1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102#include <linux/uaccess.h>
103#include <linux/termios_internal.h>
104#include <linux/fs.h>
105
106#include <linux/kbd_kern.h>
107#include <linux/vt_kern.h>
108#include <linux/selection.h>
109
110#include <linux/kmod.h>
111#include <linux/nsproxy.h>
112#include "tty.h"
113
114#undef TTY_DEBUG_HANGUP
115#ifdef TTY_DEBUG_HANGUP
116# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
117#else
118# define tty_debug_hangup(tty, f, args...) do { } while (0)
119#endif
120
121#define TTY_PARANOIA_CHECK 1
122#define CHECK_TTY_COUNT 1
123
124struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
125 .c_iflag = ICRNL | IXON,
126 .c_oflag = OPOST | ONLCR,
127 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
128 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
129 ECHOCTL | ECHOKE | IEXTEN,
130 .c_cc = INIT_C_CC,
131 .c_ispeed = 38400,
132 .c_ospeed = 38400,
133 /* .c_line = N_TTY, */
134};
135EXPORT_SYMBOL(tty_std_termios);
136
137/* This list gets poked at by procfs and various bits of boot up code. This
138 * could do with some rationalisation such as pulling the tty proc function
139 * into this file.
140 */
141
142LIST_HEAD(tty_drivers); /* linked list of tty drivers */
143
144/* Mutex to protect creating and releasing a tty */
145DEFINE_MUTEX(tty_mutex);
146
147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
149static __poll_t tty_poll(struct file *, poll_table *);
150static int tty_open(struct inode *, struct file *);
151#ifdef CONFIG_COMPAT
152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
153 unsigned long arg);
154#else
155#define tty_compat_ioctl NULL
156#endif
157static int __tty_fasync(int fd, struct file *filp, int on);
158static int tty_fasync(int fd, struct file *filp, int on);
159static void release_tty(struct tty_struct *tty, int idx);
160
161/**
162 * free_tty_struct - free a disused tty
163 * @tty: tty struct to free
164 *
165 * Free the write buffers, tty queue and tty memory itself.
166 *
167 * Locking: none. Must be called after tty is definitely unused
168 */
169static void free_tty_struct(struct tty_struct *tty)
170{
171 tty_ldisc_deinit(tty);
172 put_device(dev: tty->dev);
173 kvfree(addr: tty->write_buf);
174 kfree(objp: tty);
175}
176
177static inline struct tty_struct *file_tty(struct file *file)
178{
179 return ((struct tty_file_private *)file->private_data)->tty;
180}
181
182int tty_alloc_file(struct file *file)
183{
184 struct tty_file_private *priv;
185
186 priv = kmalloc(size: sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193}
194
195/* Associate a new file with the tty structure */
196void tty_add_file(struct tty_struct *tty, struct file *file)
197{
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(lock: &tty->files_lock);
204 list_add(new: &priv->list, head: &tty->tty_files);
205 spin_unlock(lock: &tty->files_lock);
206}
207
208/**
209 * tty_free_file - free file->private_data
210 * @file: to free private_data of
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(objp: priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(lock: &tty->files_lock);
230 list_del(entry: &priv->list);
231 spin_unlock(lock: &tty->files_lock);
232 tty_free_file(file);
233}
234
235/**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel naming
240 * policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244const char *tty_name(const struct tty_struct *tty)
245{
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249}
250EXPORT_SYMBOL(tty_name);
251
252const char *tty_driver_name(const struct tty_struct *tty)
253{
254 if (!tty || !tty->driver)
255 return "";
256 return tty->driver->name;
257}
258
259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 const char *routine)
261{
262#ifdef TTY_PARANOIA_CHECK
263 if (!tty) {
264 pr_warn("(%d:%d): %s: NULL tty\n",
265 imajor(inode), iminor(inode), routine);
266 return 1;
267 }
268#endif
269 return 0;
270}
271
272/* Caller must hold tty_lock */
273static void check_tty_count(struct tty_struct *tty, const char *routine)
274{
275#ifdef CHECK_TTY_COUNT
276 struct list_head *p;
277 int count = 0, kopen_count = 0;
278
279 spin_lock(lock: &tty->files_lock);
280 list_for_each(p, &tty->tty_files) {
281 count++;
282 }
283 spin_unlock(lock: &tty->files_lock);
284 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
285 tty->driver->subtype == PTY_TYPE_SLAVE &&
286 tty->link && tty->link->count)
287 count++;
288 if (tty_port_kopened(port: tty->port))
289 kopen_count++;
290 if (tty->count != (count + kopen_count)) {
291 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
292 routine, tty->count, count, kopen_count);
293 }
294#endif
295}
296
297/**
298 * get_tty_driver - find device of a tty
299 * @device: device identifier
300 * @index: returns the index of the tty
301 *
302 * This routine returns a tty driver structure, given a device number and also
303 * passes back the index number.
304 *
305 * Locking: caller must hold tty_mutex
306 */
307static struct tty_driver *get_tty_driver(dev_t device, int *index)
308{
309 struct tty_driver *p;
310
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 dev_t base = MKDEV(p->major, p->minor_start);
313
314 if (device < base || device >= base + p->num)
315 continue;
316 *index = device - base;
317 return tty_driver_kref_get(d: p);
318 }
319 return NULL;
320}
321
322/**
323 * tty_dev_name_to_number - return dev_t for device name
324 * @name: user space name of device under /dev
325 * @number: pointer to dev_t that this function will populate
326 *
327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
329 * function returns -%ENODEV.
330 *
331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
332 * being modified while we are traversing it, and makes sure to
333 * release it before exiting.
334 */
335int tty_dev_name_to_number(const char *name, dev_t *number)
336{
337 struct tty_driver *p;
338 int ret;
339 int index, prefix_length = 0;
340 const char *str;
341
342 for (str = name; *str && !isdigit(c: *str); str++)
343 ;
344
345 if (!*str)
346 return -EINVAL;
347
348 ret = kstrtoint(s: str, base: 10, res: &index);
349 if (ret)
350 return ret;
351
352 prefix_length = str - name;
353 mutex_lock(&tty_mutex);
354
355 list_for_each_entry(p, &tty_drivers, tty_drivers)
356 if (prefix_length == strlen(p->name) && strncmp(name,
357 p->name, prefix_length) == 0) {
358 if (index < p->num) {
359 *number = MKDEV(p->major, p->minor_start + index);
360 goto out;
361 }
362 }
363
364 /* if here then driver wasn't found */
365 ret = -ENODEV;
366out:
367 mutex_unlock(lock: &tty_mutex);
368 return ret;
369}
370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
371
372#ifdef CONFIG_CONSOLE_POLL
373
374/**
375 * tty_find_polling_driver - find device of a polled tty
376 * @name: name string to match
377 * @line: pointer to resulting tty line nr
378 *
379 * This routine returns a tty driver structure, given a name and the condition
380 * that the tty driver is capable of polled operation.
381 */
382struct tty_driver *tty_find_polling_driver(char *name, int *line)
383{
384 struct tty_driver *p, *res = NULL;
385 int tty_line = 0;
386 int len;
387 char *str, *stp;
388
389 for (str = name; *str; str++)
390 if ((*str >= '0' && *str <= '9') || *str == ',')
391 break;
392 if (!*str)
393 return NULL;
394
395 len = str - name;
396 tty_line = simple_strtoul(str, &str, 10);
397
398 mutex_lock(&tty_mutex);
399 /* Search through the tty devices to look for a match */
400 list_for_each_entry(p, &tty_drivers, tty_drivers) {
401 if (!len || strncmp(name, p->name, len) != 0)
402 continue;
403 stp = str;
404 if (*stp == ',')
405 stp++;
406 if (*stp == '\0')
407 stp = NULL;
408
409 if (tty_line >= 0 && tty_line < p->num && p->ops &&
410 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
411 res = tty_driver_kref_get(d: p);
412 *line = tty_line;
413 break;
414 }
415 }
416 mutex_unlock(lock: &tty_mutex);
417
418 return res;
419}
420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
421#endif
422
423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
424{
425 return 0;
426}
427
428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
429{
430 return -EIO;
431}
432
433/* No kernel lock held - none needed ;) */
434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
435{
436 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
437}
438
439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
440 unsigned long arg)
441{
442 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
443}
444
445static long hung_up_tty_compat_ioctl(struct file *file,
446 unsigned int cmd, unsigned long arg)
447{
448 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
449}
450
451static int hung_up_tty_fasync(int fd, struct file *file, int on)
452{
453 return -ENOTTY;
454}
455
456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
457{
458 struct tty_struct *tty = file_tty(file);
459
460 if (tty && tty->ops && tty->ops->show_fdinfo)
461 tty->ops->show_fdinfo(tty, m);
462}
463
464static const struct file_operations tty_fops = {
465 .llseek = no_llseek,
466 .read_iter = tty_read,
467 .write_iter = tty_write,
468 .splice_read = copy_splice_read,
469 .splice_write = iter_file_splice_write,
470 .poll = tty_poll,
471 .unlocked_ioctl = tty_ioctl,
472 .compat_ioctl = tty_compat_ioctl,
473 .open = tty_open,
474 .release = tty_release,
475 .fasync = tty_fasync,
476 .show_fdinfo = tty_show_fdinfo,
477};
478
479static const struct file_operations console_fops = {
480 .llseek = no_llseek,
481 .read_iter = tty_read,
482 .write_iter = redirected_tty_write,
483 .splice_read = copy_splice_read,
484 .splice_write = iter_file_splice_write,
485 .poll = tty_poll,
486 .unlocked_ioctl = tty_ioctl,
487 .compat_ioctl = tty_compat_ioctl,
488 .open = tty_open,
489 .release = tty_release,
490 .fasync = tty_fasync,
491};
492
493static const struct file_operations hung_up_tty_fops = {
494 .llseek = no_llseek,
495 .read_iter = hung_up_tty_read,
496 .write_iter = hung_up_tty_write,
497 .poll = hung_up_tty_poll,
498 .unlocked_ioctl = hung_up_tty_ioctl,
499 .compat_ioctl = hung_up_tty_compat_ioctl,
500 .release = tty_release,
501 .fasync = hung_up_tty_fasync,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup - request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function informs the
512 * line discipline if present that the driver is ready to receive more output
513 * data.
514 */
515void tty_wakeup(struct tty_struct *tty)
516{
517 struct tty_ldisc *ld;
518
519 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
520 ld = tty_ldisc_ref(tty);
521 if (ld) {
522 if (ld->ops->write_wakeup)
523 ld->ops->write_wakeup(tty);
524 tty_ldisc_deref(ld);
525 }
526 }
527 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
528}
529EXPORT_SYMBOL_GPL(tty_wakeup);
530
531/**
532 * tty_release_redirect - Release a redirect on a pty if present
533 * @tty: tty device
534 *
535 * This is available to the pty code so if the master closes, if the slave is a
536 * redirect it can release the redirect.
537 */
538static struct file *tty_release_redirect(struct tty_struct *tty)
539{
540 struct file *f = NULL;
541
542 spin_lock(lock: &redirect_lock);
543 if (redirect && file_tty(file: redirect) == tty) {
544 f = redirect;
545 redirect = NULL;
546 }
547 spin_unlock(lock: &redirect_lock);
548
549 return f;
550}
551
552/**
553 * __tty_hangup - actual handler for hangup events
554 * @tty: tty device
555 * @exit_session: if non-zero, signal all foreground group processes
556 *
557 * This can be called by a "kworker" kernel thread. That is process synchronous
558 * but doesn't hold any locks, so we need to make sure we have the appropriate
559 * locks for what we're doing.
560 *
561 * The hangup event clears any pending redirections onto the hung up device. It
562 * ensures future writes will error and it does the needed line discipline
563 * hangup and signal delivery. The tty object itself remains intact.
564 *
565 * Locking:
566 * * BTM
567 *
568 * * redirect lock for undoing redirection
569 * * file list lock for manipulating list of ttys
570 * * tty_ldiscs_lock from called functions
571 * * termios_rwsem resetting termios data
572 * * tasklist_lock to walk task list for hangup event
573 *
574 * * ->siglock to protect ->signal/->sighand
575 *
576 */
577static void __tty_hangup(struct tty_struct *tty, int exit_session)
578{
579 struct file *cons_filp = NULL;
580 struct file *filp, *f;
581 struct tty_file_private *priv;
582 int closecount = 0, n;
583 int refs;
584
585 if (!tty)
586 return;
587
588 f = tty_release_redirect(tty);
589
590 tty_lock(tty);
591
592 if (test_bit(TTY_HUPPED, &tty->flags)) {
593 tty_unlock(tty);
594 return;
595 }
596
597 /*
598 * Some console devices aren't actually hung up for technical and
599 * historical reasons, which can lead to indefinite interruptible
600 * sleep in n_tty_read(). The following explicitly tells
601 * n_tty_read() to abort readers.
602 */
603 set_bit(TTY_HUPPING, addr: &tty->flags);
604
605 /* inuse_filps is protected by the single tty lock,
606 * this really needs to change if we want to flush the
607 * workqueue with the lock held.
