 case SDEV_OFFLINE:
2413 case SDEV_TRANSPORT_OFFLINE:
2414 case SDEV_CANCEL:
2415 case SDEV_BLOCK:
2416 case SDEV_CREATED_BLOCK:
2417 break;
2418 default:
2419 goto illegal;
2420 }
2421 break;
2422
2423 }
2424 sdev->offline_already = false;
2425 sdev->sdev_state = state;
2426 return 0;
2427
2428 illegal:
2429 SCSI_LOG_ERROR_RECOVERY(1,
2430 sdev_printk(KERN_ERR, sdev,
2431 "Illegal state transition %s->%s",
2432 scsi_device_state_name(oldstate),
2433 scsi_device_state_name(state))
2434 );
2435 return -EINVAL;
2436}
2437EXPORT_SYMBOL(scsi_device_set_state);
2438
2439/**
2440 * scsi_evt_emit - emit a single SCSI device uevent
2441 * @sdev: associated SCSI device
2442 * @evt: event to emit
2443 *
2444 * Send a single uevent (scsi_event) to the associated scsi_device.
2445 */
2446static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2447{
2448 int idx = 0;
2449 char *envp[3];
2450
2451 switch (evt->evt_type) {
2452 case SDEV_EVT_MEDIA_CHANGE:
2453 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2454 break;
2455 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2456 scsi_rescan_device(sdev);
2457 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2458 break;
2459 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2460 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2461 break;
2462 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2463 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2464 break;
2465 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2466 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2467 break;
2468 case SDEV_EVT_LUN_CHANGE_REPORTED:
2469 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2470 break;
2471 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2472 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2473 break;
2474 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2475 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2476 break;
2477 default:
2478 /* do nothing */
2479 break;
2480 }
2481
2482 envp[idx++] = NULL;
2483
2484 kobject_uevent_env(kobj: &sdev->sdev_gendev.kobj, action: KOBJ_CHANGE, envp);
2485}
2486
2487/**
2488 * scsi_evt_thread - send a uevent for each scsi event
2489 * @work: work struct for scsi_device
2490 *
2491 * Dispatch queued events to their associated scsi_device kobjects
2492 * as uevents.
2493 */
2494void scsi_evt_thread(struct work_struct *work)
2495{
2496 struct scsi_device *sdev;
2497 enum scsi_device_event evt_type;
2498 LIST_HEAD(event_list);
2499
2500 sdev = container_of(work, struct scsi_device, event_work);
2501
2502 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2503 if (test_and_clear_bit(nr: evt_type, addr: sdev->pending_events))
2504 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2505
2506 while (1) {
2507 struct scsi_event *evt;
2508 struct list_head *this, *tmp;
2509 unsigned long flags;
2510
2511 spin_lock_irqsave(&sdev->list_lock, flags);
2512 list_splice_init(list: &sdev->event_list, head: &event_list);
2513 spin_unlock_irqrestore(lock: &sdev->list_lock, flags);
2514
2515 if (list_empty(head: &event_list))
2516 break;
2517
2518 list_for_each_safe(this, tmp, &event_list) {
2519 evt = list_entry(this, struct scsi_event, node);
2520 list_del(entry: &evt->node);
2521 scsi_evt_emit(sdev, evt);
2522 kfree(objp: evt);
2523 }
2524 }
2525}
2526
2527/**
2528 * sdev_evt_send - send asserted event to uevent thread
2529 * @sdev: scsi_device event occurred on
2530 * @evt: event to send
2531 *
2532 * Assert scsi device event asynchronously.
2533 */
2534void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2535{
2536 unsigned long flags;
2537
2538#if 0
2539 /* FIXME: currently this check eliminates all media change events
2540 * for polled devices. Need to update to discriminate between AN
2541 * and polled events */
2542 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2543 kfree(evt);
2544 return;
2545 }
2546#endif
2547
2548 spin_lock_irqsave(&sdev->list_lock, flags);
2549 list_add_tail(new: &evt->node, head: &sdev->event_list);
2550 schedule_work(work: &sdev->event_work);
2551 spin_unlock_irqrestore(lock: &sdev->list_lock, flags);
2552}
2553EXPORT_SYMBOL_GPL(sdev_evt_send);
2554
2555/**
2556 * sdev_evt_alloc - allocate a new scsi event
2557 * @evt_type: type of event to allocate
2558 * @gfpflags: GFP flags for allocation
2559 *
2560 * Allocates and returns a new scsi_event.
