1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 *
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
17 */
18#undef DEBUG
19
20#include <linux/clk.h>
21#include <linux/console.h>
22#include <linux/ctype.h>
23#include <linux/cpufreq.h>
24#include <linux/delay.h>
25#include <linux/dmaengine.h>
26#include <linux/dma-mapping.h>
27#include <linux/err.h>
28#include <linux/errno.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/ioport.h>
32#include <linux/ktime.h>
33#include <linux/major.h>
34#include <linux/minmax.h>
35#include <linux/module.h>
36#include <linux/mm.h>
37#include <linux/of.h>
38#include <linux/platform_device.h>
39#include <linux/pm_runtime.h>
40#include <linux/reset.h>
41#include <linux/scatterlist.h>
42#include <linux/serial.h>
43#include <linux/serial_sci.h>
44#include <linux/sh_dma.h>
45#include <linux/slab.h>
46#include <linux/string.h>
47#include <linux/sysrq.h>
48#include <linux/timer.h>
49#include <linux/tty.h>
50#include <linux/tty_flip.h>
51
52#ifdef CONFIG_SUPERH
53#include <asm/sh_bios.h>
54#include <asm/platform_early.h>
55#endif
56
57#include "serial_mctrl_gpio.h"
58#include "sh-sci.h"
59
60/* Offsets into the sci_port->irqs array */
61enum {
62 SCIx_ERI_IRQ,
63 SCIx_RXI_IRQ,
64 SCIx_TXI_IRQ,
65 SCIx_BRI_IRQ,
66 SCIx_DRI_IRQ,
67 SCIx_TEI_IRQ,
68 SCIx_NR_IRQS,
69
70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
71};
72
73#define SCIx_IRQ_IS_MUXED(port) \
74 ((port)->irqs[SCIx_ERI_IRQ] == \
75 (port)->irqs[SCIx_RXI_IRQ]) || \
76 ((port)->irqs[SCIx_ERI_IRQ] && \
77 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79enum SCI_CLKS {
80 SCI_FCK, /* Functional Clock */
81 SCI_SCK, /* Optional External Clock */
82 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
83 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
84 SCI_NUM_CLKS
85};
86
87/* Bit x set means sampling rate x + 1 is supported */
88#define SCI_SR(x) BIT((x) - 1)
89#define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
90
91#define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 SCI_SR(19) | SCI_SR(27)
94
95#define min_sr(_port) ffs((_port)->sampling_rate_mask)
96#define max_sr(_port) fls((_port)->sampling_rate_mask)
97
98/* Iterate over all supported sampling rates, from high to low */
99#define for_each_sr(_sr, _port) \
100 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
101 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102
103struct plat_sci_reg {
104 u8 offset, size;
105};
106
107struct sci_port_params {
108 const struct plat_sci_reg regs[SCIx_NR_REGS];
109 unsigned int fifosize;
110 unsigned int overrun_reg;
111 unsigned int overrun_mask;
112 unsigned int sampling_rate_mask;
113 unsigned int error_mask;
114 unsigned int error_clear;
115};
116
117struct sci_port {
118 struct uart_port port;
119
120 /* Platform configuration */
121 const struct sci_port_params *params;
122 const struct plat_sci_port *cfg;
123 unsigned int sampling_rate_mask;
124 resource_size_t reg_size;
125 struct mctrl_gpios *gpios;
126
127 /* Clocks */
128 struct clk *clks[SCI_NUM_CLKS];
129 unsigned long clk_rates[SCI_NUM_CLKS];
130
131 int irqs[SCIx_NR_IRQS];
132 char *irqstr[SCIx_NR_IRQS];
133
134 struct dma_chan *chan_tx;
135 struct dma_chan *chan_rx;
136
137#ifdef CONFIG_SERIAL_SH_SCI_DMA
138 struct dma_chan *chan_tx_saved;
139 struct dma_chan *chan_rx_saved;
140 dma_cookie_t cookie_tx;
141 dma_cookie_t cookie_rx[2];
142 dma_cookie_t active_rx;
143 dma_addr_t tx_dma_addr;
144 unsigned int tx_dma_len;
145 struct scatterlist sg_rx[2];
146 void *rx_buf[2];
147 size_t buf_len_rx;
148 struct work_struct work_tx;
149 struct hrtimer rx_timer;
150 unsigned int rx_timeout; /* microseconds */
151#endif
152 unsigned int rx_frame;
153 int rx_trigger;
154 struct timer_list rx_fifo_timer;
155 int rx_fifo_timeout;
156 u16 hscif_tot;
157
158 bool has_rtscts;
159 bool autorts;
160};
161
162#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163
164static struct sci_port sci_ports[SCI_NPORTS];
165static unsigned long sci_ports_in_use;
166static struct uart_driver sci_uart_driver;
167
168static inline struct sci_port *
169to_sci_port(struct uart_port *uart)
170{
171 return container_of(uart, struct sci_port, port);
172}
173
174static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175 /*
176 * Common SCI definitions, dependent on the port's regshift
177 * value.
178 */
179 [SCIx_SCI_REGTYPE] = {
180 .regs = {
181 [SCSMR] = { 0x00, 8 },
182 [SCBRR] = { .offset: 0x01, .size: 8 },
183 [SCSCR] = { .offset: 0x02, .size: 8 },
184 [SCxTDR] = { .offset: 0x03, .size: 8 },
185 [SCxSR] = { .offset: 0x04, .size: 8 },
186 [SCxRDR] = { .offset: 0x05, .size: 8 },
187 },
188 .fifosize = 1,
189 .overrun_reg = SCxSR,
190 .overrun_mask = SCI_ORER,
191 .sampling_rate_mask = SCI_SR(32),
192 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194 },
195
196 /*
197 * Common definitions for legacy IrDA ports.
198 */
199 [SCIx_IRDA_REGTYPE] = {
200 .regs = {
201 [SCSMR] = { 0x00, 8 },
202 [SCBRR] = { .offset: 0x02, .size: 8 },
203 [SCSCR] = { .offset: 0x04, .size: 8 },
204 [SCxTDR] = { .offset: 0x06, .size: 8 },
205 [SCxSR] = { .offset: 0x08, .size: 16 },
206 [SCxRDR] = { .offset: 0x0a, .size: 8 },
207 [SCFCR] = { .offset: 0x0c, .size: 8 },
208 [SCFDR] = { .offset: 0x0e, .size: 16 },
209 },
210 .fifosize = 1,
211 .overrun_reg = SCxSR,
212 .overrun_mask = SCI_ORER,
213 .sampling_rate_mask = SCI_SR(32),
214 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216 },
217
218 /*
219 * Common SCIFA definitions.
220 */
221 [SCIx_SCIFA_REGTYPE] = {
222 .regs = {
223 [SCSMR] = { 0x00, 16 },
224 [SCBRR] = { .offset: 0x04, .size: 8 },
225 [SCSCR] = { .offset: 0x08, .size: 16 },
226 [SCxTDR] = { .offset: 0x20, .size: 8 },
227 [SCxSR] = { .offset: 0x14, .size: 16 },
228 [SCxRDR] = { .offset: 0x24, .size: 8 },
229 [SCFCR] = { .offset: 0x18, .size: 16 },
230 [SCFDR] = { .offset: 0x1c, .size: 16 },
231 [SCPCR] = { .offset: 0x30, .size: 16 },
232 [SCPDR] = { .offset: 0x34, .size: 16 },
233 },
234 .fifosize = 64,
235 .overrun_reg = SCxSR,
236 .overrun_mask = SCIFA_ORER,
237 .sampling_rate_mask = SCI_SR_SCIFAB,
238 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240 },
241
242 /*
243 * Common SCIFB definitions.
244 */
245 [SCIx_SCIFB_REGTYPE] = {
246 .regs = {
247 [SCSMR] = { 0x00, 16 },
248 [SCBRR] = { .offset: 0x04, .size: 8 },
249 [SCSCR] = { .offset: 0x08, .size: 16 },
250 [SCxTDR] = { .offset: 0x40, .size: 8 },
251 [SCxSR] = { .offset: 0x14, .size: 16 },
252 [SCxRDR] = { .offset: 0x60, .size: 8 },
253 [SCFCR] = { .offset: 0x18, .size: 16 },
254 [SCTFDR] = { .offset: 0x38, .size: 16 },
255 [SCRFDR] = { .offset: 0x3c, .size: 16 },
256 [SCPCR] = { .offset: 0x30, .size: 16 },
257 [SCPDR] = { .offset: 0x34, .size: 16 },
258 },
259 .fifosize = 256,
260 .overrun_reg = SCxSR,
261 .overrun_mask = SCIFA_ORER,
262 .sampling_rate_mask = SCI_SR_SCIFAB,
263 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265 },
266
267 /*
268 * Common SH-2(A) SCIF definitions for ports with FIFO data
269 * count registers.
270 */
271 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272 .regs = {
273 [SCSMR] = { 0x00, 16 },
274 [SCBRR] = { .offset: 0x04, .size: 8 },
275 [SCSCR] = { .offset: 0x08, .size: 16 },
276 [SCxTDR] = { .offset: 0x0c, .size: 8 },
277 [SCxSR] = { .offset: 0x10, .size: 16 },
278 [SCxRDR] = { .offset: 0x14, .size: 8 },
279 [SCFCR] = { .offset: 0x18, .size: 16 },
280 [SCFDR] = { .offset: 0x1c, .size: 16 },
281 [SCSPTR] = { .offset: 0x20, .size: 16 },
282 [SCLSR] = { .offset: 0x24, .size: 16 },
283 },
284 .fifosize = 16,
285 .overrun_reg = SCLSR,
286 .overrun_mask = SCLSR_ORER,
287 .sampling_rate_mask = SCI_SR(32),
288 .error_mask = SCIF_DEFAULT_ERROR_MASK,
289 .error_clear = SCIF_ERROR_CLEAR,
290 },
291
292 /*
293 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294 * It looks like a normal SCIF with FIFO data, but with a
295 * compressed address space. Also, the break out of interrupts
296 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297 */
298 [SCIx_RZ_SCIFA_REGTYPE] = {
299 .regs = {
300 [SCSMR] = { 0x00, 16 },
301 [SCBRR] = { .offset: 0x02, .size: 8 },
302 [SCSCR] = { .offset: 0x04, .size: 16 },
303 [SCxTDR] = { .offset: 0x06, .size: 8 },
304 [SCxSR] = { .offset: 0x08, .size: 16 },
305 [SCxRDR] = { .offset: 0x0A, .size: 8 },
306 [SCFCR] = { .offset: 0x0C, .size: 16 },
307 [SCFDR] = { .offset: 0x0E, .size: 16 },
308 [SCSPTR] = { .offset: 0x10, .size: 16 },
309 [SCLSR] = { .offset: 0x12, .size: 16 },
310 [SEMR] = { .offset: 0x14, .size: 8 },
311 },
312 .fifosize = 16,
313 .overrun_reg = SCLSR,
314 .overrun_mask = SCLSR_ORER,
315 .sampling_rate_mask = SCI_SR(32),
316 .error_mask = SCIF_DEFAULT_ERROR_MASK,
317 .error_clear = SCIF_ERROR_CLEAR,
318 },
319
320 /*
321 * Common SH-3 SCIF definitions.
322 */
323 [SCIx_SH3_SCIF_REGTYPE] = {
324 .regs = {
325 [SCSMR] = { 0x00, 8 },
326 [SCBRR] = { .offset: 0x02, .size: 8 },
327 [SCSCR] = { .offset: 0x04, .size: 8 },
328 [SCxTDR] = { .offset: 0x06, .size: 8 },
329 [SCxSR] = { .offset: 0x08, .size: 16 },
330 [SCxRDR] = { .offset: 0x0a, .size: 8 },
331 [SCFCR] = { .offset: 0x0c, .size: 8 },
332 [SCFDR] = { .offset: 0x0e, .size: 16 },
333 },
334 .fifosize = 16,
335 .overrun_reg = SCLSR,
336 .overrun_mask = SCLSR_ORER,
337 .sampling_rate_mask = SCI_SR(32),
338 .error_mask = SCIF_DEFAULT_ERROR_MASK,
339 .error_clear = SCIF_ERROR_CLEAR,
340 },
341
342 /*
343 * Common SH-4(A) SCIF(B) definitions.
344 */
345 [SCIx_SH4_SCIF_REGTYPE] = {
346 .regs = {
347 [SCSMR] = { 0x00, 16 },
348 [SCBRR] = { .offset: 0x04, .size: 8 },
349 [SCSCR] = { .offset: 0x08, .size: 16 },
350 [SCxTDR] = { .offset: 0x0c, .size: 8 },
351 [SCxSR] = { .offset: 0x10, .size: 16 },
352 [SCxRDR] = { .offset: 0x14, .size: 8 },
353 [SCFCR] = { .offset: 0x18, .size: 16 },
354 [SCFDR] = { .offset: 0x1c, .size: 16 },
355 [SCSPTR] = { .offset: 0x20, .size: 16 },
356 [SCLSR] = { .offset: 0x24, .size: 16 },
357 },
358 .fifosize = 16,
359 .overrun_reg = SCLSR,
360 .overrun_mask = SCLSR_ORER,
361 .sampling_rate_mask = SCI_SR(32),
362 .error_mask = SCIF_DEFAULT_ERROR_MASK,
363 .error_clear = SCIF_ERROR_CLEAR,
364 },
365
366 /*
367 * Common SCIF definitions for ports with a Baud Rate Generator for
368 * External Clock (BRG).
369 */
370 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
371 .regs = {
372 [SCSMR] = { 0x00, 16 },
373 [SCBRR] = { .offset: 0x04, .size: 8 },
374 [SCSCR] = { .offset: 0x08, .size: 16 },
375 [SCxTDR] = { .offset: 0x0c, .size: 8 },
376 [SCxSR] = { .offset: 0x10, .size: 16 },
377 [SCxRDR] = { .offset: 0x14, .size: 8 },
378 [SCFCR] = { .offset: 0x18, .size: 16 },
379 [SCFDR] = { .offset: 0x1c, .size: 16 },
380 [SCSPTR] = { .offset: 0x20, .size: 16 },
381 [SCLSR] = { .offset: 0x24, .size: 16 },
382 [SCDL] = { .offset: 0x30, .size: 16 },
383 [SCCKS] = { .offset: 0x34, .size: 16 },
384 },
385 .fifosize = 16,
386 .overrun_reg = SCLSR,
387 .overrun_mask = SCLSR_ORER,
388 .sampling_rate_mask = SCI_SR(32),
389 .error_mask = SCIF_DEFAULT_ERROR_MASK,
390 .error_clear = SCIF_ERROR_CLEAR,
391 },
392
393 /*
394 * Common HSCIF definitions.