608 */
609 check_tty_count(tty, routine: "tty_hangup");
610
611 spin_lock(lock: &tty->files_lock);
612 /* This breaks for file handles being sent over AF_UNIX sockets ? */
613 list_for_each_entry(priv, &tty->tty_files, list) {
614 filp = priv->file;
615 if (filp->f_op->write_iter == redirected_tty_write)
616 cons_filp = filp;
617 if (filp->f_op->write_iter != tty_write)
618 continue;
619 closecount++;
620 __tty_fasync(fd: -1, filp, on: 0); /* can't block */
621 filp->f_op = &hung_up_tty_fops;
622 }
623 spin_unlock(lock: &tty->files_lock);
624
625 refs = tty_signal_session_leader(tty, exit_session);
626 /* Account for the p->signal references we killed */
627 while (refs--)
628 tty_kref_put(tty);
629
630 tty_ldisc_hangup(tty, reset: cons_filp != NULL);
631
632 spin_lock_irq(lock: &tty->ctrl.lock);
633 clear_bit(TTY_THROTTLED, addr: &tty->flags);
634 clear_bit(TTY_DO_WRITE_WAKEUP, addr: &tty->flags);
635 put_pid(pid: tty->ctrl.session);
636 put_pid(pid: tty->ctrl.pgrp);
637 tty->ctrl.session = NULL;
638 tty->ctrl.pgrp = NULL;
639 tty->ctrl.pktstatus = 0;
640 spin_unlock_irq(lock: &tty->ctrl.lock);
641
642 /*
643 * If one of the devices matches a console pointer, we
644 * cannot just call hangup() because that will cause
645 * tty->count and state->count to go out of sync.
646 * So we just call close() the right number of times.
647 */
648 if (cons_filp) {
649 if (tty->ops->close)
650 for (n = 0; n < closecount; n++)
651 tty->ops->close(tty, cons_filp);
652 } else if (tty->ops->hangup)
653 tty->ops->hangup(tty);
654 /*
655 * We don't want to have driver/ldisc interactions beyond the ones
656 * we did here. The driver layer expects no calls after ->hangup()
657 * from the ldisc side, which is now guaranteed.
658 */
659 set_bit(TTY_HUPPED, addr: &tty->flags);
660 clear_bit(TTY_HUPPING, addr: &tty->flags);
661 tty_unlock(tty);
662
663 if (f)
664 fput(f);
665}
666
667static void do_tty_hangup(struct work_struct *work)
668{
669 struct tty_struct *tty =
670 container_of(work, struct tty_struct, hangup_work);
671
672 __tty_hangup(tty, exit_session: 0);
673}
674
675/**
676 * tty_hangup - trigger a hangup event
677 * @tty: tty to hangup
678 *
679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
680 * hangup sequence to run after this event.
681 */
682void tty_hangup(struct tty_struct *tty)
683{
684 tty_debug_hangup(tty, "hangup\n");
685 schedule_work(work: &tty->hangup_work);
686}
687EXPORT_SYMBOL(tty_hangup);
688
689/**
690 * tty_vhangup - process vhangup
691 * @tty: tty to hangup
692 *
693 * The user has asked via system call for the terminal to be hung up. We do
694 * this synchronously so that when the syscall returns the process is complete.
695 * That guarantee is necessary for security reasons.
696 */
697void tty_vhangup(struct tty_struct *tty)
698{
699 tty_debug_hangup(tty, "vhangup\n");
700 __tty_hangup(tty, exit_session: 0);
701}
702EXPORT_SYMBOL(tty_vhangup);
703
704
705/**
706 * tty_vhangup_self - process vhangup for own ctty
707 *
708 * Perform a vhangup on the current controlling tty
709 */
710void tty_vhangup_self(void)
711{
712 struct tty_struct *tty;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_vhangup(tty);
717 tty_kref_put(tty);
718 }
719}
720
721/**
722 * tty_vhangup_session - hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled %SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process is
729 * complete. That guarantee is necessary for security reasons.
730 */
731void tty_vhangup_session(struct tty_struct *tty)
732{
733 tty_debug_hangup(tty, "session hangup\n");
734 __tty_hangup(tty, exit_session: 1);
735}
736
737/**
738 * tty_hung_up_p - was tty hung up
739 * @filp: file pointer of tty
740 *
741 * Return: true if the tty has been subject to a vhangup or a carrier loss
742 */
743int tty_hung_up_p(struct file *filp)
744{
745 return (filp && filp->f_op == &hung_up_tty_fops);
746}
747EXPORT_SYMBOL(tty_hung_up_p);
748
749void __stop_tty(struct tty_struct *tty)
750{
751 if (tty->flow.stopped)
752 return;
753 tty->flow.stopped = true;
754 if (tty->ops->stop)
755 tty->ops->stop(tty);
756}
757
758/**
759 * stop_tty - propagate flow control
760 * @tty: tty to stop
761 *
762 * Perform flow control to the driver. May be called on an already stopped
763 * device and will not re-call the &tty_driver->stop() method.
764 *
765 * This functionality is used by both the line disciplines for halting incoming
766 * flow and by the driver. It may therefore be called from any context, may be
767 * under the tty %atomic_write_lock but not always.
768 *
769 * Locking:
770 * flow.lock
771 */
772void stop_tty(struct tty_struct *tty)
773{
774 unsigned long flags;
775
776 spin_lock_irqsave(&tty->flow.lock, flags);
777 __stop_tty(tty);
778 spin_unlock_irqrestore(lock: &tty->flow.lock, flags);
779}
780EXPORT_SYMBOL(stop_tty);
781
782void __start_tty(struct tty_struct *tty)
783{
784 if (!tty->flow.stopped || tty->flow.tco_stopped)
785 return;
786 tty->flow.stopped = false;
787 if (tty->ops->start)
788 tty->ops->start(tty);
789 tty_wakeup(tty);
790}
791
792/**
793 * start_tty - propagate flow control
794 * @tty: tty to start
795 *
796 * Start a tty that has been stopped if at all possible. If @tty was previously
797 * stopped and is now being started, the &tty_driver->start() method is invoked
798 * and the line discipline woken.
799 *
800 * Locking:
801 * flow.lock
802 */
803void start_tty(struct tty_struct *tty)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(&tty->flow.lock, flags);
808 __start_tty(tty);
809 spin_unlock_irqrestore(lock: &tty->flow.lock, flags);
810}
811EXPORT_SYMBOL(start_tty);
812
813static void tty_update_time(struct tty_struct *tty, bool mtime)
814{
815 time64_t sec = ktime_get_real_seconds();
816 struct tty_file_private *priv;
817
818 spin_lock(lock: &tty->files_lock);
819 list_for_each_entry(priv, &tty->tty_files, list) {
820 struct inode *inode = file_inode(f: priv->file);
821 struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
822
823 /*
824 * We only care if the two values differ in anything other than the
825 * lower three bits (i.e every 8 seconds). If so, then we can update
826 * the time of the tty device, otherwise it could be construded as a
827 * security leak to let userspace know the exact timing of the tty.
828 */
829 if ((sec ^ time.tv_sec) & ~7) {
830 if (mtime)
831 inode_set_mtime(inode, sec, nsec: 0);
832 else
833 inode_set_atime(inode, sec, nsec: 0);
834 }
835 }
836 spin_unlock(lock: &tty->files_lock);
837}
838
839/*
840 * Iterate on the ldisc ->read() function until we've gotten all
841 * the data the ldisc has for us.
842 *
843 * The "cookie" is something that the ldisc read function can fill
844 * in to let us know that there is more data to be had.
845 *
846 * We promise to continue to call the ldisc until it stops returning
847 * data or clears the cookie. The cookie may be something that the
848 * ldisc maintains state for and needs to free.
849 */
850static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
851 struct file *file, struct iov_iter *to)
852{
853 void *cookie = NULL;
854 unsigned long offset = 0;
855 char kernel_buf[64];
856 ssize_t retval = 0;
857 size_t copied, count = iov_iter_count(i: to);
858
859 do {
860 ssize_t size = min(count, sizeof(kernel_buf));
861
862 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
863 if (!size)
864 break;
865
866 if (size < 0) {
867 /* Did we have an earlier error (ie -EFAULT)? */
868 if (retval)
869 break;
870 retval = size;
871
872 /*
873 * -EOVERFLOW means we didn't have enough space
874 * for a whole packet, and we shouldn't return
875 * a partial result.
876 */
877 if (retval == -EOVERFLOW)
878 offset = 0;
879 break;
880 }
881
882 copied = copy_to_iter(addr: kernel_buf, bytes: size, i: to);
883 offset += copied;
884 count -= copied;
885
886 /*
887 * If the user copy failed, we still need to do another ->read()
888 * call if we had a cookie to let the ldisc clear up.
889 *
890 * But make sure size is zeroed.
891 */
892 if (unlikely(copied != size)) {
893 count = 0;
894 retval = -EFAULT;
895 }
896 } while (cookie);
897
898 /* We always clear tty buffer in case they contained passwords */
899 memzero_explicit(s: kernel_buf, count: sizeof(kernel_buf));
900 return offset ? offset : retval;
901}
902
903
904/**
905 * tty_read - read method for tty device files
906 * @iocb: kernel I/O control block
907 * @to: destination for the data read
908 *
909 * Perform the read system call function on this terminal device. Checks
910 * for hung up devices before calling the line discipline method.
911 *
912 * Locking:
913 * Locks the line discipline internally while needed. Multiple read calls
914 * may be outstanding in parallel.
915 */
916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
917{
918 struct file *file = iocb->ki_filp;
919 struct inode *inode = file_inode(f: file);
920 struct tty_struct *tty = file_tty(file);
921 struct tty_ldisc *ld;
922 ssize_t ret;
923
924 if (tty_paranoia_check(tty, inode, routine: "tty_read"))
925 return -EIO;
926 if (!tty || tty_io_error(tty))
927 return -EIO;
928
929 /* We want to wait for the line discipline to sort out in this
930 * situation.
931 */
932 ld = tty_ldisc_ref_wait(tty);
933 if (!ld)
934 return hung_up_tty_read(iocb, to);
935 ret = -EIO;
936 if (ld->ops->read)
937 ret = iterate_tty_read(ld, tty, file, to);
938 tty_ldisc_deref(ld);
939
940 if (ret > 0)
941 tty_update_time(tty, mtime: false);
942
943 return ret;
944}
945
946void tty_write_unlock(struct tty_struct *tty)
947{
948 mutex_unlock(lock: &tty->atomic_write_lock);
949 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
950}
951
952int tty_write_lock(struct tty_struct *tty, bool ndelay)
953{
954 if (!mutex_trylock(lock: &tty->atomic_write_lock)) {
955 if (ndelay)
956 return -EAGAIN;
957 if (mutex_lock_interruptible(&tty->atomic_write_lock))
958 return -ERESTARTSYS;
959 }
960 return 0;
961}
962
963/*
964 * Split writes up in sane blocksizes to avoid
965 * denial-of-service type attacks
966 */
967static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
968 struct file *file, struct iov_iter *from)
969{
970 size_t chunk, count = iov_iter_count(i: from);
971 ssize_t ret, written = 0;
972
973 ret = tty_write_lock(tty, ndelay: file->f_flags & O_NDELAY);
974 if (ret < 0)
975 return ret;
976
977 /*
978 * We chunk up writes into a temporary buffer. This
979 * simplifies low-level drivers immensely, since they
980 * don't have locking issues and user mode accesses.
981 *
982 * But if TTY_NO_WRITE_SPLIT is set, we should use a
983 * big chunk-size..
984 *
985 * The default chunk-size is 2kB, because the NTTY
986 * layer has problems with bigger chunks. It will
987 * claim to be able to handle more characters than
988 * it actually does.
989 */
990 chunk = 2048;
991 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
992 chunk = 65536;
993 if (count < chunk)
994 chunk = count;
995
996 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
997 if (tty->write_cnt < chunk) {
998 unsigned char *buf_chunk;
999
1000 if (chunk < 1024)
1001 chunk = 1024;
1002
1003 buf_chunk = kvmalloc(size: chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1004 if (!buf_chunk) {
1005 ret = -ENOMEM;
1006 goto out;
1007 }
1008 kvfree(addr: tty->write_buf);
1009 tty->write_cnt = chunk;
1010 tty->write_buf = buf_chunk;
1011 }
1012
1013 /* Do the write .. */
1014 for (;;) {
1015 size_t size = min(chunk, count);
1016
1017 ret = -EFAULT;
1018 if (copy_from_iter(addr: tty->write_buf, bytes: size, i: from) != size)
1019 break;
1020
1021 ret = ld->ops->write(tty, file, tty->write_buf, size);
1022 if (ret <= 0)
1023 break;
1024
1025 written += ret;
1026 if (ret > size)
1027 break;
1028
1029 /* FIXME! Have Al check this! */
1030 if (ret != size)
1031 iov_iter_revert(i: from, bytes: size-ret);
1032
1033 count -= ret;
1034 if (!count)
1035 break;
1036 ret = -ERESTARTSYS;
1037 if (signal_pending(current))
1038 break;
1039 cond_resched();
1040 }
1041 if (written) {
1042 tty_update_time(tty, mtime: true);
1043 ret = written;
1044 }
1045out:
1046 tty_write_unlock(tty);
1047 return ret;
1048}
1049
1050/**
1051 * tty_write_message - write a message to a certain tty, not just the console.
1052 * @tty: the destination tty_struct
1053 * @msg: the message to write
1054 *
1055 * This is used for messages that need to be redirected to a specific tty. We
1056 * don't put it into the syslog queue right now maybe in the future if really
1057 * needed.
1058 *
1059 * We must still hold the BTM and test the CLOSING flag for the moment.
1060 */
1061void tty_write_message(struct tty_struct *tty, char *msg)
1062{
1063 if (tty) {
1064 mutex_lock(&tty->atomic_write_lock);
1065 tty_lock(tty);
1066 if (tty->ops->write && tty->count > 0)
1067 tty->ops->write(tty, msg, strlen(msg));
1068 tty_unlock(tty);
1069 tty_write_unlock(tty);
1070 }
1071}
1072
1073static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1074{
1075 struct tty_struct *tty = file_tty(file);
1076 struct tty_ldisc *ld;
1077 ssize_t ret;
1078
1079 if (tty_paranoia_check(tty, inode: file_inode(f: file), routine: "tty_write"))
1080 return -EIO;
1081 if (!tty || !tty->ops->write || tty_io_error(tty))
1082 return -EIO;
1083 /* Short term debug to catch buggy drivers */
1084 if (tty->ops->write_room == NULL)
1085 tty_err(tty, "missing write_room method\n");
1086 ld = tty_ldisc_ref_wait(tty);
1087 if (!ld)
1088 return hung_up_tty_write(iocb, from);
1089 if (!ld->ops->write)
1090 ret = -EIO;
1091 else
1092 ret = iterate_tty_write(ld, tty, file, from);
1093 tty_ldisc_deref(ld);
1094 return ret;
1095}
1096
1097/**
1098 * tty_write - write method for tty device file
1099 * @iocb: kernel I/O control block
1100 * @from: iov_iter with data to write
1101 *
1102 * Write data to a tty device via the line discipline.
