1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/hdreg.h>
42#include <linux/errno.h>
43#include <linux/idr.h>
44#include <linux/interrupt.h>
45#include <linux/init.h>
46#include <linux/blkdev.h>
47#include <linux/blkpg.h>
48#include <linux/blk-pm.h>
49#include <linux/delay.h>
50#include <linux/major.h>
51#include <linux/mutex.h>
52#include <linux/string_helpers.h>
53#include <linux/slab.h>
54#include <linux/sed-opal.h>
55#include <linux/pm_runtime.h>
56#include <linux/pr.h>
57#include <linux/t10-pi.h>
58#include <linux/uaccess.h>
59#include <asm/unaligned.h>
60
61#include <scsi/scsi.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_dbg.h>
64#include <scsi/scsi_device.h>
65#include <scsi/scsi_driver.h>
66#include <scsi/scsi_eh.h>
67#include <scsi/scsi_host.h>
68#include <scsi/scsi_ioctl.h>
69#include <scsi/scsicam.h>
70#include <scsi/scsi_common.h>
71
72#include "sd.h"
73#include "scsi_priv.h"
74#include "scsi_logging.h"
75
76MODULE_AUTHOR("Eric Youngdale");
77MODULE_DESCRIPTION("SCSI disk (sd) driver");
78MODULE_LICENSE("GPL");
79
80MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101#define SD_MINORS 16
102
103static void sd_config_discard(struct scsi_disk *, unsigned int);
104static void sd_config_write_same(struct scsi_disk *);
105static int sd_revalidate_disk(struct gendisk *);
106static void sd_unlock_native_capacity(struct gendisk *disk);
107static void sd_shutdown(struct device *);
108static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109static void scsi_disk_release(struct device *cdev);
110
111static DEFINE_IDA(sd_index_ida);
112
113static mempool_t *sd_page_pool;
114static struct lock_class_key sd_bio_compl_lkclass;
115
116static const char *sd_cache_types[] = {
117 "write through", "none", "write back",
118 "write back, no read (daft)"
119};
120
121static void sd_set_flush_flag(struct scsi_disk *sdkp)
122{
123 bool wc = false, fua = false;
124
125 if (sdkp->WCE) {
126 wc = true;
127 if (sdkp->DPOFUA)
128 fua = true;
129 }
130
131 blk_queue_write_cache(q: sdkp->disk->queue, enabled: wc, fua);
132}
133
134static ssize_t
135cache_type_store(struct device *dev, struct device_attribute *attr,
136 const char *buf, size_t count)
137{
138 int ct, rcd, wce, sp;
139 struct scsi_disk *sdkp = to_scsi_disk(dev);
140 struct scsi_device *sdp = sdkp->device;
141 char buffer[64];
142 char *buffer_data;
143 struct scsi_mode_data data;
144 struct scsi_sense_hdr sshdr;
145 static const char temp[] = "temporary ";
146 int len, ret;
147
148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 /* no cache control on RBC devices; theoretically they
150 * can do it, but there's probably so many exceptions
151 * it's not worth the risk */
152 return -EINVAL;
153
154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 buf += sizeof(temp) - 1;
156 sdkp->cache_override = 1;
157 } else {
158 sdkp->cache_override = 0;
159 }
160
161 ct = sysfs_match_string(sd_cache_types, buf);
162 if (ct < 0)
163 return -EINVAL;
164
165 rcd = ct & 0x01 ? 1 : 0;
166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168 if (sdkp->cache_override) {
169 sdkp->WCE = wce;
170 sdkp->RCD = rcd;
171 sd_set_flush_flag(sdkp);
172 return count;
173 }
174
175 if (scsi_mode_sense(sdev: sdp, dbd: 0x08, modepage: 8, subpage: 0, buffer, len: sizeof(buffer), SD_TIMEOUT,
176 retries: sdkp->max_retries, data: &data, NULL))
177 return -EINVAL;
178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 data.block_descriptor_length);
180 buffer_data = buffer + data.header_length +
181 data.block_descriptor_length;
182 buffer_data[2] &= ~0x05;
183 buffer_data[2] |= wce << 2 | rcd;
184 sp = buffer_data[0] & 0x80 ? 1 : 0;
185 buffer_data[0] &= ~0x80;
186
187 /*
188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 * received mode parameter buffer before doing MODE SELECT.
190 */
191 data.device_specific = 0;
192
193 ret = scsi_mode_select(sdev: sdp, pf: 1, sp, buffer: buffer_data, len, SD_TIMEOUT,
194 retries: sdkp->max_retries, data: &data, &sshdr);
195 if (ret) {
196 if (ret > 0 && scsi_sense_valid(sshdr: &sshdr))
197 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
198 return -EINVAL;
199 }
200 sd_revalidate_disk(sdkp->disk);
201 return count;
202}
203
204static ssize_t
205manage_start_stop_show(struct device *dev,
206 struct device_attribute *attr, char *buf)
207{
208 struct scsi_disk *sdkp = to_scsi_disk(dev);
209 struct scsi_device *sdp = sdkp->device;
210
211 return sysfs_emit(buf, fmt: "%u\n",
212 sdp->manage_system_start_stop &&
213 sdp->manage_runtime_start_stop &&
214 sdp->manage_shutdown);
215}
216static DEVICE_ATTR_RO(manage_start_stop);
217
218static ssize_t
219manage_system_start_stop_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
221{
222 struct scsi_disk *sdkp = to_scsi_disk(dev);
223 struct scsi_device *sdp = sdkp->device;
224
225 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_system_start_stop);
226}
227
228static ssize_t
229manage_system_start_stop_store(struct device *dev,
230 struct device_attribute *attr,
231 const char *buf, size_t count)
232{
233 struct scsi_disk *sdkp = to_scsi_disk(dev);
234 struct scsi_device *sdp = sdkp->device;
235 bool v;
236
237 if (!capable(CAP_SYS_ADMIN))
238 return -EACCES;
239
240 if (kstrtobool(s: buf, res: &v))
241 return -EINVAL;
242
243 sdp->manage_system_start_stop = v;
244
245 return count;
246}
247static DEVICE_ATTR_RW(manage_system_start_stop);
248
249static ssize_t
250manage_runtime_start_stop_show(struct device *dev,
251 struct device_attribute *attr, char *buf)
252{
253 struct scsi_disk *sdkp = to_scsi_disk(dev);
254 struct scsi_device *sdp = sdkp->device;
255
256 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_runtime_start_stop);
257}
258
259static ssize_t
260manage_runtime_start_stop_store(struct device *dev,
261 struct device_attribute *attr,
262 const char *buf, size_t count)
263{
264 struct scsi_disk *sdkp = to_scsi_disk(dev);
265 struct scsi_device *sdp = sdkp->device;
266 bool v;
267
268 if (!capable(CAP_SYS_ADMIN))
269 return -EACCES;
270
271 if (kstrtobool(s: buf, res: &v))
272 return -EINVAL;
273
274 sdp->manage_runtime_start_stop = v;
275
276 return count;
277}
278static DEVICE_ATTR_RW(manage_runtime_start_stop);
279
280static ssize_t manage_shutdown_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct scsi_disk *sdkp = to_scsi_disk(dev);
284 struct scsi_device *sdp = sdkp->device;
285
286 return sysfs_emit(buf, fmt: "%u\n", sdp->manage_shutdown);
287}
288
289static ssize_t manage_shutdown_store(struct device *dev,
290 struct device_attribute *attr,
291 const char *buf, size_t count)
292{
293 struct scsi_disk *sdkp = to_scsi_disk(dev);
294 struct scsi_device *sdp = sdkp->device;
295 bool v;
296
297 if (!capable(CAP_SYS_ADMIN))
298 return -EACCES;
299
300 if (kstrtobool(s: buf, res: &v))
301 return -EINVAL;
302
303 sdp->manage_shutdown = v;
304
305 return count;
306}
307static DEVICE_ATTR_RW(manage_shutdown);
308
309static ssize_t
310allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
311{
312 struct scsi_disk *sdkp = to_scsi_disk(dev);
313
314 return sprintf(buf, fmt: "%u\n", sdkp->device->allow_restart);
315}
316
317static ssize_t
318allow_restart_store(struct device *dev, struct device_attribute *attr,
319 const char *buf, size_t count)
320{
321 bool v;
322 struct scsi_disk *sdkp = to_scsi_disk(dev);
323 struct scsi_device *sdp = sdkp->device;
324
325 if (!capable(CAP_SYS_ADMIN))
326 return -EACCES;
327
328 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
329 return -EINVAL;
330
331 if (kstrtobool(s: buf, res: &v))
332 return -EINVAL;
333
334 sdp->allow_restart = v;
335
336 return count;
337}
338static DEVICE_ATTR_RW(allow_restart);
339
340static ssize_t
341cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
342{
343 struct scsi_disk *sdkp = to_scsi_disk(dev);
344 int ct = sdkp->RCD + 2*sdkp->WCE;
345
346 return sprintf(buf, fmt: "%s\n", sd_cache_types[ct]);
347}
348static DEVICE_ATTR_RW(cache_type);
349
350static ssize_t
351FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
352{
353 struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355 return sprintf(buf, fmt: "%u\n", sdkp->DPOFUA);
356}
357static DEVICE_ATTR_RO(FUA);
358
359static ssize_t
360protection_type_show(struct device *dev, struct device_attribute *attr,
361 char *buf)
362{
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365 return sprintf(buf, fmt: "%u\n", sdkp->protection_type);
366}
367
368static ssize_t
369protection_type_store(struct device *dev, struct device_attribute *attr,
370 const char *buf, size_t count)
371{
372 struct scsi_disk *sdkp = to_scsi_disk(dev);
373 unsigned int val;
374 int err;
375
376 if (!capable(CAP_SYS_ADMIN))
377 return -EACCES;
378
379 err = kstrtouint(s: buf, base: 10, res: &val);
380
381 if (err)
382 return err;
383
384 if (val <= T10_PI_TYPE3_PROTECTION)
385 sdkp->protection_type = val;
386
387 return count;
388}
389static DEVICE_ATTR_RW(protection_type);
390
391static ssize_t
392protection_mode_show(struct device *dev, struct device_attribute *attr,
393 char *buf)
394{
395 struct scsi_disk *sdkp = to_scsi_disk(dev);
396 struct scsi_device *sdp = sdkp->device;
397 unsigned int dif, dix;
398
399 dif = scsi_host_dif_capable(shost: sdp->host, target_type: sdkp->protection_type);
400 dix = scsi_host_dix_capable(shost: sdp->host, target_type: sdkp->protection_type);
401
402 if (!dix && scsi_host_dix_capable(shost: sdp->host, target_type: T10_PI_TYPE0_PROTECTION)) {
403 dif = 0;
404 dix = 1;
405 }
406
407 if (!dif && !dix)
408 return sprintf(buf, fmt: "none\n");
409
410 return sprintf(buf, fmt: "%s%u\n", dix ? "dix" : "dif", dif);
411}
412static DEVICE_ATTR_RO(protection_mode);
413
414static ssize_t
415app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
416{
417 struct scsi_disk *sdkp = to_scsi_disk(dev);
418
419 return sprintf(buf, fmt: "%u\n", sdkp->ATO);
420}
421static DEVICE_ATTR_RO(app_tag_own);
422
423static ssize_t
424thin_provisioning_show(struct device *dev, struct device_attribute *attr,
425 char *buf)
426{
427 struct scsi_disk *sdkp = to_scsi_disk(dev);
428
429 return sprintf(buf, fmt: "%u\n", sdkp->lbpme);
430}
431static DEVICE_ATTR_RO(thin_provisioning);
432
433/* sysfs_match_string() requires dense arrays */
434static const char *lbp_mode[] = {
435 [SD_LBP_FULL] = "full",
436 [SD_LBP_UNMAP] = "unmap",
437 [SD_LBP_WS16] = "writesame_16",
438 [SD_LBP_WS10] = "writesame_10",
439 [SD_LBP_ZERO] = "writesame_zero",
440 [SD_LBP_DISABLE] = "disabled",
441};
442
443static ssize_t
444provisioning_mode_show(struct device *dev, struct device_attribute *attr,
445 char *buf)
446{
447 struct scsi_disk *sdkp = to_scsi_disk(dev);
448
449 return sprintf(buf, fmt: "%s\n", lbp_mode[sdkp->provisioning_mode]);
450}
451
452static ssize_t
453provisioning_mode_store(struct device *dev, struct device_attribute *attr,
454 const char *buf, size_t count)
455{
456 struct scsi_disk *sdkp = to_scsi_disk(dev);
457 struct scsi_device *sdp = sdkp->device;
458 int mode;
459
460 if (!capable(CAP_SYS_ADMIN))
461 return -EACCES;
462
463 if (sd_is_zoned(sdkp)) {
464 sd_config_discard(sdkp, SD_LBP_DISABLE);
465 return count;
466 }
467
468 if (sdp->type != TYPE_DISK)
469 return -EINVAL;
470
471 mode = sysfs_match_string(lbp_mode, buf);
472 if (mode < 0)
473 return -EINVAL;
474
475 sd_config_discard(sdkp, mode);
476
477 return count;
478}
479static DEVICE_ATTR_RW(provisioning_mode);
480
481/* sysfs_match_string() requires dense arrays */
482static const char *zeroing_mode[] = {
483 [SD_ZERO_WRITE] = "write",
484 [SD_ZERO_WS] = "writesame",
485 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
486 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
487};
488
489static ssize_t
490zeroing_mode_show(struct device *dev, struct device_attribute *attr,
491 char *buf)
492{
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495 return sprintf(buf, fmt: "%s\n", zeroing_mode[sdkp->zeroing_mode]);
496}
497
498static ssize_t
499zeroing_mode_store(struct device *dev, struct device_attribute *attr,
500 const char *buf, size_t count)
501{
502 struct scsi_disk *sdkp = to_scsi_disk(dev);
503 int mode;
504
505 if (!capable(CAP_SYS_ADMIN))
506 return -EACCES;
507
508 mode = sysfs_match_string(zeroing_mode, buf);
509 if (mode < 0)
510 return -EINVAL;
511
512 sdkp->zeroing_mode = mode;
513
514 return count;
515}
516static DEVICE_ATTR_RW(zeroing_mode);
517
518static ssize_t
519max_medium_access_timeouts_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
521{
522 struct scsi_disk *sdkp = to_scsi_disk(dev);
523
524 return sprintf(buf, fmt: "%u\n", sdkp->max_medium_access_timeouts);
525}
526
527static ssize_t
528max_medium_access_timeouts_store(struct device *dev,
529 struct device_attribute *attr, const char *buf,
530 size_t count)
531{
532 struct scsi_disk *sdkp = to_scsi_disk(dev);
533 int err;
534
535 if (!capable(CAP_SYS_ADMIN))
536 return -EACCES;
537
538 err = kstrtouint(s: buf, base: 10, res: &sdkp->max_medium_access_timeouts);
539
540 return err ? err : count;
541}
542static DEVICE_ATTR_RW(max_medium_access_timeouts);
543
544static ssize_t
545max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
546 char *buf)
547{
548 struct scsi_disk *sdkp = to_scsi_disk(dev);
549
550 return sprintf(buf, fmt: "%u\n", sdkp->max_ws_blocks);
551}
552
553static ssize_t
554max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
555 const char *buf, size_t count)
556{
557 struct scsi_disk *sdkp = to_scsi_disk(dev);
558 struct scsi_device *sdp = sdkp->device;
559 unsigned long max;
560 int err;
561
562 if (!capable(CAP_SYS_ADMIN))
563 return -EACCES;
564
565 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
566 return -EINVAL;
567
568 err = kstrtoul(s: buf, base: 10, res: &max);
569
570 if (err)
571 return err;
572
573 if (max == 0)
574 sdp->no_write_same = 1;
575 else if (max <= SD_MAX_WS16_BLOCKS) {
576 sdp->no_write_same = 0;
577 sdkp->max_ws_blocks = max;
578 }
579
580 sd_config_write_same(sdkp);
581
582 return count;
583}
584static DEVICE_ATTR_RW(max_write_same_blocks);
585
586static ssize_t
587zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
588{
589 struct scsi_disk *sdkp = to_scsi_disk(dev);
590
591 if (sdkp->device->type == TYPE_ZBC)
592 return sprintf(buf, fmt: "host-managed\n");
593 if (sdkp->zoned == 1)
594 return sprintf(buf, fmt: "host-aware\n");
595 if (sdkp->zoned == 2)
596 return sprintf(buf, fmt: "drive-managed\n");
597 return sprintf(buf, fmt: "none\n");
598}
599static DEVICE_ATTR_RO(zoned_cap);
600
601static ssize_t
602max_retries_store(struct device *dev, struct device_attribute *attr,
603 const char *buf, size_t count)
604{
605 struct scsi_disk *sdkp = to_scsi_disk(dev);
606 struct scsi_device *sdev = sdkp->device;
607 int retries, err;
608
609 err = kstrtoint(s: buf, base: 10, res: &retries);
610 if (err)
611 return err;
612
613 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
614 sdkp->max_retries = retries;
615 return count;
616 }
617
618 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
619 SD_MAX_RETRIES);
620 return -EINVAL;
621}
622
623static ssize_t
624max_retries_show(struct device *dev, struct device_attribute *attr,
625 char *buf)
626{
627 struct scsi_disk *sdkp = to_scsi_disk(dev);
628
629 return sprintf(buf, fmt: "%d\n", sdkp->max_retries);
630}
631
632static DEVICE_ATTR_RW(max_retries);
633
634static struct attribute *sd_disk_attrs[] = {
635 &dev_attr_cache_type.attr,
636 &dev_attr_FUA.attr,
637 &dev_attr_allow_restart.attr,
638 &dev_attr_manage_start_stop.attr,
639 &dev_attr_manage_system_start_stop.attr,
640 &dev_attr_manage_runtime_start_stop.attr,
641 &dev_attr_manage_shutdown.attr,
642 &dev_attr_protection_type.attr,
643 &dev_attr_protection_mode.attr,
644 &dev_attr_app_tag_own.attr,
645 &dev_attr_thin_provisioning.attr,
646 &dev_attr_provisioning_mode.attr,
647 &dev_attr_zeroing_mode.attr,
648 &dev_attr_max_write_same_blocks.attr,
649 &dev_attr_max_medium_access_timeouts.attr,
650 &dev_attr_zoned_cap.attr,
651 &dev_attr_max_retries.attr,
652 NULL,
653};
654ATTRIBUTE_GROUPS(sd_disk);
655
656static struct class sd_disk_class = {
657 .name = "scsi_disk",
658 .dev_release = scsi_disk_release,
659 .dev_groups = sd_disk_groups,
660};
661
662/*
663 * Don't request a new module, as that could deadlock in multipath
664 * environment.