395 */
396 [SCIx_HSCIF_REGTYPE] = {
397 .regs = {
398 [SCSMR] = { 0x00, 16 },
399 [SCBRR] = { .offset: 0x04, .size: 8 },
400 [SCSCR] = { .offset: 0x08, .size: 16 },
401 [SCxTDR] = { .offset: 0x0c, .size: 8 },
402 [SCxSR] = { .offset: 0x10, .size: 16 },
403 [SCxRDR] = { .offset: 0x14, .size: 8 },
404 [SCFCR] = { .offset: 0x18, .size: 16 },
405 [SCFDR] = { .offset: 0x1c, .size: 16 },
406 [SCSPTR] = { .offset: 0x20, .size: 16 },
407 [SCLSR] = { .offset: 0x24, .size: 16 },
408 [HSSRR] = { .offset: 0x40, .size: 16 },
409 [SCDL] = { .offset: 0x30, .size: 16 },
410 [SCCKS] = { .offset: 0x34, .size: 16 },
411 [HSRTRGR] = { .offset: 0x54, .size: 16 },
412 [HSTTRGR] = { .offset: 0x58, .size: 16 },
413 },
414 .fifosize = 128,
415 .overrun_reg = SCLSR,
416 .overrun_mask = SCLSR_ORER,
417 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
418 .error_mask = SCIF_DEFAULT_ERROR_MASK,
419 .error_clear = SCIF_ERROR_CLEAR,
420 },
421
422 /*
423 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
424 * register.
425 */
426 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
427 .regs = {
428 [SCSMR] = { 0x00, 16 },
429 [SCBRR] = { .offset: 0x04, .size: 8 },
430 [SCSCR] = { .offset: 0x08, .size: 16 },
431 [SCxTDR] = { .offset: 0x0c, .size: 8 },
432 [SCxSR] = { .offset: 0x10, .size: 16 },
433 [SCxRDR] = { .offset: 0x14, .size: 8 },
434 [SCFCR] = { .offset: 0x18, .size: 16 },
435 [SCFDR] = { .offset: 0x1c, .size: 16 },
436 [SCLSR] = { .offset: 0x24, .size: 16 },
437 },
438 .fifosize = 16,
439 .overrun_reg = SCLSR,
440 .overrun_mask = SCLSR_ORER,
441 .sampling_rate_mask = SCI_SR(32),
442 .error_mask = SCIF_DEFAULT_ERROR_MASK,
443 .error_clear = SCIF_ERROR_CLEAR,
444 },
445
446 /*
447 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
448 * count registers.
449 */
450 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
451 .regs = {
452 [SCSMR] = { 0x00, 16 },
453 [SCBRR] = { .offset: 0x04, .size: 8 },
454 [SCSCR] = { .offset: 0x08, .size: 16 },
455 [SCxTDR] = { .offset: 0x0c, .size: 8 },
456 [SCxSR] = { .offset: 0x10, .size: 16 },
457 [SCxRDR] = { .offset: 0x14, .size: 8 },
458 [SCFCR] = { .offset: 0x18, .size: 16 },
459 [SCFDR] = { .offset: 0x1c, .size: 16 },
460 [SCTFDR] = { .offset: 0x1c, .size: 16 }, /* aliased to SCFDR */
461 [SCRFDR] = { .offset: 0x20, .size: 16 },
462 [SCSPTR] = { .offset: 0x24, .size: 16 },
463 [SCLSR] = { .offset: 0x28, .size: 16 },
464 },
465 .fifosize = 16,
466 .overrun_reg = SCLSR,
467 .overrun_mask = SCLSR_ORER,
468 .sampling_rate_mask = SCI_SR(32),
469 .error_mask = SCIF_DEFAULT_ERROR_MASK,
470 .error_clear = SCIF_ERROR_CLEAR,
471 },
472
473 /*
474 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
475 * registers.
476 */
477 [SCIx_SH7705_SCIF_REGTYPE] = {
478 .regs = {
479 [SCSMR] = { 0x00, 16 },
480 [SCBRR] = { .offset: 0x04, .size: 8 },
481 [SCSCR] = { .offset: 0x08, .size: 16 },
482 [SCxTDR] = { .offset: 0x20, .size: 8 },
483 [SCxSR] = { .offset: 0x14, .size: 16 },
484 [SCxRDR] = { .offset: 0x24, .size: 8 },
485 [SCFCR] = { .offset: 0x18, .size: 16 },
486 [SCFDR] = { .offset: 0x1c, .size: 16 },
487 },
488 .fifosize = 64,
489 .overrun_reg = SCxSR,
490 .overrun_mask = SCIFA_ORER,
491 .sampling_rate_mask = SCI_SR(16),
492 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
493 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
494 },
495};
496
497#define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
498
499/*
500 * The "offset" here is rather misleading, in that it refers to an enum
501 * value relative to the port mapping rather than the fixed offset
502 * itself, which needs to be manually retrieved from the platform's
503 * register map for the given port.
504 */
505static unsigned int sci_serial_in(struct uart_port *p, int offset)
506{
507 const struct plat_sci_reg *reg = sci_getreg(p, offset);
508
509 if (reg->size == 8)
510 return ioread8(p->membase + (reg->offset << p->regshift));
511 else if (reg->size == 16)
512 return ioread16(p->membase + (reg->offset << p->regshift));
513 else
514 WARN(1, "Invalid register access\n");
515
516 return 0;
517}
518
519static void sci_serial_out(struct uart_port *p, int offset, int value)
520{
521 const struct plat_sci_reg *reg = sci_getreg(p, offset);
522
523 if (reg->size == 8)
524 iowrite8(value, p->membase + (reg->offset << p->regshift));
525 else if (reg->size == 16)
526 iowrite16(value, p->membase + (reg->offset << p->regshift));
527 else
528 WARN(1, "Invalid register access\n");
529}
530
531static void sci_port_enable(struct sci_port *sci_port)
532{
533 unsigned int i;
534
535 if (!sci_port->port.dev)
536 return;
537
538 pm_runtime_get_sync(dev: sci_port->port.dev);
539
540 for (i = 0; i < SCI_NUM_CLKS; i++) {
541 clk_prepare_enable(clk: sci_port->clks[i]);
542 sci_port->clk_rates[i] = clk_get_rate(clk: sci_port->clks[i]);
543 }
544 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
545}
546
547static void sci_port_disable(struct sci_port *sci_port)
548{
549 unsigned int i;
550
551 if (!sci_port->port.dev)
552 return;
553
554 for (i = SCI_NUM_CLKS; i-- > 0; )
555 clk_disable_unprepare(clk: sci_port->clks[i]);
556
557 pm_runtime_put_sync(dev: sci_port->port.dev);
558}
559
560static inline unsigned long port_rx_irq_mask(struct uart_port *port)
561{
562 /*
563 * Not all ports (such as SCIFA) will support REIE. Rather than
564 * special-casing the port type, we check the port initialization
565 * IRQ enable mask to see whether the IRQ is desired at all. If
566 * it's unset, it's logically inferred that there's no point in
567 * testing for it.
568 */
569 return SCSCR_RIE | (to_sci_port(uart: port)->cfg->scscr & SCSCR_REIE);
570}
571
572static void sci_start_tx(struct uart_port *port)
573{
574 struct sci_port *s = to_sci_port(uart: port);
575 unsigned short ctrl;
576
577#ifdef CONFIG_SERIAL_SH_SCI_DMA
578 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
579 u16 new, scr = serial_port_in(up: port, offset: SCSCR);
580 if (s->chan_tx)
581 new = scr | SCSCR_TDRQE;
582 else
583 new = scr & ~SCSCR_TDRQE;
584 if (new != scr)
585 serial_port_out(up: port, offset: SCSCR, value: new);
586 }
587
588 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
589 dma_submit_error(cookie: s->cookie_tx)) {
590 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
591 /* Switch irq from SCIF to DMA */
592 disable_irq_nosync(irq: s->irqs[SCIx_TXI_IRQ]);
593
594 s->cookie_tx = 0;
595 schedule_work(work: &s->work_tx);
596 }
597#endif
598
599 if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
600 port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
601 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
602 ctrl = serial_port_in(up: port, offset: SCSCR);
603
604 /*
605 * For SCI, TE (transmit enable) must be set after setting TIE
606 * (transmit interrupt enable) or in the same instruction to start
607 * the transmit process.
608 */
609 if (port->type == PORT_SCI)
610 ctrl |= SCSCR_TE;
611
612 serial_port_out(up: port, offset: SCSCR, value: ctrl | SCSCR_TIE);
613 }
614}
615
616static void sci_stop_tx(struct uart_port *port)
617{
618 unsigned short ctrl;
619
620 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
621 ctrl = serial_port_in(up: port, offset: SCSCR);
622
623 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
624 ctrl &= ~SCSCR_TDRQE;
625
626 ctrl &= ~SCSCR_TIE;
627
628 serial_port_out(up: port, offset: SCSCR, value: ctrl);
629
630#ifdef CONFIG_SERIAL_SH_SCI_DMA
631 if (to_sci_port(uart: port)->chan_tx &&
632 !dma_submit_error(cookie: to_sci_port(uart: port)->cookie_tx)) {
633 dmaengine_terminate_async(chan: to_sci_port(uart: port)->chan_tx);
634 to_sci_port(uart: port)->cookie_tx = -EINVAL;
635 }
636#endif
637}
638
639static void sci_start_rx(struct uart_port *port)
640{
641 unsigned short ctrl;
642
643 ctrl = serial_port_in(up: port, offset: SCSCR) | port_rx_irq_mask(port);
644
645 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
646 ctrl &= ~SCSCR_RDRQE;
647
648 serial_port_out(up: port, offset: SCSCR, value: ctrl);
649}
650
651static void sci_stop_rx(struct uart_port *port)
652{
653 unsigned short ctrl;
654
655 ctrl = serial_port_in(up: port, offset: SCSCR);
656
657 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
658 ctrl &= ~SCSCR_RDRQE;
659
660 ctrl &= ~port_rx_irq_mask(port);
661
662 serial_port_out(up: port, offset: SCSCR, value: ctrl);
663}
664
665static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
666{
667 if (port->type == PORT_SCI) {
668 /* Just store the mask */
669 serial_port_out(up: port, offset: SCxSR, value: mask);
670 } else if (to_sci_port(uart: port)->params->overrun_mask == SCIFA_ORER) {
671 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
672 /* Only clear the status bits we want to clear */
673 serial_port_out(up: port, offset: SCxSR,
674 value: serial_port_in(up: port, offset: SCxSR) & mask);
675 } else {
676 /* Store the mask, clear parity/framing errors */
677 serial_port_out(up: port, offset: SCxSR, value: mask & ~(SCIF_FERC | SCIF_PERC));
678 }
679}
680
681#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
682 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
683
684#ifdef CONFIG_CONSOLE_POLL
685static int sci_poll_get_char(struct uart_port *port)
686{
687 unsigned short status;
688 int c;
689
690 do {
691 status = serial_port_in(up: port, offset: SCxSR);
692 if (status & SCxSR_ERRORS(port)) {
693 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
694 continue;
695 }
696 break;
697 } while (1);
698
699 if (!(status & SCxSR_RDxF(port)))
700 return NO_POLL_CHAR;
701
702 c = serial_port_in(up: port, offset: SCxRDR);
703
704 /* Dummy read */
705 serial_port_in(up: port, offset: SCxSR);
706 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
707
708 return c;
709}
710#endif
711
712static void sci_poll_put_char(struct uart_port *port, unsigned char c)
713{
714 unsigned short status;
715
716 do {
717 status = serial_port_in(up: port, offset: SCxSR);
718 } while (!(status & SCxSR_TDxE(port)));
719
720 serial_port_out(up: port, offset: SCxTDR, value: c);
721 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
722}
723#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
724 CONFIG_SERIAL_SH_SCI_EARLYCON */
725
726static void sci_init_pins(struct uart_port *port, unsigned int cflag)
727{
728 struct sci_port *s = to_sci_port(uart: port);
729
730 /*
731 * Use port-specific handler if provided.