1103 *
1104 * Locking:
1105 * Locks the line discipline as required
1106 * Writes to the tty driver are serialized by the atomic_write_lock
1107 * and are then processed in chunks to the device. The line
1108 * discipline write method will not be invoked in parallel for
1109 * each device.
1110 */
1111static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1112{
1113 return file_tty_write(file: iocb->ki_filp, iocb, from);
1114}
1115
1116ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1117{
1118 struct file *p = NULL;
1119
1120 spin_lock(lock: &redirect_lock);
1121 if (redirect)
1122 p = get_file(f: redirect);
1123 spin_unlock(lock: &redirect_lock);
1124
1125 /*
1126 * We know the redirected tty is just another tty, we can
1127 * call file_tty_write() directly with that file pointer.
1128 */
1129 if (p) {
1130 ssize_t res;
1131
1132 res = file_tty_write(file: p, iocb, from: iter);
1133 fput(p);
1134 return res;
1135 }
1136 return tty_write(iocb, from: iter);
1137}
1138
1139/**
1140 * tty_send_xchar - send priority character
1141 * @tty: the tty to send to
1142 * @ch: xchar to send
1143 *
1144 * Send a high priority character to the tty even if stopped.
1145 *
1146 * Locking: none for xchar method, write ordering for write method.
1147 */
1148int tty_send_xchar(struct tty_struct *tty, char ch)
1149{
1150 bool was_stopped = tty->flow.stopped;
1151
1152 if (tty->ops->send_xchar) {
1153 down_read(sem: &tty->termios_rwsem);
1154 tty->ops->send_xchar(tty, ch);
1155 up_read(sem: &tty->termios_rwsem);
1156 return 0;
1157 }
1158
1159 if (tty_write_lock(tty, ndelay: false) < 0)
1160 return -ERESTARTSYS;
1161
1162 down_read(sem: &tty->termios_rwsem);
1163 if (was_stopped)
1164 start_tty(tty);
1165 tty->ops->write(tty, &ch, 1);
1166 if (was_stopped)
1167 stop_tty(tty);
1168 up_read(sem: &tty->termios_rwsem);
1169 tty_write_unlock(tty);
1170 return 0;
1171}
1172
1173/**
1174 * pty_line_name - generate name for a pty
1175 * @driver: the tty driver in use
1176 * @index: the minor number
1177 * @p: output buffer of at least 6 bytes
1178 *
1179 * Generate a name from a @driver reference and write it to the output buffer
1180 * @p.
1181 *
1182 * Locking: None
1183 */
1184static void pty_line_name(struct tty_driver *driver, int index, char *p)
1185{
1186 static const char ptychar[] = "pqrstuvwxyzabcde";
1187 int i = index + driver->name_base;
1188 /* ->name is initialized to "ttyp", but "tty" is expected */
1189 sprintf(buf: p, fmt: "%s%c%x",
1190 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1191 ptychar[i >> 4 & 0xf], i & 0xf);
1192}
1193
1194/**
1195 * tty_line_name - generate name for a tty
1196 * @driver: the tty driver in use
1197 * @index: the minor number
1198 * @p: output buffer of at least 7 bytes
1199 *
1200 * Generate a name from a @driver reference and write it to the output buffer
1201 * @p.
1202 *
1203 * Locking: None
1204 */
1205static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1206{
1207 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1208 return sprintf(buf: p, fmt: "%s", driver->name);
1209 else
1210 return sprintf(buf: p, fmt: "%s%d", driver->name,
1211 index + driver->name_base);
1212}
1213
1214/**
1215 * tty_driver_lookup_tty() - find an existing tty, if any
1216 * @driver: the driver for the tty
1217 * @file: file object
1218 * @idx: the minor number
1219 *
1220 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1221 * driver lookup() method returns an error.
1222 *
1223 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1224 */
1225static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1226 struct file *file, int idx)
1227{
1228 struct tty_struct *tty;
1229
1230 if (driver->ops->lookup) {
1231 if (!file)
1232 tty = ERR_PTR(error: -EIO);
1233 else
1234 tty = driver->ops->lookup(driver, file, idx);
1235 } else {
1236 if (idx >= driver->num)
1237 return ERR_PTR(error: -EINVAL);
1238 tty = driver->ttys[idx];
1239 }
1240 if (!IS_ERR(ptr: tty))
1241 tty_kref_get(tty);
1242 return tty;
1243}
1244
1245/**
1246 * tty_init_termios - helper for termios setup
1247 * @tty: the tty to set up
1248 *
1249 * Initialise the termios structure for this tty. This runs under the
1250 * %tty_mutex currently so we can be relaxed about ordering.
1251 */
1252void tty_init_termios(struct tty_struct *tty)
1253{
1254 struct ktermios *tp;
1255 int idx = tty->index;
1256
1257 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1258 tty->termios = tty->driver->init_termios;
1259 else {
1260 /* Check for lazy saved data */
1261 tp = tty->driver->termios[idx];
1262 if (tp != NULL) {
1263 tty->termios = *tp;
1264 tty->termios.c_line = tty->driver->init_termios.c_line;
1265 } else
1266 tty->termios = tty->driver->init_termios;
1267 }
1268 /* Compatibility until drivers always set this */
1269 tty->termios.c_ispeed = tty_termios_input_baud_rate(termios: &tty->termios);
1270 tty->termios.c_ospeed = tty_termios_baud_rate(termios: &tty->termios);
1271}
1272EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274/**
1275 * tty_standard_install - usual tty->ops->install
1276 * @driver: the driver for the tty
1277 * @tty: the tty
1278 *
1279 * If the @driver overrides @tty->ops->install, it still can call this function
1280 * to perform the standard install operations.
1281 */
1282int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1283{
1284 tty_init_termios(tty);
1285 tty_driver_kref_get(d: driver);
1286 tty->count++;
1287 driver->ttys[tty->index] = tty;
1288 return 0;
1289}
1290EXPORT_SYMBOL_GPL(tty_standard_install);
1291
1292/**
1293 * tty_driver_install_tty() - install a tty entry in the driver
1294 * @driver: the driver for the tty
1295 * @tty: the tty
1296 *
1297 * Install a tty object into the driver tables. The @tty->index field will be
1298 * set by the time this is called. This method is responsible for ensuring any
1299 * need additional structures are allocated and configured.
1300 *
1301 * Locking: tty_mutex for now
1302 */
1303static int tty_driver_install_tty(struct tty_driver *driver,
1304 struct tty_struct *tty)
1305{
1306 return driver->ops->install ? driver->ops->install(driver, tty) :
1307 tty_standard_install(driver, tty);
1308}
1309
1310/**
1311 * tty_driver_remove_tty() - remove a tty from the driver tables
1312 * @driver: the driver for the tty
1313 * @tty: tty to remove
1314 *
1315 * Remove a tty object from the driver tables. The tty->index field will be set
1316 * by the time this is called.
1317 *
1318 * Locking: tty_mutex for now
1319 */
1320static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1321{
1322 if (driver->ops->remove)
1323 driver->ops->remove(driver, tty);
1324 else
1325 driver->ttys[tty->index] = NULL;
1326}
1327
1328/**
1329 * tty_reopen() - fast re-open of an open tty
1330 * @tty: the tty to open
1331 *
1332 * Re-opens on master ptys are not allowed and return -%EIO.
1333 *
1334 * Locking: Caller must hold tty_lock
1335 * Return: 0 on success, -errno on error.
1336 */
1337static int tty_reopen(struct tty_struct *tty)
1338{
1339 struct tty_driver *driver = tty->driver;
1340 struct tty_ldisc *ld;
1341 int retval = 0;
1342
1343 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1344 driver->subtype == PTY_TYPE_MASTER)
1345 return -EIO;
1346
1347 if (!tty->count)
1348 return -EAGAIN;
1349
1350 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1351 return -EBUSY;
1352
1353 ld = tty_ldisc_ref_wait(tty);
1354 if (ld) {
1355 tty_ldisc_deref(ld);
1356 } else {
1357 retval = tty_ldisc_lock(tty, timeout: 5 * HZ);
1358 if (retval)
1359 return retval;
1360
1361 if (!tty->ldisc)
1362 retval = tty_ldisc_reinit(tty, disc: tty->termios.c_line);
1363 tty_ldisc_unlock(tty);
1364 }
1365
1366 if (retval == 0)
1367 tty->count++;
1368
1369 return retval;
1370}
1371
1372/**
1373 * tty_init_dev - initialise a tty device
1374 * @driver: tty driver we are opening a device on
1375 * @idx: device index
1376 *
1377 * Prepare a tty device. This may not be a "new" clean device but could also be
1378 * an active device. The pty drivers require special handling because of this.
1379 *
1380 * Locking:
1381 * The function is called under the tty_mutex, which protects us from the
1382 * tty struct or driver itself going away.
1383 *
1384 * On exit the tty device has the line discipline attached and a reference
1385 * count of 1. If a pair was created for pty/tty use and the other was a pty
1386 * master then it too has a reference count of 1.
1387 *
1388 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1389 * open. The new code protects the open with a mutex, so it's really quite
1390 * straightforward. The mutex locking can probably be relaxed for the (most
1391 * common) case of reopening a tty.
1392 *
1393 * Return: new tty structure
1394 */
1395struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1396{
1397 struct tty_struct *tty;
1398 int retval;
1399
1400 /*
1401 * First time open is complex, especially for PTY devices.
1402 * This code guarantees that either everything succeeds and the
1403 * TTY is ready for operation, or else the table slots are vacated
1404 * and the allocated memory released. (Except that the termios
1405 * may be retained.)
1406 */
1407
1408 if (!try_module_get(module: driver->owner))
1409 return ERR_PTR(error: -ENODEV);
1410
1411 tty = alloc_tty_struct(driver, idx);
1412 if (!tty) {
1413 retval = -ENOMEM;
1414 goto err_module_put;
1415 }
1416
1417 tty_lock(tty);
1418 retval = tty_driver_install_tty(driver, tty);
1419 if (retval < 0)
1420 goto err_free_tty;
1421
1422 if (!tty->port)
1423 tty->port = driver->ports[idx];
1424
1425 if (WARN_RATELIMIT(!tty->port,
1426 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1427 __func__, tty->driver->name)) {
1428 retval = -EINVAL;
1429 goto err_release_lock;
1430 }
1431
1432 retval = tty_ldisc_lock(tty, timeout: 5 * HZ);
1433 if (retval)
1434 goto err_release_lock;
1435 tty->port->itty = tty;
1436
1437 /*
1438 * Structures all installed ... call the ldisc open routines.
1439 * If we fail here just call release_tty to clean up. No need
1440 * to decrement the use counts, as release_tty doesn't care.
1441 */
1442 retval = tty_ldisc_setup(tty, o_tty: tty->link);
1443 if (retval)
1444 goto err_release_tty;
1445 tty_ldisc_unlock(tty);
1446 /* Return the tty locked so that it cannot vanish under the caller */
1447 return tty;
1448
1449err_free_tty:
1450 tty_unlock(tty);
1451 free_tty_struct(tty);
1452err_module_put:
1453 module_put(module: driver->owner);
1454 return ERR_PTR(error: retval);
1455
1456 /* call the tty release_tty routine to clean out this slot */
1457err_release_tty:
1458 tty_ldisc_unlock(tty);
1459 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1460 retval, idx);
1461err_release_lock:
1462 tty_unlock(tty);
1463 release_tty(tty, idx);
1464 return ERR_PTR(error: retval);
1465}
1466
1467/**
1468 * tty_save_termios() - save tty termios data in driver table
1469 * @tty: tty whose termios data to save
1470 *
1471 * Locking: Caller guarantees serialisation with tty_init_termios().
1472 */
1473void tty_save_termios(struct tty_struct *tty)
1474{
1475 struct ktermios *tp;
1476 int idx = tty->index;
1477
1478 /* If the port is going to reset then it has no termios to save */
1479 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1480 return;
1481
1482 /* Stash the termios data */
1483 tp = tty->driver->termios[idx];
1484 if (tp == NULL) {
1485 tp = kmalloc(size: sizeof(*tp), GFP_KERNEL);
1486 if (tp == NULL)
1487 return;
1488 tty->driver->termios[idx] = tp;
1489 }
1490 *tp = tty->termios;
1491}
1492EXPORT_SYMBOL_GPL(tty_save_termios);
1493
1494/**
1495 * tty_flush_works - flush all works of a tty/pty pair
1496 * @tty: tty device to flush works for (or either end of a pty pair)
1497 *
1498 * Sync flush all works belonging to @tty (and the 'other' tty).
1499 */
1500static void tty_flush_works(struct tty_struct *tty)
1501{
1502 flush_work(work: &tty->SAK_work);
1503 flush_work(work: &tty->hangup_work);
1504 if (tty->link) {
1505 flush_work(work: &tty->link->SAK_work);
1506 flush_work(work: &tty->link->hangup_work);
1507 }
1508}
1509
1510/**
1511 * release_one_tty - release tty structure memory
1512 * @work: work of tty we are obliterating
1513 *
1514 * Releases memory associated with a tty structure, and clears out the
1515 * driver table slots. This function is called when a device is no longer
1516 * in use. It also gets called when setup of a device fails.