2561 */
2562struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2563 gfp_t gfpflags)
2564{
2565 struct scsi_event *evt = kzalloc(size: sizeof(struct scsi_event), flags: gfpflags);
2566 if (!evt)
2567 return NULL;
2568
2569 evt->evt_type = evt_type;
2570 INIT_LIST_HEAD(list: &evt->node);
2571
2572 /* evt_type-specific initialization, if any */
2573 switch (evt_type) {
2574 case SDEV_EVT_MEDIA_CHANGE:
2575 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2576 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2577 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2579 case SDEV_EVT_LUN_CHANGE_REPORTED:
2580 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2581 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2582 default:
2583 /* do nothing */
2584 break;
2585 }
2586
2587 return evt;
2588}
2589EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2590
2591/**
2592 * sdev_evt_send_simple - send asserted event to uevent thread
2593 * @sdev: scsi_device event occurred on
2594 * @evt_type: type of event to send
2595 * @gfpflags: GFP flags for allocation
2596 *
2597 * Assert scsi device event asynchronously, given an event type.
2598 */
2599void sdev_evt_send_simple(struct scsi_device *sdev,
2600 enum scsi_device_event evt_type, gfp_t gfpflags)
2601{
2602 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2603 if (!evt) {
2604 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2605 evt_type);
2606 return;
2607 }
2608
2609 sdev_evt_send(sdev, evt);
2610}
2611EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2612
2613/**
2614 * scsi_device_quiesce - Block all commands except power management.
2615 * @sdev: scsi device to quiesce.
2616 *
2617 * This works by trying to transition to the SDEV_QUIESCE state
2618 * (which must be a legal transition). When the device is in this
2619 * state, only power management requests will be accepted, all others will
2620 * be deferred.
2621 *
2622 * Must be called with user context, may sleep.
2623 *
2624 * Returns zero if unsuccessful or an error if not.
2625 */
2626int
2627scsi_device_quiesce(struct scsi_device *sdev)
2628{
2629 struct request_queue *q = sdev->request_queue;
2630 int err;
2631
2632 /*
2633 * It is allowed to call scsi_device_quiesce() multiple times from
2634 * the same context but concurrent scsi_device_quiesce() calls are
2635 * not allowed.
2636 */
2637 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2638
2639 if (sdev->quiesced_by == current)
2640 return 0;
2641
2642 blk_set_pm_only(q);
2643
2644 blk_mq_freeze_queue(q);
2645 /*
2646 * Ensure that the effect of blk_set_pm_only() will be visible
2647 * for percpu_ref_tryget() callers that occur after the queue
2648 * unfreeze even if the queue was already frozen before this function
2649 * was called. See also https://lwn.net/Articles/573497/.
2650 */
2651 synchronize_rcu();
2652 blk_mq_unfreeze_queue(q);
2653
2654 mutex_lock(&sdev->state_mutex);
2655 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2656 if (err == 0)
2657 sdev->quiesced_by = current;
2658 else
2659 blk_clear_pm_only(q);
2660 mutex_unlock(lock: &sdev->state_mutex);
2661
2662 return err;
2663}
2664EXPORT_SYMBOL(scsi_device_quiesce);
2665
2666/**
2667 * scsi_device_resume - Restart user issued commands to a quiesced device.
2668 * @sdev: scsi device to resume.
2669 *
2670 * Moves the device from quiesced back to running and restarts the
2671 * queues.
2672 *
2673 * Must be called with user context, may sleep.