732 */
733 if (s->cfg->ops && s->cfg->ops->init_pins) {
734 s->cfg->ops->init_pins(port, cflag);
735 return;
736 }
737
738 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
739 u16 data = serial_port_in(up: port, offset: SCPDR);
740 u16 ctrl = serial_port_in(up: port, offset: SCPCR);
741
742 /* Enable RXD and TXD pin functions */
743 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
744 if (to_sci_port(uart: port)->has_rtscts) {
745 /* RTS# is output, active low, unless autorts */
746 if (!(port->mctrl & TIOCM_RTS)) {
747 ctrl |= SCPCR_RTSC;
748 data |= SCPDR_RTSD;
749 } else if (!s->autorts) {
750 ctrl |= SCPCR_RTSC;
751 data &= ~SCPDR_RTSD;
752 } else {
753 /* Enable RTS# pin function */
754 ctrl &= ~SCPCR_RTSC;
755 }
756 /* Enable CTS# pin function */
757 ctrl &= ~SCPCR_CTSC;
758 }
759 serial_port_out(up: port, offset: SCPDR, value: data);
760 serial_port_out(up: port, offset: SCPCR, value: ctrl);
761 } else if (sci_getreg(port, SCSPTR)->size) {
762 u16 status = serial_port_in(up: port, offset: SCSPTR);
763
764 /* RTS# is always output; and active low, unless autorts */
765 status |= SCSPTR_RTSIO;
766 if (!(port->mctrl & TIOCM_RTS))
767 status |= SCSPTR_RTSDT;
768 else if (!s->autorts)
769 status &= ~SCSPTR_RTSDT;
770 /* CTS# and SCK are inputs */
771 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
772 serial_port_out(up: port, offset: SCSPTR, value: status);
773 }
774}
775
776static int sci_txfill(struct uart_port *port)
777{
778 struct sci_port *s = to_sci_port(uart: port);
779 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
780 const struct plat_sci_reg *reg;
781
782 reg = sci_getreg(port, SCTFDR);
783 if (reg->size)
784 return serial_port_in(up: port, offset: SCTFDR) & fifo_mask;
785
786 reg = sci_getreg(port, SCFDR);
787 if (reg->size)
788 return serial_port_in(up: port, offset: SCFDR) >> 8;
789
790 return !(serial_port_in(up: port, offset: SCxSR) & SCI_TDRE);
791}
792
793static int sci_txroom(struct uart_port *port)
794{
795 return port->fifosize - sci_txfill(port);
796}
797
798static int sci_rxfill(struct uart_port *port)
799{
800 struct sci_port *s = to_sci_port(uart: port);
801 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
802 const struct plat_sci_reg *reg;
803
804 reg = sci_getreg(port, SCRFDR);
805 if (reg->size)
806 return serial_port_in(up: port, offset: SCRFDR) & fifo_mask;
807
808 reg = sci_getreg(port, SCFDR);
809 if (reg->size)
810 return serial_port_in(up: port, offset: SCFDR) & fifo_mask;
811
812 return (serial_port_in(up: port, offset: SCxSR) & SCxSR_RDxF(port)) != 0;
813}
814
815/* ********************************************************************** *
816 * the interrupt related routines *
817 * ********************************************************************** */
818
819static void sci_transmit_chars(struct uart_port *port)
820{
821 struct circ_buf *xmit = &port->state->xmit;
822 unsigned int stopped = uart_tx_stopped(port);
823 unsigned short status;
824 unsigned short ctrl;
825 int count;
826
827 status = serial_port_in(up: port, offset: SCxSR);
828 if (!(status & SCxSR_TDxE(port))) {
829 ctrl = serial_port_in(up: port, offset: SCSCR);
830 if (uart_circ_empty(xmit))
831 ctrl &= ~SCSCR_TIE;
832 else
833 ctrl |= SCSCR_TIE;
834 serial_port_out(up: port, offset: SCSCR, value: ctrl);
835 return;
836 }
837
838 count = sci_txroom(port);
839
840 do {
841 unsigned char c;
842
843 if (port->x_char) {
844 c = port->x_char;
845 port->x_char = 0;
846 } else if (!uart_circ_empty(xmit) && !stopped) {
847 c = xmit->buf[xmit->tail];
848 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
849 } else if (port->type == PORT_SCI && uart_circ_empty(xmit)) {
850 ctrl = serial_port_in(up: port, offset: SCSCR);
851 ctrl &= ~SCSCR_TE;
852 serial_port_out(up: port, offset: SCSCR, value: ctrl);
853 return;
854 } else {
855 break;
856 }
857
858 serial_port_out(up: port, offset: SCxTDR, value: c);
859
860 port->icount.tx++;
861 } while (--count > 0);
862
863 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
864
865 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
866 uart_write_wakeup(port);
867 if (uart_circ_empty(xmit)) {
868 if (port->type == PORT_SCI) {
869 ctrl = serial_port_in(up: port, offset: SCSCR);
870 ctrl &= ~SCSCR_TIE;
871 ctrl |= SCSCR_TEIE;
872 serial_port_out(up: port, offset: SCSCR, value: ctrl);
873 }
874
875 sci_stop_tx(port);
876 }
877}
878
879static void sci_receive_chars(struct uart_port *port)
880{
881 struct tty_port *tport = &port->state->port;
882 int i, count, copied = 0;
883 unsigned short status;
884 unsigned char flag;
885
886 status = serial_port_in(up: port, offset: SCxSR);
887 if (!(status & SCxSR_RDxF(port)))
888 return;
889
890 while (1) {
891 /* Don't copy more bytes than there is room for in the buffer */
892 count = tty_buffer_request_room(port: tport, size: sci_rxfill(port));
893
894 /* If for any reason we can't copy more data, we're done! */
895 if (count == 0)
896 break;
897
898 if (port->type == PORT_SCI) {
899 char c = serial_port_in(up: port, offset: SCxRDR);
900 if (uart_handle_sysrq_char(port, ch: c))
901 count = 0;
902 else
903 tty_insert_flip_char(port: tport, ch: c, TTY_NORMAL);
904 } else {
905 for (i = 0; i < count; i++) {
906 char c;
907
908 if (port->type == PORT_SCIF ||
909 port->type == PORT_HSCIF) {
910 status = serial_port_in(up: port, offset: SCxSR);
911 c = serial_port_in(up: port, offset: SCxRDR);
912 } else {
913 c = serial_port_in(up: port, offset: SCxRDR);
914 status = serial_port_in(up: port, offset: SCxSR);
915 }
916 if (uart_handle_sysrq_char(port, ch: c)) {
917 count--; i--;
918 continue;
919 }
920
921 /* Store data and status */
922 if (status & SCxSR_FER(port)) {
923 flag = TTY_FRAME;
924 port->icount.frame++;
925 } else if (status & SCxSR_PER(port)) {
926 flag = TTY_PARITY;
927 port->icount.parity++;
928 } else
929 flag = TTY_NORMAL;
930
931 tty_insert_flip_char(port: tport, ch: c, flag);
932 }
933 }
934
935 serial_port_in(up: port, offset: SCxSR); /* dummy read */
936 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
937
938 copied += count;
939 port->icount.rx += count;
940 }
941
942 if (copied) {
943 /* Tell the rest of the system the news. New characters! */
944 tty_flip_buffer_push(port: tport);
945 } else {
946 /* TTY buffers full; read from RX reg to prevent lockup */
947 serial_port_in(up: port, offset: SCxRDR);
948 serial_port_in(up: port, offset: SCxSR); /* dummy read */
949 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
950 }
951}
952
953static int sci_handle_errors(struct uart_port *port)
954{
955 int copied = 0;
956 unsigned short status = serial_port_in(up: port, offset: SCxSR);
957 struct tty_port *tport = &port->state->port;
958 struct sci_port *s = to_sci_port(uart: port);
959
960 /* Handle overruns */
961 if (status & s->params->overrun_mask) {
962 port->icount.overrun++;
963
964 /* overrun error */
965 if (tty_insert_flip_char(port: tport, ch: 0, TTY_OVERRUN))
966 copied++;
967 }
968
969 if (status & SCxSR_FER(port)) {
970 /* frame error */
971 port->icount.frame++;
972
973 if (tty_insert_flip_char(port: tport, ch: 0, TTY_FRAME))
974 copied++;
975 }
976
977 if (status & SCxSR_PER(port)) {
978 /* parity error */
979 port->icount.parity++;
980
981 if (tty_insert_flip_char(port: tport, ch: 0, TTY_PARITY))
982 copied++;
983 }
984
985 if (copied)
986 tty_flip_buffer_push(port: tport);
987
988 return copied;
989}
990
991static int sci_handle_fifo_overrun(struct uart_port *port)
992{
993 struct tty_port *tport = &port->state->port;
994 struct sci_port *s = to_sci_port(uart: port);
995 const struct plat_sci_reg *reg;
996 int copied = 0;
997 u16 status;
998
999 reg = sci_getreg(port, s->params->overrun_reg);
1000 if (!reg->size)
1001 return 0;
1002
1003 status = serial_port_in(up: port, offset: s->params->overrun_reg);
1004 if (status & s->params->overrun_mask) {
1005 status &= ~s->params->overrun_mask;
1006 serial_port_out(up: port, offset: s->params->overrun_reg, value: status);
1007
1008 port->icount.overrun++;
1009
1010 tty_insert_flip_char(port: tport, ch: 0, TTY_OVERRUN);
1011 tty_flip_buffer_push(port: tport);
1012 copied++;
1013 }
1014
1015 return copied;
1016}
1017
1018static int sci_handle_breaks(struct uart_port *port)
1019{
1020 int copied = 0;
1021 unsigned short status = serial_port_in(up: port, offset: SCxSR);
1022 struct tty_port *tport = &port->state->port;
1023
1024 if (uart_handle_break(port))
1025 return 0;
1026
1027 if (status & SCxSR_BRK(port)) {
1028 port->icount.brk++;
1029
1030 /* Notify of BREAK */
1031 if (tty_insert_flip_char(port: tport, ch: 0, TTY_BREAK))
1032 copied++;
1033 }
1034
1035 if (copied)
1036 tty_flip_buffer_push(port: tport);
1037
1038 copied += sci_handle_fifo_overrun(port);
1039
1040 return copied;
1041}
1042
1043static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1044{
1045 unsigned int bits;
1046
1047 if (rx_trig >= port->fifosize)
1048 rx_trig = port->fifosize - 1;
1049 if (rx_trig < 1)
1050 rx_trig = 1;
1051
1052 /* HSCIF can be set to an arbitrary level. */
1053 if (sci_getreg(port, HSRTRGR)->size) {
1054 serial_port_out(up: port, offset: HSRTRGR, value: rx_trig);
1055 return rx_trig;
1056 }
1057
1058 switch (port->type) {
1059 case PORT_SCIF:
1060 if (rx_trig < 4) {
1061 bits = 0;
1062 rx_trig = 1;
1063 } else if (rx_trig < 8) {
1064 bits = SCFCR_RTRG0;
1065 rx_trig = 4;
1066 } else if (rx_trig < 14) {
1067 bits = SCFCR_RTRG1;
1068 rx_trig = 8;
1069 } else {
1070 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1071 rx_trig = 14;
1072 }
1073 break;
1074 case PORT_SCIFA:
1075 case PORT_SCIFB:
1076 if (rx_trig < 16) {
1077 bits = 0;
1078 rx_trig = 1;
1079 } else if (rx_trig < 32) {
1080 bits = SCFCR_RTRG0;
1081 rx_trig = 16;
1082 } else if (rx_trig < 48) {
1083 bits = SCFCR_RTRG1;
1084 rx_trig = 32;
1085 } else {
1086 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1087 rx_trig = 48;
1088 }
1089 break;
1090 default:
1091 WARN(1, "unknown FIFO configuration");
1092 return 1;
1093 }
1094
1095 serial_port_out(up: port, offset: SCFCR,
1096 value: (serial_port_in(up: port, offset: SCFCR) &
1097 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1098
1099 return rx_trig;
1100}
1101
1102static int scif_rtrg_enabled(struct uart_port *port)
1103{
1104 if (sci_getreg(port, HSRTRGR)->size)
1105 return serial_port_in(up: port, offset: HSRTRGR) != 0;
1106 else
1107 return (serial_port_in(up: port, offset: SCFCR) &
1108 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1109}
1110
1111static void rx_fifo_timer_fn(struct timer_list *t)
1112{
1113 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1114 struct uart_port *port = &s->port;
1115
1116 dev_dbg(port->dev, "Rx timed out\n");
1117 scif_set_rtrg(port, rx_trig: 1);
1118}
1119
1120static ssize_t rx_fifo_trigger_show(struct device *dev,
1121 struct device_attribute *attr, char *buf)
1122{
1123 struct uart_port *port = dev_get_drvdata(dev);
1124 struct sci_port *sci = to_sci_port(uart: port);
1125
1126 return sprintf(buf, fmt: "%d\n", sci->rx_trigger);
1127}
1128
1129static ssize_t rx_fifo_trigger_store(struct device *dev,
1130 struct device_attribute *attr,
1131 const char *buf, size_t count)
1132{
1133 struct uart_port *port = dev_get_drvdata(dev);
1134 struct sci_port *sci = to_sci_port(uart: port);
1135 int ret;
1136 long r;
1137
1138 ret = kstrtol(s: buf, base: 0, res: &r);
1139 if (ret)
1140 return ret;
1141
1142 sci->rx_trigger = scif_set_rtrg(port, rx_trig: r);
1143 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1144 scif_set_rtrg(port, rx_trig: 1);
1145
1146 return count;
1147}
1148
1149static DEVICE_ATTR_RW(rx_fifo_trigger);
1150
1151static ssize_t rx_fifo_timeout_show(struct device *dev,
1152 struct device_attribute *attr,
1153 char *buf)
1154{
1155 struct uart_port *port = dev_get_drvdata(dev);
1156 struct sci_port *sci = to_sci_port(uart: port);
1157 int v;
1158
1159 if (port->type == PORT_HSCIF)
1160 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1161 else
1162 v = sci->rx_fifo_timeout;
1163
1164 return sprintf(buf, fmt: "%d\n", v);
1165}
1166
1167static ssize_t rx_fifo_timeout_store(struct device *dev,
1168 struct device_attribute *attr,
1169 const char *buf,
1170 size_t count)
1171{
1172 struct uart_port *port = dev_get_drvdata(dev);
1173 struct sci_port *sci = to_sci_port(uart: port);
1174 int ret;
1175 long r;
1176
1177 ret = kstrtol(s: buf, base: 0, res: &r);
1178 if (ret)
1179 return ret;
1180
1181 if (port->type == PORT_HSCIF) {
1182 if (r < 0 || r > 3)
1183 return -EINVAL;
1184 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1185 } else {
1186 sci->rx_fifo_timeout = r;
1187 scif_set_rtrg(port, rx_trig: 1);
1188 if (r > 0)
1189 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1190 }
1191
1192 return count;
1193}
1194
1195static DEVICE_ATTR_RW(rx_fifo_timeout);
1196
1197
1198#ifdef CONFIG_SERIAL_SH_SCI_DMA
1199static void sci_dma_tx_complete(void *arg)
1200{
1201 struct sci_port *s = arg;
1202 struct uart_port *port = &s->port;
1203 struct circ_buf *xmit = &port->state->xmit;
1204 unsigned long flags;
1205
1206 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1207
1208 uart_port_lock_irqsave(up: port, flags: &flags);
1209
1210 uart_xmit_advance(up: port, chars: s->tx_dma_len);
1211
1212 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1213 uart_write_wakeup(port);
1214
1215 if (!uart_circ_empty(xmit)) {
1216 s->cookie_tx = 0;
1217 schedule_work(work: &s->work_tx);
1218 } else {
1219 s->cookie_tx = -EINVAL;
1220 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1221 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1222 u16 ctrl = serial_port_in(up: port, offset: SCSCR);
1223 serial_port_out(up: port, offset: SCSCR, value: ctrl & ~SCSCR_TIE);
1224 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1225 /* Switch irq from DMA to SCIF */
1226 dmaengine_pause(chan: s->chan_tx_saved);
1227 enable_irq(irq: s->irqs[SCIx_TXI_IRQ]);
1228 }
1229 }
1230 }
1231
1232 uart_port_unlock_irqrestore(up: port, flags);
1233}
1234
1235/* Locking: called with port lock held */
1236static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1237{
1238 struct uart_port *port = &s->port;
1239 struct tty_port *tport = &port->state->port;
1240 int copied;
1241
1242 copied = tty_insert_flip_string(port: tport, chars: buf, size: count);
1243 if (copied < count)
1244 port->icount.buf_overrun++;
1245
1246 port->icount.rx += copied;
1247
1248 return copied;
1249}
1250
1251static int sci_dma_rx_find_active(struct sci_port *s)
1252{
1253 unsigned int i;
1254
1255 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1256 if (s->active_rx == s->cookie_rx[i])
1257 return i;
1258
1259 return -1;
1260}
1261
1262static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1263{
1264 unsigned int i;
1265
1266 s->chan_rx = NULL;
1267 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1268 s->cookie_rx[i] = -EINVAL;
1269 s->active_rx = 0;
1270}
1271
1272static void sci_dma_rx_release(struct sci_port *s)
1273{
1274 struct dma_chan *chan = s->chan_rx_saved;
1275
1276 s->chan_rx_saved = NULL;