1517 *
1518 * Locking:
1519 * takes the file list lock internally when working on the list of ttys
1520 * that the driver keeps.
1521 *
1522 * This method gets called from a work queue so that the driver private
1523 * cleanup ops can sleep (needed for USB at least)
1524 */
1525static void release_one_tty(struct work_struct *work)
1526{
1527 struct tty_struct *tty =
1528 container_of(work, struct tty_struct, hangup_work);
1529 struct tty_driver *driver = tty->driver;
1530 struct module *owner = driver->owner;
1531
1532 if (tty->ops->cleanup)
1533 tty->ops->cleanup(tty);
1534
1535 tty_driver_kref_put(driver);
1536 module_put(module: owner);
1537
1538 spin_lock(lock: &tty->files_lock);
1539 list_del_init(entry: &tty->tty_files);
1540 spin_unlock(lock: &tty->files_lock);
1541
1542 put_pid(pid: tty->ctrl.pgrp);
1543 put_pid(pid: tty->ctrl.session);
1544 free_tty_struct(tty);
1545}
1546
1547static void queue_release_one_tty(struct kref *kref)
1548{
1549 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1550
1551 /* The hangup queue is now free so we can reuse it rather than
1552 * waste a chunk of memory for each port.
1553 */
1554 INIT_WORK(&tty->hangup_work, release_one_tty);
1555 schedule_work(work: &tty->hangup_work);
1556}
1557
1558/**
1559 * tty_kref_put - release a tty kref
1560 * @tty: tty device
1561 *
1562 * Release a reference to the @tty device and if need be let the kref layer
1563 * destruct the object for us.
1564 */
1565void tty_kref_put(struct tty_struct *tty)
1566{
1567 if (tty)
1568 kref_put(kref: &tty->kref, release: queue_release_one_tty);
1569}
1570EXPORT_SYMBOL(tty_kref_put);
1571
1572/**
1573 * release_tty - release tty structure memory
1574 * @tty: tty device release
1575 * @idx: index of the tty device release
1576 *
1577 * Release both @tty and a possible linked partner (think pty pair),
1578 * and decrement the refcount of the backing module.
1579 *
1580 * Locking:
1581 * tty_mutex
1582 * takes the file list lock internally when working on the list of ttys
1583 * that the driver keeps.
1584 */
1585static void release_tty(struct tty_struct *tty, int idx)
1586{
1587 /* This should always be true but check for the moment */
1588 WARN_ON(tty->index != idx);
1589 WARN_ON(!mutex_is_locked(&tty_mutex));
1590 if (tty->ops->shutdown)
1591 tty->ops->shutdown(tty);
1592 tty_save_termios(tty);
1593 tty_driver_remove_tty(driver: tty->driver, tty);
1594 if (tty->port)
1595 tty->port->itty = NULL;
1596 if (tty->link)
1597 tty->link->port->itty = NULL;
1598 if (tty->port)
1599 tty_buffer_cancel_work(port: tty->port);
1600 if (tty->link)
1601 tty_buffer_cancel_work(port: tty->link->port);
1602
1603 tty_kref_put(tty->link);
1604 tty_kref_put(tty);
1605}
1606
1607/**
1608 * tty_release_checks - check a tty before real release
1609 * @tty: tty to check
1610 * @idx: index of the tty
1611 *
1612 * Performs some paranoid checking before true release of the @tty. This is a
1613 * no-op unless %TTY_PARANOIA_CHECK is defined.
1614 */
1615static int tty_release_checks(struct tty_struct *tty, int idx)
1616{
1617#ifdef TTY_PARANOIA_CHECK
1618 if (idx < 0 || idx >= tty->driver->num) {
1619 tty_debug(tty, "bad idx %d\n", idx);
1620 return -1;
1621 }
1622
1623 /* not much to check for devpts */
1624 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1625 return 0;
1626
1627 if (tty != tty->driver->ttys[idx]) {
1628 tty_debug(tty, "bad driver table[%d] = %p\n",
1629 idx, tty->driver->ttys[idx]);
1630 return -1;
1631 }
1632 if (tty->driver->other) {
1633 struct tty_struct *o_tty = tty->link;
1634
1635 if (o_tty != tty->driver->other->ttys[idx]) {
1636 tty_debug(tty, "bad other table[%d] = %p\n",
1637 idx, tty->driver->other->ttys[idx]);
1638 return -1;
1639 }
1640 if (o_tty->link != tty) {
1641 tty_debug(tty, "bad link = %p\n", o_tty->link);
1642 return -1;
1643 }
1644 }
1645#endif
1646 return 0;
1647}
1648
1649/**
1650 * tty_kclose - closes tty opened by tty_kopen
1651 * @tty: tty device
1652 *
1653 * Performs the final steps to release and free a tty device. It is the same as
1654 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1655 * @tty->port.
1656 */
1657void tty_kclose(struct tty_struct *tty)
1658{
1659 /*
1660 * Ask the line discipline code to release its structures
1661 */
1662 tty_ldisc_release(tty);
1663
1664 /* Wait for pending work before tty destruction commences */
1665 tty_flush_works(tty);
1666
1667 tty_debug_hangup(tty, "freeing structure\n");
1668 /*
1669 * The release_tty function takes care of the details of clearing
1670 * the slots and preserving the termios structure.
1671 */
1672 mutex_lock(&tty_mutex);
1673 tty_port_set_kopened(port: tty->port, val: 0);
1674 release_tty(tty, idx: tty->index);
1675 mutex_unlock(lock: &tty_mutex);
1676}
1677EXPORT_SYMBOL_GPL(tty_kclose);
1678
1679/**
1680 * tty_release_struct - release a tty struct
1681 * @tty: tty device
1682 * @idx: index of the tty
1683 *
1684 * Performs the final steps to release and free a tty device. It is roughly the
1685 * reverse of tty_init_dev().
1686 */
1687void tty_release_struct(struct tty_struct *tty, int idx)
1688{
1689 /*
1690 * Ask the line discipline code to release its structures
1691 */
1692 tty_ldisc_release(tty);
1693
1694 /* Wait for pending work before tty destruction commmences */
1695 tty_flush_works(tty);
1696
1697 tty_debug_hangup(tty, "freeing structure\n");
1698 /*
1699 * The release_tty function takes care of the details of clearing
1700 * the slots and preserving the termios structure.
1701 */
1702 mutex_lock(&tty_mutex);
1703 release_tty(tty, idx);
1704 mutex_unlock(lock: &tty_mutex);
1705}
1706EXPORT_SYMBOL_GPL(tty_release_struct);
1707
1708/**
1709 * tty_release - vfs callback for close
1710 * @inode: inode of tty
1711 * @filp: file pointer for handle to tty
1712 *
1713 * Called the last time each file handle is closed that references this tty.
1714 * There may however be several such references.
1715 *
1716 * Locking:
1717 * Takes BKL. See tty_release_dev().
1718 *
1719 * Even releasing the tty structures is a tricky business. We have to be very
1720 * careful that the structures are all released at the same time, as interrupts
1721 * might otherwise get the wrong pointers.
1722 *
1723 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1724 * lead to double frees or releasing memory still in use.
1725 */
1726int tty_release(struct inode *inode, struct file *filp)
1727{
1728 struct tty_struct *tty = file_tty(file: filp);
1729 struct tty_struct *o_tty = NULL;
1730 int do_sleep, final;
1731 int idx;
1732 long timeout = 0;
1733 int once = 1;
1734
1735 if (tty_paranoia_check(tty, inode, routine: __func__))
1736 return 0;
1737
1738 tty_lock(tty);
1739 check_tty_count(tty, routine: __func__);
1740
1741 __tty_fasync(fd: -1, filp, on: 0);
1742
1743 idx = tty->index;
1744 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1745 tty->driver->subtype == PTY_TYPE_MASTER)
1746 o_tty = tty->link;
1747
1748 if (tty_release_checks(tty, idx)) {
1749 tty_unlock(tty);
1750 return 0;
1751 }
1752
1753 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1754
1755 if (tty->ops->close)
1756 tty->ops->close(tty, filp);
1757
1758 /* If tty is pty master, lock the slave pty (stable lock order) */
1759 tty_lock_slave(tty: o_tty);
1760
1761 /*
1762 * Sanity check: if tty->count is going to zero, there shouldn't be
1763 * any waiters on tty->read_wait or tty->write_wait. We test the
1764 * wait queues and kick everyone out _before_ actually starting to
1765 * close. This ensures that we won't block while releasing the tty
1766 * structure.
1767 *
1768 * The test for the o_tty closing is necessary, since the master and
1769 * slave sides may close in any order. If the slave side closes out
1770 * first, its count will be one, since the master side holds an open.
1771 * Thus this test wouldn't be triggered at the time the slave closed,
1772 * so we do it now.
1773 */
1774 while (1) {
1775 do_sleep = 0;
1776
1777 if (tty->count <= 1) {
1778 if (waitqueue_active(wq_head: &tty->read_wait)) {
1779 wake_up_poll(&tty->read_wait, EPOLLIN);
1780 do_sleep++;
1781 }
1782 if (waitqueue_active(wq_head: &tty->write_wait)) {
1783 wake_up_poll(&tty->write_wait, EPOLLOUT);
1784 do_sleep++;
1785 }
1786 }
1787 if (o_tty && o_tty->count <= 1) {
1788 if (waitqueue_active(wq_head: &o_tty->read_wait)) {
1789 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1790 do_sleep++;
1791 }
1792 if (waitqueue_active(wq_head: &o_tty->write_wait)) {
1793 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1794 do_sleep++;
1795 }
1796 }
1797 if (!do_sleep)
1798 break;
1799
1800 if (once) {
1801 once = 0;
1802 tty_warn(tty, "read/write wait queue active!\n");
1803 }
1804 schedule_timeout_killable(timeout);
1805 if (timeout < 120 * HZ)
1806 timeout = 2 * timeout + 1;
1807 else
1808 timeout = MAX_SCHEDULE_TIMEOUT;
1809 }
1810
1811 if (o_tty) {
1812 if (--o_tty->count < 0) {
1813 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1814 o_tty->count = 0;
1815 }
1816 }
1817 if (--tty->count < 0) {
1818 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1819 tty->count = 0;
1820 }
1821
1822 /*
1823 * We've decremented tty->count, so we need to remove this file
1824 * descriptor off the tty->tty_files list; this serves two
1825 * purposes:
1826 * - check_tty_count sees the correct number of file descriptors
1827 * associated with this tty.
1828 * - do_tty_hangup no longer sees this file descriptor as
1829 * something that needs to be handled for hangups.
1830 */
1831 tty_del_file(file: filp);
1832
1833 /*
1834 * Perform some housekeeping before deciding whether to return.
1835 *
1836 * If _either_ side is closing, make sure there aren't any
1837 * processes that still think tty or o_tty is their controlling
1838 * tty.
1839 */
1840 if (!tty->count) {
1841 read_lock(&tasklist_lock);
1842 session_clear_tty(session: tty->ctrl.session);
1843 if (o_tty)
1844 session_clear_tty(session: o_tty->ctrl.session);
1845 read_unlock(&tasklist_lock);
1846 }
1847
1848 /* check whether both sides are closing ... */
1849 final = !tty->count && !(o_tty && o_tty->count);
1850
1851 tty_unlock_slave(tty: o_tty);
1852 tty_unlock(tty);
1853
1854 /* At this point, the tty->count == 0 should ensure a dead tty
1855 * cannot be re-opened by a racing opener.
1856 */
1857
1858 if (!final)
1859 return 0;
1860
1861 tty_debug_hangup(tty, "final close\n");
1862
1863 tty_release_struct(tty, idx);
1864 return 0;
1865}
1866
1867/**
1868 * tty_open_current_tty - get locked tty of current task
1869 * @device: device number
1870 * @filp: file pointer to tty
1871 * @return: locked tty of the current task iff @device is /dev/tty
1872 *
1873 * Performs a re-open of the current task's controlling tty.
1874 *
1875 * We cannot return driver and index like for the other nodes because devpts
1876 * will not work then. It expects inodes to be from devpts FS.
1877 */
1878static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1879{
1880 struct tty_struct *tty;
1881 int retval;
1882
1883 if (device != MKDEV(TTYAUX_MAJOR, 0))
1884 return NULL;
1885
1886 tty = get_current_tty();
1887 if (!tty)
1888 return ERR_PTR(error: -ENXIO);
1889
1890 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1891 /* noctty = 1; */
1892 tty_lock(tty);
1893 tty_kref_put(tty); /* safe to drop the kref now */
1894
1895 retval = tty_reopen(tty);
1896 if (retval < 0) {
1897 tty_unlock(tty);
1898 tty = ERR_PTR(error: retval);
1899 }
1900 return tty;
1901}
1902
1903/**
1904 * tty_lookup_driver - lookup a tty driver for a given device file
1905 * @device: device number
1906 * @filp: file pointer to tty
1907 * @index: index for the device in the @return driver
1908 *
1909 * If returned value is not erroneous, the caller is responsible to decrement
1910 * the refcount by tty_driver_kref_put().