2674 */
2675void scsi_device_resume(struct scsi_device *sdev)
2676{
2677 /* check if the device state was mutated prior to resume, and if
2678 * so assume the state is being managed elsewhere (for example
2679 * device deleted during suspend)
2680 */
2681 mutex_lock(&sdev->state_mutex);
2682 if (sdev->sdev_state == SDEV_QUIESCE)
2683 scsi_device_set_state(sdev, SDEV_RUNNING);
2684 if (sdev->quiesced_by) {
2685 sdev->quiesced_by = NULL;
2686 blk_clear_pm_only(q: sdev->request_queue);
2687 }
2688 mutex_unlock(lock: &sdev->state_mutex);
2689}
2690EXPORT_SYMBOL(scsi_device_resume);
2691
2692static void
2693device_quiesce_fn(struct scsi_device *sdev, void *data)
2694{
2695 scsi_device_quiesce(sdev);
2696}
2697
2698void
2699scsi_target_quiesce(struct scsi_target *starget)
2700{
2701 starget_for_each_device(starget, NULL, fn: device_quiesce_fn);
2702}
2703EXPORT_SYMBOL(scsi_target_quiesce);
2704
2705static void
2706device_resume_fn(struct scsi_device *sdev, void *data)
2707{
2708 scsi_device_resume(sdev);
2709}
2710
2711void
2712scsi_target_resume(struct scsi_target *starget)
2713{
2714 starget_for_each_device(starget, NULL, fn: device_resume_fn);
2715}
2716EXPORT_SYMBOL(scsi_target_resume);
2717
2718static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2719{
2720 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2721 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2722
2723 return 0;
2724}
2725
2726void scsi_start_queue(struct scsi_device *sdev)
2727{
2728 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2729 blk_mq_unquiesce_queue(q: sdev->request_queue);
2730}
2731
2732static void scsi_stop_queue(struct scsi_device *sdev)
2733{
2734 /*
2735 * The atomic variable of ->queue_stopped covers that
2736 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2737 *
2738 * The caller needs to wait until quiesce is done.
2739 */
2740 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2741 blk_mq_quiesce_queue_nowait(q: sdev->request_queue);
2742}
2743
2744/**
2745 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2746 * @sdev: device to block
2747 *
2748 * Pause SCSI command processing on the specified device. Does not sleep.
2749 *
2750 * Returns zero if successful or a negative error code upon failure.
2751 *
2752 * Notes:
2753 * This routine transitions the device to the SDEV_BLOCK state (which must be
2754 * a legal transition). When the device is in this state, command processing
2755 * is paused until the device leaves the SDEV_BLOCK state. See also
2756 * scsi_internal_device_unblock_nowait().
2757 */
2758int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2759{
2760 int ret = __scsi_internal_device_block_nowait(sdev);
2761
2762 /*
2763 * The device has transitioned to SDEV_BLOCK. Stop the
2764 * block layer from calling the midlayer with this device's
2765 * request queue.
2766 */
2767 if (!ret)
2768 scsi_stop_queue(sdev);
2769 return ret;
2770}
2771EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2772
2773/**
2774 * scsi_device_block - try to transition to the SDEV_BLOCK state
2775 * @sdev: device to block
2776 * @data: dummy argument, ignored
2777 *
2778 * Pause SCSI command processing on the specified device. Callers must wait
2779 * until all ongoing scsi_queue_rq() calls have finished after this function
2780 * returns.
2781 *
2782 * Note:
2783 * This routine transitions the device to the SDEV_BLOCK state (which must be
2784 * a legal transition). When the device is in this state, command processing
2785 * is paused until the device leaves the SDEV_BLOCK state. See also
2786 * scsi_internal_device_unblock().
2787 */
2788static void scsi_device_block(struct scsi_device *sdev, void *data)
2789{
2790 int err;
2791 enum scsi_device_state state;
2792
2793 mutex_lock(&sdev->state_mutex);
2794 err = __scsi_internal_device_block_nowait(sdev);
2795 state = sdev->sdev_state;
2796 if (err == 0)
2797 /*
2798 * scsi_stop_queue() must be called with the state_mutex
2799 * held. Otherwise a simultaneous scsi_start_queue() call
2800 * might unquiesce the queue before we quiesce it.
2801 */
2802 scsi_stop_queue(sdev);
2803
2804 mutex_unlock(lock: &sdev->state_mutex);
2805
2806 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2807 __func__, dev_name(&sdev->sdev_gendev), state);
2808}
2809
2810/**
2811 * scsi_internal_device_unblock_nowait - resume a device after a block request
2812 * @sdev: device to resume
2813 * @new_state: state to set the device to after unblocking
2814 *
2815 * Restart the device queue for a previously suspended SCSI device. Does not
2816 * sleep.