1277 sci_dma_rx_chan_invalidate(s);
1278 dmaengine_terminate_sync(chan);
1279 dma_free_coherent(dev: chan->device->dev, size: s->buf_len_rx * 2, cpu_addr: s->rx_buf[0],
1280 sg_dma_address(&s->sg_rx[0]));
1281 dma_release_channel(chan);
1282}
1283
1284static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1285{
1286 long sec = usec / 1000000;
1287 long nsec = (usec % 1000000) * 1000;
1288 ktime_t t = ktime_set(secs: sec, nsecs: nsec);
1289
1290 hrtimer_start(timer: hrt, tim: t, mode: HRTIMER_MODE_REL);
1291}
1292
1293static void sci_dma_rx_reenable_irq(struct sci_port *s)
1294{
1295 struct uart_port *port = &s->port;
1296 u16 scr;
1297
1298 /* Direct new serial port interrupts back to CPU */
1299 scr = serial_port_in(up: port, offset: SCSCR);
1300 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1301 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1302 enable_irq(irq: s->irqs[SCIx_RXI_IRQ]);
1303 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1304 scif_set_rtrg(port, rx_trig: s->rx_trigger);
1305 else
1306 scr &= ~SCSCR_RDRQE;
1307 }
1308 serial_port_out(up: port, offset: SCSCR, value: scr | SCSCR_RIE);
1309}
1310
1311static void sci_dma_rx_complete(void *arg)
1312{
1313 struct sci_port *s = arg;
1314 struct dma_chan *chan = s->chan_rx;
1315 struct uart_port *port = &s->port;
1316 struct dma_async_tx_descriptor *desc;
1317 unsigned long flags;
1318 int active, count = 0;
1319
1320 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1321 s->active_rx);
1322
1323 uart_port_lock_irqsave(up: port, flags: &flags);
1324
1325 active = sci_dma_rx_find_active(s);
1326 if (active >= 0)
1327 count = sci_dma_rx_push(s, buf: s->rx_buf[active], count: s->buf_len_rx);
1328
1329 start_hrtimer_us(hrt: &s->rx_timer, usec: s->rx_timeout);
1330
1331 if (count)
1332 tty_flip_buffer_push(port: &port->state->port);
1333
1334 desc = dmaengine_prep_slave_sg(chan: s->chan_rx, sgl: &s->sg_rx[active], sg_len: 1,
1335 dir: DMA_DEV_TO_MEM,
1336 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1337 if (!desc)
1338 goto fail;
1339
1340 desc->callback = sci_dma_rx_complete;
1341 desc->callback_param = s;
1342 s->cookie_rx[active] = dmaengine_submit(desc);
1343 if (dma_submit_error(cookie: s->cookie_rx[active]))
1344 goto fail;
1345
1346 s->active_rx = s->cookie_rx[!active];
1347
1348 dma_async_issue_pending(chan);
1349
1350 uart_port_unlock_irqrestore(up: port, flags);
1351 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1352 __func__, s->cookie_rx[active], active, s->active_rx);
1353 return;
1354
1355fail:
1356 uart_port_unlock_irqrestore(up: port, flags);
1357 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1358 /* Switch to PIO */
1359 uart_port_lock_irqsave(up: port, flags: &flags);
1360 dmaengine_terminate_async(chan);
1361 sci_dma_rx_chan_invalidate(s);
1362 sci_dma_rx_reenable_irq(s);
1363 uart_port_unlock_irqrestore(up: port, flags);
1364}
1365
1366static void sci_dma_tx_release(struct sci_port *s)
1367{
1368 struct dma_chan *chan = s->chan_tx_saved;
1369
1370 cancel_work_sync(work: &s->work_tx);
1371 s->chan_tx_saved = s->chan_tx = NULL;
1372 s->cookie_tx = -EINVAL;
1373 dmaengine_terminate_sync(chan);
1374 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1375 DMA_TO_DEVICE);
1376 dma_release_channel(chan);
1377}
1378
1379static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1380{
1381 struct dma_chan *chan = s->chan_rx;
1382 struct uart_port *port = &s->port;
1383 unsigned long flags;
1384 int i;
1385
1386 for (i = 0; i < 2; i++) {
1387 struct scatterlist *sg = &s->sg_rx[i];
1388 struct dma_async_tx_descriptor *desc;
1389
1390 desc = dmaengine_prep_slave_sg(chan,
1391 sgl: sg, sg_len: 1, dir: DMA_DEV_TO_MEM,
1392 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1393 if (!desc)
1394 goto fail;
1395
1396 desc->callback = sci_dma_rx_complete;
1397 desc->callback_param = s;
1398 s->cookie_rx[i] = dmaengine_submit(desc);
1399 if (dma_submit_error(cookie: s->cookie_rx[i]))
1400 goto fail;
1401
1402 }
1403
1404 s->active_rx = s->cookie_rx[0];
1405
1406 dma_async_issue_pending(chan);
1407 return 0;
1408
1409fail:
1410 /* Switch to PIO */
1411 if (!port_lock_held)
1412 uart_port_lock_irqsave(up: port, flags: &flags);
1413 if (i)
1414 dmaengine_terminate_async(chan);
1415 sci_dma_rx_chan_invalidate(s);
1416 sci_start_rx(port);
1417 if (!port_lock_held)
1418 uart_port_unlock_irqrestore(up: port, flags);
1419 return -EAGAIN;
1420}
1421
1422static void sci_dma_tx_work_fn(struct work_struct *work)
1423{
1424 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1425 struct dma_async_tx_descriptor *desc;
1426 struct dma_chan *chan = s->chan_tx;
1427 struct uart_port *port = &s->port;
1428 struct circ_buf *xmit = &port->state->xmit;
1429 unsigned long flags;
1430 dma_addr_t buf;
1431 int head, tail;
1432
1433 /*
1434 * DMA is idle now.
1435 * Port xmit buffer is already mapped, and it is one page... Just adjust
1436 * offsets and lengths. Since it is a circular buffer, we have to
1437 * transmit till the end, and then the rest. Take the port lock to get a
1438 * consistent xmit buffer state.
1439 */
1440 uart_port_lock_irq(up: port);
1441 head = xmit->head;
1442 tail = xmit->tail;
1443 buf = s->tx_dma_addr + tail;
1444 s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
1445 if (!s->tx_dma_len) {
1446 /* Transmit buffer has been flushed */
1447 uart_port_unlock_irq(up: port);
1448 return;
1449 }
1450
1451 desc = dmaengine_prep_slave_single(chan, buf, len: s->tx_dma_len,
1452 dir: DMA_MEM_TO_DEV,
1453 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1454 if (!desc) {
1455 uart_port_unlock_irq(up: port);
1456 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1457 goto switch_to_pio;
1458 }
1459
1460 dma_sync_single_for_device(dev: chan->device->dev, addr: buf, size: s->tx_dma_len,
1461 dir: DMA_TO_DEVICE);
1462
1463 desc->callback = sci_dma_tx_complete;
1464 desc->callback_param = s;
1465 s->cookie_tx = dmaengine_submit(desc);
1466 if (dma_submit_error(cookie: s->cookie_tx)) {
1467 uart_port_unlock_irq(up: port);
1468 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1469 goto switch_to_pio;
1470 }
1471
1472 uart_port_unlock_irq(up: port);
1473 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1474 __func__, xmit->buf, tail, head, s->cookie_tx);
1475
1476 dma_async_issue_pending(chan);
1477 return;
1478
1479switch_to_pio:
1480 uart_port_lock_irqsave(up: port, flags: &flags);
1481 s->chan_tx = NULL;
1482 sci_start_tx(port);
1483 uart_port_unlock_irqrestore(up: port, flags);
1484 return;
1485}
1486
1487static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1488{
1489 struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1490 struct dma_chan *chan = s->chan_rx;
1491 struct uart_port *port = &s->port;
1492 struct dma_tx_state state;
1493 enum dma_status status;
1494 unsigned long flags;
1495 unsigned int read;
1496 int active, count;
1497
1498 dev_dbg(port->dev, "DMA Rx timed out\n");
1499
1500 uart_port_lock_irqsave(up: port, flags: &flags);
1501
1502 active = sci_dma_rx_find_active(s);
1503 if (active < 0) {
1504 uart_port_unlock_irqrestore(up: port, flags);
1505 return HRTIMER_NORESTART;
1506 }
1507
1508 status = dmaengine_tx_status(chan: s->chan_rx, cookie: s->active_rx, state: &state);
1509 if (status == DMA_COMPLETE) {
1510 uart_port_unlock_irqrestore(up: port, flags);
1511 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1512 s->active_rx, active);
1513
1514 /* Let packet complete handler take care of the packet */
1515 return HRTIMER_NORESTART;
1516 }
1517
1518 dmaengine_pause(chan);
1519
1520 /*
1521 * sometimes DMA transfer doesn't stop even if it is stopped and
1522 * data keeps on coming until transaction is complete so check
1523 * for DMA_COMPLETE again
1524 * Let packet complete handler take care of the packet
1525 */
1526 status = dmaengine_tx_status(chan: s->chan_rx, cookie: s->active_rx, state: &state);
1527 if (status == DMA_COMPLETE) {
1528 uart_port_unlock_irqrestore(up: port, flags);
1529 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1530 return HRTIMER_NORESTART;
1531 }
1532
1533 /* Handle incomplete DMA receive */
1534 dmaengine_terminate_async(chan: s->chan_rx);
1535 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1536
1537 if (read) {
1538 count = sci_dma_rx_push(s, buf: s->rx_buf[active], count: read);
1539 if (count)
1540 tty_flip_buffer_push(port: &port->state->port);
1541 }
1542
1543 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1544 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1545 sci_dma_rx_submit(s, port_lock_held: true);
1546
1547 sci_dma_rx_reenable_irq(s);
1548
1549 uart_port_unlock_irqrestore(up: port, flags);
1550
1551 return HRTIMER_NORESTART;
1552}
1553
1554static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1555 enum dma_transfer_direction dir)
1556{
1557 struct dma_chan *chan;
1558 struct dma_slave_config cfg;
1559 int ret;
1560
1561 chan = dma_request_slave_channel(dev: port->dev,
1562 name: dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1563 if (!chan) {
1564 dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1565 return NULL;
1566 }
1567
1568 memset(&cfg, 0, sizeof(cfg));
1569 cfg.direction = dir;
1570 cfg.dst_addr = port->mapbase +
1571 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1572 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1573 cfg.src_addr = port->mapbase +
1574 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1575 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1576
1577 ret = dmaengine_slave_config(chan, config: &cfg);
1578 if (ret) {
1579 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1580 dma_release_channel(chan);
1581 return NULL;
1582 }
1583
1584 return chan;
1585}
1586
1587static void sci_request_dma(struct uart_port *port)
1588{
1589 struct sci_port *s = to_sci_port(uart: port);
1590 struct dma_chan *chan;
1591
1592 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1593
1594 /*
1595 * DMA on console may interfere with Kernel log messages which use
1596 * plain putchar(). So, simply don't use it with a console.
1597 */
1598 if (uart_console(port))
1599 return;
1600
1601 if (!port->dev->of_node)
1602 return;
1603
1604 s->cookie_tx = -EINVAL;
1605
1606 /*
1607 * Don't request a dma channel if no channel was specified
1608 * in the device tree.
1609 */
1610 if (!of_property_present(np: port->dev->of_node, propname: "dmas"))
1611 return;
1612
1613 chan = sci_request_dma_chan(port, dir: DMA_MEM_TO_DEV);
1614 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1615 if (chan) {
1616 /* UART circular tx buffer is an aligned page. */
1617 s->tx_dma_addr = dma_map_single(chan->device->dev,
1618 port->state->xmit.buf,
1619 UART_XMIT_SIZE,
1620 DMA_TO_DEVICE);
1621 if (dma_mapping_error(dev: chan->device->dev, dma_addr: s->tx_dma_addr)) {
1622 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1623 dma_release_channel(chan);
1624 } else {
1625 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1626 __func__, UART_XMIT_SIZE,
1627 port->state->xmit.buf, &s->tx_dma_addr);
1628
1629 INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1630 s->chan_tx_saved = s->chan_tx = chan;
1631 }
1632 }
1633
1634 chan = sci_request_dma_chan(port, dir: DMA_DEV_TO_MEM);
1635 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1636 if (chan) {
1637 unsigned int i;
1638 dma_addr_t dma;
1639 void *buf;
1640
1641 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1642 buf = dma_alloc_coherent(dev: chan->device->dev, size: s->buf_len_rx * 2,
1643 dma_handle: &dma, GFP_KERNEL);
1644 if (!buf) {
1645 dev_warn(port->dev,
1646 "Failed to allocate Rx dma buffer, using PIO\n");
1647 dma_release_channel(chan);
1648 return;
1649 }
1650
1651 for (i = 0; i < 2; i++) {
1652 struct scatterlist *sg = &s->sg_rx[i];
1653
1654 sg_init_table(sg, 1);
1655 s->rx_buf[i] = buf;
1656 sg_dma_address(sg) = dma;
1657 sg_dma_len(sg) = s->buf_len_rx;
1658
1659 buf += s->buf_len_rx;
1660 dma += s->buf_len_rx;
1661 }
1662
1663 hrtimer_init(timer: &s->rx_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
1664 s->rx_timer.function = sci_dma_rx_timer_fn;
1665
1666 s->chan_rx_saved = s->chan_rx = chan;
1667
1668 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1669 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1670 sci_dma_rx_submit(s, port_lock_held: false);
1671 }
1672}
1673
1674static void sci_free_dma(struct uart_port *port)
1675{
1676 struct sci_port *s = to_sci_port(uart: port);
1677
1678 if (s->chan_tx_saved)
1679 sci_dma_tx_release(s);
1680 if (s->chan_rx_saved)
1681 sci_dma_rx_release(s);
1682}
1683
1684static void sci_flush_buffer(struct uart_port *port)
1685{
1686 struct sci_port *s = to_sci_port(uart: port);
1687
1688 /*
1689 * In uart_flush_buffer(), the xmit circular buffer has just been
1690 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1691 * pending transfers
1692 */
1693 s->tx_dma_len = 0;
1694 if (s->chan_tx) {
1695 dmaengine_terminate_async(chan: s->chan_tx);
1696 s->cookie_tx = -EINVAL;
1697 }
1698}
1699#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1700static inline void sci_request_dma(struct uart_port *port)
1701{
1702}
1703
1704static inline void sci_free_dma(struct uart_port *port)
1705{
1706}
1707
1708#define sci_flush_buffer NULL
1709#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1710
1711static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1712{
1713 struct uart_port *port = ptr;
1714 struct sci_port *s = to_sci_port(uart: port);
1715
1716#ifdef CONFIG_SERIAL_SH_SCI_DMA
1717 if (s->chan_rx) {
1718 u16 scr = serial_port_in(up: port, offset: SCSCR);
1719 u16 ssr = serial_port_in(up: port, offset: SCxSR);
1720
1721 /* Disable future Rx interrupts */
1722 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1723 s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1724 disable_irq_nosync(irq: s->irqs[SCIx_RXI_IRQ]);
1725 if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1726 scif_set_rtrg(port, rx_trig: 1);
1727 scr |= SCSCR_RIE;
1728 } else {
1729 scr |= SCSCR_RDRQE;
1730 }
1731 } else {
1732 if (sci_dma_rx_submit(s, port_lock_held: false) < 0)
1733 goto handle_pio;
1734
1735 scr &= ~SCSCR_RIE;
1736 }
1737 serial_port_out(up: port, offset: SCSCR, value: scr);
1738 /* Clear current interrupt */
1739 serial_port_out(up: port, offset: SCxSR,
1740 value: ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1741 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1742 jiffies, s->rx_timeout);
1743 start_hrtimer_us(hrt: &s->rx_timer, usec: s->rx_timeout);
1744
1745 return IRQ_HANDLED;
1746 }
1747
1748handle_pio:
1749#endif
1750
1751 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1752 if (!scif_rtrg_enabled(port))
1753 scif_set_rtrg(port, rx_trig: s->rx_trigger);
1754
1755 mod_timer(timer: &s->rx_fifo_timer, expires: jiffies + DIV_ROUND_UP(
1756 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1757 }
1758
1759 /* I think sci_receive_chars has to be called irrespective
1760 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1761 * to be disabled?