665 */
666static void sd_default_probe(dev_t devt)
667{
668}
669
670/*
671 * Device no to disk mapping:
672 *
673 * major disc2 disc p1
674 * |............|.............|....|....| <- dev_t
675 * 31 20 19 8 7 4 3 0
676 *
677 * Inside a major, we have 16k disks, however mapped non-
678 * contiguously. The first 16 disks are for major0, the next
679 * ones with major1, ... Disk 256 is for major0 again, disk 272
680 * for major1, ...
681 * As we stay compatible with our numbering scheme, we can reuse
682 * the well-know SCSI majors 8, 65--71, 136--143.
683 */
684static int sd_major(int major_idx)
685{
686 switch (major_idx) {
687 case 0:
688 return SCSI_DISK0_MAJOR;
689 case 1 ... 7:
690 return SCSI_DISK1_MAJOR + major_idx - 1;
691 case 8 ... 15:
692 return SCSI_DISK8_MAJOR + major_idx - 8;
693 default:
694 BUG();
695 return 0; /* shut up gcc */
696 }
697}
698
699#ifdef CONFIG_BLK_SED_OPAL
700static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
701 size_t len, bool send)
702{
703 struct scsi_disk *sdkp = data;
704 struct scsi_device *sdev = sdkp->device;
705 u8 cdb[12] = { 0, };
706 const struct scsi_exec_args exec_args = {
707 .req_flags = BLK_MQ_REQ_PM,
708 };
709 int ret;
710
711 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
712 cdb[1] = secp;
713 put_unaligned_be16(val: spsp, p: &cdb[2]);
714 put_unaligned_be32(val: len, p: &cdb[6]);
715
716 ret = scsi_execute_cmd(sdev, cmd: cdb, opf: send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
717 buffer, bufflen: len, SD_TIMEOUT, retries: sdkp->max_retries,
718 args: &exec_args);
719 return ret <= 0 ? ret : -EIO;
720}
721#endif /* CONFIG_BLK_SED_OPAL */
722
723/*
724 * Look up the DIX operation based on whether the command is read or
725 * write and whether dix and dif are enabled.
726 */
727static unsigned int sd_prot_op(bool write, bool dix, bool dif)
728{
729 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
730 static const unsigned int ops[] = { /* wrt dix dif */
731 SCSI_PROT_NORMAL, /* 0 0 0 */
732 SCSI_PROT_READ_STRIP, /* 0 0 1 */
733 SCSI_PROT_READ_INSERT, /* 0 1 0 */
734 SCSI_PROT_READ_PASS, /* 0 1 1 */
735 SCSI_PROT_NORMAL, /* 1 0 0 */
736 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
737 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
738 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
739 };
740
741 return ops[write << 2 | dix << 1 | dif];
742}
743
744/*
745 * Returns a mask of the protection flags that are valid for a given DIX
746 * operation.
747 */
748static unsigned int sd_prot_flag_mask(unsigned int prot_op)
749{
750 static const unsigned int flag_mask[] = {
751 [SCSI_PROT_NORMAL] = 0,
752
753 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
754 SCSI_PROT_GUARD_CHECK |
755 SCSI_PROT_REF_CHECK |
756 SCSI_PROT_REF_INCREMENT,
757
758 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
759 SCSI_PROT_IP_CHECKSUM,
760
761 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
762 SCSI_PROT_GUARD_CHECK |
763 SCSI_PROT_REF_CHECK |
764 SCSI_PROT_REF_INCREMENT |
765 SCSI_PROT_IP_CHECKSUM,
766
767 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
768 SCSI_PROT_REF_INCREMENT,
769
770 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
771 SCSI_PROT_REF_CHECK |
772 SCSI_PROT_REF_INCREMENT |
773 SCSI_PROT_IP_CHECKSUM,
774
775 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
776 SCSI_PROT_GUARD_CHECK |
777 SCSI_PROT_REF_CHECK |
778 SCSI_PROT_REF_INCREMENT |
779 SCSI_PROT_IP_CHECKSUM,
780 };
781
782 return flag_mask[prot_op];
783}
784
785static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
786 unsigned int dix, unsigned int dif)
787{
788 struct request *rq = scsi_cmd_to_rq(scmd);
789 struct bio *bio = rq->bio;
790 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
791 unsigned int protect = 0;
792
793 if (dix) { /* DIX Type 0, 1, 2, 3 */
794 if (bio_integrity_flagged(bio, flag: BIP_IP_CHECKSUM))
795 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
796
797 if (bio_integrity_flagged(bio, flag: BIP_CTRL_NOCHECK) == false)
798 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
799 }
800
801 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
802 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
803
804 if (bio_integrity_flagged(bio, flag: BIP_CTRL_NOCHECK) == false)
805 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
806 }
807
808 if (dif) { /* DIX/DIF Type 1, 2, 3 */
809 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
810
811 if (bio_integrity_flagged(bio, flag: BIP_DISK_NOCHECK))
812 protect = 3 << 5; /* Disable target PI checking */
813 else
814 protect = 1 << 5; /* Enable target PI checking */
815 }
816
817 scsi_set_prot_op(scmd, op: prot_op);
818 scsi_set_prot_type(scmd, type: dif);
819 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
820
821 return protect;
822}
823
824static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
825{
826 struct request_queue *q = sdkp->disk->queue;
827 unsigned int logical_block_size = sdkp->device->sector_size;
828 unsigned int max_blocks = 0;
829
830 q->limits.discard_alignment =
831 sdkp->unmap_alignment * logical_block_size;
832 q->limits.discard_granularity =
833 max(sdkp->physical_block_size,
834 sdkp->unmap_granularity * logical_block_size);
835 sdkp->provisioning_mode = mode;
836
837 switch (mode) {
838
839 case SD_LBP_FULL:
840 case SD_LBP_DISABLE:
841 blk_queue_max_discard_sectors(q, max_discard_sectors: 0);
842 return;
843
844 case SD_LBP_UNMAP:
845 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
846 (u32)SD_MAX_WS16_BLOCKS);
847 break;
848
849 case SD_LBP_WS16:
850 if (sdkp->device->unmap_limit_for_ws)
851 max_blocks = sdkp->max_unmap_blocks;
852 else
853 max_blocks = sdkp->max_ws_blocks;
854
855 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
856 break;
857
858 case SD_LBP_WS10:
859 if (sdkp->device->unmap_limit_for_ws)
860 max_blocks = sdkp->max_unmap_blocks;
861 else
862 max_blocks = sdkp->max_ws_blocks;
863
864 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
865 break;
866
867 case SD_LBP_ZERO:
868 max_blocks = min_not_zero(sdkp->max_ws_blocks,
869 (u32)SD_MAX_WS10_BLOCKS);
870 break;
871 }
872
873 blk_queue_max_discard_sectors(q, max_discard_sectors: max_blocks * (logical_block_size >> 9));
874}
875
876static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
877{
878 struct page *page;
879
880 page = mempool_alloc(pool: sd_page_pool, GFP_ATOMIC);
881 if (!page)
882 return NULL;
883 clear_highpage(page);
884 bvec_set_page(bv: &rq->special_vec, page, len: data_len, offset: 0);
885 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886 return bvec_virt(bvec: &rq->special_vec);
887}
888
889static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
890{
891 struct scsi_device *sdp = cmd->device;
892 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
893 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
894 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
895 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
896 unsigned int data_len = 24;
897 char *buf;
898
899 buf = sd_set_special_bvec(rq, data_len);
900 if (!buf)
901 return BLK_STS_RESOURCE;
902
903 cmd->cmd_len = 10;
904 cmd->cmnd[0] = UNMAP;
905 cmd->cmnd[8] = 24;
906
907 put_unaligned_be16(val: 6 + 16, p: &buf[0]);
908 put_unaligned_be16(val: 16, p: &buf[2]);
909 put_unaligned_be64(val: lba, p: &buf[8]);
910 put_unaligned_be32(val: nr_blocks, p: &buf[16]);
911
912 cmd->allowed = sdkp->max_retries;
913 cmd->transfersize = data_len;
914 rq->timeout = SD_TIMEOUT;
915
916 return scsi_alloc_sgtables(cmd);
917}
918
919static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
920 bool unmap)
921{
922 struct scsi_device *sdp = cmd->device;
923 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
924 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
925 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
926 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
927 u32 data_len = sdp->sector_size;
928
929 if (!sd_set_special_bvec(rq, data_len))
930 return BLK_STS_RESOURCE;
931
932 cmd->cmd_len = 16;
933 cmd->cmnd[0] = WRITE_SAME_16;
934 if (unmap)
935 cmd->cmnd[1] = 0x8; /* UNMAP */
936 put_unaligned_be64(val: lba, p: &cmd->cmnd[2]);
937 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[10]);
938
939 cmd->allowed = sdkp->max_retries;
940 cmd->transfersize = data_len;
941 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
942
943 return scsi_alloc_sgtables(cmd);
944}
945
946static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
947 bool unmap)
948{
949 struct scsi_device *sdp = cmd->device;
950 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
951 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
952 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
953 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
954 u32 data_len = sdp->sector_size;
955
956 if (!sd_set_special_bvec(rq, data_len))
957 return BLK_STS_RESOURCE;
958
959 cmd->cmd_len = 10;
960 cmd->cmnd[0] = WRITE_SAME;
961 if (unmap)
962 cmd->cmnd[1] = 0x8; /* UNMAP */
963 put_unaligned_be32(val: lba, p: &cmd->cmnd[2]);
964 put_unaligned_be16(val: nr_blocks, p: &cmd->cmnd[7]);
965
966 cmd->allowed = sdkp->max_retries;
967 cmd->transfersize = data_len;
968 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
969
970 return scsi_alloc_sgtables(cmd);
971}
972
973static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
974{
975 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
976 struct scsi_device *sdp = cmd->device;
977 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
978 u64 lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
979 u32 nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
980
981 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
982 switch (sdkp->zeroing_mode) {
983 case SD_ZERO_WS16_UNMAP:
984 return sd_setup_write_same16_cmnd(cmd, unmap: true);
985 case SD_ZERO_WS10_UNMAP:
986 return sd_setup_write_same10_cmnd(cmd, unmap: true);
987 }
988 }
989
990 if (sdp->no_write_same) {
991 rq->rq_flags |= RQF_QUIET;
992 return BLK_STS_TARGET;
993 }
994
995 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
996 return sd_setup_write_same16_cmnd(cmd, unmap: false);
997
998 return sd_setup_write_same10_cmnd(cmd, unmap: false);
999}
1000
1001static void sd_config_write_same(struct scsi_disk *sdkp)
1002{
1003 struct request_queue *q = sdkp->disk->queue;
1004 unsigned int logical_block_size = sdkp->device->sector_size;
1005
1006 if (sdkp->device->no_write_same) {
1007 sdkp->max_ws_blocks = 0;
1008 goto out;
1009 }
1010
1011 /* Some devices can not handle block counts above 0xffff despite
1012 * supporting WRITE SAME(16). Consequently we default to 64k
1013 * blocks per I/O unless the device explicitly advertises a
1014 * bigger limit.
1015 */
1016 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 (u32)SD_MAX_WS16_BLOCKS);
1019 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1020 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1021 (u32)SD_MAX_WS10_BLOCKS);
1022 else {
1023 sdkp->device->no_write_same = 1;
1024 sdkp->max_ws_blocks = 0;
1025 }
1026
1027 if (sdkp->lbprz && sdkp->lbpws)
1028 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1029 else if (sdkp->lbprz && sdkp->lbpws10)
1030 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1031 else if (sdkp->max_ws_blocks)
1032 sdkp->zeroing_mode = SD_ZERO_WS;
1033 else
1034 sdkp->zeroing_mode = SD_ZERO_WRITE;
1035
1036 if (sdkp->max_ws_blocks &&
1037 sdkp->physical_block_size > logical_block_size) {
1038 /*
1039 * Reporting a maximum number of blocks that is not aligned
1040 * on the device physical size would cause a large write same
1041 * request to be split into physically unaligned chunks by
1042 * __blkdev_issue_write_zeroes() even if the caller of this
1043 * functions took care to align the large request. So make sure
1044 * the maximum reported is aligned to the device physical block
1045 * size. This is only an optional optimization for regular
1046 * disks, but this is mandatory to avoid failure of large write
1047 * same requests directed at sequential write required zones of
1048 * host-managed ZBC disks.
1049 */
1050 sdkp->max_ws_blocks =
1051 round_down(sdkp->max_ws_blocks,
1052 bytes_to_logical(sdkp->device,
1053 sdkp->physical_block_size));
1054 }
1055
1056out:
1057 blk_queue_max_write_zeroes_sectors(q, max_write_same_sectors: sdkp->max_ws_blocks *
1058 (logical_block_size >> 9));
1059}
1060
1061static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1062{
1063 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1064 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
1065
1066 /* flush requests don't perform I/O, zero the S/G table */
1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068
1069 if (cmd->device->use_16_for_sync) {
1070 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1071 cmd->cmd_len = 16;
1072 } else {
1073 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1074 cmd->cmd_len = 10;
1075 }
1076 cmd->transfersize = 0;
1077 cmd->allowed = sdkp->max_retries;
1078
1079 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1080 return BLK_STS_OK;
1081}
1082
1083static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1084 sector_t lba, unsigned int nr_blocks,
1085 unsigned char flags, unsigned int dld)
1086{
1087 cmd->cmd_len = SD_EXT_CDB_SIZE;
1088 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1089 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1090 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1091 cmd->cmnd[10] = flags;
1092 cmd->cmnd[11] = dld & 0x07;
1093 put_unaligned_be64(val: lba, p: &cmd->cmnd[12]);
1094 put_unaligned_be32(val: lba, p: &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[28]);
1096
1097 return BLK_STS_OK;
1098}
1099
1100static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 sector_t lba, unsigned int nr_blocks,
1102 unsigned char flags, unsigned int dld)
1103{
1104 cmd->cmd_len = 16;
1105 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1106 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01);
1107 cmd->cmnd[14] = (dld & 0x03) << 6;
1108 cmd->cmnd[15] = 0;
1109 put_unaligned_be64(val: lba, p: &cmd->cmnd[2]);
1110 put_unaligned_be32(val: nr_blocks, p: &cmd->cmnd[10]);
1111
1112 return BLK_STS_OK;
1113}
1114
1115static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 sector_t lba, unsigned int nr_blocks,
1117 unsigned char flags)
1118{
1119 cmd->cmd_len = 10;
1120 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 cmd->cmnd[1] = flags;
1122 cmd->cmnd[6] = 0;
1123 cmd->cmnd[9] = 0;
1124 put_unaligned_be32(val: lba, p: &cmd->cmnd[2]);
1125 put_unaligned_be16(val: nr_blocks, p: &cmd->cmnd[7]);
1126
1127 return BLK_STS_OK;
1128}
1129
1130static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 sector_t lba, unsigned int nr_blocks,
1132 unsigned char flags)
1133{
1134 /* Avoid that 0 blocks gets translated into 256 blocks. */
1135 if (WARN_ON_ONCE(nr_blocks == 0))
1136 return BLK_STS_IOERR;
1137
1138 if (unlikely(flags & 0x8)) {
1139 /*
1140 * This happens only if this drive failed 10byte rw
1141 * command with ILLEGAL_REQUEST during operation and
1142 * thus turned off use_10_for_rw.