1911 *
1912 * Locking: %tty_mutex protects get_tty_driver()
1913 *
1914 * Return: driver for this inode (with increased refcount)
1915 */
1916static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1917 int *index)
1918{
1919 struct tty_driver *driver = NULL;
1920
1921 switch (device) {
1922#ifdef CONFIG_VT
1923 case MKDEV(TTY_MAJOR, 0): {
1924 extern struct tty_driver *console_driver;
1925
1926 driver = tty_driver_kref_get(d: console_driver);
1927 *index = fg_console;
1928 break;
1929 }
1930#endif
1931 case MKDEV(TTYAUX_MAJOR, 1): {
1932 struct tty_driver *console_driver = console_device(index);
1933
1934 if (console_driver) {
1935 driver = tty_driver_kref_get(d: console_driver);
1936 if (driver && filp) {
1937 /* Don't let /dev/console block */
1938 filp->f_flags |= O_NONBLOCK;
1939 break;
1940 }
1941 }
1942 if (driver)
1943 tty_driver_kref_put(driver);
1944 return ERR_PTR(error: -ENODEV);
1945 }
1946 default:
1947 driver = get_tty_driver(device, index);
1948 if (!driver)
1949 return ERR_PTR(error: -ENODEV);
1950 break;
1951 }
1952 return driver;
1953}
1954
1955static struct tty_struct *tty_kopen(dev_t device, int shared)
1956{
1957 struct tty_struct *tty;
1958 struct tty_driver *driver;
1959 int index = -1;
1960
1961 mutex_lock(&tty_mutex);
1962 driver = tty_lookup_driver(device, NULL, index: &index);
1963 if (IS_ERR(ptr: driver)) {
1964 mutex_unlock(lock: &tty_mutex);
1965 return ERR_CAST(ptr: driver);
1966 }
1967
1968 /* check whether we're reopening an existing tty */
1969 tty = tty_driver_lookup_tty(driver, NULL, idx: index);
1970 if (IS_ERR(ptr: tty) || shared)
1971 goto out;
1972
1973 if (tty) {
1974 /* drop kref from tty_driver_lookup_tty() */
1975 tty_kref_put(tty);
1976 tty = ERR_PTR(error: -EBUSY);
1977 } else { /* tty_init_dev returns tty with the tty_lock held */
1978 tty = tty_init_dev(driver, idx: index);
1979 if (IS_ERR(ptr: tty))
1980 goto out;
1981 tty_port_set_kopened(port: tty->port, val: 1);
1982 }
1983out:
1984 mutex_unlock(lock: &tty_mutex);
1985 tty_driver_kref_put(driver);
1986 return tty;
1987}
1988
1989/**
1990 * tty_kopen_exclusive - open a tty device for kernel
1991 * @device: dev_t of device to open
1992 *
1993 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1994 * it's not already opened and performs the first-time tty initialization.
1995 *
1996 * Claims the global %tty_mutex to serialize:
1997 * * concurrent first-time tty initialization
1998 * * concurrent tty driver removal w/ lookup
1999 * * concurrent tty removal from driver table
2000 *
2001 * Return: the locked initialized &tty_struct
2002 */
2003struct tty_struct *tty_kopen_exclusive(dev_t device)
2004{
2005 return tty_kopen(device, shared: 0);
2006}
2007EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2008
2009/**
2010 * tty_kopen_shared - open a tty device for shared in-kernel use
2011 * @device: dev_t of device to open
2012 *
2013 * Opens an already existing tty for in-kernel use. Compared to
2014 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2015 *
2016 * Locking: identical to tty_kopen() above.
2017 */
2018struct tty_struct *tty_kopen_shared(dev_t device)
2019{
2020 return tty_kopen(device, shared: 1);
2021}
2022EXPORT_SYMBOL_GPL(tty_kopen_shared);
2023
2024/**
2025 * tty_open_by_driver - open a tty device
2026 * @device: dev_t of device to open
2027 * @filp: file pointer to tty
2028 *
2029 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2030 * first-time tty initialization.
2031 *
2032 *
2033 * Claims the global tty_mutex to serialize:
2034 * * concurrent first-time tty initialization
2035 * * concurrent tty driver removal w/ lookup
2036 * * concurrent tty removal from driver table
2037 *
2038 * Return: the locked initialized or re-opened &tty_struct
2039 */
2040static struct tty_struct *tty_open_by_driver(dev_t device,
2041 struct file *filp)
2042{
2043 struct tty_struct *tty;
2044 struct tty_driver *driver = NULL;
2045 int index = -1;
2046 int retval;
2047
2048 mutex_lock(&tty_mutex);
2049 driver = tty_lookup_driver(device, filp, index: &index);
2050 if (IS_ERR(ptr: driver)) {
2051 mutex_unlock(lock: &tty_mutex);
2052 return ERR_CAST(ptr: driver);
2053 }
2054
2055 /* check whether we're reopening an existing tty */
2056 tty = tty_driver_lookup_tty(driver, file: filp, idx: index);
2057 if (IS_ERR(ptr: tty)) {
2058 mutex_unlock(lock: &tty_mutex);
2059 goto out;
2060 }
2061
2062 if (tty) {
2063 if (tty_port_kopened(port: tty->port)) {
2064 tty_kref_put(tty);
2065 mutex_unlock(lock: &tty_mutex);
2066 tty = ERR_PTR(error: -EBUSY);
2067 goto out;
2068 }
2069 mutex_unlock(lock: &tty_mutex);
2070 retval = tty_lock_interruptible(tty);
2071 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2072 if (retval) {
2073 if (retval == -EINTR)
2074 retval = -ERESTARTSYS;
2075 tty = ERR_PTR(error: retval);
2076 goto out;
2077 }
2078 retval = tty_reopen(tty);
2079 if (retval < 0) {
2080 tty_unlock(tty);
2081 tty = ERR_PTR(error: retval);
2082 }
2083 } else { /* Returns with the tty_lock held for now */
2084 tty = tty_init_dev(driver, idx: index);
2085 mutex_unlock(lock: &tty_mutex);
2086 }
2087out:
2088 tty_driver_kref_put(driver);
2089 return tty;
2090}
2091
2092/**
2093 * tty_open - open a tty device
2094 * @inode: inode of device file
2095 * @filp: file pointer to tty
2096 *
2097 * tty_open() and tty_release() keep up the tty count that contains the number
2098 * of opens done on a tty. We cannot use the inode-count, as different inodes
2099 * might point to the same tty.
2100 *
2101 * Open-counting is needed for pty masters, as well as for keeping track of
2102 * serial lines: DTR is dropped when the last close happens.
2103 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2104 *
2105 * The termios state of a pty is reset on the first open so that settings don't
2106 * persist across reuse.
2107 *
2108 * Locking:
2109 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2110 * * @tty->count should protect the rest.
2111 * * ->siglock protects ->signal/->sighand
2112 *
2113 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2114 */
2115static int tty_open(struct inode *inode, struct file *filp)
2116{
2117 struct tty_struct *tty;
2118 int noctty, retval;
2119 dev_t device = inode->i_rdev;
2120 unsigned saved_flags = filp->f_flags;
2121
2122 nonseekable_open(inode, filp);
2123
2124retry_open:
2125 retval = tty_alloc_file(file: filp);
2126 if (retval)
2127 return -ENOMEM;
2128
2129 tty = tty_open_current_tty(device, filp);
2130 if (!tty)
2131 tty = tty_open_by_driver(device, filp);
2132
2133 if (IS_ERR(ptr: tty)) {
2134 tty_free_file(file: filp);
2135 retval = PTR_ERR(ptr: tty);
2136 if (retval != -EAGAIN || signal_pending(current))
2137 return retval;
2138 schedule();
2139 goto retry_open;
2140 }
2141
2142 tty_add_file(tty, file: filp);
2143
2144 check_tty_count(tty, routine: __func__);
2145 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2146
2147 if (tty->ops->open)
2148 retval = tty->ops->open(tty, filp);
2149 else
2150 retval = -ENODEV;
2151 filp->f_flags = saved_flags;
2152
2153 if (retval) {
2154 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2155
2156 tty_unlock(tty); /* need to call tty_release without BTM */
2157 tty_release(inode, filp);
2158 if (retval != -ERESTARTSYS)
2159 return retval;
2160
2161 if (signal_pending(current))
2162 return retval;
2163
2164 schedule();
2165 /*
2166 * Need to reset f_op in case a hangup happened.
2167 */
2168 if (tty_hung_up_p(filp))
2169 filp->f_op = &tty_fops;
2170 goto retry_open;
2171 }
2172 clear_bit(TTY_HUPPED, addr: &tty->flags);
2173
2174 noctty = (filp->f_flags & O_NOCTTY) ||
2175 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2176 device == MKDEV(TTYAUX_MAJOR, 1) ||
2177 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2178 tty->driver->subtype == PTY_TYPE_MASTER);
2179 if (!noctty)
2180 tty_open_proc_set_tty(filp, tty);
2181 tty_unlock(tty);
2182 return 0;
2183}
2184
2185
2186/**
2187 * tty_poll - check tty status
2188 * @filp: file being polled
2189 * @wait: poll wait structures to update
2190 *
2191 * Call the line discipline polling method to obtain the poll status of the
2192 * device.
2193 *
2194 * Locking: locks called line discipline but ldisc poll method may be
2195 * re-entered freely by other callers.
2196 */
2197static __poll_t tty_poll(struct file *filp, poll_table *wait)
2198{
2199 struct tty_struct *tty = file_tty(file: filp);
2200 struct tty_ldisc *ld;
2201 __poll_t ret = 0;
2202
2203 if (tty_paranoia_check(tty, inode: file_inode(f: filp), routine: "tty_poll"))
2204 return 0;
2205
2206 ld = tty_ldisc_ref_wait(tty);
2207 if (!ld)
2208 return hung_up_tty_poll(filp, wait);
2209 if (ld->ops->poll)
2210 ret = ld->ops->poll(tty, filp, wait);
2211 tty_ldisc_deref(ld);
2212 return ret;
2213}
2214
2215static int __tty_fasync(int fd, struct file *filp, int on)
2216{
2217 struct tty_struct *tty = file_tty(file: filp);
2218 unsigned long flags;
2219 int retval = 0;
2220
2221 if (tty_paranoia_check(tty, inode: file_inode(f: filp), routine: "tty_fasync"))
2222 goto out;
2223
2224 retval = fasync_helper(fd, filp, on, &tty->fasync);
2225 if (retval <= 0)
2226 goto out;
2227
2228 if (on) {
2229 enum pid_type type;
2230 struct pid *pid;
2231
2232 spin_lock_irqsave(&tty->ctrl.lock, flags);
2233 if (tty->ctrl.pgrp) {
2234 pid = tty->ctrl.pgrp;
2235 type = PIDTYPE_PGID;
2236 } else {
2237 pid = task_pid(current);
2238 type = PIDTYPE_TGID;
2239 }
2240 get_pid(pid);
2241 spin_unlock_irqrestore(lock: &tty->ctrl.lock, flags);
2242 __f_setown(filp, pid, type, force: 0);
2243 put_pid(pid);
2244 retval = 0;
2245 }
2246out:
2247 return retval;
2248}
2249
2250static int tty_fasync(int fd, struct file *filp, int on)
2251{
2252 struct tty_struct *tty = file_tty(file: filp);
2253 int retval = -ENOTTY;
2254
2255 tty_lock(tty);
2256 if (!tty_hung_up_p(filp))
2257 retval = __tty_fasync(fd, filp, on);
2258 tty_unlock(tty);
2259
2260 return retval;
2261}
2262
2263static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2264/**
2265 * tiocsti - fake input character
2266 * @tty: tty to fake input into
2267 * @p: pointer to character
2268 *
2269 * Fake input to a tty device. Does the necessary locking and input management.
2270 *
2271 * FIXME: does not honour flow control ??
2272 *
2273 * Locking:
2274 * * Called functions take tty_ldiscs_lock
2275 * * current->signal->tty check is safe without locks
2276 */
2277static int tiocsti(struct tty_struct *tty, char __user *p)
2278{
2279 char ch, mbz = 0;
2280 struct tty_ldisc *ld;
2281
2282 if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2283 return -EIO;
2284
2285 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2286 return -EPERM;
2287 if (get_user(ch, p))
2288 return -EFAULT;
2289 tty_audit_tiocsti(tty, ch);
2290 ld = tty_ldisc_ref_wait(tty);
2291 if (!ld)
2292 return -EIO;
2293 tty_buffer_lock_exclusive(port: tty->port);
2294 if (ld->ops->receive_buf)
2295 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2296 tty_buffer_unlock_exclusive(port: tty->port);
2297 tty_ldisc_deref(ld);
2298 return 0;
2299}
2300
2301/**
2302 * tiocgwinsz - implement window query ioctl
2303 * @tty: tty
2304 * @arg: user buffer for result
2305 *
2306 * Copies the kernel idea of the window size into the user buffer.
2307 *
2308 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2309 * consistent.
2310 */
2311static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2312{
2313 int err;
2314
2315 mutex_lock(&tty->winsize_mutex);
2316 err = copy_to_user(to: arg, from: &tty->winsize, n: sizeof(*arg));
2317 mutex_unlock(lock: &tty->winsize_mutex);
2318
2319 return err ? -EFAULT : 0;
2320}
2321
2322/**
2323 * tty_do_resize - resize event
2324 * @tty: tty being resized
2325 * @ws: new dimensions
2326 *
2327 * Update the termios variables and send the necessary signals to peform a
2328 * terminal resize correctly.
2329 */
2330int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2331{
2332 struct pid *pgrp;
2333
2334 /* Lock the tty */
2335 mutex_lock(&tty->winsize_mutex);
2336 if (!memcmp(p: ws, q: &tty->winsize, size: sizeof(*ws)))
2337 goto done;
2338
2339 /* Signal the foreground process group */
2340 pgrp = tty_get_pgrp(tty);
2341 if (pgrp)
2342 kill_pgrp(pid: pgrp, SIGWINCH, priv: 1);
2343 put_pid(pid: pgrp);
2344
2345 tty->winsize = *ws;
2346done:
2347 mutex_unlock(lock: &tty->winsize_mutex);
2348 return 0;
2349}
2350EXPORT_SYMBOL(tty_do_resize);
2351
2352/**
2353 * tiocswinsz - implement window size set ioctl
2354 * @tty: tty side of tty
2355 * @arg: user buffer for result
2356 *
2357 * Copies the user idea of the window size to the kernel. Traditionally this is
2358 * just advisory information but for the Linux console it actually has driver
2359 * level meaning and triggers a VC resize.