1762 */
1763 sci_receive_chars(port);
1764
1765 return IRQ_HANDLED;
1766}
1767
1768static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1769{
1770 struct uart_port *port = ptr;
1771 unsigned long flags;
1772
1773 uart_port_lock_irqsave(up: port, flags: &flags);
1774 sci_transmit_chars(port);
1775 uart_port_unlock_irqrestore(up: port, flags);
1776
1777 return IRQ_HANDLED;
1778}
1779
1780static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1781{
1782 struct uart_port *port = ptr;
1783 unsigned long flags;
1784 unsigned short ctrl;
1785
1786 if (port->type != PORT_SCI)
1787 return sci_tx_interrupt(irq, ptr);
1788
1789 uart_port_lock_irqsave(up: port, flags: &flags);
1790 ctrl = serial_port_in(up: port, offset: SCSCR);
1791 ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1792 serial_port_out(up: port, offset: SCSCR, value: ctrl);
1793 uart_port_unlock_irqrestore(up: port, flags);
1794
1795 return IRQ_HANDLED;
1796}
1797
1798static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1799{
1800 struct uart_port *port = ptr;
1801
1802 /* Handle BREAKs */
1803 sci_handle_breaks(port);
1804
1805 /* drop invalid character received before break was detected */
1806 serial_port_in(up: port, offset: SCxRDR);
1807
1808 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1809
1810 return IRQ_HANDLED;
1811}
1812
1813static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1814{
1815 struct uart_port *port = ptr;
1816 struct sci_port *s = to_sci_port(uart: port);
1817
1818 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1819 /* Break and Error interrupts are muxed */
1820 unsigned short ssr_status = serial_port_in(up: port, offset: SCxSR);
1821
1822 /* Break Interrupt */
1823 if (ssr_status & SCxSR_BRK(port))
1824 sci_br_interrupt(irq, ptr);
1825
1826 /* Break only? */
1827 if (!(ssr_status & SCxSR_ERRORS(port)))
1828 return IRQ_HANDLED;
1829 }
1830
1831 /* Handle errors */
1832 if (port->type == PORT_SCI) {
1833 if (sci_handle_errors(port)) {
1834 /* discard character in rx buffer */
1835 serial_port_in(up: port, offset: SCxSR);
1836 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1837 }
1838 } else {
1839 sci_handle_fifo_overrun(port);
1840 if (!s->chan_rx)
1841 sci_receive_chars(port);
1842 }
1843
1844 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1845
1846 /* Kick the transmission */
1847 if (!s->chan_tx)
1848 sci_tx_interrupt(irq, ptr);
1849
1850 return IRQ_HANDLED;
1851}
1852
1853static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1854{
1855 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1856 struct uart_port *port = ptr;
1857 struct sci_port *s = to_sci_port(uart: port);
1858 irqreturn_t ret = IRQ_NONE;
1859
1860 ssr_status = serial_port_in(up: port, offset: SCxSR);
1861 scr_status = serial_port_in(up: port, offset: SCSCR);
1862 if (s->params->overrun_reg == SCxSR)
1863 orer_status = ssr_status;
1864 else if (sci_getreg(port, s->params->overrun_reg)->size)
1865 orer_status = serial_port_in(up: port, offset: s->params->overrun_reg);
1866
1867 err_enabled = scr_status & port_rx_irq_mask(port);
1868
1869 /* Tx Interrupt */
1870 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1871 !s->chan_tx)
1872 ret = sci_tx_interrupt(irq, ptr);
1873
1874 /*
1875 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1876 * DR flags
1877 */
1878 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1879 (scr_status & SCSCR_RIE))
1880 ret = sci_rx_interrupt(irq, ptr);
1881
1882 /* Error Interrupt */
1883 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1884 ret = sci_er_interrupt(irq, ptr);
1885
1886 /* Break Interrupt */
1887 if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1888 (ssr_status & SCxSR_BRK(port)) && err_enabled)
1889 ret = sci_br_interrupt(irq, ptr);
1890
1891 /* Overrun Interrupt */
1892 if (orer_status & s->params->overrun_mask) {
1893 sci_handle_fifo_overrun(port);
1894 ret = IRQ_HANDLED;
1895 }
1896
1897 return ret;
1898}
1899
1900static const struct sci_irq_desc {
1901 const char *desc;
1902 irq_handler_t handler;
1903} sci_irq_desc[] = {
1904 /*
1905 * Split out handlers, the default case.
1906 */
1907 [SCIx_ERI_IRQ] = {
1908 .desc = "rx err",
1909 .handler = sci_er_interrupt,
1910 },
1911
1912 [SCIx_RXI_IRQ] = {
1913 .desc = "rx full",
1914 .handler = sci_rx_interrupt,
1915 },
1916
1917 [SCIx_TXI_IRQ] = {
1918 .desc = "tx empty",
1919 .handler = sci_tx_interrupt,
1920 },
1921
1922 [SCIx_BRI_IRQ] = {
1923 .desc = "break",
1924 .handler = sci_br_interrupt,
1925 },
1926
1927 [SCIx_DRI_IRQ] = {
1928 .desc = "rx ready",
1929 .handler = sci_rx_interrupt,
1930 },
1931
1932 [SCIx_TEI_IRQ] = {
1933 .desc = "tx end",
1934 .handler = sci_tx_end_interrupt,
1935 },
1936
1937 /*
1938 * Special muxed handler.
1939 */
1940 [SCIx_MUX_IRQ] = {
1941 .desc = "mux",
1942 .handler = sci_mpxed_interrupt,
1943 },
1944};
1945
1946static int sci_request_irq(struct sci_port *port)
1947{
1948 struct uart_port *up = &port->port;
1949 int i, j, w, ret = 0;
1950
1951 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1952 const struct sci_irq_desc *desc;
1953 int irq;
1954
1955 /* Check if already registered (muxed) */
1956 for (w = 0; w < i; w++)
1957 if (port->irqs[w] == port->irqs[i])
1958 w = i + 1;
1959 if (w > i)
1960 continue;
1961
1962 if (SCIx_IRQ_IS_MUXED(port)) {
1963 i = SCIx_MUX_IRQ;
1964 irq = up->irq;
1965 } else {
1966 irq = port->irqs[i];
1967
1968 /*
1969 * Certain port types won't support all of the
1970 * available interrupt sources.
1971 */
1972 if (unlikely(irq < 0))
1973 continue;
1974 }
1975
1976 desc = sci_irq_desc + i;
1977 port->irqstr[j] = kasprintf(GFP_KERNEL, fmt: "%s:%s",
1978 dev_name(dev: up->dev), desc->desc);
1979 if (!port->irqstr[j]) {
1980 ret = -ENOMEM;
1981 goto out_nomem;
1982 }
1983
1984 ret = request_irq(irq, handler: desc->handler, flags: up->irqflags,
1985 name: port->irqstr[j], dev: port);
1986 if (unlikely(ret)) {
1987 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1988 goto out_noirq;
1989 }
1990 }
1991
1992 return 0;
1993
1994out_noirq:
1995 while (--i >= 0)
1996 free_irq(port->irqs[i], port);
1997
1998out_nomem:
1999 while (--j >= 0)
2000 kfree(objp: port->irqstr[j]);
2001
2002 return ret;
2003}
2004
2005static void sci_free_irq(struct sci_port *port)
2006{
2007 int i, j;
2008
2009 /*
2010 * Intentionally in reverse order so we iterate over the muxed
2011 * IRQ first.
2012 */
2013 for (i = 0; i < SCIx_NR_IRQS; i++) {
2014 int irq = port->irqs[i];
2015
2016 /*
2017 * Certain port types won't support all of the available
2018 * interrupt sources.
2019 */
2020 if (unlikely(irq < 0))
2021 continue;
2022
2023 /* Check if already freed (irq was muxed) */
2024 for (j = 0; j < i; j++)
2025 if (port->irqs[j] == irq)
2026 j = i + 1;
2027 if (j > i)
2028 continue;
2029
2030 free_irq(port->irqs[i], port);
2031 kfree(objp: port->irqstr[i]);
2032
2033 if (SCIx_IRQ_IS_MUXED(port)) {
2034 /* If there's only one IRQ, we're done. */
2035 return;
2036 }
2037 }
2038}
2039
2040static unsigned int sci_tx_empty(struct uart_port *port)
2041{
2042 unsigned short status = serial_port_in(up: port, offset: SCxSR);
2043 unsigned short in_tx_fifo = sci_txfill(port);
2044
2045 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2046}
2047
2048static void sci_set_rts(struct uart_port *port, bool state)
2049{
2050 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2051 u16 data = serial_port_in(up: port, offset: SCPDR);
2052
2053 /* Active low */
2054 if (state)
2055 data &= ~SCPDR_RTSD;
2056 else
2057 data |= SCPDR_RTSD;
2058 serial_port_out(up: port, offset: SCPDR, value: data);
2059
2060 /* RTS# is output */
2061 serial_port_out(up: port, offset: SCPCR,
2062 value: serial_port_in(up: port, offset: SCPCR) | SCPCR_RTSC);
2063 } else if (sci_getreg(port, SCSPTR)->size) {
2064 u16 ctrl = serial_port_in(up: port, offset: SCSPTR);
2065
2066 /* Active low */
2067 if (state)
2068 ctrl &= ~SCSPTR_RTSDT;
2069 else
2070 ctrl |= SCSPTR_RTSDT;
2071 serial_port_out(up: port, offset: SCSPTR, value: ctrl);
2072 }
2073}
2074
2075static bool sci_get_cts(struct uart_port *port)
2076{
2077 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2078 /* Active low */
2079 return !(serial_port_in(up: port, offset: SCPDR) & SCPDR_CTSD);
2080 } else if (sci_getreg(port, SCSPTR)->size) {
2081 /* Active low */
2082 return !(serial_port_in(up: port, offset: SCSPTR) & SCSPTR_CTSDT);
2083 }
2084
2085 return true;
2086}
2087
2088/*
2089 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2090 * CTS/RTS is supported in hardware by at least one port and controlled
2091 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2092 * handled via the ->init_pins() op, which is a bit of a one-way street,
2093 * lacking any ability to defer pin control -- this will later be
2094 * converted over to the GPIO framework).
2095 *
2096 * Other modes (such as loopback) are supported generically on certain
2097 * port types, but not others. For these it's sufficient to test for the
2098 * existence of the support register and simply ignore the port type.
2099 */
2100static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2101{
2102 struct sci_port *s = to_sci_port(uart: port);
2103
2104 if (mctrl & TIOCM_LOOP) {
2105 const struct plat_sci_reg *reg;
2106
2107 /*
2108 * Standard loopback mode for SCFCR ports.
2109 */
2110 reg = sci_getreg(port, SCFCR);
2111 if (reg->size)
2112 serial_port_out(up: port, offset: SCFCR,
2113 value: serial_port_in(up: port, offset: SCFCR) |
2114 SCFCR_LOOP);
2115 }
2116
2117 mctrl_gpio_set(gpios: s->gpios, mctrl);
2118
2119 if (!s->has_rtscts)
2120 return;
2121
2122 if (!(mctrl & TIOCM_RTS)) {
2123 /* Disable Auto RTS */
2124 serial_port_out(up: port, offset: SCFCR,
2125 value: serial_port_in(up: port, offset: SCFCR) & ~SCFCR_MCE);
2126
2127 /* Clear RTS */
2128 sci_set_rts(port, state: 0);
2129 } else if (s->autorts) {
2130 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2131 /* Enable RTS# pin function */
2132 serial_port_out(up: port, offset: SCPCR,
2133 value: serial_port_in(up: port, offset: SCPCR) & ~SCPCR_RTSC);
2134 }
2135
2136 /* Enable Auto RTS */
2137 serial_port_out(up: port, offset: SCFCR,
2138 value: serial_port_in(up: port, offset: SCFCR) | SCFCR_MCE);
2139 } else {
2140 /* Set RTS */
2141 sci_set_rts(port, state: 1);
2142 }
2143}
2144
2145static unsigned int sci_get_mctrl(struct uart_port *port)
2146{
2147 struct sci_port *s = to_sci_port(uart: port);
2148 struct mctrl_gpios *gpios = s->gpios;
2149 unsigned int mctrl = 0;
2150
2151 mctrl_gpio_get(gpios, mctrl: &mctrl);
2152
2153 /*
2154 * CTS/RTS is handled in hardware when supported, while nothing
2155 * else is wired up.
2156 */
2157 if (s->autorts) {
2158 if (sci_get_cts(port))
2159 mctrl |= TIOCM_CTS;
2160 } else if (!mctrl_gpio_to_gpiod(gpios, gidx: UART_GPIO_CTS)) {
2161 mctrl |= TIOCM_CTS;
2162 }
2163 if (!mctrl_gpio_to_gpiod(gpios, gidx: UART_GPIO_DSR))
2164 mctrl |= TIOCM_DSR;
2165 if (!mctrl_gpio_to_gpiod(gpios, gidx: UART_GPIO_DCD))
2166 mctrl |= TIOCM_CAR;
2167
2168 return mctrl;
2169}
2170
2171static void sci_enable_ms(struct uart_port *port)
2172{
2173 mctrl_gpio_enable_ms(gpios: to_sci_port(uart: port)->gpios);
2174}
2175
2176static void sci_break_ctl(struct uart_port *port, int break_state)
2177{
2178 unsigned short scscr, scsptr;
2179 unsigned long flags;
2180
2181 /* check whether the port has SCSPTR */
2182 if (!sci_getreg(port, SCSPTR)->size) {
2183 /*
2184 * Not supported by hardware. Most parts couple break and rx
2185 * interrupts together, with break detection always enabled.