1143 */
1144 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 return BLK_STS_IOERR;
1146 }
1147
1148 cmd->cmd_len = 6;
1149 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 cmd->cmnd[3] = lba & 0xff;
1153 cmd->cmnd[4] = nr_blocks;
1154 cmd->cmnd[5] = 0;
1155
1156 return BLK_STS_OK;
1157}
1158
1159/*
1160 * Check if a command has a duration limit set. If it does, and the target
1161 * device supports CDL and the feature is enabled, return the limit
1162 * descriptor index to use. Return 0 (no limit) otherwise.
1163 */
1164static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1165{
1166 struct scsi_device *sdp = sdkp->device;
1167 int hint;
1168
1169 if (!sdp->cdl_supported || !sdp->cdl_enable)
1170 return 0;
1171
1172 /*
1173 * Use "no limit" if the request ioprio does not specify a duration
1174 * limit hint.
1175 */
1176 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1177 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1178 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1179 return 0;
1180
1181 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1182}
1183
1184static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1185{
1186 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1187 struct scsi_device *sdp = cmd->device;
1188 struct scsi_disk *sdkp = scsi_disk(disk: rq->q->disk);
1189 sector_t lba = sectors_to_logical(sdev: sdp, sector: blk_rq_pos(rq));
1190 sector_t threshold;
1191 unsigned int nr_blocks = sectors_to_logical(sdev: sdp, sector: blk_rq_sectors(rq));
1192 unsigned int mask = logical_to_sectors(sdev: sdp, blocks: 1) - 1;
1193 bool write = rq_data_dir(rq) == WRITE;
1194 unsigned char protect, fua;
1195 unsigned int dld;
1196 blk_status_t ret;
1197 unsigned int dif;
1198 bool dix;
1199
1200 ret = scsi_alloc_sgtables(cmd);
1201 if (ret != BLK_STS_OK)
1202 return ret;
1203
1204 ret = BLK_STS_IOERR;
1205 if (!scsi_device_online(sdev: sdp) || sdp->changed) {
1206 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1207 goto fail;
1208 }
1209
1210 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(disk: rq->q->disk)) {
1211 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1212 goto fail;
1213 }
1214
1215 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1216 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1217 goto fail;
1218 }
1219
1220 /*
1221 * Some SD card readers can't handle accesses which touch the
1222 * last one or two logical blocks. Split accesses as needed.
1223 */
1224 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1225
1226 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1227 if (lba < threshold) {
1228 /* Access up to the threshold but not beyond */
1229 nr_blocks = threshold - lba;
1230 } else {
1231 /* Access only a single logical block */
1232 nr_blocks = 1;
1233 }
1234 }
1235
1236 if (req_op(req: rq) == REQ_OP_ZONE_APPEND) {
1237 ret = sd_zbc_prepare_zone_append(cmd, lba: &lba, nr_blocks);
1238 if (ret)
1239 goto fail;
1240 }
1241
1242 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1243 dix = scsi_prot_sg_count(cmd);
1244 dif = scsi_host_dif_capable(shost: cmd->device->host, target_type: sdkp->protection_type);
1245 dld = sd_cdl_dld(sdkp, scmd: cmd);
1246
1247 if (dif || dix)
1248 protect = sd_setup_protect_cmnd(scmd: cmd, dix, dif);
1249 else
1250 protect = 0;
1251
1252 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1253 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1254 flags: protect | fua, dld);
1255 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1256 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1257 flags: protect | fua, dld);
1258 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1259 sdp->use_10_for_rw || protect) {
1260 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1261 flags: protect | fua);
1262 } else {
1263 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1264 flags: protect | fua);
1265 }
1266
1267 if (unlikely(ret != BLK_STS_OK))
1268 goto fail;
1269
1270 /*
1271 * We shouldn't disconnect in the middle of a sector, so with a dumb
1272 * host adapter, it's safe to assume that we can at least transfer
1273 * this many bytes between each connect / disconnect.
1274 */
1275 cmd->transfersize = sdp->sector_size;
1276 cmd->underflow = nr_blocks << 9;
1277 cmd->allowed = sdkp->max_retries;
1278 cmd->sdb.length = nr_blocks * sdp->sector_size;
1279
1280 SCSI_LOG_HLQUEUE(1,
1281 scmd_printk(KERN_INFO, cmd,
1282 "%s: block=%llu, count=%d\n", __func__,
1283 (unsigned long long)blk_rq_pos(rq),
1284 blk_rq_sectors(rq)));
1285 SCSI_LOG_HLQUEUE(2,
1286 scmd_printk(KERN_INFO, cmd,
1287 "%s %d/%u 512 byte blocks.\n",
1288 write ? "writing" : "reading", nr_blocks,
1289 blk_rq_sectors(rq)));
1290
1291 /*
1292 * This indicates that the command is ready from our end to be queued.
1293 */
1294 return BLK_STS_OK;
1295fail:
1296 scsi_free_sgtables(cmd);
1297 return ret;
1298}
1299
1300static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1301{
1302 struct request *rq = scsi_cmd_to_rq(scmd: cmd);
1303
1304 switch (req_op(req: rq)) {
1305 case REQ_OP_DISCARD:
1306 switch (scsi_disk(disk: rq->q->disk)->provisioning_mode) {
1307 case SD_LBP_UNMAP:
1308 return sd_setup_unmap_cmnd(cmd);
1309 case SD_LBP_WS16:
1310 return sd_setup_write_same16_cmnd(cmd, unmap: true);
1311 case SD_LBP_WS10:
1312 return sd_setup_write_same10_cmnd(cmd, unmap: true);
1313 case SD_LBP_ZERO:
1314 return sd_setup_write_same10_cmnd(cmd, unmap: false);
1315 default:
1316 return BLK_STS_TARGET;
1317 }
1318 case REQ_OP_WRITE_ZEROES:
1319 return sd_setup_write_zeroes_cmnd(cmd);
1320 case REQ_OP_FLUSH:
1321 return sd_setup_flush_cmnd(cmd);
1322 case REQ_OP_READ:
1323 case REQ_OP_WRITE:
1324 case REQ_OP_ZONE_APPEND:
1325 return sd_setup_read_write_cmnd(cmd);
1326 case REQ_OP_ZONE_RESET:
1327 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1328 all: false);
1329 case REQ_OP_ZONE_RESET_ALL:
1330 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1331 all: true);
1332 case REQ_OP_ZONE_OPEN:
1333 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, all: false);
1334 case REQ_OP_ZONE_CLOSE:
1335 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, all: false);
1336 case REQ_OP_ZONE_FINISH:
1337 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, all: false);
1338 default:
1339 WARN_ON_ONCE(1);
1340 return BLK_STS_NOTSUPP;
1341 }
1342}
1343
1344static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1345{
1346 struct request *rq = scsi_cmd_to_rq(scmd: SCpnt);
1347
1348 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1349 mempool_free(element: rq->special_vec.bv_page, pool: sd_page_pool);
1350}
1351
1352static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1353{
1354 if (sdkp->device->removable || sdkp->write_prot) {
1355 if (disk_check_media_change(disk))
1356 return true;
1357 }
1358
1359 /*
1360 * Force a full rescan after ioctl(BLKRRPART). While the disk state has
1361 * nothing to do with partitions, BLKRRPART is used to force a full
1362 * revalidate after things like a format for historical reasons.
1363 */
1364 return test_bit(GD_NEED_PART_SCAN, &disk->state);
1365}
1366
1367/**
1368 * sd_open - open a scsi disk device
1369 * @disk: disk to open
1370 * @mode: open mode
1371 *
1372 * Returns 0 if successful. Returns a negated errno value in case
1373 * of error.
1374 *
1375 * Note: This can be called from a user context (e.g. fsck(1) )
1376 * or from within the kernel (e.g. as a result of a mount(1) ).
1377 * In the latter case @inode and @filp carry an abridged amount
1378 * of information as noted above.
1379 *
1380 * Locking: called with disk->open_mutex held.
1381 **/
1382static int sd_open(struct gendisk *disk, blk_mode_t mode)
1383{
1384 struct scsi_disk *sdkp = scsi_disk(disk);
1385 struct scsi_device *sdev = sdkp->device;
1386 int retval;
1387
1388 if (scsi_device_get(sdev))
1389 return -ENXIO;
1390
1391 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1392
1393 /*
1394 * If the device is in error recovery, wait until it is done.
1395 * If the device is offline, then disallow any access to it.
1396 */
1397 retval = -ENXIO;
1398 if (!scsi_block_when_processing_errors(sdev))
1399 goto error_out;
1400
1401 if (sd_need_revalidate(disk, sdkp))
1402 sd_revalidate_disk(disk);
1403
1404 /*
1405 * If the drive is empty, just let the open fail.
1406 */
1407 retval = -ENOMEDIUM;
1408 if (sdev->removable && !sdkp->media_present &&
1409 !(mode & BLK_OPEN_NDELAY))
1410 goto error_out;
1411
1412 /*
1413 * If the device has the write protect tab set, have the open fail
1414 * if the user expects to be able to write to the thing.
1415 */
1416 retval = -EROFS;
1417 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1418 goto error_out;
1419
1420 /*
1421 * It is possible that the disk changing stuff resulted in
1422 * the device being taken offline. If this is the case,
1423 * report this to the user, and don't pretend that the
1424 * open actually succeeded.
1425 */
1426 retval = -ENXIO;
1427 if (!scsi_device_online(sdev))
1428 goto error_out;
1429
1430 if ((atomic_inc_return(v: &sdkp->openers) == 1) && sdev->removable) {
1431 if (scsi_block_when_processing_errors(sdev))
1432 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1433 }
1434
1435 return 0;
1436
1437error_out:
1438 scsi_device_put(sdev);
1439 return retval;
1440}
1441
1442/**
1443 * sd_release - invoked when the (last) close(2) is called on this
1444 * scsi disk.
1445 * @disk: disk to release
1446 *
1447 * Returns 0.
1448 *
1449 * Note: may block (uninterruptible) if error recovery is underway
1450 * on this disk.
1451 *
1452 * Locking: called with disk->open_mutex held.
1453 **/
1454static void sd_release(struct gendisk *disk)
1455{
1456 struct scsi_disk *sdkp = scsi_disk(disk);
1457 struct scsi_device *sdev = sdkp->device;
1458
1459 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1460
1461 if (atomic_dec_return(v: &sdkp->openers) == 0 && sdev->removable) {
1462 if (scsi_block_when_processing_errors(sdev))
1463 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1464 }
1465
1466 scsi_device_put(sdev);
1467}
1468
1469static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1470{
1471 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1472 struct scsi_device *sdp = sdkp->device;
1473 struct Scsi_Host *host = sdp->host;
1474 sector_t capacity = logical_to_sectors(sdev: sdp, blocks: sdkp->capacity);
1475 int diskinfo[4];
1476
1477 /* default to most commonly used values */
1478 diskinfo[0] = 0x40; /* 1 << 6 */
1479 diskinfo[1] = 0x20; /* 1 << 5 */
1480 diskinfo[2] = capacity >> 11;
1481
1482 /* override with calculated, extended default, or driver values */
1483 if (host->hostt->bios_param)
1484 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1485 else
1486 scsicam_bios_param(bdev, capacity, ip: diskinfo);
1487
1488 geo->heads = diskinfo[0];
1489 geo->sectors = diskinfo[1];
1490 geo->cylinders = diskinfo[2];
1491 return 0;
1492}
1493
1494/**
1495 * sd_ioctl - process an ioctl
1496 * @bdev: target block device
1497 * @mode: open mode
1498 * @cmd: ioctl command number
1499 * @arg: this is third argument given to ioctl(2) system call.
1500 * Often contains a pointer.
1501 *
1502 * Returns 0 if successful (some ioctls return positive numbers on
1503 * success as well). Returns a negated errno value in case of error.
1504 *
1505 * Note: most ioctls are forward onto the block subsystem or further
1506 * down in the scsi subsystem.
1507 **/
1508static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1509 unsigned int cmd, unsigned long arg)
1510{
1511 struct gendisk *disk = bdev->bd_disk;
1512 struct scsi_disk *sdkp = scsi_disk(disk);
1513 struct scsi_device *sdp = sdkp->device;
1514 void __user *p = (void __user *)arg;
1515 int error;
1516
1517 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1518 "cmd=0x%x\n", disk->disk_name, cmd));
1519
1520 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1521 return -ENOIOCTLCMD;
1522
1523 /*
1524 * If we are in the middle of error recovery, don't let anyone
1525 * else try and use this device. Also, if error recovery fails, it
1526 * may try and take the device offline, in which case all further
1527 * access to the device is prohibited.
1528 */
1529 error = scsi_ioctl_block_when_processing_errors(sdev: sdp, cmd,
1530 ndelay: (mode & BLK_OPEN_NDELAY));
1531 if (error)
1532 return error;
1533
1534 if (is_sed_ioctl(cmd))
1535 return sed_ioctl(dev: sdkp->opal_dev, cmd, ioctl_ptr: p);
1536 return scsi_ioctl(sdev: sdp, open_for_write: mode & BLK_OPEN_WRITE, cmd, arg: p);
1537}
1538
1539static void set_media_not_present(struct scsi_disk *sdkp)
1540{
1541 if (sdkp->media_present)
1542 sdkp->device->changed = 1;
1543
1544 if (sdkp->device->removable) {
1545 sdkp->media_present = 0;
1546 sdkp->capacity = 0;
1547 }
1548}
1549
1550static int media_not_present(struct scsi_disk *sdkp,
1551 struct scsi_sense_hdr *sshdr)
1552{
1553 if (!scsi_sense_valid(sshdr))
1554 return 0;
1555
1556 /* not invoked for commands that could return deferred errors */
1557 switch (sshdr->sense_key) {
1558 case UNIT_ATTENTION:
1559 case NOT_READY:
1560 /* medium not present */
1561 if (sshdr->asc == 0x3A) {
1562 set_media_not_present(sdkp);
1563 return 1;
1564 }
1565 }
1566 return 0;
1567}
1568
1569/**
1570 * sd_check_events - check media events
1571 * @disk: kernel device descriptor
1572 * @clearing: disk events currently being cleared
1573 *
1574 * Returns mask of DISK_EVENT_*.
1575 *
1576 * Note: this function is invoked from the block subsystem.
1577 **/
1578static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1579{
1580 struct scsi_disk *sdkp = disk->private_data;
1581 struct scsi_device *sdp;
1582 int retval;
1583 bool disk_changed;
1584
1585 if (!sdkp)
1586 return 0;
1587
1588 sdp = sdkp->device;
1589 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1590
1591 /*
1592 * If the device is offline, don't send any commands - just pretend as
1593 * if the command failed. If the device ever comes back online, we
1594 * can deal with it then. It is only because of unrecoverable errors
1595 * that we would ever take a device offline in the first place.
1596 */
1597 if (!scsi_device_online(sdev: sdp)) {
1598 set_media_not_present(sdkp);
1599 goto out;
1600 }
1601
1602 /*
1603 * Using TEST_UNIT_READY enables differentiation between drive with
1604 * no cartridge loaded - NOT READY, drive with changed cartridge -
1605 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1606 *
1607 * Drives that auto spin down. eg iomega jaz 1G, will be started
1608 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1609 * sd_revalidate() is called.