2360 *
2361 * Locking:
2362 * Driver dependent. The default do_resize method takes the tty termios
2363 * mutex and ctrl.lock. The console takes its own lock then calls into the
2364 * default method.
2365 */
2366static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2367{
2368 struct winsize tmp_ws;
2369
2370 if (copy_from_user(to: &tmp_ws, from: arg, n: sizeof(*arg)))
2371 return -EFAULT;
2372
2373 if (tty->ops->resize)
2374 return tty->ops->resize(tty, &tmp_ws);
2375 else
2376 return tty_do_resize(tty, &tmp_ws);
2377}
2378
2379/**
2380 * tioccons - allow admin to move logical console
2381 * @file: the file to become console
2382 *
2383 * Allow the administrator to move the redirected console device.
2384 *
2385 * Locking: uses redirect_lock to guard the redirect information
2386 */
2387static int tioccons(struct file *file)
2388{
2389 if (!capable(CAP_SYS_ADMIN))
2390 return -EPERM;
2391 if (file->f_op->write_iter == redirected_tty_write) {
2392 struct file *f;
2393
2394 spin_lock(lock: &redirect_lock);
2395 f = redirect;
2396 redirect = NULL;
2397 spin_unlock(lock: &redirect_lock);
2398 if (f)
2399 fput(f);
2400 return 0;
2401 }
2402 if (file->f_op->write_iter != tty_write)
2403 return -ENOTTY;
2404 if (!(file->f_mode & FMODE_WRITE))
2405 return -EBADF;
2406 if (!(file->f_mode & FMODE_CAN_WRITE))
2407 return -EINVAL;
2408 spin_lock(lock: &redirect_lock);
2409 if (redirect) {
2410 spin_unlock(lock: &redirect_lock);
2411 return -EBUSY;
2412 }
2413 redirect = get_file(f: file);
2414 spin_unlock(lock: &redirect_lock);
2415 return 0;
2416}
2417
2418/**
2419 * tiocsetd - set line discipline
2420 * @tty: tty device
2421 * @p: pointer to user data
2422 *
2423 * Set the line discipline according to user request.
2424 *
2425 * Locking: see tty_set_ldisc(), this function is just a helper
2426 */
2427static int tiocsetd(struct tty_struct *tty, int __user *p)
2428{
2429 int disc;
2430 int ret;
2431
2432 if (get_user(disc, p))
2433 return -EFAULT;
2434
2435 ret = tty_set_ldisc(tty, disc);
2436
2437 return ret;
2438}
2439
2440/**
2441 * tiocgetd - get line discipline
2442 * @tty: tty device
2443 * @p: pointer to user data
2444 *
2445 * Retrieves the line discipline id directly from the ldisc.
2446 *
2447 * Locking: waits for ldisc reference (in case the line discipline is changing
2448 * or the @tty is being hungup)
2449 */
2450static int tiocgetd(struct tty_struct *tty, int __user *p)
2451{
2452 struct tty_ldisc *ld;
2453 int ret;
2454
2455 ld = tty_ldisc_ref_wait(tty);
2456 if (!ld)
2457 return -EIO;
2458 ret = put_user(ld->ops->num, p);
2459 tty_ldisc_deref(ld);
2460 return ret;
2461}
2462
2463/**
2464 * send_break - performed time break
2465 * @tty: device to break on
2466 * @duration: timeout in mS
2467 *
2468 * Perform a timed break on hardware that lacks its own driver level timed
2469 * break functionality.
2470 *
2471 * Locking:
2472 * @tty->atomic_write_lock serializes
2473 */
2474static int send_break(struct tty_struct *tty, unsigned int duration)
2475{
2476 int retval;
2477
2478 if (tty->ops->break_ctl == NULL)
2479 return 0;
2480
2481 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2482 return tty->ops->break_ctl(tty, duration);
2483
2484 /* Do the work ourselves */
2485 if (tty_write_lock(tty, ndelay: false) < 0)
2486 return -EINTR;
2487
2488 retval = tty->ops->break_ctl(tty, -1);
2489 if (!retval) {
2490 msleep_interruptible(msecs: duration);
2491 retval = tty->ops->break_ctl(tty, 0);
2492 }
2493 tty_write_unlock(tty);
2494
2495 if (signal_pending(current))
2496 retval = -EINTR;
2497
2498 return retval;
2499}
2500
2501/**
2502 * tty_tiocmget - get modem status
2503 * @tty: tty device
2504 * @p: pointer to result
2505 *
2506 * Obtain the modem status bits from the tty driver if the feature is
2507 * supported. Return -%ENOTTY if it is not available.
2508 *
2509 * Locking: none (up to the driver)
2510 */
2511static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2512{
2513 int retval = -ENOTTY;
2514
2515 if (tty->ops->tiocmget) {
2516 retval = tty->ops->tiocmget(tty);
2517
2518 if (retval >= 0)
2519 retval = put_user(retval, p);
2520 }
2521 return retval;
2522}
2523
2524/**
2525 * tty_tiocmset - set modem status
2526 * @tty: tty device
2527 * @cmd: command - clear bits, set bits or set all
2528 * @p: pointer to desired bits
2529 *
2530 * Set the modem status bits from the tty driver if the feature
2531 * is supported. Return -%ENOTTY if it is not available.
2532 *
2533 * Locking: none (up to the driver)
2534 */
2535static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2536 unsigned __user *p)
2537{
2538 int retval;
2539 unsigned int set, clear, val;
2540
2541 if (tty->ops->tiocmset == NULL)
2542 return -ENOTTY;
2543
2544 retval = get_user(val, p);
2545 if (retval)
2546 return retval;
2547 set = clear = 0;
2548 switch (cmd) {
2549 case TIOCMBIS:
2550 set = val;
2551 break;
2552 case TIOCMBIC:
2553 clear = val;
2554 break;
2555 case TIOCMSET:
2556 set = val;
2557 clear = ~val;
2558 break;
2559 }
2560 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2561 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2562 return tty->ops->tiocmset(tty, set, clear);
2563}
2564
2565/**
2566 * tty_get_icount - get tty statistics
2567 * @tty: tty device
2568 * @icount: output parameter
2569 *
2570 * Gets a copy of the @tty's icount statistics.
2571 *
2572 * Locking: none (up to the driver)
2573 */
2574int tty_get_icount(struct tty_struct *tty,
2575 struct serial_icounter_struct *icount)
2576{
2577 memset(icount, 0, sizeof(*icount));
2578
2579 if (tty->ops->get_icount)
2580 return tty->ops->get_icount(tty, icount);
2581 else
2582 return -ENOTTY;
2583}
2584EXPORT_SYMBOL_GPL(tty_get_icount);
2585
2586static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2587{
2588 struct serial_icounter_struct icount;
2589 int retval;
2590
2591 retval = tty_get_icount(tty, &icount);
2592 if (retval != 0)
2593 return retval;
2594
2595 if (copy_to_user(to: arg, from: &icount, n: sizeof(icount)))
2596 return -EFAULT;
2597 return 0;
2598}
2599
2600static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2601{
2602 char comm[TASK_COMM_LEN];
2603 int flags;
2604
2605 flags = ss->flags & ASYNC_DEPRECATED;
2606
2607 if (flags)
2608 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2609 __func__, get_task_comm(comm, current), flags);
2610
2611 if (!tty->ops->set_serial)
2612 return -ENOTTY;
2613
2614 return tty->ops->set_serial(tty, ss);
2615}
2616
2617static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2618{
2619 struct serial_struct v;
2620
2621 if (copy_from_user(to: &v, from: ss, n: sizeof(*ss)))
2622 return -EFAULT;
2623
2624 return tty_set_serial(tty, ss: &v);
2625}
2626
2627static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2628{
2629 struct serial_struct v;
2630 int err;
2631
2632 memset(&v, 0, sizeof(v));
2633 if (!tty->ops->get_serial)
2634 return -ENOTTY;
2635 err = tty->ops->get_serial(tty, &v);
2636 if (!err && copy_to_user(to: ss, from: &v, n: sizeof(v)))
2637 err = -EFAULT;
2638 return err;
2639}
2640
2641/*
2642 * if pty, return the slave side (real_tty)
2643 * otherwise, return self
2644 */
2645static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2646{
2647 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2648 tty->driver->subtype == PTY_TYPE_MASTER)
2649 tty = tty->link;
2650 return tty;
2651}
2652
2653/*
2654 * Split this up, as gcc can choke on it otherwise..
2655 */
2656long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2657{
2658 struct tty_struct *tty = file_tty(file);
2659 struct tty_struct *real_tty;
2660 void __user *p = (void __user *)arg;
2661 int retval;
2662 struct tty_ldisc *ld;
2663
2664 if (tty_paranoia_check(tty, inode: file_inode(f: file), routine: "tty_ioctl"))
2665 return -EINVAL;
2666
2667 real_tty = tty_pair_get_tty(tty);
2668
2669 /*
2670 * Factor out some common prep work
2671 */
2672 switch (cmd) {
2673 case TIOCSETD:
2674 case TIOCSBRK:
2675 case TIOCCBRK:
2676 case TCSBRK:
2677 case TCSBRKP:
2678 retval = tty_check_change(tty);
2679 if (retval)
2680 return retval;
2681 if (cmd != TIOCCBRK) {
2682 tty_wait_until_sent(tty, timeout: 0);
2683 if (signal_pending(current))
2684 return -EINTR;
2685 }
2686 break;
2687 }
2688
2689 /*
2690 * Now do the stuff.
2691 */
2692 switch (cmd) {
2693 case TIOCSTI:
2694 return tiocsti(tty, p);
2695 case TIOCGWINSZ:
2696 return tiocgwinsz(tty: real_tty, arg: p);
2697 case TIOCSWINSZ:
2698 return tiocswinsz(tty: real_tty, arg: p);
2699 case TIOCCONS:
2700 return real_tty != tty ? -EINVAL : tioccons(file);
2701 case TIOCEXCL:
2702 set_bit(TTY_EXCLUSIVE, addr: &tty->flags);
2703 return 0;
2704 case TIOCNXCL:
2705 clear_bit(TTY_EXCLUSIVE, addr: &tty->flags);
2706 return 0;
2707 case TIOCGEXCL:
2708 {
2709 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2710
2711 return put_user(excl, (int __user *)p);
2712 }
2713 case TIOCGETD:
2714 return tiocgetd(tty, p);
2715 case TIOCSETD:
2716 return tiocsetd(tty, p);
2717 case TIOCVHANGUP:
2718 if (!capable(CAP_SYS_ADMIN))
2719 return -EPERM;
2720 tty_vhangup(tty);
2721 return 0;
2722 case TIOCGDEV:
2723 {
2724 unsigned int ret = new_encode_dev(dev: tty_devnum(tty: real_tty));
2725
2726 return put_user(ret, (unsigned int __user *)p);
2727 }
2728 /*
2729 * Break handling
2730 */
2731 case TIOCSBRK: /* Turn break on, unconditionally */
2732 if (tty->ops->break_ctl)
2733 return tty->ops->break_ctl(tty, -1);
2734 return 0;
2735 case TIOCCBRK: /* Turn break off, unconditionally */
2736 if (tty->ops->break_ctl)
2737 return tty->ops->break_ctl(tty, 0);
2738 return 0;
2739 case TCSBRK: /* SVID version: non-zero arg --> no break */
2740 /* non-zero arg means wait for all output data
2741 * to be sent (performed above) but don't send break.
2742 * This is used by the tcdrain() termios function.