2186 */
2187 return;
2188 }
2189
2190 uart_port_lock_irqsave(up: port, flags: &flags);
2191 scsptr = serial_port_in(up: port, offset: SCSPTR);
2192 scscr = serial_port_in(up: port, offset: SCSCR);
2193
2194 if (break_state == -1) {
2195 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2196 scscr &= ~SCSCR_TE;
2197 } else {
2198 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2199 scscr |= SCSCR_TE;
2200 }
2201
2202 serial_port_out(up: port, offset: SCSPTR, value: scsptr);
2203 serial_port_out(up: port, offset: SCSCR, value: scscr);
2204 uart_port_unlock_irqrestore(up: port, flags);
2205}
2206
2207static int sci_startup(struct uart_port *port)
2208{
2209 struct sci_port *s = to_sci_port(uart: port);
2210 int ret;
2211
2212 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2213
2214 sci_request_dma(port);
2215
2216 ret = sci_request_irq(port: s);
2217 if (unlikely(ret < 0)) {
2218 sci_free_dma(port);
2219 return ret;
2220 }
2221
2222 return 0;
2223}
2224
2225static void sci_shutdown(struct uart_port *port)
2226{
2227 struct sci_port *s = to_sci_port(uart: port);
2228 unsigned long flags;
2229 u16 scr;
2230
2231 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2232
2233 s->autorts = false;
2234 mctrl_gpio_disable_ms(gpios: to_sci_port(uart: port)->gpios);
2235
2236 uart_port_lock_irqsave(up: port, flags: &flags);
2237 sci_stop_rx(port);
2238 sci_stop_tx(port);
2239 /*
2240 * Stop RX and TX, disable related interrupts, keep clock source
2241 * and HSCIF TOT bits
2242 */
2243 scr = serial_port_in(up: port, offset: SCSCR);
2244 serial_port_out(up: port, offset: SCSCR, value: scr &
2245 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2246 uart_port_unlock_irqrestore(up: port, flags);
2247
2248#ifdef CONFIG_SERIAL_SH_SCI_DMA
2249 if (s->chan_rx_saved) {
2250 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2251 port->line);
2252 hrtimer_cancel(timer: &s->rx_timer);
2253 }
2254#endif
2255
2256 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2257 del_timer_sync(timer: &s->rx_fifo_timer);
2258 sci_free_irq(port: s);
2259 sci_free_dma(port);
2260}
2261
2262static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2263 unsigned int *srr)
2264{
2265 unsigned long freq = s->clk_rates[SCI_SCK];
2266 int err, min_err = INT_MAX;
2267 unsigned int sr;
2268
2269 if (s->port.type != PORT_HSCIF)
2270 freq *= 2;
2271
2272 for_each_sr(sr, s) {
2273 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2274 if (abs(err) >= abs(min_err))
2275 continue;
2276
2277 min_err = err;
2278 *srr = sr - 1;
2279
2280 if (!err)
2281 break;
2282 }
2283
2284 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2285 *srr + 1);
2286 return min_err;
2287}
2288
2289static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2290 unsigned long freq, unsigned int *dlr,
2291 unsigned int *srr)
2292{
2293 int err, min_err = INT_MAX;
2294 unsigned int sr, dl;
2295
2296 if (s->port.type != PORT_HSCIF)
2297 freq *= 2;
2298
2299 for_each_sr(sr, s) {
2300 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2301 dl = clamp(dl, 1U, 65535U);
2302
2303 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2304 if (abs(err) >= abs(min_err))
2305 continue;
2306
2307 min_err = err;
2308 *dlr = dl;
2309 *srr = sr - 1;
2310
2311 if (!err)
2312 break;
2313 }
2314
2315 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2316 min_err, *dlr, *srr + 1);
2317 return min_err;
2318}
2319
2320/* calculate sample rate, BRR, and clock select */
2321static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2322 unsigned int *brr, unsigned int *srr,
2323 unsigned int *cks)
2324{
2325 unsigned long freq = s->clk_rates[SCI_FCK];
2326 unsigned int sr, br, prediv, scrate, c;
2327 int err, min_err = INT_MAX;
2328
2329 if (s->port.type != PORT_HSCIF)
2330 freq *= 2;
2331
2332 /*
2333 * Find the combination of sample rate and clock select with the
2334 * smallest deviation from the desired baud rate.
2335 * Prefer high sample rates to maximise the receive margin.
2336 *
2337 * M: Receive margin (%)
2338 * N: Ratio of bit rate to clock (N = sampling rate)
2339 * D: Clock duty (D = 0 to 1.0)
2340 * L: Frame length (L = 9 to 12)
2341 * F: Absolute value of clock frequency deviation
2342 *
2343 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2344 * (|D - 0.5| / N * (1 + F))|
2345 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2346 */
2347 for_each_sr(sr, s) {
2348 for (c = 0; c <= 3; c++) {
2349 /* integerized formulas from HSCIF documentation */
2350 prediv = sr << (2 * c + 1);
2351
2352 /*
2353 * We need to calculate:
2354 *
2355 * br = freq / (prediv * bps) clamped to [1..256]
2356 * err = freq / (br * prediv) - bps
2357 *
2358 * Watch out for overflow when calculating the desired
2359 * sampling clock rate!
2360 */
2361 if (bps > UINT_MAX / prediv)
2362 break;
2363
2364 scrate = prediv * bps;
2365 br = DIV_ROUND_CLOSEST(freq, scrate);
2366 br = clamp(br, 1U, 256U);
2367
2368 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2369 if (abs(err) >= abs(min_err))
2370 continue;
2371
2372 min_err = err;
2373 *brr = br - 1;
2374 *srr = sr - 1;
2375 *cks = c;
2376
2377 if (!err)
2378 goto found;
2379 }
2380 }
2381
2382found:
2383 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2384 min_err, *brr, *srr + 1, *cks);
2385 return min_err;
2386}
2387
2388static void sci_reset(struct uart_port *port)
2389{
2390 const struct plat_sci_reg *reg;
2391 unsigned int status;
2392 struct sci_port *s = to_sci_port(uart: port);
2393
2394 serial_port_out(up: port, offset: SCSCR, value: s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2395
2396 reg = sci_getreg(port, SCFCR);
2397 if (reg->size)
2398 serial_port_out(up: port, offset: SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2399
2400 sci_clear_SCxSR(port,
2401 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2402 SCxSR_BREAK_CLEAR(port));
2403 if (sci_getreg(port, SCLSR)->size) {
2404 status = serial_port_in(up: port, offset: SCLSR);
2405 status &= ~(SCLSR_TO | SCLSR_ORER);
2406 serial_port_out(up: port, offset: SCLSR, value: status);
2407 }
2408
2409 if (s->rx_trigger > 1) {
2410 if (s->rx_fifo_timeout) {
2411 scif_set_rtrg(port, rx_trig: 1);
2412 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2413 } else {
2414 if (port->type == PORT_SCIFA ||
2415 port->type == PORT_SCIFB)
2416 scif_set_rtrg(port, rx_trig: 1);
2417 else
2418 scif_set_rtrg(port, rx_trig: s->rx_trigger);
2419 }
2420 }
2421}
2422
2423static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2424 const struct ktermios *old)
2425{
2426 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2427 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2428 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2429 struct sci_port *s = to_sci_port(uart: port);
2430 const struct plat_sci_reg *reg;
2431 int min_err = INT_MAX, err;
2432 unsigned long max_freq = 0;
2433 int best_clk = -1;
2434 unsigned long flags;
2435
2436 if ((termios->c_cflag & CSIZE) == CS7) {
2437 smr_val |= SCSMR_CHR;
2438 } else {
2439 termios->c_cflag &= ~CSIZE;
2440 termios->c_cflag |= CS8;
2441 }
2442 if (termios->c_cflag & PARENB)
2443 smr_val |= SCSMR_PE;
2444 if (termios->c_cflag & PARODD)
2445 smr_val |= SCSMR_PE | SCSMR_ODD;
2446 if (termios->c_cflag & CSTOPB)
2447 smr_val |= SCSMR_STOP;
2448
2449 /*
2450 * earlyprintk comes here early on with port->uartclk set to zero.
2451 * the clock framework is not up and running at this point so here
2452 * we assume that 115200 is the maximum baud rate. please note that
2453 * the baud rate is not programmed during earlyprintk - it is assumed
2454 * that the previous boot loader has enabled required clocks and
2455 * setup the baud rate generator hardware for us already.
2456 */
2457 if (!port->uartclk) {
2458 baud = uart_get_baud_rate(port, termios, old, min: 0, max: 115200);
2459 goto done;
2460 }
2461
2462 for (i = 0; i < SCI_NUM_CLKS; i++)
2463 max_freq = max(max_freq, s->clk_rates[i]);
2464
2465 baud = uart_get_baud_rate(port, termios, old, min: 0, max: max_freq / min_sr(s));
2466 if (!baud)
2467 goto done;
2468
2469 /*
2470 * There can be multiple sources for the sampling clock. Find the one
2471 * that gives us the smallest deviation from the desired baud rate.
2472 */
2473
2474 /* Optional Undivided External Clock */
2475 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2476 port->type != PORT_SCIFB) {
2477 err = sci_sck_calc(s, bps: baud, srr: &srr1);
2478 if (abs(err) < abs(min_err)) {
2479 best_clk = SCI_SCK;
2480 scr_val = SCSCR_CKE1;
2481 sccks = SCCKS_CKS;
2482 min_err = err;
2483 srr = srr1;
2484 if (!err)
2485 goto done;
2486 }
2487 }
2488
2489 /* Optional BRG Frequency Divided External Clock */
2490 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2491 err = sci_brg_calc(s, bps: baud, freq: s->clk_rates[SCI_SCIF_CLK], dlr: &dl1,
2492 srr: &srr1);
2493 if (abs(err) < abs(min_err)) {
2494 best_clk = SCI_SCIF_CLK;
2495 scr_val = SCSCR_CKE1;
2496 sccks = 0;
2497 min_err = err;
2498 dl = dl1;
2499 srr = srr1;
2500 if (!err)
2501 goto done;
2502 }
2503 }
2504
2505 /* Optional BRG Frequency Divided Internal Clock */
2506 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2507 err = sci_brg_calc(s, bps: baud, freq: s->clk_rates[SCI_BRG_INT], dlr: &dl1,
2508 srr: &srr1);
2509 if (abs(err) < abs(min_err)) {
2510 best_clk = SCI_BRG_INT;
2511 scr_val = SCSCR_CKE1;
2512 sccks = SCCKS_XIN;
2513 min_err = err;
2514 dl = dl1;
2515 srr = srr1;
2516 if (!min_err)
2517 goto done;
2518 }
2519 }
2520
2521 /* Divided Functional Clock using standard Bit Rate Register */
2522 err = sci_scbrr_calc(s, bps: baud, brr: &brr1, srr: &srr1, cks: &cks1);
2523 if (abs(err) < abs(min_err)) {
2524 best_clk = SCI_FCK;
2525 scr_val = 0;
2526 min_err = err;
2527 brr = brr1;
2528 srr = srr1;
2529 cks = cks1;
2530 }
2531
2532done:
2533 if (best_clk >= 0)
2534 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2535 s->clks[best_clk], baud, min_err);
2536
2537 sci_port_enable(sci_port: s);
2538
2539 /*
2540 * Program the optional External Baud Rate Generator (BRG) first.
2541 * It controls the mux to select (H)SCK or frequency divided clock.
2542 */
2543 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2544 serial_port_out(up: port, offset: SCDL, value: dl);
2545 serial_port_out(up: port, offset: SCCKS, value: sccks);
2546 }
2547
2548 uart_port_lock_irqsave(up: port, flags: &flags);
2549
2550 sci_reset(port);
2551
2552 uart_update_timeout(port, cflag: termios->c_cflag, baud);
2553
2554 /* byte size and parity */
2555 bits = tty_get_frame_size(cflag: termios->c_cflag);
2556
2557 if (sci_getreg(port, SEMR)->size)
2558 serial_port_out(up: port, offset: SEMR, value: 0);
2559
2560 if (best_clk >= 0) {
2561 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2562 switch (srr + 1) {
2563 case 5: smr_val |= SCSMR_SRC_5; break;
2564 case 7: smr_val |= SCSMR_SRC_7; break;
2565 case 11: smr_val |= SCSMR_SRC_11; break;
2566 case 13: smr_val |= SCSMR_SRC_13; break;
2567 case 16: smr_val |= SCSMR_SRC_16; break;
2568 case 17: smr_val |= SCSMR_SRC_17; break;
2569 case 19: smr_val |= SCSMR_SRC_19; break;
2570 case 27: smr_val |= SCSMR_SRC_27; break;
2571 }
2572 smr_val |= cks;
2573 serial_port_out(up: port, offset: SCSCR, value: scr_val | s->hscif_tot);
2574 serial_port_out(up: port, offset: SCSMR, value: smr_val);
2575 serial_port_out(up: port, offset: SCBRR, value: brr);
2576 if (sci_getreg(port, HSSRR)->size) {
2577 unsigned int hssrr = srr | HSCIF_SRE;
2578 /* Calculate deviation from intended rate at the
2579 * center of the last stop bit in sampling clocks.
2580 */
2581 int last_stop = bits * 2 - 1;
2582 int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2583 (int)(srr + 1),
2584 2 * (int)baud);
2585
2586 if (abs(deviation) >= 2) {
2587 /* At least two sampling clocks off at the
2588 * last stop bit; we can increase the error
2589 * margin by shifting the sampling point.
2590 */
2591 int shift = clamp(deviation / 2, -8, 7);
2592
2593 hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2594 HSCIF_SRHP_MASK;
2595 hssrr |= HSCIF_SRDE;
2596 }
2597 serial_port_out(up: port, offset: HSSRR, value: hssrr);
2598 }
2599
2600 /* Wait one bit interval */
2601 udelay((1000000 + (baud - 1)) / baud);
2602 } else {
2603 /* Don't touch the bit rate configuration */
2604 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2605 smr_val |= serial_port_in(up: port, offset: SCSMR) &
2606 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2607 serial_port_out(up: port, offset: SCSCR, value: scr_val | s->hscif_tot);
2608 serial_port_out(up: port, offset: SCSMR, value: smr_val);
2609 }
2610
2611 sci_init_pins(port, cflag: termios->c_cflag);
2612
2613 port->status &= ~UPSTAT_AUTOCTS;
2614 s->autorts = false;
2615 reg = sci_getreg(port, SCFCR);
2616 if (reg->size) {
2617 unsigned short ctrl = serial_port_in(up: port, offset: SCFCR);
2618
2619 if ((port->flags & UPF_HARD_FLOW) &&
2620 (termios->c_cflag & CRTSCTS)) {
2621 /* There is no CTS interrupt to restart the hardware */
2622 port->status |= UPSTAT_AUTOCTS;
2623 /* MCE is enabled when RTS is raised */
2624 s->autorts = true;
2625 }
2626
2627 /*
2628 * As we've done a sci_reset() above, ensure we don't
2629 * interfere with the FIFOs while toggling MCE. As the
2630 * reset values could still be set, simply mask them out.