1610 */
1611 if (scsi_block_when_processing_errors(sdp)) {
1612 struct scsi_sense_hdr sshdr = { 0, };
1613
1614 retval = scsi_test_unit_ready(sdev: sdp, SD_TIMEOUT, retries: sdkp->max_retries,
1615 sshdr: &sshdr);
1616
1617 /* failed to execute TUR, assume media not present */
1618 if (retval < 0 || host_byte(retval)) {
1619 set_media_not_present(sdkp);
1620 goto out;
1621 }
1622
1623 if (media_not_present(sdkp, sshdr: &sshdr))
1624 goto out;
1625 }
1626
1627 /*
1628 * For removable scsi disk we have to recognise the presence
1629 * of a disk in the drive.
1630 */
1631 if (!sdkp->media_present)
1632 sdp->changed = 1;
1633 sdkp->media_present = 1;
1634out:
1635 /*
1636 * sdp->changed is set under the following conditions:
1637 *
1638 * Medium present state has changed in either direction.
1639 * Device has indicated UNIT_ATTENTION.
1640 */
1641 disk_changed = sdp->changed;
1642 sdp->changed = 0;
1643 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1644}
1645
1646static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1647{
1648 int retries, res;
1649 struct scsi_device *sdp = sdkp->device;
1650 const int timeout = sdp->request_queue->rq_timeout
1651 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1652 struct scsi_sense_hdr my_sshdr;
1653 const struct scsi_exec_args exec_args = {
1654 .req_flags = BLK_MQ_REQ_PM,
1655 /* caller might not be interested in sense, but we need it */
1656 .sshdr = sshdr ? : &my_sshdr,
1657 };
1658
1659 if (!scsi_device_online(sdev: sdp))
1660 return -ENODEV;
1661
1662 sshdr = exec_args.sshdr;
1663
1664 for (retries = 3; retries > 0; --retries) {
1665 unsigned char cmd[16] = { 0 };
1666
1667 if (sdp->use_16_for_sync)
1668 cmd[0] = SYNCHRONIZE_CACHE_16;
1669 else
1670 cmd[0] = SYNCHRONIZE_CACHE;
1671 /*
1672 * Leave the rest of the command zero to indicate
1673 * flush everything.
1674 */
1675 res = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
1676 timeout, retries: sdkp->max_retries, args: &exec_args);
1677 if (res == 0)
1678 break;
1679 }
1680
1681 if (res) {
1682 sd_print_result(sdkp, msg: "Synchronize Cache(10) failed", result: res);
1683
1684 if (res < 0)
1685 return res;
1686
1687 if (scsi_status_is_check_condition(status: res) &&
1688 scsi_sense_valid(sshdr)) {
1689 sd_print_sense_hdr(sdkp, sshdr);
1690
1691 /* we need to evaluate the error return */
1692 if (sshdr->asc == 0x3a || /* medium not present */
1693 sshdr->asc == 0x20 || /* invalid command */
1694 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */
1695 /* this is no error here */
1696 return 0;
1697 }
1698
1699 switch (host_byte(res)) {
1700 /* ignore errors due to racing a disconnection */
1701 case DID_BAD_TARGET:
1702 case DID_NO_CONNECT:
1703 return 0;
1704 /* signal the upper layer it might try again */
1705 case DID_BUS_BUSY:
1706 case DID_IMM_RETRY:
1707 case DID_REQUEUE:
1708 case DID_SOFT_ERROR:
1709 return -EBUSY;
1710 default:
1711 return -EIO;
1712 }
1713 }
1714 return 0;
1715}
1716
1717static void sd_rescan(struct device *dev)
1718{
1719 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1720
1721 sd_revalidate_disk(sdkp->disk);
1722}
1723
1724static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1725 enum blk_unique_id type)
1726{
1727 struct scsi_device *sdev = scsi_disk(disk)->device;
1728 const struct scsi_vpd *vpd;
1729 const unsigned char *d;
1730 int ret = -ENXIO, len;
1731
1732 rcu_read_lock();
1733 vpd = rcu_dereference(sdev->vpd_pg83);
1734 if (!vpd)
1735 goto out_unlock;
1736
1737 ret = -EINVAL;
1738 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1739 /* we only care about designators with LU association */
1740 if (((d[1] >> 4) & 0x3) != 0x00)
1741 continue;
1742 if ((d[1] & 0xf) != type)
1743 continue;
1744
1745 /*
1746 * Only exit early if a 16-byte descriptor was found. Otherwise
1747 * keep looking as one with more entropy might still show up.
1748 */
1749 len = d[3];
1750 if (len != 8 && len != 12 && len != 16)
1751 continue;
1752 ret = len;
1753 memcpy(id, d + 4, len);
1754 if (len == 16)
1755 break;
1756 }
1757out_unlock:
1758 rcu_read_unlock();
1759 return ret;
1760}
1761
1762static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1763{
1764 switch (host_byte(result)) {
1765 case DID_TRANSPORT_MARGINAL:
1766 case DID_TRANSPORT_DISRUPTED:
1767 case DID_BUS_BUSY:
1768 return PR_STS_RETRY_PATH_FAILURE;
1769 case DID_NO_CONNECT:
1770 return PR_STS_PATH_FAILED;
1771 case DID_TRANSPORT_FAILFAST:
1772 return PR_STS_PATH_FAST_FAILED;
1773 }
1774
1775 switch (status_byte(result)) {
1776 case SAM_STAT_RESERVATION_CONFLICT:
1777 return PR_STS_RESERVATION_CONFLICT;
1778 case SAM_STAT_CHECK_CONDITION:
1779 if (!scsi_sense_valid(sshdr))
1780 return PR_STS_IOERR;
1781
1782 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1783 (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1784 return -EINVAL;
1785
1786 fallthrough;
1787 default:
1788 return PR_STS_IOERR;
1789 }
1790}
1791
1792static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1793 unsigned char *data, int data_len)
1794{
1795 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1796 struct scsi_device *sdev = sdkp->device;
1797 struct scsi_sense_hdr sshdr;
1798 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1799 const struct scsi_exec_args exec_args = {
1800 .sshdr = &sshdr,
1801 };
1802 int result;
1803
1804 put_unaligned_be16(val: data_len, p: &cmd[7]);
1805
1806 result = scsi_execute_cmd(sdev, cmd, opf: REQ_OP_DRV_IN, buffer: data, bufflen: data_len,
1807 SD_TIMEOUT, retries: sdkp->max_retries, args: &exec_args);
1808 if (scsi_status_is_check_condition(status: result) &&
1809 scsi_sense_valid(sshdr: &sshdr)) {
1810 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1811 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1812 }
1813
1814 if (result <= 0)
1815 return result;
1816
1817 return sd_scsi_to_pr_err(sshdr: &sshdr, result);
1818}
1819
1820static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1821{
1822 int result, i, data_offset, num_copy_keys;
1823 u32 num_keys = keys_info->num_keys;
1824 int data_len = num_keys * 8 + 8;
1825 u8 *data;
1826
1827 data = kzalloc(size: data_len, GFP_KERNEL);
1828 if (!data)
1829 return -ENOMEM;
1830
1831 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1832 if (result)
1833 goto free_data;
1834
1835 keys_info->generation = get_unaligned_be32(p: &data[0]);
1836 keys_info->num_keys = get_unaligned_be32(p: &data[4]) / 8;
1837
1838 data_offset = 8;
1839 num_copy_keys = min(num_keys, keys_info->num_keys);
1840
1841 for (i = 0; i < num_copy_keys; i++) {
1842 keys_info->keys[i] = get_unaligned_be64(p: &data[data_offset]);
1843 data_offset += 8;
1844 }
1845
1846free_data:
1847 kfree(objp: data);
1848 return result;
1849}
1850
1851static int sd_pr_read_reservation(struct block_device *bdev,
1852 struct pr_held_reservation *rsv)
1853{
1854 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1855 struct scsi_device *sdev = sdkp->device;
1856 u8 data[24] = { };
1857 int result, len;
1858
1859 result = sd_pr_in_command(bdev, READ_RESERVATION, data, data_len: sizeof(data));
1860 if (result)
1861 return result;
1862
1863 len = get_unaligned_be32(p: &data[4]);
1864 if (!len)
1865 return 0;
1866
1867 /* Make sure we have at least the key and type */
1868 if (len < 14) {
1869 sdev_printk(KERN_INFO, sdev,
1870 "READ RESERVATION failed due to short return buffer of %d bytes\n",
1871 len);
1872 return -EINVAL;
1873 }
1874
1875 rsv->generation = get_unaligned_be32(p: &data[0]);
1876 rsv->key = get_unaligned_be64(p: &data[8]);
1877 rsv->type = scsi_pr_type_to_block(type: data[21] & 0x0f);
1878 return 0;
1879}
1880
1881static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1882 u64 sa_key, enum scsi_pr_type type, u8 flags)
1883{
1884 struct scsi_disk *sdkp = scsi_disk(disk: bdev->bd_disk);
1885 struct scsi_device *sdev = sdkp->device;
1886 struct scsi_sense_hdr sshdr;
1887 const struct scsi_exec_args exec_args = {
1888 .sshdr = &sshdr,
1889 };
1890 int result;
1891 u8 cmd[16] = { 0, };
1892 u8 data[24] = { 0, };
1893
1894 cmd[0] = PERSISTENT_RESERVE_OUT;
1895 cmd[1] = sa;
1896 cmd[2] = type;
1897 put_unaligned_be32(val: sizeof(data), p: &cmd[5]);
1898
1899 put_unaligned_be64(val: key, p: &data[0]);
1900 put_unaligned_be64(val: sa_key, p: &data[8]);
1901 data[20] = flags;
1902
1903 result = scsi_execute_cmd(sdev, cmd, opf: REQ_OP_DRV_OUT, buffer: &data,
1904 bufflen: sizeof(data), SD_TIMEOUT, retries: sdkp->max_retries,
1905 args: &exec_args);
1906
1907 if (scsi_status_is_check_condition(status: result) &&
1908 scsi_sense_valid(sshdr: &sshdr)) {
1909 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1910 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1911 }
1912
1913 if (result <= 0)
1914 return result;
1915
1916 return sd_scsi_to_pr_err(sshdr: &sshdr, result);
1917}
1918
1919static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1920 u32 flags)
1921{
1922 if (flags & ~PR_FL_IGNORE_KEY)
1923 return -EOPNOTSUPP;
1924 return sd_pr_out_command(bdev, sa: (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1925 key: old_key, sa_key: new_key, type: 0,
1926 flags: (1 << 0) /* APTPL */);
1927}
1928
1929static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1930 u32 flags)
1931{
1932 if (flags)
1933 return -EOPNOTSUPP;
1934 return sd_pr_out_command(bdev, sa: 0x01, key, sa_key: 0,
1935 type: block_pr_type_to_scsi(type), flags: 0);
1936}
1937
1938static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1939{
1940 return sd_pr_out_command(bdev, sa: 0x02, key, sa_key: 0,
1941 type: block_pr_type_to_scsi(type), flags: 0);
1942}
1943
1944static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1945 enum pr_type type, bool abort)
1946{
1947 return sd_pr_out_command(bdev, sa: abort ? 0x05 : 0x04, key: old_key, sa_key: new_key,
1948 type: block_pr_type_to_scsi(type), flags: 0);
1949}
1950
1951static int sd_pr_clear(struct block_device *bdev, u64 key)
1952{
1953 return sd_pr_out_command(bdev, sa: 0x03, key, sa_key: 0, type: 0, flags: 0);
1954}
1955
1956static const struct pr_ops sd_pr_ops = {
1957 .pr_register = sd_pr_register,
1958 .pr_reserve = sd_pr_reserve,
1959 .pr_release = sd_pr_release,
1960 .pr_preempt = sd_pr_preempt,
1961 .pr_clear = sd_pr_clear,
1962 .pr_read_keys = sd_pr_read_keys,
1963 .pr_read_reservation = sd_pr_read_reservation,
1964};
1965
1966static void scsi_disk_free_disk(struct gendisk *disk)
1967{
1968 struct scsi_disk *sdkp = scsi_disk(disk);
1969
1970 put_device(dev: &sdkp->disk_dev);
1971}
1972
1973static const struct block_device_operations sd_fops = {
1974 .owner = THIS_MODULE,
1975 .open = sd_open,
1976 .release = sd_release,
1977 .ioctl = sd_ioctl,
1978 .getgeo = sd_getgeo,
1979 .compat_ioctl = blkdev_compat_ptr_ioctl,
1980 .check_events = sd_check_events,
1981 .unlock_native_capacity = sd_unlock_native_capacity,
1982 .report_zones = sd_zbc_report_zones,
1983 .get_unique_id = sd_get_unique_id,
1984 .free_disk = scsi_disk_free_disk,
1985 .pr_ops = &sd_pr_ops,
1986};
1987
1988/**
1989 * sd_eh_reset - reset error handling callback
1990 * @scmd: sd-issued command that has failed
1991 *
1992 * This function is called by the SCSI midlayer before starting
1993 * SCSI EH. When counting medium access failures we have to be
1994 * careful to register it only only once per device and SCSI EH run;
1995 * there might be several timed out commands which will cause the
1996 * 'max_medium_access_timeouts' counter to trigger after the first
1997 * SCSI EH run already and set the device to offline.
1998 * So this function resets the internal counter before starting SCSI EH.
1999 **/
2000static void sd_eh_reset(struct scsi_cmnd *scmd)
2001{
2002 struct scsi_disk *sdkp = scsi_disk(disk: scsi_cmd_to_rq(scmd)->q->disk);
2003
2004 /* New SCSI EH run, reset gate variable */
2005 sdkp->ignore_medium_access_errors = false;
2006}
2007
2008/**
2009 * sd_eh_action - error handling callback
2010 * @scmd: sd-issued command that has failed
2011 * @eh_disp: The recovery disposition suggested by the midlayer
2012 *
2013 * This function is called by the SCSI midlayer upon completion of an
2014 * error test command (currently TEST UNIT READY). The result of sending
2015 * the eh command is passed in eh_disp. We're looking for devices that
2016 * fail medium access commands but are OK with non access commands like
2017 * test unit ready (so wrongly see the device as having a successful
2018 * recovery)
2019 **/
2020static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2021{
2022 struct scsi_disk *sdkp = scsi_disk(disk: scsi_cmd_to_rq(scmd)->q->disk);
2023 struct scsi_device *sdev = scmd->device;
2024
2025 if (!scsi_device_online(sdev) ||
2026 !scsi_medium_access_command(scmd) ||
2027 host_byte(scmd->result) != DID_TIME_OUT ||
2028 eh_disp != SUCCESS)
2029 return eh_disp;
2030
2031 /*
2032 * The device has timed out executing a medium access command.
2033 * However, the TEST UNIT READY command sent during error
2034 * handling completed successfully. Either the device is in the
2035 * process of recovering or has it suffered an internal failure
2036 * that prevents access to the storage medium.
2037 */
2038 if (!sdkp->ignore_medium_access_errors) {
2039 sdkp->medium_access_timed_out++;
2040 sdkp->ignore_medium_access_errors = true;
2041 }
2042
2043 /*
2044 * If the device keeps failing read/write commands but TEST UNIT
2045 * READY always completes successfully we assume that medium
2046 * access is no longer possible and take the device offline.
2047 */
2048 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2049 scmd_printk(KERN_ERR, scmd,
2050 "Medium access timeout failure. Offlining disk!\n");
2051 mutex_lock(&sdev->state_mutex);
2052 scsi_device_set_state(sdev, state: SDEV_OFFLINE);
2053 mutex_unlock(lock: &sdev->state_mutex);
2054
2055 return SUCCESS;
2056 }
2057
2058 return eh_disp;
2059}
2060
2061static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2062{
2063 struct request *req = scsi_cmd_to_rq(scmd);
2064 struct scsi_device *sdev = scmd->device;
2065 unsigned int transferred, good_bytes;
2066 u64 start_lba, end_lba, bad_lba;
2067
2068 /*
2069 * Some commands have a payload smaller than the device logical
2070 * block size (e.g. INQUIRY on a 4K disk).
2071 */
2072 if (scsi_bufflen(cmd: scmd) <= sdev->sector_size)
2073 return 0;
2074
2075 /* Check if we have a 'bad_lba' information */
2076 if (!scsi_get_sense_info_fld(sense_buffer: scmd->sense_buffer,
2077 SCSI_SENSE_BUFFERSIZE,
2078 info_out: &bad_lba))
2079 return 0;
2080
2081 /*
2082 * If the bad lba was reported incorrectly, we have no idea where
2083 * the error is.