2817 *
2818 * Returns zero if successful or a negative error code upon failure.
2819 *
2820 * Notes:
2821 * This routine transitions the device to the SDEV_RUNNING state or to one of
2822 * the offline states (which must be a legal transition) allowing the midlayer
2823 * to goose the queue for this device.
2824 */
2825int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2826 enum scsi_device_state new_state)
2827{
2828 switch (new_state) {
2829 case SDEV_RUNNING:
2830 case SDEV_TRANSPORT_OFFLINE:
2831 break;
2832 default:
2833 return -EINVAL;
2834 }
2835
2836 /*
2837 * Try to transition the scsi device to SDEV_RUNNING or one of the
2838 * offlined states and goose the device queue if successful.
2839 */
2840 switch (sdev->sdev_state) {
2841 case SDEV_BLOCK:
2842 case SDEV_TRANSPORT_OFFLINE:
2843 sdev->sdev_state = new_state;
2844 break;
2845 case SDEV_CREATED_BLOCK:
2846 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2847 new_state == SDEV_OFFLINE)
2848 sdev->sdev_state = new_state;
2849 else
2850 sdev->sdev_state = SDEV_CREATED;
2851 break;
2852 case SDEV_CANCEL:
2853 case SDEV_OFFLINE:
2854 break;
2855 default:
2856 return -EINVAL;
2857 }
2858 scsi_start_queue(sdev);
2859
2860 return 0;
2861}
2862EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2863
2864/**
2865 * scsi_internal_device_unblock - resume a device after a block request
2866 * @sdev: device to resume
2867 * @new_state: state to set the device to after unblocking
2868 *
2869 * Restart the device queue for a previously suspended SCSI device. May sleep.
2870 *
2871 * Returns zero if successful or a negative error code upon failure.
2872 *
2873 * Notes:
2874 * This routine transitions the device to the SDEV_RUNNING state or to one of
2875 * the offline states (which must be a legal transition) allowing the midlayer
2876 * to goose the queue for this device.
2877 */
2878static int scsi_internal_device_unblock(struct scsi_device *sdev,
2879 enum scsi_device_state new_state)
2880{
2881 int ret;
2882
2883 mutex_lock(&sdev->state_mutex);
2884 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2885 mutex_unlock(lock: &sdev->state_mutex);
2886
2887 return ret;
2888}
2889
2890static int
2891target_block(struct device *dev, void *data)
2892{
2893 if (scsi_is_target_device(dev))
2894 starget_for_each_device(to_scsi_target(dev), NULL,
2895 fn: scsi_device_block);
2896 return 0;
2897}
2898
2899/**
2900 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2901 * @dev: a parent device of one or more scsi_target devices
2902 * @shost: the Scsi_Host to which this device belongs
2903 *
2904 * Iterate over all children of @dev, which should be scsi_target devices,
2905 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2906 * ongoing scsi_queue_rq() calls to finish. May sleep.
2907 *
2908 * Note:
2909 * @dev must not itself be a scsi_target device.
2910 */
2911void
2912scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2913{
2914 WARN_ON_ONCE(scsi_is_target_device(dev));
2915 device_for_each_child(dev, NULL, fn: target_block);
2916 blk_mq_wait_quiesce_done(set: &shost->tag_set);
2917}
2918EXPORT_SYMBOL_GPL(scsi_block_targets);
2919
2920static void
2921device_unblock(struct scsi_device *sdev, void *data)
2922{
2923 scsi_internal_device_unblock(sdev, new_state: *(enum scsi_device_state *)data);
2924}
2925
2926static int
2927target_unblock(struct device *dev, void *data)
2928{
2929 if (scsi_is_target_device(dev))
2930 starget_for_each_device(to_scsi_target(dev), data,
2931 fn: device_unblock);
2932 return 0;
2933}
2934
2935void
2936scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2937{
2938 if (scsi_is_target_device(dev))
2939 starget_for_each_device(to_scsi_target(dev), &new_state,
2940 fn: device_unblock);
2941 else
2942 device_for_each_child(dev, data: &new_state, fn: target_unblock);
2943}
2944EXPORT_SYMBOL_GPL(scsi_target_unblock);
2945
2946/**
2947 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2948 * @shost: device to block
2949 *
2950 * Pause SCSI command processing for all logical units associated with the SCSI
2951 * host and wait until pending scsi_queue_rq() calls have finished.