2631 */
2632 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2633
2634 serial_port_out(up: port, offset: SCFCR, value: ctrl);
2635 }
2636 if (port->flags & UPF_HARD_FLOW) {
2637 /* Refresh (Auto) RTS */
2638 sci_set_mctrl(port, mctrl: port->mctrl);
2639 }
2640
2641 /*
2642 * For SCI, TE (transmit enable) must be set after setting TIE
2643 * (transmit interrupt enable) or in the same instruction to
2644 * start the transmitting process. So skip setting TE here for SCI.
2645 */
2646 if (port->type != PORT_SCI)
2647 scr_val |= SCSCR_TE;
2648 scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2649 serial_port_out(up: port, offset: SCSCR, value: scr_val | s->hscif_tot);
2650 if ((srr + 1 == 5) &&
2651 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2652 /*
2653 * In asynchronous mode, when the sampling rate is 1/5, first
2654 * received data may become invalid on some SCIFA and SCIFB.
2655 * To avoid this problem wait more than 1 serial data time (1
2656 * bit time x serial data number) after setting SCSCR.RE = 1.
2657 */
2658 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2659 }
2660
2661 /* Calculate delay for 2 DMA buffers (4 FIFO). */
2662 s->rx_frame = (10000 * bits) / (baud / 100);
2663#ifdef CONFIG_SERIAL_SH_SCI_DMA
2664 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2665#endif
2666
2667 if ((termios->c_cflag & CREAD) != 0)
2668 sci_start_rx(port);
2669
2670 uart_port_unlock_irqrestore(up: port, flags);
2671
2672 sci_port_disable(sci_port: s);
2673
2674 if (UART_ENABLE_MS(port, termios->c_cflag))
2675 sci_enable_ms(port);
2676}
2677
2678static void sci_pm(struct uart_port *port, unsigned int state,
2679 unsigned int oldstate)
2680{
2681 struct sci_port *sci_port = to_sci_port(uart: port);
2682
2683 switch (state) {
2684 case UART_PM_STATE_OFF:
2685 sci_port_disable(sci_port);
2686 break;
2687 default:
2688 sci_port_enable(sci_port);
2689 break;
2690 }
2691}
2692
2693static const char *sci_type(struct uart_port *port)
2694{
2695 switch (port->type) {
2696 case PORT_IRDA:
2697 return "irda";
2698 case PORT_SCI:
2699 return "sci";
2700 case PORT_SCIF:
2701 return "scif";
2702 case PORT_SCIFA:
2703 return "scifa";
2704 case PORT_SCIFB:
2705 return "scifb";
2706 case PORT_HSCIF:
2707 return "hscif";
2708 }
2709
2710 return NULL;
2711}
2712
2713static int sci_remap_port(struct uart_port *port)
2714{
2715 struct sci_port *sport = to_sci_port(uart: port);
2716
2717 /*
2718 * Nothing to do if there's already an established membase.
2719 */
2720 if (port->membase)
2721 return 0;
2722
2723 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2724 port->membase = ioremap(offset: port->mapbase, size: sport->reg_size);
2725 if (unlikely(!port->membase)) {
2726 dev_err(port->dev, "can't remap port#%d\n", port->line);
2727 return -ENXIO;
2728 }
2729 } else {
2730 /*
2731 * For the simple (and majority of) cases where we don't
2732 * need to do any remapping, just cast the cookie
2733 * directly.
2734 */
2735 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2736 }
2737
2738 return 0;
2739}
2740
2741static void sci_release_port(struct uart_port *port)
2742{
2743 struct sci_port *sport = to_sci_port(uart: port);
2744
2745 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2746 iounmap(addr: port->membase);
2747 port->membase = NULL;
2748 }
2749
2750 release_mem_region(port->mapbase, sport->reg_size);
2751}
2752
2753static int sci_request_port(struct uart_port *port)
2754{
2755 struct resource *res;
2756 struct sci_port *sport = to_sci_port(uart: port);
2757 int ret;
2758
2759 res = request_mem_region(port->mapbase, sport->reg_size,
2760 dev_name(port->dev));
2761 if (unlikely(res == NULL)) {
2762 dev_err(port->dev, "request_mem_region failed.");
2763 return -EBUSY;
2764 }
2765
2766 ret = sci_remap_port(port);
2767 if (unlikely(ret != 0)) {
2768 release_resource(new: res);
2769 return ret;
2770 }
2771
2772 return 0;
2773}
2774
2775static void sci_config_port(struct uart_port *port, int flags)
2776{
2777 if (flags & UART_CONFIG_TYPE) {
2778 struct sci_port *sport = to_sci_port(uart: port);
2779
2780 port->type = sport->cfg->type;
2781 sci_request_port(port);
2782 }
2783}
2784
2785static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2786{
2787 if (ser->baud_base < 2400)
2788 /* No paper tape reader for Mitch.. */
2789 return -EINVAL;
2790
2791 return 0;
2792}
2793
2794static const struct uart_ops sci_uart_ops = {
2795 .tx_empty = sci_tx_empty,
2796 .set_mctrl = sci_set_mctrl,
2797 .get_mctrl = sci_get_mctrl,
2798 .start_tx = sci_start_tx,
2799 .stop_tx = sci_stop_tx,
2800 .stop_rx = sci_stop_rx,
2801 .enable_ms = sci_enable_ms,
2802 .break_ctl = sci_break_ctl,
2803 .startup = sci_startup,
2804 .shutdown = sci_shutdown,
2805 .flush_buffer = sci_flush_buffer,
2806 .set_termios = sci_set_termios,
2807 .pm = sci_pm,
2808 .type = sci_type,
2809 .release_port = sci_release_port,
2810 .request_port = sci_request_port,
2811 .config_port = sci_config_port,
2812 .verify_port = sci_verify_port,
2813#ifdef CONFIG_CONSOLE_POLL
2814 .poll_get_char = sci_poll_get_char,
2815 .poll_put_char = sci_poll_put_char,
2816#endif
2817};
2818
2819static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2820{
2821 const char *clk_names[] = {
2822 [SCI_FCK] = "fck",
2823 [SCI_SCK] = "sck",
2824 [SCI_BRG_INT] = "brg_int",
2825 [SCI_SCIF_CLK] = "scif_clk",
2826 };
2827 struct clk *clk;
2828 unsigned int i;
2829
2830 if (sci_port->cfg->type == PORT_HSCIF)
2831 clk_names[SCI_SCK] = "hsck";
2832
2833 for (i = 0; i < SCI_NUM_CLKS; i++) {
2834 clk = devm_clk_get_optional(dev, id: clk_names[i]);
2835 if (IS_ERR(ptr: clk))
2836 return PTR_ERR(ptr: clk);
2837
2838 if (!clk && i == SCI_FCK) {
2839 /*
2840 * Not all SH platforms declare a clock lookup entry
2841 * for SCI devices, in which case we need to get the
2842 * global "peripheral_clk" clock.
2843 */
2844 clk = devm_clk_get(dev, id: "peripheral_clk");
2845 if (IS_ERR(ptr: clk))
2846 return dev_err_probe(dev, err: PTR_ERR(ptr: clk),
2847 fmt: "failed to get %s\n",
2848 clk_names[i]);
2849 }
2850
2851 if (!clk)
2852 dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2853 else
2854 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2855 clk, clk_get_rate(clk));
2856 sci_port->clks[i] = clk;
2857 }
2858 return 0;
2859}
2860
2861static const struct sci_port_params *
2862sci_probe_regmap(const struct plat_sci_port *cfg)
2863{
2864 unsigned int regtype;
2865
2866 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2867 return &sci_port_params[cfg->regtype];
2868
2869 switch (cfg->type) {
2870 case PORT_SCI:
2871 regtype = SCIx_SCI_REGTYPE;
2872 break;
2873 case PORT_IRDA:
2874 regtype = SCIx_IRDA_REGTYPE;
2875 break;
2876 case PORT_SCIFA:
2877 regtype = SCIx_SCIFA_REGTYPE;
2878 break;
2879 case PORT_SCIFB:
2880 regtype = SCIx_SCIFB_REGTYPE;
2881 break;
2882 case PORT_SCIF:
2883 /*
2884 * The SH-4 is a bit of a misnomer here, although that's
2885 * where this particular port layout originated. This
2886 * configuration (or some slight variation thereof)
2887 * remains the dominant model for all SCIFs.
2888 */
2889 regtype = SCIx_SH4_SCIF_REGTYPE;
2890 break;
2891 case PORT_HSCIF:
2892 regtype = SCIx_HSCIF_REGTYPE;
2893 break;
2894 default:
2895 pr_err("Can't probe register map for given port\n");
2896 return NULL;
2897 }
2898
2899 return &sci_port_params[regtype];
2900}
2901
2902static int sci_init_single(struct platform_device *dev,
2903 struct sci_port *sci_port, unsigned int index,
2904 const struct plat_sci_port *p, bool early)
2905{
2906 struct uart_port *port = &sci_port->port;
2907 const struct resource *res;
2908 unsigned int i;
2909 int ret;
2910
2911 sci_port->cfg = p;
2912
2913 port->ops = &sci_uart_ops;
2914 port->iotype = UPIO_MEM;
2915 port->line = index;
2916 port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2917
2918 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2919 if (res == NULL)
2920 return -ENOMEM;
2921
2922 port->mapbase = res->start;
2923 sci_port->reg_size = resource_size(res);
2924
2925 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2926 if (i)
2927 sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2928 else
2929 sci_port->irqs[i] = platform_get_irq(dev, i);
2930 }
2931
2932 /*
2933 * The fourth interrupt on SCI port is transmit end interrupt, so
2934 * shuffle the interrupts.
2935 */
2936 if (p->type == PORT_SCI)
2937 swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2938
2939 /* The SCI generates several interrupts. They can be muxed together or
2940 * connected to different interrupt lines. In the muxed case only one
2941 * interrupt resource is specified as there is only one interrupt ID.
2942 * In the non-muxed case, up to 6 interrupt signals might be generated
2943 * from the SCI, however those signals might have their own individual
2944 * interrupt ID numbers, or muxed together with another interrupt.
2945 */
2946 if (sci_port->irqs[0] < 0)
2947 return -ENXIO;
2948
2949 if (sci_port->irqs[1] < 0)
2950 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2951 sci_port->irqs[i] = sci_port->irqs[0];
2952
2953 sci_port->params = sci_probe_regmap(cfg: p);
2954 if (unlikely(sci_port->params == NULL))
2955 return -EINVAL;
2956
2957 switch (p->type) {
2958 case PORT_SCIFB:
2959 sci_port->rx_trigger = 48;
2960 break;
2961 case PORT_HSCIF:
2962 sci_port->rx_trigger = 64;
2963 break;
2964 case PORT_SCIFA:
2965 sci_port->rx_trigger = 32;
2966 break;
2967 case PORT_SCIF:
2968 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2969 /* RX triggering not implemented for this IP */
2970 sci_port->rx_trigger = 1;
2971 else
2972 sci_port->rx_trigger = 8;
2973 break;
2974 default:
2975 sci_port->rx_trigger = 1;
2976 break;
2977 }
2978
2979 sci_port->rx_fifo_timeout = 0;
2980 sci_port->hscif_tot = 0;
2981
2982 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2983 * match the SoC datasheet, this should be investigated. Let platform
2984 * data override the sampling rate for now.
2985 */
2986 sci_port->sampling_rate_mask = p->sampling_rate
2987 ? SCI_SR(p->sampling_rate)
2988 : sci_port->params->sampling_rate_mask;
2989
2990 if (!early) {
2991 ret = sci_init_clocks(sci_port, dev: &dev->dev);
2992 if (ret < 0)
2993 return ret;
2994
2995 port->dev = &dev->dev;
2996
2997 pm_runtime_enable(dev: &dev->dev);
2998 }
2999
3000 port->type = p->type;
3001 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3002 port->fifosize = sci_port->params->fifosize;
3003
3004 if (port->type == PORT_SCI && !dev->dev.of_node) {
3005 if (sci_port->reg_size >= 0x20)
3006 port->regshift = 2;
3007 else
3008 port->regshift = 1;
3009 }
3010
3011 /*
3012 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3013 * for the multi-IRQ ports, which is where we are primarily
3014 * concerned with the shutdown path synchronization.
3015 *
3016 * For the muxed case there's nothing more to do.
3017 */
3018 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
3019 port->irqflags = 0;
3020
3021 port->serial_in = sci_serial_in;
3022 port->serial_out = sci_serial_out;
3023
3024 return 0;
3025}
3026
3027static void sci_cleanup_single(struct sci_port *port)
3028{
3029 pm_runtime_disable(dev: port->port.dev);
3030}
3031
3032#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3033 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3034static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3035{
3036 sci_poll_put_char(port, c: ch);
3037}
3038
3039/*
3040 * Print a string to the serial port trying not to disturb
3041 * any possible real use of the port...
3042 */
3043static void serial_console_write(struct console *co, const char *s,
3044 unsigned count)
3045{
3046 struct sci_port *sci_port = &sci_ports[co->index];
3047 struct uart_port *port = &sci_port->port;
3048 unsigned short bits, ctrl, ctrl_temp;
3049 unsigned long flags;
3050 int locked = 1;
3051
3052 if (port->sysrq)
3053 locked = 0;
3054 else if (oops_in_progress)
3055 locked = uart_port_trylock_irqsave(up: port, flags: &flags);
3056 else
3057 uart_port_lock_irqsave(up: port, flags: &flags);
3058
3059 /* first save SCSCR then disable interrupts, keep clock source */
3060 ctrl = serial_port_in(up: port, offset: SCSCR);
3061 ctrl_temp = SCSCR_RE | SCSCR_TE |
3062 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3063 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3064 serial_port_out(up: port, offset: SCSCR, value: ctrl_temp | sci_port->hscif_tot);
3065
3066 uart_console_write(port, s, count, putchar: serial_console_putchar);
3067
3068 /* wait until fifo is empty and last bit has been transmitted */
3069 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3070 while ((serial_port_in(up: port, offset: SCxSR) & bits) != bits)
3071 cpu_relax();
3072
3073 /* restore the SCSCR */
3074 serial_port_out(up: port, offset: SCSCR, value: ctrl);
3075
3076 if (locked)
3077 uart_port_unlock_irqrestore(up: port, flags);
3078}
3079
3080static int serial_console_setup(struct console *co, char *options)
3081{
3082 struct sci_port *sci_port;
3083 struct uart_port *port;
3084 int baud = 115200;
3085 int bits = 8;
3086 int parity = 'n';
3087 int flow = 'n';
3088 int ret;
3089
3090 /*
3091 * Refuse to handle any bogus ports.