2084 */
2085 start_lba = sectors_to_logical(sdev, sector: blk_rq_pos(rq: req));
2086 end_lba = start_lba + bytes_to_logical(sdev, bytes: scsi_bufflen(cmd: scmd));
2087 if (bad_lba < start_lba || bad_lba >= end_lba)
2088 return 0;
2089
2090 /*
2091 * resid is optional but mostly filled in. When it's unused,
2092 * its value is zero, so we assume the whole buffer transferred
2093 */
2094 transferred = scsi_bufflen(cmd: scmd) - scsi_get_resid(cmd: scmd);
2095
2096 /* This computation should always be done in terms of the
2097 * resolution of the device's medium.
2098 */
2099 good_bytes = logical_to_bytes(sdev, blocks: bad_lba - start_lba);
2100
2101 return min(good_bytes, transferred);
2102}
2103
2104/**
2105 * sd_done - bottom half handler: called when the lower level
2106 * driver has completed (successfully or otherwise) a scsi command.
2107 * @SCpnt: mid-level's per command structure.
2108 *
2109 * Note: potentially run from within an ISR. Must not block.
2110 **/
2111static int sd_done(struct scsi_cmnd *SCpnt)
2112{
2113 int result = SCpnt->result;
2114 unsigned int good_bytes = result ? 0 : scsi_bufflen(cmd: SCpnt);
2115 unsigned int sector_size = SCpnt->device->sector_size;
2116 unsigned int resid;
2117 struct scsi_sense_hdr sshdr;
2118 struct request *req = scsi_cmd_to_rq(scmd: SCpnt);
2119 struct scsi_disk *sdkp = scsi_disk(disk: req->q->disk);
2120 int sense_valid = 0;
2121 int sense_deferred = 0;
2122
2123 switch (req_op(req)) {
2124 case REQ_OP_DISCARD:
2125 case REQ_OP_WRITE_ZEROES:
2126 case REQ_OP_ZONE_RESET:
2127 case REQ_OP_ZONE_RESET_ALL:
2128 case REQ_OP_ZONE_OPEN:
2129 case REQ_OP_ZONE_CLOSE:
2130 case REQ_OP_ZONE_FINISH:
2131 if (!result) {
2132 good_bytes = blk_rq_bytes(rq: req);
2133 scsi_set_resid(cmd: SCpnt, resid: 0);
2134 } else {
2135 good_bytes = 0;
2136 scsi_set_resid(cmd: SCpnt, resid: blk_rq_bytes(rq: req));
2137 }
2138 break;
2139 default:
2140 /*
2141 * In case of bogus fw or device, we could end up having
2142 * an unaligned partial completion. Check this here and force
2143 * alignment.
2144 */
2145 resid = scsi_get_resid(cmd: SCpnt);
2146 if (resid & (sector_size - 1)) {
2147 sd_printk(KERN_INFO, sdkp,
2148 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2149 resid, sector_size);
2150 scsi_print_command(SCpnt);
2151 resid = min(scsi_bufflen(SCpnt),
2152 round_up(resid, sector_size));
2153 scsi_set_resid(cmd: SCpnt, resid);
2154 }
2155 }
2156
2157 if (result) {
2158 sense_valid = scsi_command_normalize_sense(cmd: SCpnt, sshdr: &sshdr);
2159 if (sense_valid)
2160 sense_deferred = scsi_sense_is_deferred(sshdr: &sshdr);
2161 }
2162 sdkp->medium_access_timed_out = 0;
2163
2164 if (!scsi_status_is_check_condition(status: result) &&
2165 (!sense_valid || sense_deferred))
2166 goto out;
2167
2168 switch (sshdr.sense_key) {
2169 case HARDWARE_ERROR:
2170 case MEDIUM_ERROR:
2171 good_bytes = sd_completed_bytes(scmd: SCpnt);
2172 break;
2173 case RECOVERED_ERROR:
2174 good_bytes = scsi_bufflen(cmd: SCpnt);
2175 break;
2176 case NO_SENSE:
2177 /* This indicates a false check condition, so ignore it. An
2178 * unknown amount of data was transferred so treat it as an
2179 * error.
2180 */
2181 SCpnt->result = 0;
2182 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2183 break;
2184 case ABORTED_COMMAND:
2185 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2186 good_bytes = sd_completed_bytes(scmd: SCpnt);
2187 break;
2188 case ILLEGAL_REQUEST:
2189 switch (sshdr.asc) {
2190 case 0x10: /* DIX: Host detected corruption */
2191 good_bytes = sd_completed_bytes(scmd: SCpnt);
2192 break;
2193 case 0x20: /* INVALID COMMAND OPCODE */
2194 case 0x24: /* INVALID FIELD IN CDB */
2195 switch (SCpnt->cmnd[0]) {
2196 case UNMAP:
2197 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
2198 break;
2199 case WRITE_SAME_16:
2200 case WRITE_SAME:
2201 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2202 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
2203 } else {
2204 sdkp->device->no_write_same = 1;
2205 sd_config_write_same(sdkp);
2206 req->rq_flags |= RQF_QUIET;
2207 }
2208 break;
2209 }
2210 }
2211 break;
2212 default:
2213 break;
2214 }
2215
2216 out:
2217 if (sd_is_zoned(sdkp))
2218 good_bytes = sd_zbc_complete(cmd: SCpnt, good_bytes, sshdr: &sshdr);
2219
2220 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2221 "sd_done: completed %d of %d bytes\n",
2222 good_bytes, scsi_bufflen(SCpnt)));
2223
2224 return good_bytes;
2225}
2226
2227/*
2228 * spinup disk - called only in sd_revalidate_disk()
2229 */
2230static void
2231sd_spinup_disk(struct scsi_disk *sdkp)
2232{
2233 unsigned char cmd[10];
2234 unsigned long spintime_expire = 0;
2235 int retries, spintime;
2236 unsigned int the_result;
2237 struct scsi_sense_hdr sshdr;
2238 const struct scsi_exec_args exec_args = {
2239 .sshdr = &sshdr,
2240 };
2241 int sense_valid = 0;
2242
2243 spintime = 0;
2244
2245 /* Spin up drives, as required. Only do this at boot time */
2246 /* Spinup needs to be done for module loads too. */
2247 do {
2248 retries = 0;
2249
2250 do {
2251 bool media_was_present = sdkp->media_present;
2252
2253 cmd[0] = TEST_UNIT_READY;
2254 memset((void *) &cmd[1], 0, 9);
2255
2256 the_result = scsi_execute_cmd(sdev: sdkp->device, cmd,
2257 opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
2258 SD_TIMEOUT,
2259 retries: sdkp->max_retries,
2260 args: &exec_args);
2261
2262 if (the_result > 0) {
2263 /*
2264 * If the drive has indicated to us that it
2265 * doesn't have any media in it, don't bother
2266 * with any more polling.
2267 */
2268 if (media_not_present(sdkp, sshdr: &sshdr)) {
2269 if (media_was_present)
2270 sd_printk(KERN_NOTICE, sdkp,
2271 "Media removed, stopped polling\n");
2272 return;
2273 }
2274
2275 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2276 }
2277 retries++;
2278 } while (retries < 3 &&
2279 (!scsi_status_is_good(status: the_result) ||
2280 (scsi_status_is_check_condition(status: the_result) &&
2281 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2282
2283 if (!scsi_status_is_check_condition(status: the_result)) {
2284 /* no sense, TUR either succeeded or failed
2285 * with a status error */
2286 if(!spintime && !scsi_status_is_good(status: the_result)) {
2287 sd_print_result(sdkp, msg: "Test Unit Ready failed",
2288 result: the_result);
2289 }
2290 break;
2291 }
2292
2293 /*
2294 * The device does not want the automatic start to be issued.
2295 */
2296 if (sdkp->device->no_start_on_add)
2297 break;
2298
2299 if (sense_valid && sshdr.sense_key == NOT_READY) {
2300 if (sshdr.asc == 4 && sshdr.ascq == 3)
2301 break; /* manual intervention required */
2302 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2303 break; /* standby */
2304 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2305 break; /* unavailable */
2306 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2307 break; /* sanitize in progress */
2308 if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2309 break; /* depopulation in progress */
2310 if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2311 break; /* depopulation restoration in progress */
2312 /*
2313 * Issue command to spin up drive when not ready
2314 */
2315 if (!spintime) {
2316 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2317 cmd[0] = START_STOP;
2318 cmd[1] = 1; /* Return immediately */
2319 memset((void *) &cmd[2], 0, 8);
2320 cmd[4] = 1; /* Start spin cycle */
2321 if (sdkp->device->start_stop_pwr_cond)
2322 cmd[4] |= 1 << 4;
2323 scsi_execute_cmd(sdev: sdkp->device, cmd,
2324 opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
2325 SD_TIMEOUT, retries: sdkp->max_retries,
2326 args: &exec_args);
2327 spintime_expire = jiffies + 100 * HZ;
2328 spintime = 1;
2329 }
2330 /* Wait 1 second for next try */
2331 msleep(msecs: 1000);
2332 printk(KERN_CONT ".");
2333
2334 /*
2335 * Wait for USB flash devices with slow firmware.
2336 * Yes, this sense key/ASC combination shouldn't
2337 * occur here. It's characteristic of these devices.
2338 */
2339 } else if (sense_valid &&
2340 sshdr.sense_key == UNIT_ATTENTION &&
2341 sshdr.asc == 0x28) {
2342 if (!spintime) {
2343 spintime_expire = jiffies + 5 * HZ;
2344 spintime = 1;
2345 }
2346 /* Wait 1 second for next try */
2347 msleep(msecs: 1000);
2348 } else {
2349 /* we don't understand the sense code, so it's
2350 * probably pointless to loop */
2351 if(!spintime) {
2352 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2353 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
2354 }
2355 break;
2356 }
2357
2358 } while (spintime && time_before_eq(jiffies, spintime_expire));
2359
2360 if (spintime) {
2361 if (scsi_status_is_good(status: the_result))
2362 printk(KERN_CONT "ready\n");
2363 else
2364 printk(KERN_CONT "not responding...\n");
2365 }
2366}
2367
2368/*
2369 * Determine whether disk supports Data Integrity Field.
2370 */
2371static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2372{
2373 struct scsi_device *sdp = sdkp->device;
2374 u8 type;
2375
2376 if (scsi_device_protection(sdev: sdp) == 0 || (buffer[12] & 1) == 0) {
2377 sdkp->protection_type = 0;
2378 return 0;
2379 }
2380
2381 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2382
2383 if (type > T10_PI_TYPE3_PROTECTION) {
2384 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2385 " protection type %u. Disabling disk!\n",
2386 type);
2387 sdkp->protection_type = 0;
2388 return -ENODEV;
2389 }
2390
2391 sdkp->protection_type = type;
2392
2393 return 0;
2394}
2395
2396static void sd_config_protection(struct scsi_disk *sdkp)
2397{
2398 struct scsi_device *sdp = sdkp->device;
2399
2400 sd_dif_config_host(sdkp);
2401
2402 if (!sdkp->protection_type)
2403 return;
2404
2405 if (!scsi_host_dif_capable(shost: sdp->host, target_type: sdkp->protection_type)) {
2406 sd_first_printk(KERN_NOTICE, sdkp,
2407 "Disabling DIF Type %u protection\n",
2408 sdkp->protection_type);
2409 sdkp->protection_type = 0;
2410 }
2411
2412 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2413 sdkp->protection_type);
2414}
2415
2416static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2417 struct scsi_sense_hdr *sshdr, int sense_valid,
2418 int the_result)
2419{
2420 if (sense_valid)
2421 sd_print_sense_hdr(sdkp, sshdr);
2422 else
2423 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2424
2425 /*
2426 * Set dirty bit for removable devices if not ready -
2427 * sometimes drives will not report this properly.
2428 */
2429 if (sdp->removable &&
2430 sense_valid && sshdr->sense_key == NOT_READY)
2431 set_media_not_present(sdkp);
2432
2433 /*
2434 * We used to set media_present to 0 here to indicate no media
2435 * in the drive, but some drives fail read capacity even with
2436 * media present, so we can't do that.
2437 */
2438 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2439}
2440
2441#define RC16_LEN 32
2442#if RC16_LEN > SD_BUF_SIZE
2443#error RC16_LEN must not be more than SD_BUF_SIZE
2444#endif
2445
2446#define READ_CAPACITY_RETRIES_ON_RESET 10
2447
2448static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2449 unsigned char *buffer)
2450{
2451 unsigned char cmd[16];
2452 struct scsi_sense_hdr sshdr;
2453 const struct scsi_exec_args exec_args = {
2454 .sshdr = &sshdr,
2455 };
2456 int sense_valid = 0;
2457 int the_result;
2458 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2459 unsigned int alignment;
2460 unsigned long long lba;
2461 unsigned sector_size;
2462
2463 if (sdp->no_read_capacity_16)
2464 return -EINVAL;
2465
2466 do {
2467 memset(cmd, 0, 16);
2468 cmd[0] = SERVICE_ACTION_IN_16;
2469 cmd[1] = SAI_READ_CAPACITY_16;
2470 cmd[13] = RC16_LEN;
2471 memset(buffer, 0, RC16_LEN);
2472
2473 the_result = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN,
2474 buffer, RC16_LEN, SD_TIMEOUT,
2475 retries: sdkp->max_retries, args: &exec_args);
2476 if (the_result > 0) {
2477 if (media_not_present(sdkp, sshdr: &sshdr))
2478 return -ENODEV;
2479
2480 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2481 if (sense_valid &&
2482 sshdr.sense_key == ILLEGAL_REQUEST &&
2483 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2484 sshdr.ascq == 0x00)
2485 /* Invalid Command Operation Code or
2486 * Invalid Field in CDB, just retry
2487 * silently with RC10 */
2488 return -EINVAL;
2489 if (sense_valid &&
2490 sshdr.sense_key == UNIT_ATTENTION &&
2491 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2492 /* Device reset might occur several times,
2493 * give it one more chance */
2494 if (--reset_retries > 0)
2495 continue;
2496 }
2497 retries--;
2498
2499 } while (the_result && retries);
2500
2501 if (the_result) {
2502 sd_print_result(sdkp, msg: "Read Capacity(16) failed", result: the_result);
2503 read_capacity_error(sdkp, sdp, sshdr: &sshdr, sense_valid, the_result);
2504 return -EINVAL;
2505 }
2506
2507 sector_size = get_unaligned_be32(p: &buffer[8]);
2508 lba = get_unaligned_be64(p: &buffer[0]);
2509
2510 if (sd_read_protection_type(sdkp, buffer) < 0) {
2511 sdkp->capacity = 0;
2512 return -ENODEV;
2513 }
2514
2515 /* Logical blocks per physical block exponent */
2516 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2517
2518 /* RC basis */
2519 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2520
2521 /* Lowest aligned logical block */
2522 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2523 blk_queue_alignment_offset(q: sdp->request_queue, alignment);
2524 if (alignment && sdkp->first_scan)
2525 sd_printk(KERN_NOTICE, sdkp,
2526 "physical block alignment offset: %u\n", alignment);
2527
2528 if (buffer[14] & 0x80) { /* LBPME */
2529 sdkp->lbpme = 1;
2530
2531 if (buffer[14] & 0x40) /* LBPRZ */
2532 sdkp->lbprz = 1;
2533
2534 sd_config_discard(sdkp, mode: SD_LBP_WS16);
2535 }
2536
2537 sdkp->capacity = lba + 1;
2538 return sector_size;
2539}
2540
2541static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2542 unsigned char *buffer)
2543{
2544 unsigned char cmd[16];
2545 struct scsi_sense_hdr sshdr;
2546 const struct scsi_exec_args exec_args = {
2547 .sshdr = &sshdr,
2548 };
2549 int sense_valid = 0;
2550 int the_result;
2551 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2552 sector_t lba;
2553 unsigned sector_size;
2554
2555 do {
2556 cmd[0] = READ_CAPACITY;
2557 memset(&cmd[1], 0, 9);
2558 memset(buffer, 0, 8);
2559
2560 the_result = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, buffer,
2561 bufflen: 8, SD_TIMEOUT, retries: sdkp->max_retries,
2562 args: &exec_args);
2563
2564 if (media_not_present(sdkp, sshdr: &sshdr))
2565 return -ENODEV;
2566
2567 if (the_result > 0) {
2568 sense_valid = scsi_sense_valid(sshdr: &sshdr);
2569 if (sense_valid &&
2570 sshdr.sense_key == UNIT_ATTENTION &&
2571 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2572 /* Device reset might occur several times,
2573 * give it one more chance */
2574 if (--reset_retries > 0)
2575 continue;
2576 }
2577 retries--;
2578
2579 } while (the_result && retries);
2580
2581 if (the_result) {
2582 sd_print_result(sdkp, msg: "Read Capacity(10) failed", result: the_result);
2583 read_capacity_error(sdkp, sdp, sshdr: &sshdr, sense_valid, the_result);
2584 return -EINVAL;
2585 }
2586
2587 sector_size = get_unaligned_be32(p: &buffer[4]);
2588 lba = get_unaligned_be32(p: &buffer[0]);
2589
2590 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2591 /* Some buggy (usb cardreader) devices return an lba of
2592 0xffffffff when the want to report a size of 0 (with
2593 which they really mean no media is present) */
2594 sdkp->capacity = 0;
2595 sdkp->physical_block_size = sector_size;
2596 return sector_size;
2597 }
2598
2599 sdkp->capacity = lba + 1;
2600 sdkp->physical_block_size = sector_size;
2601 return sector_size;
2602}
2603
2604static int sd_try_rc16_first(struct scsi_device *sdp)
2605{
2606 if (sdp->host->max_cmd_len < 16)
2607 return 0;
2608 if (sdp->try_rc_10_first)
2609 return 0;
2610 if (sdp->scsi_level > SCSI_SPC_2)
2611 return 1;
2612 if (scsi_device_protection(sdev: sdp))
2613 return 1;
2614 return 0;
2615}
2616
2617/*
2618 * read disk capacity
2619 */
2620static void
2621sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2622{
2623 int sector_size;
2624 struct scsi_device *sdp = sdkp->device;
2625
2626 if (sd_try_rc16_first(sdp)) {
2627 sector_size = read_capacity_16(sdkp, sdp, buffer);
2628 if (sector_size == -EOVERFLOW)
2629 goto got_data;
2630 if (sector_size == -ENODEV)
2631 return;
2632 if (sector_size < 0)
2633 sector_size = read_capacity_10(sdkp, sdp, buffer);
2634 if (sector_size < 0)
2635 return;
2636 } else {
2637 sector_size = read_capacity_10(sdkp, sdp, buffer);
2638 if (sector_size == -EOVERFLOW)
2639 goto got_data;
2640 if (sector_size < 0)
2641 return;
2642 if ((sizeof(sdkp->capacity) > 4) &&
2643 (sdkp->capacity > 0xffffffffULL)) {
2644 int old_sector_size = sector_size;
2645 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2646 "Trying to use READ CAPACITY(16).\n");
2647 sector_size = read_capacity_16(sdkp, sdp, buffer);
2648 if (sector_size < 0) {
2649 sd_printk(KERN_NOTICE, sdkp,
2650 "Using 0xffffffff as device size\n");
2651 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2652 sector_size = old_sector_size;
2653 goto got_data;
2654 }
2655 /* Remember that READ CAPACITY(16) succeeded */
2656 sdp->try_rc_10_first = 0;
2657 }
2658 }
2659
2660 /* Some devices are known to return the total number of blocks,
2661 * not the highest block number. Some devices have versions
2662 * which do this and others which do not. Some devices we might
2663 * suspect of doing this but we don't know for certain.