2743 */
2744 if (!arg)
2745 return send_break(tty, duration: 250);
2746 return 0;
2747 case TCSBRKP: /* support for POSIX tcsendbreak() */
2748 return send_break(tty, duration: arg ? arg*100 : 250);
2749
2750 case TIOCMGET:
2751 return tty_tiocmget(tty, p);
2752 case TIOCMSET:
2753 case TIOCMBIC:
2754 case TIOCMBIS:
2755 return tty_tiocmset(tty, cmd, p);
2756 case TIOCGICOUNT:
2757 return tty_tiocgicount(tty, arg: p);
2758 case TCFLSH:
2759 switch (arg) {
2760 case TCIFLUSH:
2761 case TCIOFLUSH:
2762 /* flush tty buffer and allow ldisc to process ioctl */
2763 tty_buffer_flush(tty, NULL);
2764 break;
2765 }
2766 break;
2767 case TIOCSSERIAL:
2768 return tty_tiocsserial(tty, ss: p);
2769 case TIOCGSERIAL:
2770 return tty_tiocgserial(tty, ss: p);
2771 case TIOCGPTPEER:
2772 /* Special because the struct file is needed */
2773 return ptm_open_peer(master: file, tty, flags: (int)arg);
2774 default:
2775 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2776 if (retval != -ENOIOCTLCMD)
2777 return retval;
2778 }
2779 if (tty->ops->ioctl) {
2780 retval = tty->ops->ioctl(tty, cmd, arg);
2781 if (retval != -ENOIOCTLCMD)
2782 return retval;
2783 }
2784 ld = tty_ldisc_ref_wait(tty);
2785 if (!ld)
2786 return hung_up_tty_ioctl(file, cmd, arg);
2787 retval = -EINVAL;
2788 if (ld->ops->ioctl) {
2789 retval = ld->ops->ioctl(tty, cmd, arg);
2790 if (retval == -ENOIOCTLCMD)
2791 retval = -ENOTTY;
2792 }
2793 tty_ldisc_deref(ld);
2794 return retval;
2795}
2796
2797#ifdef CONFIG_COMPAT
2798
2799struct serial_struct32 {
2800 compat_int_t type;
2801 compat_int_t line;
2802 compat_uint_t port;
2803 compat_int_t irq;
2804 compat_int_t flags;
2805 compat_int_t xmit_fifo_size;
2806 compat_int_t custom_divisor;
2807 compat_int_t baud_base;
2808 unsigned short close_delay;
2809 char io_type;
2810 char reserved_char;
2811 compat_int_t hub6;
2812 unsigned short closing_wait; /* time to wait before closing */
2813 unsigned short closing_wait2; /* no longer used... */
2814 compat_uint_t iomem_base;
2815 unsigned short iomem_reg_shift;
2816 unsigned int port_high;
2817 /* compat_ulong_t iomap_base FIXME */
2818 compat_int_t reserved;
2819};
2820
2821static int compat_tty_tiocsserial(struct tty_struct *tty,
2822 struct serial_struct32 __user *ss)
2823{
2824 struct serial_struct32 v32;
2825 struct serial_struct v;
2826
2827 if (copy_from_user(to: &v32, from: ss, n: sizeof(*ss)))
2828 return -EFAULT;
2829
2830 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2831 v.iomem_base = compat_ptr(uptr: v32.iomem_base);
2832 v.iomem_reg_shift = v32.iomem_reg_shift;
2833 v.port_high = v32.port_high;
2834 v.iomap_base = 0;
2835
2836 return tty_set_serial(tty, ss: &v);
2837}
2838
2839static int compat_tty_tiocgserial(struct tty_struct *tty,
2840 struct serial_struct32 __user *ss)
2841{
2842 struct serial_struct32 v32;
2843 struct serial_struct v;
2844 int err;
2845
2846 memset(&v, 0, sizeof(v));
2847 memset(&v32, 0, sizeof(v32));
2848
2849 if (!tty->ops->get_serial)
2850 return -ENOTTY;
2851 err = tty->ops->get_serial(tty, &v);
2852 if (!err) {
2853 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2854 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2855 0xfffffff : ptr_to_compat(uptr: v.iomem_base);
2856 v32.iomem_reg_shift = v.iomem_reg_shift;
2857 v32.port_high = v.port_high;
2858 if (copy_to_user(to: ss, from: &v32, n: sizeof(v32)))
2859 err = -EFAULT;
2860 }
2861 return err;
2862}
2863static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2864 unsigned long arg)
2865{
2866 struct tty_struct *tty = file_tty(file);
2867 struct tty_ldisc *ld;
2868 int retval = -ENOIOCTLCMD;
2869
2870 switch (cmd) {
2871 case TIOCOUTQ:
2872 case TIOCSTI:
2873 case TIOCGWINSZ:
2874 case TIOCSWINSZ:
2875 case TIOCGEXCL:
2876 case TIOCGETD:
2877 case TIOCSETD:
2878 case TIOCGDEV:
2879 case TIOCMGET:
2880 case TIOCMSET:
2881 case TIOCMBIC:
2882 case TIOCMBIS:
2883 case TIOCGICOUNT:
2884 case TIOCGPGRP:
2885 case TIOCSPGRP:
2886 case TIOCGSID:
2887 case TIOCSERGETLSR:
2888 case TIOCGRS485:
2889 case TIOCSRS485:
2890#ifdef TIOCGETP
2891 case TIOCGETP:
2892 case TIOCSETP:
2893 case TIOCSETN:
2894#endif
2895#ifdef TIOCGETC
2896 case TIOCGETC:
2897 case TIOCSETC:
2898#endif
2899#ifdef TIOCGLTC
2900 case TIOCGLTC:
2901 case TIOCSLTC:
2902#endif
2903 case TCSETSF:
2904 case TCSETSW:
2905 case TCSETS:
2906 case TCGETS:
2907#ifdef TCGETS2
2908 case TCGETS2:
2909 case TCSETSF2:
2910 case TCSETSW2:
2911 case TCSETS2:
2912#endif
2913 case TCGETA:
2914 case TCSETAF:
2915 case TCSETAW:
2916 case TCSETA:
2917 case TIOCGLCKTRMIOS:
2918 case TIOCSLCKTRMIOS:
2919#ifdef TCGETX
2920 case TCGETX:
2921 case TCSETX:
2922 case TCSETXW:
2923 case TCSETXF:
2924#endif
2925 case TIOCGSOFTCAR:
2926 case TIOCSSOFTCAR:
2927
2928 case PPPIOCGCHAN:
2929 case PPPIOCGUNIT:
2930 return tty_ioctl(file, cmd, arg: (unsigned long)compat_ptr(uptr: arg));
2931 case TIOCCONS:
2932 case TIOCEXCL:
2933 case TIOCNXCL:
2934 case TIOCVHANGUP:
2935 case TIOCSBRK:
2936 case TIOCCBRK:
2937 case TCSBRK:
2938 case TCSBRKP:
2939 case TCFLSH:
2940 case TIOCGPTPEER:
2941 case TIOCNOTTY:
2942 case TIOCSCTTY:
2943 case TCXONC:
2944 case TIOCMIWAIT:
2945 case TIOCSERCONFIG:
2946 return tty_ioctl(file, cmd, arg);
2947 }
2948
2949 if (tty_paranoia_check(tty, inode: file_inode(f: file), routine: "tty_ioctl"))
2950 return -EINVAL;
2951
2952 switch (cmd) {
2953 case TIOCSSERIAL:
2954 return compat_tty_tiocsserial(tty, ss: compat_ptr(uptr: arg));
2955 case TIOCGSERIAL:
2956 return compat_tty_tiocgserial(tty, ss: compat_ptr(uptr: arg));
2957 }
2958 if (tty->ops->compat_ioctl) {
2959 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2960 if (retval != -ENOIOCTLCMD)
2961 return retval;
2962 }
2963
2964 ld = tty_ldisc_ref_wait(tty);
2965 if (!ld)
2966 return hung_up_tty_compat_ioctl(file, cmd, arg);
2967 if (ld->ops->compat_ioctl)
2968 retval = ld->ops->compat_ioctl(tty, cmd, arg);
2969 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2970 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(uptr: cmd),
2971 arg);
2972 tty_ldisc_deref(ld);
2973
2974 return retval;
2975}
2976#endif
2977
2978static int this_tty(const void *t, struct file *file, unsigned fd)
2979{
2980 if (likely(file->f_op->read_iter != tty_read))
2981 return 0;
2982 return file_tty(file) != t ? 0 : fd + 1;
2983}
2984
2985/*
2986 * This implements the "Secure Attention Key" --- the idea is to
2987 * prevent trojan horses by killing all processes associated with this
2988 * tty when the user hits the "Secure Attention Key". Required for
2989 * super-paranoid applications --- see the Orange Book for more details.
2990 *
2991 * This code could be nicer; ideally it should send a HUP, wait a few
2992 * seconds, then send a INT, and then a KILL signal. But you then
2993 * have to coordinate with the init process, since all processes associated
2994 * with the current tty must be dead before the new getty is allowed
2995 * to spawn.
2996 *
2997 * Now, if it would be correct ;-/ The current code has a nasty hole -
2998 * it doesn't catch files in flight. We may send the descriptor to ourselves
2999 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3000 *
3001 * Nasty bug: do_SAK is being called in interrupt context. This can
3002 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3003 */
3004void __do_SAK(struct tty_struct *tty)
3005{
3006 struct task_struct *g, *p;
3007 struct pid *session;
3008 int i;
3009 unsigned long flags;
3010
3011 spin_lock_irqsave(&tty->ctrl.lock, flags);
3012 session = get_pid(pid: tty->ctrl.session);
3013 spin_unlock_irqrestore(lock: &tty->ctrl.lock, flags);
3014
3015 tty_ldisc_flush(tty);
3016
3017 tty_driver_flush_buffer(tty);
3018
3019 read_lock(&tasklist_lock);
3020 /* Kill the entire session */
3021 do_each_pid_task(session, PIDTYPE_SID, p) {
3022 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3023 task_pid_nr(p), p->comm);
3024 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, type: PIDTYPE_SID);
3025 } while_each_pid_task(session, PIDTYPE_SID, p);
3026
3027 /* Now kill any processes that happen to have the tty open */
3028 for_each_process_thread(g, p) {
3029 if (p->signal->tty == tty) {
3030 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3031 task_pid_nr(p), p->comm);
3032 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3033 type: PIDTYPE_SID);
3034 continue;
3035 }
3036 task_lock(p);
3037 i = iterate_fd(p->files, 0, this_tty, tty);
3038 if (i != 0) {
3039 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3040 task_pid_nr(p), p->comm, i - 1);
3041 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3042 type: PIDTYPE_SID);
3043 }
3044 task_unlock(p);
3045 }
3046 read_unlock(&tasklist_lock);
3047 put_pid(pid: session);
3048}
3049
3050static void do_SAK_work(struct work_struct *work)
3051{
3052 struct tty_struct *tty =
3053 container_of(work, struct tty_struct, SAK_work);
3054 __do_SAK(tty);
3055}
3056
3057/*
3058 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3059 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3060 * the values which we write to it will be identical to the values which it
3061 * already has. --akpm
3062 */
3063void do_SAK(struct tty_struct *tty)
3064{
3065 if (!tty)
3066 return;
3067 schedule_work(work: &tty->SAK_work);
3068}
3069EXPORT_SYMBOL(do_SAK);
3070
3071/* Must put_device() after it's unused! */
3072static struct device *tty_get_device(struct tty_struct *tty)
3073{
3074 dev_t devt = tty_devnum(tty);
3075
3076 return class_find_device_by_devt(class: &tty_class, devt);
3077}
3078
3079
3080/**
3081 * alloc_tty_struct - allocate a new tty
3082 * @driver: driver which will handle the returned tty
3083 * @idx: minor of the tty
3084 *
3085 * This subroutine allocates and initializes a tty structure.
3086 *
3087 * Locking: none - @tty in question is not exposed at this point
3088 */
3089struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3090{
3091 struct tty_struct *tty;
3092
3093 tty = kzalloc(size: sizeof(*tty), GFP_KERNEL_ACCOUNT);
3094 if (!tty)
3095 return NULL;
3096
3097 kref_init(kref: &tty->kref);
3098 if (tty_ldisc_init(tty)) {
3099 kfree(objp: tty);
3100 return NULL;
3101 }
3102 tty->ctrl.session = NULL;
3103 tty->ctrl.pgrp = NULL;
3104 mutex_init(&tty->legacy_mutex);
3105 mutex_init(&tty->throttle_mutex);
3106 init_rwsem(&tty->termios_rwsem);
3107 mutex_init(&tty->winsize_mutex);
3108 init_ldsem(&tty->ldisc_sem);
3109 init_waitqueue_head(&tty->write_wait);
3110 init_waitqueue_head(&tty->read_wait);
3111 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3112 mutex_init(&tty->atomic_write_lock);
3113 spin_lock_init(&tty->ctrl.lock);
3114 spin_lock_init(&tty->flow.lock);
3115 spin_lock_init(&tty->files_lock);
3116 INIT_LIST_HEAD(list: &tty->tty_files);
3117 INIT_WORK(&tty->SAK_work, do_SAK_work);
3118
3119 tty->driver = driver;
3120 tty->ops = driver->ops;
3121 tty->index = idx;
3122 tty_line_name(driver, index: idx, p: tty->name);
3123 tty->dev = tty_get_device(tty);
3124
3125 return tty;
3126}
3127
3128/**
3129 * tty_put_char - write one character to a tty
3130 * @tty: tty
3131 * @ch: character to write
3132 *
3133 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3134 * if present.
3135 *
3136 * Note: the specific put_char operation in the driver layer may go
3137 * away soon. Don't call it directly, use this method
3138 *
3139 * Return: the number of characters successfully output.
3140 */
3141int tty_put_char(struct tty_struct *tty, unsigned char ch)
3142{
3143 if (tty->ops->put_char)
3144 return tty->ops->put_char(tty, ch);
3145 return tty->ops->write(tty, &ch, 1);
3146}
3147EXPORT_SYMBOL_GPL(tty_put_char);
3148
3149static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3150 unsigned int index, unsigned int count)
3151{
3152 int err;
3153
3154 /* init here, since reused cdevs cause crashes */
3155 driver->cdevs[index] = cdev_alloc();
3156 if (!driver->cdevs[index])
3157 return -ENOMEM;
3158 driver->cdevs[index]->ops = &tty_fops;
3159 driver->cdevs[index]->owner = driver->owner;
3160 err = cdev_add(driver->cdevs[index], dev, count);
3161 if (err)
3162 kobject_put(kobj: &driver->cdevs[index]->kobj);
3163 return err;
3164}
3165
3166/**
3167 * tty_register_device - register a tty device
3168 * @driver: the tty driver that describes the tty device
3169 * @index: the index in the tty driver for this tty device
3170 * @device: a struct device that is associated with this tty device.
3171 * This field is optional, if there is no known struct device
3172 * for this tty device it can be set to NULL safely.
3173 *
3174 * This call is required to be made to register an individual tty device
3175 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If
3176 * that bit is not set, this function should not be called by a tty
3177 * driver.
3178 *
3179 * Locking: ??
3180 *
3181 * Return: A pointer to the struct device for this tty device (or
3182 * ERR_PTR(-EFOO) on error).
3183 */
3184struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3185 struct device *device)
3186{
3187 return tty_register_device_attr(driver, index, device, NULL, NULL);
3188}
3189EXPORT_SYMBOL(tty_register_device);
3190
3191static void tty_device_create_release(struct device *dev)
3192{
3193 dev_dbg(dev, "releasing...\n");
3194 kfree(objp: dev);
3195}
3196
3197/**
3198 * tty_register_device_attr - register a tty device
3199 * @driver: the tty driver that describes the tty device
3200 * @index: the index in the tty driver for this tty device
3201 * @device: a struct device that is associated with this tty device.