3092 */
3093 if (co->index < 0 || co->index >= SCI_NPORTS)
3094 return -ENODEV;
3095
3096 sci_port = &sci_ports[co->index];
3097 port = &sci_port->port;
3098
3099 /*
3100 * Refuse to handle uninitialized ports.
3101 */
3102 if (!port->ops)
3103 return -ENODEV;
3104
3105 ret = sci_remap_port(port);
3106 if (unlikely(ret != 0))
3107 return ret;
3108
3109 if (options)
3110 uart_parse_options(options, baud: &baud, parity: &parity, bits: &bits, flow: &flow);
3111
3112 return uart_set_options(port, co, baud, parity, bits, flow);
3113}
3114
3115static struct console serial_console = {
3116 .name = "ttySC",
3117 .device = uart_console_device,
3118 .write = serial_console_write,
3119 .setup = serial_console_setup,
3120 .flags = CON_PRINTBUFFER,
3121 .index = -1,
3122 .data = &sci_uart_driver,
3123};
3124
3125#ifdef CONFIG_SUPERH
3126static char early_serial_buf[32];
3127
3128static int early_serial_console_setup(struct console *co, char *options)
3129{
3130 /*
3131 * This early console is always registered using the earlyprintk=
3132 * parameter, which does not call add_preferred_console(). Thus
3133 * @options is always NULL and the options for this early console
3134 * are passed using a custom buffer.
3135 */
3136 WARN_ON(options);
3137
3138 return serial_console_setup(co, early_serial_buf);
3139}
3140
3141static struct console early_serial_console = {
3142 .name = "early_ttySC",
3143 .write = serial_console_write,
3144 .setup = early_serial_console_setup,
3145 .flags = CON_PRINTBUFFER,
3146 .index = -1,
3147};
3148
3149static int sci_probe_earlyprintk(struct platform_device *pdev)
3150{
3151 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3152
3153 if (early_serial_console.data)
3154 return -EEXIST;
3155
3156 early_serial_console.index = pdev->id;
3157
3158 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3159
3160 if (!strstr(early_serial_buf, "keep"))
3161 early_serial_console.flags |= CON_BOOT;
3162
3163 register_console(&early_serial_console);
3164 return 0;
3165}
3166#endif
3167
3168#define SCI_CONSOLE (&serial_console)
3169
3170#else
3171static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3172{
3173 return -EINVAL;
3174}
3175
3176#define SCI_CONSOLE NULL
3177
3178#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3179
3180static const char [] __initconst = "SuperH (H)SCI(F) driver initialized";
3181
3182static DEFINE_MUTEX(sci_uart_registration_lock);
3183static struct uart_driver sci_uart_driver = {
3184 .owner = THIS_MODULE,
3185 .driver_name = "sci",
3186 .dev_name = "ttySC",
3187 .major = SCI_MAJOR,
3188 .minor = SCI_MINOR_START,
3189 .nr = SCI_NPORTS,
3190 .cons = SCI_CONSOLE,
3191};
3192
3193static int sci_remove(struct platform_device *dev)
3194{
3195 struct sci_port *port = platform_get_drvdata(pdev: dev);
3196 unsigned int type = port->port.type; /* uart_remove_... clears it */
3197
3198 sci_ports_in_use &= ~BIT(port->port.line);
3199 uart_remove_one_port(reg: &sci_uart_driver, port: &port->port);
3200
3201 sci_cleanup_single(port);
3202
3203 if (port->port.fifosize > 1)
3204 device_remove_file(dev: &dev->dev, attr: &dev_attr_rx_fifo_trigger);
3205 if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3206 device_remove_file(dev: &dev->dev, attr: &dev_attr_rx_fifo_timeout);
3207
3208 return 0;
3209}
3210
3211
3212#define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3213#define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3214#define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3215
3216static const struct of_device_id of_sci_match[] __maybe_unused = {
3217 /* SoC-specific types */
3218 {
3219 .compatible = "renesas,scif-r7s72100",
3220 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3221 },
3222 {
3223 .compatible = "renesas,scif-r7s9210",
3224 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3225 },
3226 {
3227 .compatible = "renesas,scif-r9a07g044",
3228 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3229 },
3230 /* Family-specific types */
3231 {
3232 .compatible = "renesas,rcar-gen1-scif",
3233 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3234 }, {
3235 .compatible = "renesas,rcar-gen2-scif",
3236 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3237 }, {
3238 .compatible = "renesas,rcar-gen3-scif",
3239 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3240 }, {
3241 .compatible = "renesas,rcar-gen4-scif",
3242 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3243 },
3244 /* Generic types */
3245 {
3246 .compatible = "renesas,scif",
3247 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3248 }, {
3249 .compatible = "renesas,scifa",
3250 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3251 }, {
3252 .compatible = "renesas,scifb",
3253 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3254 }, {
3255 .compatible = "renesas,hscif",
3256 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3257 }, {
3258 .compatible = "renesas,sci",
3259 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3260 }, {
3261 /* Terminator */
3262 },
3263};
3264MODULE_DEVICE_TABLE(of, of_sci_match);
3265
3266static void sci_reset_control_assert(void *data)
3267{
3268 reset_control_assert(rstc: data);
3269}
3270
3271static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3272 unsigned int *dev_id)
3273{
3274 struct device_node *np = pdev->dev.of_node;
3275 struct reset_control *rstc;
3276 struct plat_sci_port *p;
3277 struct sci_port *sp;
3278 const void *data;
3279 int id, ret;
3280
3281 if (!IS_ENABLED(CONFIG_OF) || !np)
3282 return ERR_PTR(error: -EINVAL);
3283
3284 data = of_device_get_match_data(dev: &pdev->dev);
3285
3286 rstc = devm_reset_control_get_optional_exclusive(dev: &pdev->dev, NULL);
3287 if (IS_ERR(ptr: rstc))
3288 return ERR_PTR(error: dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: rstc),
3289 fmt: "failed to get reset ctrl\n"));
3290
3291 ret = reset_control_deassert(rstc);
3292 if (ret) {
3293 dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3294 return ERR_PTR(error: ret);
3295 }
3296
3297 ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3298 if (ret) {
3299 dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3300 ret);
3301 return ERR_PTR(error: ret);
3302 }
3303
3304 p = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct plat_sci_port), GFP_KERNEL);
3305 if (!p)
3306 return ERR_PTR(error: -ENOMEM);
3307
3308 /* Get the line number from the aliases node. */
3309 id = of_alias_get_id(np, stem: "serial");
3310 if (id < 0 && ~sci_ports_in_use)
3311 id = ffz(sci_ports_in_use);
3312 if (id < 0) {
3313 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3314 return ERR_PTR(error: -EINVAL);
3315 }
3316 if (id >= ARRAY_SIZE(sci_ports)) {
3317 dev_err(&pdev->dev, "serial%d out of range\n", id);
3318 return ERR_PTR(error: -EINVAL);
3319 }
3320
3321 sp = &sci_ports[id];
3322 *dev_id = id;
3323
3324 p->type = SCI_OF_TYPE(data);
3325 p->regtype = SCI_OF_REGTYPE(data);
3326
3327 sp->has_rtscts = of_property_read_bool(np, propname: "uart-has-rtscts");
3328
3329 return p;
3330}
3331
3332static int sci_probe_single(struct platform_device *dev,
3333 unsigned int index,
3334 struct plat_sci_port *p,
3335 struct sci_port *sciport)
3336{
3337 int ret;
3338
3339 /* Sanity check */
3340 if (unlikely(index >= SCI_NPORTS)) {
3341 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3342 index+1, SCI_NPORTS);
3343 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3344 return -EINVAL;
3345 }
3346 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3347 if (sci_ports_in_use & BIT(index))
3348 return -EBUSY;
3349
3350 mutex_lock(&sci_uart_registration_lock);
3351 if (!sci_uart_driver.state) {
3352 ret = uart_register_driver(uart: &sci_uart_driver);
3353 if (ret) {
3354 mutex_unlock(lock: &sci_uart_registration_lock);
3355 return ret;
3356 }
3357 }
3358 mutex_unlock(lock: &sci_uart_registration_lock);
3359
3360 ret = sci_init_single(dev, sci_port: sciport, index, p, early: false);
3361 if (ret)
3362 return ret;
3363
3364 sciport->gpios = mctrl_gpio_init(port: &sciport->port, idx: 0);
3365 if (IS_ERR(ptr: sciport->gpios))
3366 return PTR_ERR(ptr: sciport->gpios);
3367
3368 if (sciport->has_rtscts) {
3369 if (mctrl_gpio_to_gpiod(gpios: sciport->gpios, gidx: UART_GPIO_CTS) ||
3370 mctrl_gpio_to_gpiod(gpios: sciport->gpios, gidx: UART_GPIO_RTS)) {
3371 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3372 return -EINVAL;
3373 }
3374 sciport->port.flags |= UPF_HARD_FLOW;
3375 }
3376
3377 ret = uart_add_one_port(reg: &sci_uart_driver, port: &sciport->port);
3378 if (ret) {
3379 sci_cleanup_single(port: sciport);
3380 return ret;
3381 }
3382
3383 return 0;
3384}
3385
3386static int sci_probe(struct platform_device *dev)
3387{
3388 struct plat_sci_port *p;
3389 struct sci_port *sp;
3390 unsigned int dev_id;
3391 int ret;
3392
3393 /*
3394 * If we've come here via earlyprintk initialization, head off to
3395 * the special early probe. We don't have sufficient device state
3396 * to make it beyond this yet.
3397 */
3398#ifdef CONFIG_SUPERH
3399 if (is_sh_early_platform_device(dev))
3400 return sci_probe_earlyprintk(dev);
3401#endif
3402
3403 if (dev->dev.of_node) {
3404 p = sci_parse_dt(pdev: dev, dev_id: &dev_id);
3405 if (IS_ERR(ptr: p))
3406 return PTR_ERR(ptr: p);
3407 } else {
3408 p = dev->dev.platform_data;
3409 if (p == NULL) {
3410 dev_err(&dev->dev, "no platform data supplied\n");
3411 return -EINVAL;
3412 }
3413
3414 dev_id = dev->id;
3415 }
3416
3417 sp = &sci_ports[dev_id];
3418 platform_set_drvdata(pdev: dev, data: sp);
3419
3420 ret = sci_probe_single(dev, index: dev_id, p, sciport: sp);
3421 if (ret)
3422 return ret;
3423
3424 if (sp->port.fifosize > 1) {
3425 ret = device_create_file(device: &dev->dev, entry: &dev_attr_rx_fifo_trigger);
3426 if (ret)
3427 return ret;
3428 }
3429 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3430 sp->port.type == PORT_HSCIF) {
3431 ret = device_create_file(device: &dev->dev, entry: &dev_attr_rx_fifo_timeout);
3432 if (ret) {
3433 if (sp->port.fifosize > 1) {
3434 device_remove_file(dev: &dev->dev,
3435 attr: &dev_attr_rx_fifo_trigger);
3436 }
3437 return ret;
3438 }
3439 }
3440
3441#ifdef CONFIG_SH_STANDARD_BIOS
3442 sh_bios_gdb_detach();
3443#endif
3444
3445 sci_ports_in_use |= BIT(dev_id);
3446 return 0;
3447}
3448
3449static __maybe_unused int sci_suspend(struct device *dev)
3450{
3451 struct sci_port *sport = dev_get_drvdata(dev);
3452
3453 if (sport)
3454 uart_suspend_port(reg: &sci_uart_driver, port: &sport->port);
3455
3456 return 0;
3457}
3458
3459static __maybe_unused int sci_resume(struct device *dev)
3460{
3461 struct sci_port *sport = dev_get_drvdata(dev);
3462
3463 if (sport)
3464 uart_resume_port(reg: &sci_uart_driver, port: &sport->port);
3465
3466 return 0;
3467}
3468
3469static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3470
3471static struct platform_driver sci_driver = {
3472 .probe = sci_probe,
3473 .remove = sci_remove,
3474 .driver = {
3475 .name = "sh-sci",
3476 .pm = &sci_dev_pm_ops,
3477 .of_match_table = of_match_ptr(of_sci_match),
3478 },
3479};
3480
3481static int __init sci_init(void)
3482{
3483 pr_info("%s\n", banner);
3484
3485 return platform_driver_register(&sci_driver);
3486}
3487
3488static void __exit sci_exit(void)
3489{
3490 platform_driver_unregister(&sci_driver);
3491
3492 if (sci_uart_driver.state)
3493 uart_unregister_driver(uart: &sci_uart_driver);
3494}
3495
3496#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3497sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3498 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3499#endif
3500#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3501static struct plat_sci_port port_cfg __initdata;
3502
3503static int __init early_console_setup(struct earlycon_device *device,
3504 int type)
3505{
3506 if (!device->port.membase)
3507 return -ENODEV;
3508
3509 device->port.serial_in = sci_serial_in;
3510 device->port.serial_out = sci_serial_out;
3511 device->port.type = type;
3512 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3513 port_cfg.type = type;
3514 sci_ports[0].cfg = &port_cfg;
3515 sci_ports[0].params = sci_probe_regmap(cfg: &port_cfg);
3516 port_cfg.scscr = sci_serial_in(p: &sci_ports[0].port, offset: SCSCR);
3517 sci_serial_out(p: &sci_ports[0].port, offset: SCSCR,
3518 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3519
3520 device->con->write = serial_console_write;
3521 return 0;
3522}
3523static int __init sci_early_console_setup(struct earlycon_device *device,
3524 const char *opt)
3525{
3526 return early_console_setup(device, PORT_SCI);
3527}
3528static int __init scif_early_console_setup(struct earlycon_device *device,
3529 const char *opt)
3530{
3531 return early_console_setup(device, PORT_SCIF);
3532}
3533static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3534 const char *opt)
3535{
3536 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3537 return early_console_setup(device, PORT_SCIF);
3538}
3539
3540static int __init scifa_early_console_setup(struct earlycon_device *device,
3541 const char *opt)
3542{
3543 return early_console_setup(device, PORT_SCIFA);
3544}
3545static int __init scifb_early_console_setup(struct earlycon_device *device,
3546 const char *opt)
3547{
3548 return early_console_setup(device, PORT_SCIFB);
3549}
3550static int __init hscif_early_console_setup(struct earlycon_device *device,
3551 const char *opt)
3552{
3553 return early_console_setup(device, PORT_HSCIF);
3554}
3555
3556OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3557OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3558OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3559OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3560OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3561OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3562OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3563#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3564
3565module_init(sci_init);
3566module_exit(sci_exit);
3567
3568MODULE_LICENSE("GPL");
3569MODULE_ALIAS("platform:sh-sci");
3570MODULE_AUTHOR("Paul Mundt");
3571MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3572

source code of linux/drivers/tty/serial/sh-sci.c