2664 *
2665 * If we know the reported capacity is wrong, decrement it. If
2666 * we can only guess, then assume the number of blocks is even
2667 * (usually true but not always) and err on the side of lowering
2668 * the capacity.
2669 */
2670 if (sdp->fix_capacity ||
2671 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2672 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2673 "from its reported value: %llu\n",
2674 (unsigned long long) sdkp->capacity);
2675 --sdkp->capacity;
2676 }
2677
2678got_data:
2679 if (sector_size == 0) {
2680 sector_size = 512;
2681 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2682 "assuming 512.\n");
2683 }
2684
2685 if (sector_size != 512 &&
2686 sector_size != 1024 &&
2687 sector_size != 2048 &&
2688 sector_size != 4096) {
2689 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2690 sector_size);
2691 /*
2692 * The user might want to re-format the drive with
2693 * a supported sectorsize. Once this happens, it
2694 * would be relatively trivial to set the thing up.
2695 * For this reason, we leave the thing in the table.
2696 */
2697 sdkp->capacity = 0;
2698 /*
2699 * set a bogus sector size so the normal read/write
2700 * logic in the block layer will eventually refuse any
2701 * request on this device without tripping over power
2702 * of two sector size assumptions
2703 */
2704 sector_size = 512;
2705 }
2706 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2707 blk_queue_physical_block_size(sdp->request_queue,
2708 sdkp->physical_block_size);
2709 sdkp->device->sector_size = sector_size;
2710
2711 if (sdkp->capacity > 0xffffffff)
2712 sdp->use_16_for_rw = 1;
2713
2714}
2715
2716/*
2717 * Print disk capacity
2718 */
2719static void
2720sd_print_capacity(struct scsi_disk *sdkp,
2721 sector_t old_capacity)
2722{
2723 int sector_size = sdkp->device->sector_size;
2724 char cap_str_2[10], cap_str_10[10];
2725
2726 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2727 return;
2728
2729 string_get_size(size: sdkp->capacity, blk_size: sector_size,
2730 units: STRING_UNITS_2, buf: cap_str_2, len: sizeof(cap_str_2));
2731 string_get_size(size: sdkp->capacity, blk_size: sector_size,
2732 units: STRING_UNITS_10, buf: cap_str_10, len: sizeof(cap_str_10));
2733
2734 sd_printk(KERN_NOTICE, sdkp,
2735 "%llu %d-byte logical blocks: (%s/%s)\n",
2736 (unsigned long long)sdkp->capacity,
2737 sector_size, cap_str_10, cap_str_2);
2738
2739 if (sdkp->physical_block_size != sector_size)
2740 sd_printk(KERN_NOTICE, sdkp,
2741 "%u-byte physical blocks\n",
2742 sdkp->physical_block_size);
2743}
2744
2745/* called with buffer of length 512 */
2746static inline int
2747sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2748 unsigned char *buffer, int len, struct scsi_mode_data *data,
2749 struct scsi_sense_hdr *sshdr)
2750{
2751 /*
2752 * If we must use MODE SENSE(10), make sure that the buffer length
2753 * is at least 8 bytes so that the mode sense header fits.
2754 */
2755 if (sdkp->device->use_10_for_ms && len < 8)
2756 len = 8;
2757
2758 return scsi_mode_sense(sdev: sdkp->device, dbd, modepage, subpage: 0, buffer, len,
2759 SD_TIMEOUT, retries: sdkp->max_retries, data, sshdr);
2760}
2761
2762/*
2763 * read write protect setting, if possible - called only in sd_revalidate_disk()
2764 * called with buffer of length SD_BUF_SIZE
2765 */
2766static void
2767sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2768{
2769 int res;
2770 struct scsi_device *sdp = sdkp->device;
2771 struct scsi_mode_data data;
2772 int old_wp = sdkp->write_prot;
2773
2774 set_disk_ro(disk: sdkp->disk, read_only: 0);
2775 if (sdp->skip_ms_page_3f) {
2776 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2777 return;
2778 }
2779
2780 if (sdp->use_192_bytes_for_3f) {
2781 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 192, data: &data, NULL);
2782 } else {
2783 /*
2784 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2785 * We have to start carefully: some devices hang if we ask
2786 * for more than is available.
2787 */
2788 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 4, data: &data, NULL);
2789
2790 /*
2791 * Second attempt: ask for page 0 When only page 0 is
2792 * implemented, a request for page 3F may return Sense Key
2793 * 5: Illegal Request, Sense Code 24: Invalid field in
2794 * CDB.
2795 */
2796 if (res < 0)
2797 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0, buffer, len: 4, data: &data, NULL);
2798
2799 /*
2800 * Third attempt: ask 255 bytes, as we did earlier.
2801 */
2802 if (res < 0)
2803 res = sd_do_mode_sense(sdkp, dbd: 0, modepage: 0x3F, buffer, len: 255,
2804 data: &data, NULL);
2805 }
2806
2807 if (res < 0) {
2808 sd_first_printk(KERN_WARNING, sdkp,
2809 "Test WP failed, assume Write Enabled\n");
2810 } else {
2811 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2812 set_disk_ro(disk: sdkp->disk, read_only: sdkp->write_prot);
2813 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2814 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2815 sdkp->write_prot ? "on" : "off");
2816 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2817 }
2818 }
2819}
2820
2821/*
2822 * sd_read_cache_type - called only from sd_revalidate_disk()
2823 * called with buffer of length SD_BUF_SIZE
2824 */
2825static void
2826sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2827{
2828 int len = 0, res;
2829 struct scsi_device *sdp = sdkp->device;
2830
2831 int dbd;
2832 int modepage;
2833 int first_len;
2834 struct scsi_mode_data data;
2835 struct scsi_sense_hdr sshdr;
2836 int old_wce = sdkp->WCE;
2837 int old_rcd = sdkp->RCD;
2838 int old_dpofua = sdkp->DPOFUA;
2839
2840
2841 if (sdkp->cache_override)
2842 return;
2843
2844 first_len = 4;
2845 if (sdp->skip_ms_page_8) {
2846 if (sdp->type == TYPE_RBC)
2847 goto defaults;
2848 else {
2849 if (sdp->skip_ms_page_3f)
2850 goto defaults;
2851 modepage = 0x3F;
2852 if (sdp->use_192_bytes_for_3f)
2853 first_len = 192;
2854 dbd = 0;
2855 }
2856 } else if (sdp->type == TYPE_RBC) {
2857 modepage = 6;
2858 dbd = 8;
2859 } else {
2860 modepage = 8;
2861 dbd = 0;
2862 }
2863
2864 /* cautiously ask */
2865 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len: first_len,
2866 data: &data, sshdr: &sshdr);
2867
2868 if (res < 0)
2869 goto bad_sense;
2870
2871 if (!data.header_length) {
2872 modepage = 6;
2873 first_len = 0;
2874 sd_first_printk(KERN_ERR, sdkp,
2875 "Missing header in MODE_SENSE response\n");
2876 }
2877
2878 /* that went OK, now ask for the proper length */
2879 len = data.length;
2880
2881 /*
2882 * We're only interested in the first three bytes, actually.
2883 * But the data cache page is defined for the first 20.
2884 */
2885 if (len < 3)
2886 goto bad_sense;
2887 else if (len > SD_BUF_SIZE) {
2888 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2889 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2890 len = SD_BUF_SIZE;
2891 }
2892 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2893 len = 192;
2894
2895 /* Get the data */
2896 if (len > first_len)
2897 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2898 data: &data, sshdr: &sshdr);
2899
2900 if (!res) {
2901 int offset = data.header_length + data.block_descriptor_length;
2902
2903 while (offset < len) {
2904 u8 page_code = buffer[offset] & 0x3F;
2905 u8 spf = buffer[offset] & 0x40;
2906
2907 if (page_code == 8 || page_code == 6) {
2908 /* We're interested only in the first 3 bytes.
2909 */
2910 if (len - offset <= 2) {
2911 sd_first_printk(KERN_ERR, sdkp,
2912 "Incomplete mode parameter "
2913 "data\n");
2914 goto defaults;
2915 } else {
2916 modepage = page_code;
2917 goto Page_found;
2918 }
2919 } else {
2920 /* Go to the next page */
2921 if (spf && len - offset > 3)
2922 offset += 4 + (buffer[offset+2] << 8) +
2923 buffer[offset+3];
2924 else if (!spf && len - offset > 1)
2925 offset += 2 + buffer[offset+1];
2926 else {
2927 sd_first_printk(KERN_ERR, sdkp,
2928 "Incomplete mode "
2929 "parameter data\n");
2930 goto defaults;
2931 }
2932 }
2933 }
2934
2935 sd_first_printk(KERN_WARNING, sdkp,
2936 "No Caching mode page found\n");
2937 goto defaults;
2938
2939 Page_found:
2940 if (modepage == 8) {
2941 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2942 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2943 } else {
2944 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2945 sdkp->RCD = 0;
2946 }
2947
2948 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2949 if (sdp->broken_fua) {
2950 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2951 sdkp->DPOFUA = 0;
2952 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2953 !sdkp->device->use_16_for_rw) {
2954 sd_first_printk(KERN_NOTICE, sdkp,
2955 "Uses READ/WRITE(6), disabling FUA\n");
2956 sdkp->DPOFUA = 0;
2957 }
2958
2959 /* No cache flush allowed for write protected devices */
2960 if (sdkp->WCE && sdkp->write_prot)
2961 sdkp->WCE = 0;
2962
2963 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2964 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2965 sd_printk(KERN_NOTICE, sdkp,
2966 "Write cache: %s, read cache: %s, %s\n",
2967 sdkp->WCE ? "enabled" : "disabled",
2968 sdkp->RCD ? "disabled" : "enabled",
2969 sdkp->DPOFUA ? "supports DPO and FUA"
2970 : "doesn't support DPO or FUA");
2971
2972 return;
2973 }
2974
2975bad_sense:
2976 if (res == -EIO && scsi_sense_valid(sshdr: &sshdr) &&
2977 sshdr.sense_key == ILLEGAL_REQUEST &&
2978 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2979 /* Invalid field in CDB */
2980 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2981 else
2982 sd_first_printk(KERN_ERR, sdkp,
2983 "Asking for cache data failed\n");
2984
2985defaults:
2986 if (sdp->wce_default_on) {
2987 sd_first_printk(KERN_NOTICE, sdkp,
2988 "Assuming drive cache: write back\n");
2989 sdkp->WCE = 1;
2990 } else {
2991 sd_first_printk(KERN_WARNING, sdkp,
2992 "Assuming drive cache: write through\n");
2993 sdkp->WCE = 0;
2994 }
2995 sdkp->RCD = 0;
2996 sdkp->DPOFUA = 0;
2997}
2998
2999/*
3000 * The ATO bit indicates whether the DIF application tag is available
3001 * for use by the operating system.
3002 */
3003static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3004{
3005 int res, offset;
3006 struct scsi_device *sdp = sdkp->device;
3007 struct scsi_mode_data data;
3008 struct scsi_sense_hdr sshdr;
3009
3010 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3011 return;
3012
3013 if (sdkp->protection_type == 0)
3014 return;
3015
3016 res = scsi_mode_sense(sdev: sdp, dbd: 1, modepage: 0x0a, subpage: 0, buffer, len: 36, SD_TIMEOUT,
3017 retries: sdkp->max_retries, data: &data, &sshdr);
3018
3019 if (res < 0 || !data.header_length ||
3020 data.length < 6) {
3021 sd_first_printk(KERN_WARNING, sdkp,
3022 "getting Control mode page failed, assume no ATO\n");
3023
3024 if (res == -EIO && scsi_sense_valid(sshdr: &sshdr))
3025 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
3026
3027 return;
3028 }
3029
3030 offset = data.header_length + data.block_descriptor_length;
3031
3032 if ((buffer[offset] & 0x3f) != 0x0a) {
3033 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3034 return;
3035 }
3036
3037 if ((buffer[offset + 5] & 0x80) == 0)
3038 return;
3039
3040 sdkp->ATO = 1;
3041
3042 return;
3043}
3044
3045/**
3046 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3047 * @sdkp: disk to query
3048 */
3049static void sd_read_block_limits(struct scsi_disk *sdkp)
3050{
3051 struct scsi_vpd *vpd;
3052
3053 rcu_read_lock();
3054
3055 vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3056 if (!vpd || vpd->len < 16)
3057 goto out;
3058
3059 sdkp->min_xfer_blocks = get_unaligned_be16(p: &vpd->data[6]);
3060 sdkp->max_xfer_blocks = get_unaligned_be32(p: &vpd->data[8]);
3061 sdkp->opt_xfer_blocks = get_unaligned_be32(p: &vpd->data[12]);
3062
3063 if (vpd->len >= 64) {
3064 unsigned int lba_count, desc_count;
3065
3066 sdkp->max_ws_blocks = (u32)get_unaligned_be64(p: &vpd->data[36]);
3067
3068 if (!sdkp->lbpme)
3069 goto out;
3070
3071 lba_count = get_unaligned_be32(p: &vpd->data[20]);
3072 desc_count = get_unaligned_be32(p: &vpd->data[24]);
3073
3074 if (lba_count && desc_count)
3075 sdkp->max_unmap_blocks = lba_count;
3076
3077 sdkp->unmap_granularity = get_unaligned_be32(p: &vpd->data[28]);
3078
3079 if (vpd->data[32] & 0x80)
3080 sdkp->unmap_alignment =
3081 get_unaligned_be32(p: &vpd->data[32]) & ~(1 << 31);
3082
3083 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3084
3085 if (sdkp->max_unmap_blocks)
3086 sd_config_discard(sdkp, mode: SD_LBP_UNMAP);
3087 else
3088 sd_config_discard(sdkp, mode: SD_LBP_WS16);
3089
3090 } else { /* LBP VPD page tells us what to use */
3091 if (sdkp->lbpu && sdkp->max_unmap_blocks)
3092 sd_config_discard(sdkp, mode: SD_LBP_UNMAP);
3093 else if (sdkp->lbpws)
3094 sd_config_discard(sdkp, mode: SD_LBP_WS16);
3095 else if (sdkp->lbpws10)
3096 sd_config_discard(sdkp, mode: SD_LBP_WS10);
3097 else
3098 sd_config_discard(sdkp, mode: SD_LBP_DISABLE);
3099 }
3100 }
3101
3102 out:
3103 rcu_read_unlock();
3104}
3105
3106/**
3107 * sd_read_block_characteristics - Query block dev. characteristics
3108 * @sdkp: disk to query
3109 */
3110static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3111{
3112 struct request_queue *q = sdkp->disk->queue;
3113 struct scsi_vpd *vpd;
3114 u16 rot;
3115 u8 zoned;
3116
3117 rcu_read_lock();
3118 vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3119
3120 if (!vpd || vpd->len < 8) {
3121 rcu_read_unlock();
3122 return;
3123 }
3124
3125 rot = get_unaligned_be16(p: &vpd->data[4]);
3126 zoned = (vpd->data[8] >> 4) & 3;
3127 rcu_read_unlock();
3128
3129 if (rot == 1) {
3130 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3131 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3132 }
3133
3134 if (sdkp->device->type == TYPE_ZBC) {
3135 /*
3136 * Host-managed: Per ZBC and ZAC specifications, writes in
3137 * sequential write required zones of host-managed devices must
3138 * be aligned to the device physical block size.