2952 *
2953 * Returns zero if successful or a negative error code upon failure.
2954 */
2955int
2956scsi_host_block(struct Scsi_Host *shost)
2957{
2958 struct scsi_device *sdev;
2959 int ret;
2960
2961 /*
2962 * Call scsi_internal_device_block_nowait so we can avoid
2963 * calling synchronize_rcu() for each LUN.
2964 */
2965 shost_for_each_device(sdev, shost) {
2966 mutex_lock(&sdev->state_mutex);
2967 ret = scsi_internal_device_block_nowait(sdev);
2968 mutex_unlock(lock: &sdev->state_mutex);
2969 if (ret) {
2970 scsi_device_put(sdev);
2971 return ret;
2972 }
2973 }
2974
2975 /* Wait for ongoing scsi_queue_rq() calls to finish. */
2976 blk_mq_wait_quiesce_done(set: &shost->tag_set);
2977
2978 return 0;
2979}
2980EXPORT_SYMBOL_GPL(scsi_host_block);
2981
2982int
2983scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2984{
2985 struct scsi_device *sdev;
2986 int ret = 0;
2987
2988 shost_for_each_device(sdev, shost) {
2989 ret = scsi_internal_device_unblock(sdev, new_state);
2990 if (ret) {
2991 scsi_device_put(sdev);
2992 break;
2993 }
2994 }
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(scsi_host_unblock);
2998
2999/**
3000 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3001 * @sgl: scatter-gather list
3002 * @sg_count: number of segments in sg
3003 * @offset: offset in bytes into sg, on return offset into the mapped area
3004 * @len: bytes to map, on return number of bytes mapped
3005 *
3006 * Returns virtual address of the start of the mapped page
3007 */
3008void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3009 size_t *offset, size_t *len)
3010{
3011 int i;
3012 size_t sg_len = 0, len_complete = 0;
3013 struct scatterlist *sg;
3014 struct page *page;
3015
3016 WARN_ON(!irqs_disabled());
3017
3018 for_each_sg(sgl, sg, sg_count, i) {
3019 len_complete = sg_len; /* Complete sg-entries */
3020 sg_len += sg->length;
3021 if (sg_len > *offset)
3022 break;
3023 }
3024
3025 if (unlikely(i == sg_count)) {
3026 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3027 "elements %d\n",
3028 __func__, sg_len, *offset, sg_count);
3029 WARN_ON(1);
3030 return NULL;
3031 }
3032
3033 /* Offset starting from the beginning of first page in this sg-entry */
3034 *offset = *offset - len_complete + sg->offset;
3035
3036 /* Assumption: contiguous pages can be accessed as "page + i" */
3037 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3038 *offset &= ~PAGE_MASK;
3039
3040 /* Bytes in this sg-entry from *offset to the end of the page */
3041 sg_len = PAGE_SIZE - *offset;
3042 if (*len > sg_len)
3043 *len = sg_len;
3044
3045 return kmap_atomic(page);
3046}
3047EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3048
3049/**
3050 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3051 * @virt: virtual address to be unmapped
3052 */
3053void scsi_kunmap_atomic_sg(void *virt)
3054{
3055 kunmap_atomic(virt);
3056}
3057EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3058
3059void sdev_disable_disk_events(struct scsi_device *sdev)
3060{
3061 atomic_inc(v: &sdev->disk_events_disable_depth);
3062}
3063EXPORT_SYMBOL(sdev_disable_disk_events);
3064
3065void sdev_enable_disk_events(struct scsi_device *sdev)
3066{
3067 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3068 return;
3069 atomic_dec(v: &sdev->disk_events_disable_depth);
3070}
3071EXPORT_SYMBOL(sdev_enable_disk_events);
3072
3073static unsigned char designator_prio(const unsigned char *d)
3074{
3075 if (d[1] & 0x30)
3076 /* not associated with LUN */
3077 return 0;
3078
3079 if (d[3] == 0)
3080 /* invalid length */
3081 return 0;
3082
3083 /*
3084 * Order of preference for lun descriptor:
3085 * - SCSI name string
3086 * - NAA IEEE Registered Extended
3087 * - EUI-64 based 16-byte
3088 * - EUI-64 based 12-byte
3089 * - NAA IEEE Registered
3090 * - NAA IEEE Extended
3091 * - EUI-64 based 8-byte
3092 * - SCSI name string (truncated)
3093 * - T10 Vendor ID
3094 * as longer descriptors reduce the likelyhood
3095 * of identification clashes.