3139 */
3140 disk_set_zoned(disk: sdkp->disk, model: BLK_ZONED_HM);
3141 blk_queue_zone_write_granularity(q, size: sdkp->physical_block_size);
3142 } else {
3143 sdkp->zoned = zoned;
3144 if (sdkp->zoned == 1) {
3145 /* Host-aware */
3146 disk_set_zoned(disk: sdkp->disk, model: BLK_ZONED_HA);
3147 } else {
3148 /* Regular disk or drive managed disk */
3149 disk_set_zoned(disk: sdkp->disk, model: BLK_ZONED_NONE);
3150 }
3151 }
3152
3153 if (!sdkp->first_scan)
3154 return;
3155
3156 if (blk_queue_is_zoned(q)) {
3157 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3158 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3159 } else {
3160 if (sdkp->zoned == 1)
3161 sd_printk(KERN_NOTICE, sdkp,
3162 "Host-aware SMR disk used as regular disk\n");
3163 else if (sdkp->zoned == 2)
3164 sd_printk(KERN_NOTICE, sdkp,
3165 "Drive-managed SMR disk\n");
3166 }
3167}
3168
3169/**
3170 * sd_read_block_provisioning - Query provisioning VPD page
3171 * @sdkp: disk to query
3172 */
3173static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3174{
3175 struct scsi_vpd *vpd;
3176
3177 if (sdkp->lbpme == 0)
3178 return;
3179
3180 rcu_read_lock();
3181 vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3182
3183 if (!vpd || vpd->len < 8) {
3184 rcu_read_unlock();
3185 return;
3186 }
3187
3188 sdkp->lbpvpd = 1;
3189 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */
3190 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3191 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3192 rcu_read_unlock();
3193}
3194
3195static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3196{
3197 struct scsi_device *sdev = sdkp->device;
3198
3199 if (sdev->host->no_write_same) {
3200 sdev->no_write_same = 1;
3201
3202 return;
3203 }
3204
3205 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, sa: 0) < 0) {
3206 struct scsi_vpd *vpd;
3207
3208 sdev->no_report_opcodes = 1;
3209
3210 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3211 * CODES is unsupported and the device has an ATA
3212 * Information VPD page (SAT).
3213 */
3214 rcu_read_lock();
3215 vpd = rcu_dereference(sdev->vpd_pg89);
3216 if (vpd)
3217 sdev->no_write_same = 1;
3218 rcu_read_unlock();
3219 }
3220
3221 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, sa: 0) == 1)
3222 sdkp->ws16 = 1;
3223
3224 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, sa: 0) == 1)
3225 sdkp->ws10 = 1;
3226}
3227
3228static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3229{
3230 struct scsi_device *sdev = sdkp->device;
3231
3232 if (!sdev->security_supported)
3233 return;
3234
3235 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3236 SECURITY_PROTOCOL_IN, sa: 0) == 1 &&
3237 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3238 SECURITY_PROTOCOL_OUT, sa: 0) == 1)
3239 sdkp->security = 1;
3240}
3241
3242static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3243{
3244 return logical_to_sectors(sdev: sdkp->device, blocks: get_unaligned_be64(p: buf));
3245}
3246
3247/**
3248 * sd_read_cpr - Query concurrent positioning ranges
3249 * @sdkp: disk to query
3250 */
3251static void sd_read_cpr(struct scsi_disk *sdkp)
3252{
3253 struct blk_independent_access_ranges *iars = NULL;
3254 unsigned char *buffer = NULL;
3255 unsigned int nr_cpr = 0;
3256 int i, vpd_len, buf_len = SD_BUF_SIZE;
3257 u8 *desc;
3258
3259 /*
3260 * We need to have the capacity set first for the block layer to be
3261 * able to check the ranges.
3262 */
3263 if (sdkp->first_scan)
3264 return;
3265
3266 if (!sdkp->capacity)
3267 goto out;
3268
3269 /*
3270 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3271 * leading to a maximum page size of 64 + 256*32 bytes.
3272 */
3273 buf_len = 64 + 256*32;
3274 buffer = kmalloc(size: buf_len, GFP_KERNEL);
3275 if (!buffer || scsi_get_vpd_page(sdkp->device, page: 0xb9, buf: buffer, buf_len))
3276 goto out;
3277
3278 /* We must have at least a 64B header and one 32B range descriptor */
3279 vpd_len = get_unaligned_be16(p: &buffer[2]) + 4;
3280 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3281 sd_printk(KERN_ERR, sdkp,
3282 "Invalid Concurrent Positioning Ranges VPD page\n");
3283 goto out;
3284 }
3285
3286 nr_cpr = (vpd_len - 64) / 32;
3287 if (nr_cpr == 1) {
3288 nr_cpr = 0;
3289 goto out;
3290 }
3291
3292 iars = disk_alloc_independent_access_ranges(disk: sdkp->disk, nr_ia_ranges: nr_cpr);
3293 if (!iars) {
3294 nr_cpr = 0;
3295 goto out;
3296 }
3297
3298 desc = &buffer[64];
3299 for (i = 0; i < nr_cpr; i++, desc += 32) {
3300 if (desc[0] != i) {
3301 sd_printk(KERN_ERR, sdkp,
3302 "Invalid Concurrent Positioning Range number\n");
3303 nr_cpr = 0;
3304 break;
3305 }
3306
3307 iars->ia_range[i].sector = sd64_to_sectors(sdkp, buf: desc + 8);
3308 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, buf: desc + 16);
3309 }
3310
3311out:
3312 disk_set_independent_access_ranges(disk: sdkp->disk, iars);
3313 if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3314 sd_printk(KERN_NOTICE, sdkp,
3315 "%u concurrent positioning ranges\n", nr_cpr);
3316 sdkp->nr_actuators = nr_cpr;
3317 }
3318
3319 kfree(objp: buffer);
3320}
3321
3322static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3323{
3324 struct scsi_device *sdp = sdkp->device;
3325 unsigned int min_xfer_bytes =
3326 logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks);
3327
3328 if (sdkp->min_xfer_blocks == 0)
3329 return false;
3330
3331 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3332 sd_first_printk(KERN_WARNING, sdkp,
3333 "Preferred minimum I/O size %u bytes not a " \
3334 "multiple of physical block size (%u bytes)\n",
3335 min_xfer_bytes, sdkp->physical_block_size);
3336 sdkp->min_xfer_blocks = 0;
3337 return false;
3338 }
3339
3340 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3341 min_xfer_bytes);
3342 return true;
3343}
3344
3345/*
3346 * Determine the device's preferred I/O size for reads and writes
3347 * unless the reported value is unreasonably small, large, not a
3348 * multiple of the physical block size, or simply garbage.
3349 */
3350static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3351 unsigned int dev_max)
3352{
3353 struct scsi_device *sdp = sdkp->device;
3354 unsigned int opt_xfer_bytes =
3355 logical_to_bytes(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3356 unsigned int min_xfer_bytes =
3357 logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks);
3358
3359 if (sdkp->opt_xfer_blocks == 0)
3360 return false;
3361
3362 if (sdkp->opt_xfer_blocks > dev_max) {
3363 sd_first_printk(KERN_WARNING, sdkp,
3364 "Optimal transfer size %u logical blocks " \
3365 "> dev_max (%u logical blocks)\n",
3366 sdkp->opt_xfer_blocks, dev_max);
3367 return false;
3368 }
3369
3370 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3371 sd_first_printk(KERN_WARNING, sdkp,
3372 "Optimal transfer size %u logical blocks " \
3373 "> sd driver limit (%u logical blocks)\n",
3374 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3375 return false;
3376 }
3377
3378 if (opt_xfer_bytes < PAGE_SIZE) {
3379 sd_first_printk(KERN_WARNING, sdkp,
3380 "Optimal transfer size %u bytes < " \
3381 "PAGE_SIZE (%u bytes)\n",
3382 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3383 return false;
3384 }
3385
3386 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3387 sd_first_printk(KERN_WARNING, sdkp,
3388 "Optimal transfer size %u bytes not a " \
3389 "multiple of preferred minimum block " \
3390 "size (%u bytes)\n",
3391 opt_xfer_bytes, min_xfer_bytes);
3392 return false;
3393 }
3394
3395 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3396 sd_first_printk(KERN_WARNING, sdkp,
3397 "Optimal transfer size %u bytes not a " \
3398 "multiple of physical block size (%u bytes)\n",
3399 opt_xfer_bytes, sdkp->physical_block_size);
3400 return false;
3401 }
3402
3403 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3404 opt_xfer_bytes);
3405 return true;
3406}
3407
3408/**
3409 * sd_revalidate_disk - called the first time a new disk is seen,
3410 * performs disk spin up, read_capacity, etc.
3411 * @disk: struct gendisk we care about
3412 **/
3413static int sd_revalidate_disk(struct gendisk *disk)
3414{
3415 struct scsi_disk *sdkp = scsi_disk(disk);
3416 struct scsi_device *sdp = sdkp->device;
3417 struct request_queue *q = sdkp->disk->queue;
3418 sector_t old_capacity = sdkp->capacity;
3419 unsigned char *buffer;
3420 unsigned int dev_max, rw_max;
3421
3422 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3423 "sd_revalidate_disk\n"));
3424
3425 /*
3426 * If the device is offline, don't try and read capacity or any
3427 * of the other niceties.
3428 */
3429 if (!scsi_device_online(sdev: sdp))
3430 goto out;
3431
3432 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3433 if (!buffer) {
3434 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3435 "allocation failure.\n");
3436 goto out;
3437 }
3438
3439 sd_spinup_disk(sdkp);
3440
3441 /*
3442 * Without media there is no reason to ask; moreover, some devices
3443 * react badly if we do.
3444 */
3445 if (sdkp->media_present) {
3446 sd_read_capacity(sdkp, buffer);
3447
3448 /*
3449 * set the default to rotational. All non-rotational devices
3450 * support the block characteristics VPD page, which will
3451 * cause this to be updated correctly and any device which
3452 * doesn't support it should be treated as rotational.
3453 */
3454 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3455 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3456
3457 if (scsi_device_supports_vpd(sdev: sdp)) {
3458 sd_read_block_provisioning(sdkp);
3459 sd_read_block_limits(sdkp);
3460 sd_read_block_characteristics(sdkp);
3461 sd_zbc_read_zones(sdkp, buf: buffer);
3462 sd_read_cpr(sdkp);
3463 }
3464
3465 sd_print_capacity(sdkp, old_capacity);
3466
3467 sd_read_write_protect_flag(sdkp, buffer);
3468 sd_read_cache_type(sdkp, buffer);
3469 sd_read_app_tag_own(sdkp, buffer);
3470 sd_read_write_same(sdkp, buffer);
3471 sd_read_security(sdkp, buffer);
3472 sd_config_protection(sdkp);
3473 }
3474
3475 /*
3476 * We now have all cache related info, determine how we deal
3477 * with flush requests.
3478 */
3479 sd_set_flush_flag(sdkp);
3480
3481 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3482 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3483
3484 /* Some devices report a maximum block count for READ/WRITE requests. */
3485 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3486 q->limits.max_dev_sectors = logical_to_sectors(sdev: sdp, blocks: dev_max);
3487
3488 if (sd_validate_min_xfer_size(sdkp))
3489 blk_queue_io_min(q: sdkp->disk->queue,
3490 min: logical_to_bytes(sdev: sdp, blocks: sdkp->min_xfer_blocks));
3491 else
3492 blk_queue_io_min(q: sdkp->disk->queue, min: 0);
3493
3494 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3495 q->limits.io_opt = logical_to_bytes(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3496 rw_max = logical_to_sectors(sdev: sdp, blocks: sdkp->opt_xfer_blocks);
3497 } else {
3498 q->limits.io_opt = 0;
3499 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3500 (sector_t)BLK_DEF_MAX_SECTORS);
3501 }
3502
3503 /*
3504 * Limit default to SCSI host optimal sector limit if set. There may be
3505 * an impact on performance for when the size of a request exceeds this
3506 * host limit.
3507 */
3508 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3509
3510 /* Do not exceed controller limit */
3511 rw_max = min(rw_max, queue_max_hw_sectors(q));
3512
3513 /*
3514 * Only update max_sectors if previously unset or if the current value
3515 * exceeds the capabilities of the hardware.
3516 */
3517 if (sdkp->first_scan ||
3518 q->limits.max_sectors > q->limits.max_dev_sectors ||
3519 q->limits.max_sectors > q->limits.max_hw_sectors)
3520 q->limits.max_sectors = rw_max;
3521
3522 sdkp->first_scan = 0;
3523
3524 set_capacity_and_notify(disk, size: logical_to_sectors(sdev: sdp, blocks: sdkp->capacity));
3525 sd_config_write_same(sdkp);
3526 kfree(objp: buffer);
3527
3528 /*
3529 * For a zoned drive, revalidating the zones can be done only once
3530 * the gendisk capacity is set. So if this fails, set back the gendisk
3531 * capacity to 0.
3532 */
3533 if (sd_zbc_revalidate_zones(sdkp))
3534 set_capacity_and_notify(disk, size: 0);
3535
3536 out:
3537 return 0;
3538}
3539
3540/**
3541 * sd_unlock_native_capacity - unlock native capacity
3542 * @disk: struct gendisk to set capacity for
3543 *
3544 * Block layer calls this function if it detects that partitions
3545 * on @disk reach beyond the end of the device. If the SCSI host
3546 * implements ->unlock_native_capacity() method, it's invoked to
3547 * give it a chance to adjust the device capacity.
3548 *
3549 * CONTEXT:
3550 * Defined by block layer. Might sleep.
3551 */
3552static void sd_unlock_native_capacity(struct gendisk *disk)
3553{
3554 struct scsi_device *sdev = scsi_disk(disk)->device;
3555
3556 if (sdev->host->hostt->unlock_native_capacity)
3557 sdev->host->hostt->unlock_native_capacity(sdev);
3558}
3559
3560/**
3561 * sd_format_disk_name - format disk name
3562 * @prefix: name prefix - ie. "sd" for SCSI disks
3563 * @index: index of the disk to format name for
3564 * @buf: output buffer
3565 * @buflen: length of the output buffer
3566 *
3567 * SCSI disk names starts at sda. The 26th device is sdz and the
3568 * 27th is sdaa. The last one for two lettered suffix is sdzz
3569 * which is followed by sdaaa.
3570 *
3571 * This is basically 26 base counting with one extra 'nil' entry
3572 * at the beginning from the second digit on and can be
3573 * determined using similar method as 26 base conversion with the
3574 * index shifted -1 after each digit is computed.
3575 *
3576 * CONTEXT:
3577 * Don't care.
3578 *
3579 * RETURNS:
3580 * 0 on success, -errno on failure.
3581 */
3582static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3583{
3584 const int base = 'z' - 'a' + 1;
3585 char *begin = buf + strlen(prefix);
3586 char *end = buf + buflen;
3587 char *p;
3588 int unit;
3589
3590 p = end - 1;
3591 *p = '\0';
3592 unit = base;
3593 do {
3594 if (p == begin)
3595 return -EINVAL;
3596 *--p = 'a' + (index % unit);
3597 index = (index / unit) - 1;
3598 } while (index >= 0);
3599
3600 memmove(begin, p, end - p);
3601 memcpy(buf, prefix, strlen(prefix));
3602
3603 return 0;
3604}
3605
3606/**
3607 * sd_probe - called during driver initialization and whenever a
3608 * new scsi device is attached to the system. It is called once
3609 * for each scsi device (not just disks) present.
3610 * @dev: pointer to device object
3611 *
3612 * Returns 0 if successful (or not interested in this scsi device
3613 * (e.g. scanner)); 1 when there is an error.
3614 *
3615 * Note: this function is invoked from the scsi mid-level.
3616 * This function sets up the mapping between a given
3617 * <host,channel,id,lun> (found in sdp) and new device name
3618 * (e.g. /dev/sda). More precisely it is the block device major
3619 * and minor number that is chosen here.
3620 *
3621 * Assume sd_probe is not re-entrant (for time being)
3622 * Also think about sd_probe() and sd_remove() running coincidentally.
3623 **/
3624static int sd_probe(struct device *dev)
3625{
3626 struct scsi_device *sdp = to_scsi_device(dev);
3627 struct scsi_disk *sdkp;
3628 struct gendisk *gd;
3629 int index;
3630 int error;
3631
3632 scsi_autopm_get_device(sdp);
3633 error = -ENODEV;
3634 if (sdp->type != TYPE_DISK &&
3635 sdp->type != TYPE_ZBC &&
3636 sdp->type != TYPE_MOD &&
3637 sdp->type != TYPE_RBC)
3638 goto out;
3639
3640 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3641 sdev_printk(KERN_WARNING, sdp,
3642 "Unsupported ZBC host-managed device.\n");
3643 goto out;
3644 }
3645
3646 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3647 "sd_probe\n"));
3648
3649 error = -ENOMEM;
3650 sdkp = kzalloc(size: sizeof(*sdkp), GFP_KERNEL);
3651 if (!sdkp)
3652 goto out;
3653
3654 gd = blk_mq_alloc_disk_for_queue(q: sdp->request_queue,
3655 lkclass: &sd_bio_compl_lkclass);
3656 if (!gd)
3657 goto out_free;
3658
3659 index = ida_alloc(ida: &sd_index_ida, GFP_KERNEL);
3660 if (index < 0) {
3661 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3662 goto out_put;
3663 }
3664
3665 error = sd_format_disk_name(prefix: "sd", index, buf: gd->disk_name, DISK_NAME_LEN);
3666 if (error) {
3667 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3668 goto out_free_index;
3669 }
3670
3671 sdkp->device = sdp;
3672 sdkp->disk = gd;
3673 sdkp->index = index;
3674 sdkp->max_retries = SD_MAX_RETRIES;
3675 atomic_set(v: &sdkp->openers, i: 0);
3676 atomic_set(v: &sdkp->device->ioerr_cnt, i: 0);
3677
3678 if (!sdp->request_queue->rq_timeout) {
3679 if (sdp->type != TYPE_MOD)
3680 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3681 else
3682 blk_queue_rq_timeout(sdp->request_queue,
3683 SD_MOD_TIMEOUT);
3684 }
3685
3686 device_initialize(dev: &sdkp->disk_dev);
3687 sdkp->disk_dev.parent = get_device(dev);
3688 sdkp->disk_dev.class = &sd_disk_class;
3689 dev_set_name(dev: &sdkp->disk_dev, name: "%s", dev_name(dev));
3690
3691 error = device_add(dev: &sdkp->disk_dev);
3692 if (error) {
3693 put_device(dev: &sdkp->disk_dev);
3694 goto out;
3695 }
3696
3697 dev_set_drvdata(dev, data: sdkp);
3698
3699 gd->major = sd_major(major_idx: (index & 0xf0) >> 4);
3700 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3701 gd->minors = SD_MINORS;
3702
3703 gd->fops = &sd_fops;
3704 gd->private_data = sdkp;
3705
3706 /* defaults, until the device tells us otherwise */
3707 sdp->sector_size = 512;
3708 sdkp->capacity = 0;
3709 sdkp->media_present = 1;
3710 sdkp->write_prot = 0;
3711 sdkp->cache_override = 0;
3712 sdkp->WCE = 0;
3713 sdkp->RCD = 0;
3714 sdkp->ATO = 0;
3715 sdkp->first_scan = 1;
3716 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3717
3718 sd_revalidate_disk(disk: gd);
3719
3720 if (sdp->removable) {
3721 gd->flags |= GENHD_FL_REMOVABLE;
3722 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3723 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3724 }
3725
3726 blk_pm_runtime_init(q: sdp->request_queue, dev);
3727 if (sdp->rpm_autosuspend) {
3728 pm_runtime_set_autosuspend_delay(dev,
3729 delay: sdp->host->hostt->rpm_autosuspend_delay);
3730 }
3731
3732 error = device_add_disk(parent: dev, disk: gd, NULL);
3733 if (error) {
3734 put_device(dev: &sdkp->disk_dev);
3735 put_disk(disk: gd);
3736 goto out;
3737 }
3738
3739 if (sdkp->security) {
3740 sdkp->opal_dev = init_opal_dev(data: sdkp, send_recv: &sd_sec_submit);
3741 if (sdkp->opal_dev)
3742 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3743 }
3744
3745 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3746 sdp->removable ? "removable " : "");
3747 scsi_autopm_put_device(sdp);
3748
3749 return 0;
3750
3751 out_free_index:
3752 ida_free(&sd_index_ida, id: index);
3753 out_put:
3754 put_disk(disk: gd);
3755 out_free:
3756 kfree(objp: sdkp);
3757 out:
3758 scsi_autopm_put_device(sdp);
3759 return error;
3760}
3761
3762/**
3763 * sd_remove - called whenever a scsi disk (previously recognized by
3764 * sd_probe) is detached from the system. It is called (potentially
3765 * multiple times) during sd module unload.
3766 * @dev: pointer to device object
3767 *
3768 * Note: this function is invoked from the scsi mid-level.
3769 * This function potentially frees up a device name (e.g. /dev/sdc)
3770 * that could be re-used by a subsequent sd_probe().
3771 * This function is not called when the built-in sd driver is "exit-ed".
3772 **/
3773static int sd_remove(struct device *dev)
3774{
3775 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3776
3777 scsi_autopm_get_device(sdkp->device);
3778
3779 device_del(dev: &sdkp->disk_dev);
3780 del_gendisk(gp: sdkp->disk);
3781 if (!sdkp->suspended)
3782 sd_shutdown(dev);
3783
3784 put_disk(disk: sdkp->disk);
3785 return 0;
3786}
3787
3788static void scsi_disk_release(struct device *dev)
3789{
3790 struct scsi_disk *sdkp = to_scsi_disk(dev);
3791
3792 ida_free(&sd_index_ida, id: sdkp->index);
3793 sd_zbc_free_zone_info(sdkp);
3794 put_device(dev: &sdkp->device->sdev_gendev);
3795 free_opal_dev(dev: sdkp->opal_dev);
3796
3797 kfree(objp: sdkp);
3798}
3799
3800static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3801{
3802 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3803 struct scsi_sense_hdr sshdr;
3804 const struct scsi_exec_args exec_args = {
3805 .sshdr = &sshdr,
3806 .req_flags = BLK_MQ_REQ_PM,
3807 };
3808 struct scsi_device *sdp = sdkp->device;
3809 int res;
3810
3811 if (start)
3812 cmd[4] |= 1; /* START */
3813
3814 if (sdp->start_stop_pwr_cond)
3815 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3816
3817 if (!scsi_device_online(sdev: sdp))
3818 return -ENODEV;
3819
3820 res = scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0, SD_TIMEOUT,
3821 retries: sdkp->max_retries, args: &exec_args);
3822 if (res) {
3823 sd_print_result(sdkp, msg: "Start/Stop Unit failed", result: res);
3824 if (res > 0 && scsi_sense_valid(sshdr: &sshdr)) {
3825 sd_print_sense_hdr(sdkp, sshdr: &sshdr);
3826 /* 0x3a is medium not present */
3827 if (sshdr.asc == 0x3a)
3828 res = 0;
3829 }
3830 }
3831
3832 /* SCSI error codes must not go to the generic layer */
3833 if (res)
3834 return -EIO;
3835
3836 return 0;
3837}
3838
3839/*
3840 * Send a SYNCHRONIZE CACHE instruction down to the device through
3841 * the normal SCSI command structure. Wait for the command to
3842 * complete.
3843 */
3844static void sd_shutdown(struct device *dev)
3845{
3846 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3847
3848 if (!sdkp)
3849 return; /* this can happen */
3850
3851 if (pm_runtime_suspended(dev))
3852 return;
3853
3854 if (sdkp->WCE && sdkp->media_present) {
3855 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3856 sd_sync_cache(sdkp, NULL);
3857 }
3858
3859 if ((system_state != SYSTEM_RESTART &&
3860 sdkp->device->manage_system_start_stop) ||
3861 (system_state == SYSTEM_POWER_OFF &&
3862 sdkp->device->manage_shutdown)) {
3863 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3864 sd_start_stop_device(sdkp, start: 0);
3865 }
3866}
3867
3868static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3869{
3870 return (sdev->manage_system_start_stop && !runtime) ||
3871 (sdev->manage_runtime_start_stop && runtime);
3872}
3873
3874static int sd_suspend_common(struct device *dev, bool runtime)
3875{
3876 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3877 struct scsi_sense_hdr sshdr;
3878 int ret = 0;
3879
3880 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3881 return 0;
3882
3883 if (sdkp->WCE && sdkp->media_present) {
3884 if (!sdkp->device->silence_suspend)
3885 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3886 ret = sd_sync_cache(sdkp, sshdr: &sshdr);
3887
3888 if (ret) {
3889 /* ignore OFFLINE device */
3890 if (ret == -ENODEV)
3891 return 0;
3892
3893 if (!scsi_sense_valid(sshdr: &sshdr) ||
3894 sshdr.sense_key != ILLEGAL_REQUEST)
3895 return ret;
3896
3897 /*
3898 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3899 * doesn't support sync. There's not much to do and
3900 * suspend shouldn't fail.
3901 */
3902 ret = 0;
3903 }
3904 }
3905
3906 if (sd_do_start_stop(sdev: sdkp->device, runtime)) {
3907 if (!sdkp->device->silence_suspend)
3908 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3909 /* an error is not worth aborting a system sleep */
3910 ret = sd_start_stop_device(sdkp, start: 0);
3911 if (!runtime)
3912 ret = 0;
3913 }
3914
3915 if (!ret)
3916 sdkp->suspended = true;
3917
3918 return ret;
3919}
3920
3921static int sd_suspend_system(struct device *dev)
3922{
3923 if (pm_runtime_suspended(dev))
3924 return 0;
3925
3926 return sd_suspend_common(dev, runtime: false);
3927}
3928
3929static int sd_suspend_runtime(struct device *dev)
3930{
3931 return sd_suspend_common(dev, runtime: true);
3932}
3933
3934static int sd_resume(struct device *dev, bool runtime)
3935{
3936 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3937 int ret;
3938
3939 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3940 return 0;
3941
3942 if (!sd_do_start_stop(sdev: sdkp->device, runtime)) {
3943 sdkp->suspended = false;
3944 return 0;
3945 }
3946
3947 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3948 ret = sd_start_stop_device(sdkp, start: 1);
3949 if (!ret) {
3950 opal_unlock_from_suspend(dev: sdkp->opal_dev);
3951 sdkp->suspended = false;
3952 }
3953
3954 return ret;
3955}
3956
3957static int sd_resume_system(struct device *dev)
3958{
3959 if (pm_runtime_suspended(dev))
3960 return 0;
3961
3962 return sd_resume(dev, runtime: false);
3963}
3964
3965static int sd_resume_runtime(struct device *dev)
3966{
3967 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3968 struct scsi_device *sdp;
3969
3970 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3971 return 0;
3972
3973 sdp = sdkp->device;
3974
3975 if (sdp->ignore_media_change) {
3976 /* clear the device's sense data */
3977 static const u8 cmd[10] = { REQUEST_SENSE };
3978 const struct scsi_exec_args exec_args = {
3979 .req_flags = BLK_MQ_REQ_PM,
3980 };
3981
3982 if (scsi_execute_cmd(sdev: sdp, cmd, opf: REQ_OP_DRV_IN, NULL, bufflen: 0,
3983 timeout: sdp->request_queue->rq_timeout, retries: 1,
3984 args: &exec_args))
3985 sd_printk(KERN_NOTICE, sdkp,
3986 "Failed to clear sense data\n");
3987 }
3988
3989 return sd_resume(dev, runtime: true);
3990}
3991
3992static const struct dev_pm_ops sd_pm_ops = {
3993 .suspend = sd_suspend_system,
3994 .resume = sd_resume_system,
3995 .poweroff = sd_suspend_system,
3996 .restore = sd_resume_system,
3997 .runtime_suspend = sd_suspend_runtime,
3998 .runtime_resume = sd_resume_runtime,
3999};
4000
4001static struct scsi_driver sd_template = {
4002 .gendrv = {
4003 .name = "sd",
4004 .owner = THIS_MODULE,
4005 .probe = sd_probe,
4006 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
4007 .remove = sd_remove,
4008 .shutdown = sd_shutdown,
4009 .pm = &sd_pm_ops,
4010 },
4011 .rescan = sd_rescan,
4012 .init_command = sd_init_command,
4013 .uninit_command = sd_uninit_command,
4014 .done = sd_done,
4015 .eh_action = sd_eh_action,
4016 .eh_reset = sd_eh_reset,
4017};
4018
4019/**
4020 * init_sd - entry point for this driver (both when built in or when
4021 * a module).
4022 *
4023 * Note: this function registers this driver with the scsi mid-level.
4024 **/
4025static int __init init_sd(void)
4026{
4027 int majors = 0, i, err;
4028
4029 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4030
4031 for (i = 0; i < SD_MAJORS; i++) {
4032 if (__register_blkdev(major: sd_major(major_idx: i), name: "sd", probe: sd_default_probe))
4033 continue;
4034 majors++;
4035 }
4036
4037 if (!majors)
4038 return -ENODEV;
4039
4040 err = class_register(class: &sd_disk_class);
4041 if (err)
4042 goto err_out;
4043
4044 sd_page_pool = mempool_create_page_pool(min_nr: SD_MEMPOOL_SIZE, order: 0);
4045 if (!sd_page_pool) {
4046 printk(KERN_ERR "sd: can't init discard page pool\n");
4047 err = -ENOMEM;
4048 goto err_out_class;
4049 }
4050
4051 err = scsi_register_driver(&sd_template.gendrv);
4052 if (err)
4053 goto err_out_driver;
4054
4055 return 0;
4056
4057err_out_driver:
4058 mempool_destroy(pool: sd_page_pool);
4059err_out_class:
4060 class_unregister(class: &sd_disk_class);
4061err_out:
4062 for (i = 0; i < SD_MAJORS; i++)
4063 unregister_blkdev(major: sd_major(major_idx: i), name: "sd");
4064 return err;
4065}
4066
4067/**
4068 * exit_sd - exit point for this driver (when it is a module).
4069 *
4070 * Note: this function unregisters this driver from the scsi mid-level.
4071 **/
4072static void __exit exit_sd(void)
4073{
4074 int i;
4075
4076 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4077
4078 scsi_unregister_driver(&sd_template.gendrv);
4079 mempool_destroy(pool: sd_page_pool);
4080
4081 class_unregister(class: &sd_disk_class);
4082
4083 for (i = 0; i < SD_MAJORS; i++)
4084 unregister_blkdev(major: sd_major(major_idx: i), name: "sd");
4085}
4086
4087module_init(init_sd);
4088module_exit(exit_sd);
4089
4090void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4091{
4092 scsi_print_sense_hdr(sdkp->device,
4093 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4094}
4095
4096void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4097{
4098 const char *hb_string = scsi_hostbyte_string(result);
4099
4100 if (hb_string)
4101 sd_printk(KERN_INFO, sdkp,
4102 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4103 hb_string ? hb_string : "invalid",
4104 "DRIVER_OK");
4105 else
4106 sd_printk(KERN_INFO, sdkp,
4107 "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4108 msg, host_byte(result), "DRIVER_OK");
4109}
4110

source code of linux/drivers/scsi/sd.c