3096 */
3097
3098 switch (d[1] & 0xf) {
3099 case 8:
3100 /* SCSI name string, variable-length UTF-8 */
3101 return 9;
3102 case 3:
3103 switch (d[4] >> 4) {
3104 case 6:
3105 /* NAA registered extended */
3106 return 8;
3107 case 5:
3108 /* NAA registered */
3109 return 5;
3110 case 4:
3111 /* NAA extended */
3112 return 4;
3113 case 3:
3114 /* NAA locally assigned */
3115 return 1;
3116 default:
3117 break;
3118 }
3119 break;
3120 case 2:
3121 switch (d[3]) {
3122 case 16:
3123 /* EUI64-based, 16 byte */
3124 return 7;
3125 case 12:
3126 /* EUI64-based, 12 byte */
3127 return 6;
3128 case 8:
3129 /* EUI64-based, 8 byte */
3130 return 3;
3131 default:
3132 break;
3133 }
3134 break;
3135 case 1:
3136 /* T10 vendor ID */
3137 return 1;
3138 default:
3139 break;
3140 }
3141
3142 return 0;
3143}
3144
3145/**
3146 * scsi_vpd_lun_id - return a unique device identification
3147 * @sdev: SCSI device
3148 * @id: buffer for the identification
3149 * @id_len: length of the buffer
3150 *
3151 * Copies a unique device identification into @id based
3152 * on the information in the VPD page 0x83 of the device.
3153 * The string will be formatted as a SCSI name string.
3154 *
3155 * Returns the length of the identification or error on failure.
3156 * If the identifier is longer than the supplied buffer the actual
3157 * identifier length is returned and the buffer is not zero-padded.
3158 */
3159int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3160{
3161 u8 cur_id_prio = 0;
3162 u8 cur_id_size = 0;
3163 const unsigned char *d, *cur_id_str;
3164 const struct scsi_vpd *vpd_pg83;
3165 int id_size = -EINVAL;
3166
3167 rcu_read_lock();
3168 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3169 if (!vpd_pg83) {
3170 rcu_read_unlock();
3171 return -ENXIO;
3172 }
3173
3174 /* The id string must be at least 20 bytes + terminating NULL byte */
3175 if (id_len < 21) {
3176 rcu_read_unlock();
3177 return -EINVAL;
3178 }
3179
3180 memset(id, 0, id_len);
3181 for (d = vpd_pg83->data + 4;
3182 d < vpd_pg83->data + vpd_pg83->len;
3183 d += d[3] + 4) {
3184 u8 prio = designator_prio(d);
3185
3186 if (prio == 0 || cur_id_prio > prio)
3187 continue;
3188
3189 switch (d[1] & 0xf) {
3190 case 0x1:
3191 /* T10 Vendor ID */
3192 if (cur_id_size > d[3])
3193 break;
3194 cur_id_prio = prio;
3195 cur_id_size = d[3];
3196 if (cur_id_size + 4 > id_len)
3197 cur_id_size = id_len - 4;
3198 cur_id_str = d + 4;
3199 id_size = snprintf(buf: id, size: id_len, fmt: "t10.%*pE",
3200 cur_id_size, cur_id_str);
3201 break;
3202 case 0x2:
3203 /* EUI-64 */
3204 cur_id_prio = prio;
3205 cur_id_size = d[3];
3206 cur_id_str = d + 4;
3207 switch (cur_id_size) {
3208 case 8:
3209 id_size = snprintf(buf: id, size: id_len,
3210 fmt: "eui.%8phN",
3211 cur_id_str);
3212 break;
3213 case 12:
3214 id_size = snprintf(buf: id, size: id_len,
3215 fmt: "eui.%12phN",
3216 cur_id_str);
3217 break;
3218 case 16:
3219 id_size = snprintf(buf: id, size: id_len,
3220 fmt: "eui.%16phN",
3221 cur_id_str);
3222 break;
3223 default:
3224 break;
3225 }
3226 break;
3227 case 0x3:
3228 /* NAA */
3229 cur_id_prio = prio;
3230 cur_id_size = d[3];
3231 cur_id_str = d + 4;
3232 switch (cur_id_size) {
3233 case 8:
3234 id_size = snprintf(buf: id, size: id_len,
3235 fmt: "naa.%8phN",
3236 cur_id_str);
3237 break;
3238 case 16:
3239 id_size = snprintf(buf: id, size: id_len,
3240 fmt: "naa.%16phN",
3241 cur_id_str);
3242 break;
3243 default:
3244 break;
3245 }
3246 break;
3247 case 0x8:
3248 /* SCSI name string */
3249 if (cur_id_size > d[3])
3250 break;
3251 /* Prefer others for truncated descriptor */
3252 if (d[3] > id_len) {
3253 prio = 2;
3254 if (cur_id_prio > prio)
3255 break;
3256 }
3257 cur_id_prio = prio;
3258 cur_id_size = id_size = d[3];
3259 cur_id_str = d + 4;
3260 if (cur_id_size >= id_len)
3261 cur_id_size = id_len - 1;
3262 memcpy(id, cur_id_str, cur_id_size);
3263 break;
3264 default:
3265 break;
3266 }
3267 }
3268 rcu_read_unlock();
3269
3270 return id_size;
3271}
3272EXPORT_SYMBOL(scsi_vpd_lun_id);
3273
3274/*
3275 * scsi_vpd_tpg_id - return a target port group identifier
3276 * @sdev: SCSI device
3277 *
3278 * Returns the Target Port Group identifier from the information
3279 * froom VPD page 0x83 of the device.
3280 *
3281 * Returns the identifier or error on failure.
3282 */
3283int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3284{
3285 const unsigned char *d;
3286 const struct scsi_vpd *vpd_pg83;
3287 int group_id = -EAGAIN, rel_port = -1;
3288
3289 rcu_read_lock();
3290 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3291 if (!vpd_pg83) {
3292 rcu_read_unlock();
3293 return -ENXIO;
3294 }
3295
3296 d = vpd_pg83->data + 4;
3297 while (d < vpd_pg83->data + vpd_pg83->len) {
3298 switch (d[1] & 0xf) {
3299 case 0x4:
3300 /* Relative target port */
3301 rel_port = get_unaligned_be16(p: &d[6]);
3302 break;
3303 case 0x5:
3304 /* Target port group */
3305 group_id = get_unaligned_be16(p: &d[6]);
3306 break;
3307 default:
3308 break;
3309 }
3310 d += d[3] + 4;
3311 }
3312 rcu_read_unlock();
3313
3314 if (group_id >= 0 && rel_id && rel_port != -1)
3315 *rel_id = rel_port;
3316
3317 return group_id;
3318}
3319EXPORT_SYMBOL(scsi_vpd_tpg_id);
3320
3321/**
3322 * scsi_build_sense - build sense data for a command
3323 * @scmd: scsi command for which the sense should be formatted
3324 * @desc: Sense format (non-zero == descriptor format,
3325 * 0 == fixed format)
3326 * @key: Sense key
3327 * @asc: Additional sense code
3328 * @ascq: Additional sense code qualifier
3329 *
3330 **/
3331void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3332{
3333 scsi_build_sense_buffer(desc, buf: scmd->sense_buffer, key, asc, ascq);
3334 scmd->result = SAM_STAT_CHECK_CONDITION;
3335}
3336EXPORT_SYMBOL_GPL(scsi_build_sense);
3337

source code of linux/drivers/scsi/scsi_lib.c