3202 * This field is optional, if there is no known struct device
3203 * for this tty device it can be set to %NULL safely.
3204 * @drvdata: Driver data to be set to device.
3205 * @attr_grp: Attribute group to be set on device.
3206 *
3207 * This call is required to be made to register an individual tty device if the
3208 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3209 * not set, this function should not be called by a tty driver.
3210 *
3211 * Locking: ??
3212 *
3213 * Return: A pointer to the struct device for this tty device (or
3214 * ERR_PTR(-EFOO) on error).
3215 */
3216struct device *tty_register_device_attr(struct tty_driver *driver,
3217 unsigned index, struct device *device,
3218 void *drvdata,
3219 const struct attribute_group **attr_grp)
3220{
3221 char name[64];
3222 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3223 struct ktermios *tp;
3224 struct device *dev;
3225 int retval;
3226
3227 if (index >= driver->num) {
3228 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3229 driver->name, index);
3230 return ERR_PTR(error: -EINVAL);
3231 }
3232
3233 if (driver->type == TTY_DRIVER_TYPE_PTY)
3234 pty_line_name(driver, index, p: name);
3235 else
3236 tty_line_name(driver, index, p: name);
3237
3238 dev = kzalloc(size: sizeof(*dev), GFP_KERNEL);
3239 if (!dev)
3240 return ERR_PTR(error: -ENOMEM);
3241
3242 dev->devt = devt;
3243 dev->class = &tty_class;
3244 dev->parent = device;
3245 dev->release = tty_device_create_release;
3246 dev_set_name(dev, name: "%s", name);
3247 dev->groups = attr_grp;
3248 dev_set_drvdata(dev, data: drvdata);
3249
3250 dev_set_uevent_suppress(dev, val: 1);
3251
3252 retval = device_register(dev);
3253 if (retval)
3254 goto err_put;
3255
3256 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3257 /*
3258 * Free any saved termios data so that the termios state is
3259 * reset when reusing a minor number.
3260 */
3261 tp = driver->termios[index];
3262 if (tp) {
3263 driver->termios[index] = NULL;
3264 kfree(objp: tp);
3265 }
3266
3267 retval = tty_cdev_add(driver, dev: devt, index, count: 1);
3268 if (retval)
3269 goto err_del;
3270 }
3271
3272 dev_set_uevent_suppress(dev, val: 0);
3273 kobject_uevent(kobj: &dev->kobj, action: KOBJ_ADD);
3274
3275 return dev;
3276
3277err_del:
3278 device_del(dev);
3279err_put:
3280 put_device(dev);
3281
3282 return ERR_PTR(error: retval);
3283}
3284EXPORT_SYMBOL_GPL(tty_register_device_attr);
3285
3286/**
3287 * tty_unregister_device - unregister a tty device
3288 * @driver: the tty driver that describes the tty device
3289 * @index: the index in the tty driver for this tty device
3290 *
3291 * If a tty device is registered with a call to tty_register_device() then
3292 * this function must be called when the tty device is gone.
3293 *
3294 * Locking: ??
3295 */
3296void tty_unregister_device(struct tty_driver *driver, unsigned index)
3297{
3298 device_destroy(cls: &tty_class, MKDEV(driver->major, driver->minor_start) + index);
3299 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3300 cdev_del(driver->cdevs[index]);
3301 driver->cdevs[index] = NULL;
3302 }
3303}
3304EXPORT_SYMBOL(tty_unregister_device);
3305
3306/**
3307 * __tty_alloc_driver - allocate tty driver
3308 * @lines: count of lines this driver can handle at most
3309 * @owner: module which is responsible for this driver
3310 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3311 *
3312 * This should not be called directly, some of the provided macros should be
3313 * used instead. Use IS_ERR() and friends on @retval.
3314 */
3315struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3316 unsigned long flags)
3317{
3318 struct tty_driver *driver;
3319 unsigned int cdevs = 1;
3320 int err;
3321
3322 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3323 return ERR_PTR(error: -EINVAL);
3324
3325 driver = kzalloc(size: sizeof(*driver), GFP_KERNEL);
3326 if (!driver)
3327 return ERR_PTR(error: -ENOMEM);
3328
3329 kref_init(kref: &driver->kref);
3330 driver->num = lines;
3331 driver->owner = owner;
3332 driver->flags = flags;
3333
3334 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3335 driver->ttys = kcalloc(n: lines, size: sizeof(*driver->ttys),
3336 GFP_KERNEL);
3337 driver->termios = kcalloc(n: lines, size: sizeof(*driver->termios),
3338 GFP_KERNEL);
3339 if (!driver->ttys || !driver->termios) {
3340 err = -ENOMEM;
3341 goto err_free_all;
3342 }
3343 }
3344
3345 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3346 driver->ports = kcalloc(n: lines, size: sizeof(*driver->ports),
3347 GFP_KERNEL);
3348 if (!driver->ports) {
3349 err = -ENOMEM;
3350 goto err_free_all;
3351 }
3352 cdevs = lines;
3353 }
3354
3355 driver->cdevs = kcalloc(n: cdevs, size: sizeof(*driver->cdevs), GFP_KERNEL);
3356 if (!driver->cdevs) {
3357 err = -ENOMEM;
3358 goto err_free_all;
3359 }
3360
3361 return driver;
3362err_free_all:
3363 kfree(objp: driver->ports);
3364 kfree(objp: driver->ttys);
3365 kfree(objp: driver->termios);
3366 kfree(objp: driver->cdevs);
3367 kfree(objp: driver);
3368 return ERR_PTR(error: err);
3369}
3370EXPORT_SYMBOL(__tty_alloc_driver);
3371
3372static void destruct_tty_driver(struct kref *kref)
3373{
3374 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3375 int i;
3376 struct ktermios *tp;
3377
3378 if (driver->flags & TTY_DRIVER_INSTALLED) {
3379 for (i = 0; i < driver->num; i++) {
3380 tp = driver->termios[i];
3381 if (tp) {
3382 driver->termios[i] = NULL;
3383 kfree(objp: tp);
3384 }
3385 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3386 tty_unregister_device(driver, i);
3387 }
3388 proc_tty_unregister_driver(driver);
3389 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3390 cdev_del(driver->cdevs[0]);
3391 }
3392 kfree(objp: driver->cdevs);
3393 kfree(objp: driver->ports);
3394 kfree(objp: driver->termios);
3395 kfree(objp: driver->ttys);
3396 kfree(objp: driver);
3397}
3398
3399/**
3400 * tty_driver_kref_put - drop a reference to a tty driver
3401 * @driver: driver of which to drop the reference
3402 *
3403 * The final put will destroy and free up the driver.
3404 */
3405void tty_driver_kref_put(struct tty_driver *driver)
3406{
3407 kref_put(kref: &driver->kref, release: destruct_tty_driver);
3408}
3409EXPORT_SYMBOL(tty_driver_kref_put);
3410
3411/**
3412 * tty_register_driver - register a tty driver
3413 * @driver: driver to register
3414 *
3415 * Called by a tty driver to register itself.
3416 */
3417int tty_register_driver(struct tty_driver *driver)
3418{
3419 int error;
3420 int i;
3421 dev_t dev;
3422 struct device *d;
3423
3424 if (!driver->major) {
3425 error = alloc_chrdev_region(&dev, driver->minor_start,
3426 driver->num, driver->name);
3427 if (!error) {
3428 driver->major = MAJOR(dev);
3429 driver->minor_start = MINOR(dev);
3430 }
3431 } else {
3432 dev = MKDEV(driver->major, driver->minor_start);
3433 error = register_chrdev_region(dev, driver->num, driver->name);
3434 }
3435 if (error < 0)
3436 goto err;
3437
3438 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439 error = tty_cdev_add(driver, dev, index: 0, count: driver->num);
3440 if (error)
3441 goto err_unreg_char;
3442 }
3443
3444 mutex_lock(&tty_mutex);
3445 list_add(new: &driver->tty_drivers, head: &tty_drivers);
3446 mutex_unlock(lock: &tty_mutex);
3447
3448 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449 for (i = 0; i < driver->num; i++) {
3450 d = tty_register_device(driver, i, NULL);
3451 if (IS_ERR(ptr: d)) {
3452 error = PTR_ERR(ptr: d);
3453 goto err_unreg_devs;
3454 }
3455 }
3456 }
3457 proc_tty_register_driver(driver);
3458 driver->flags |= TTY_DRIVER_INSTALLED;
3459 return 0;
3460
3461err_unreg_devs:
3462 for (i--; i >= 0; i--)
3463 tty_unregister_device(driver, i);
3464
3465 mutex_lock(&tty_mutex);
3466 list_del(entry: &driver->tty_drivers);
3467 mutex_unlock(lock: &tty_mutex);
3468
3469err_unreg_char:
3470 unregister_chrdev_region(dev, driver->num);
3471err:
3472 return error;
3473}
3474EXPORT_SYMBOL(tty_register_driver);
3475
3476/**
3477 * tty_unregister_driver - unregister a tty driver
3478 * @driver: driver to unregister
3479 *
3480 * Called by a tty driver to unregister itself.
3481 */
3482void tty_unregister_driver(struct tty_driver *driver)
3483{
3484 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3485 driver->num);
3486 mutex_lock(&tty_mutex);
3487 list_del(entry: &driver->tty_drivers);
3488 mutex_unlock(lock: &tty_mutex);
3489}
3490EXPORT_SYMBOL(tty_unregister_driver);
3491
3492dev_t tty_devnum(struct tty_struct *tty)
3493{
3494 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3495}
3496EXPORT_SYMBOL(tty_devnum);
3497
3498void tty_default_fops(struct file_operations *fops)
3499{
3500 *fops = tty_fops;
3501}
3502
3503static char *tty_devnode(const struct device *dev, umode_t *mode)
3504{
3505 if (!mode)
3506 return NULL;
3507 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3508 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3509 *mode = 0666;
3510 return NULL;
3511}
3512
3513const struct class tty_class = {
3514 .name = "tty",
3515 .devnode = tty_devnode,
3516};
3517
3518static int __init tty_class_init(void)
3519{
3520 return class_register(class: &tty_class);
3521}
3522
3523postcore_initcall(tty_class_init);
3524
3525/* 3/2004 jmc: why do these devices exist? */
3526static struct cdev tty_cdev, console_cdev;
3527
3528static ssize_t show_cons_active(struct device *dev,
3529 struct device_attribute *attr, char *buf)
3530{
3531 struct console *cs[16];
3532 int i = 0;
3533 struct console *c;
3534 ssize_t count = 0;
3535
3536 /*
3537 * Hold the console_list_lock to guarantee that no consoles are
3538 * unregistered until all console processing is complete.
3539 * This also allows safe traversal of the console list and
3540 * race-free reading of @flags.
3541 */
3542 console_list_lock();
3543
3544 for_each_console(c) {
3545 if (!c->device)
3546 continue;
3547 if (!c->write)
3548 continue;
3549 if ((c->flags & CON_ENABLED) == 0)
3550 continue;
3551 cs[i++] = c;
3552 if (i >= ARRAY_SIZE(cs))
3553 break;
3554 }
3555
3556 /*
3557 * Take console_lock to serialize device() callback with
3558 * other console operations. For example, fg_console is
3559 * modified under console_lock when switching vt.
3560 */
3561 console_lock();
3562 while (i--) {
3563 int index = cs[i]->index;
3564 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3565
3566 /* don't resolve tty0 as some programs depend on it */
3567 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3568 count += tty_line_name(driver: drv, index, p: buf + count);
3569 else
3570 count += sprintf(buf: buf + count, fmt: "%s%d",
3571 cs[i]->name, cs[i]->index);
3572
3573 count += sprintf(buf: buf + count, fmt: "%c", i ? ' ':'\n');
3574 }
3575 console_unlock();
3576
3577 console_list_unlock();
3578
3579 return count;
3580}
3581static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3582
3583static struct attribute *cons_dev_attrs[] = {
3584 &dev_attr_active.attr,
3585 NULL
3586};
3587
3588ATTRIBUTE_GROUPS(cons_dev);
3589
3590static struct device *consdev;
3591
3592void console_sysfs_notify(void)
3593{
3594 if (consdev)
3595 sysfs_notify(kobj: &consdev->kobj, NULL, attr: "active");
3596}
3597
3598static struct ctl_table tty_table[] = {
3599 {
3600 .procname = "legacy_tiocsti",
3601 .data = &tty_legacy_tiocsti,
3602 .maxlen = sizeof(tty_legacy_tiocsti),
3603 .mode = 0644,
3604 .proc_handler = proc_dobool,
3605 },
3606 {
3607 .procname = "ldisc_autoload",
3608 .data = &tty_ldisc_autoload,
3609 .maxlen = sizeof(tty_ldisc_autoload),
3610 .mode = 0644,
3611 .proc_handler = proc_dointvec,
3612 .extra1 = SYSCTL_ZERO,
3613 .extra2 = SYSCTL_ONE,
3614 },
3615};
3616
3617/*
3618 * Ok, now we can initialize the rest of the tty devices and can count
3619 * on memory allocations, interrupts etc..
3620 */
3621int __init tty_init(void)
3622{
3623 register_sysctl_init("dev/tty", tty_table);
3624 cdev_init(&tty_cdev, &tty_fops);
3625 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3626 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3627 panic(fmt: "Couldn't register /dev/tty driver\n");
3628 device_create(cls: &tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, fmt: "tty");
3629
3630 cdev_init(&console_cdev, &console_fops);
3631 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3632 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3633 panic(fmt: "Couldn't register /dev/console driver\n");
3634 consdev = device_create_with_groups(cls: &tty_class, NULL,
3635 MKDEV(TTYAUX_MAJOR, 1), NULL,
3636 groups: cons_dev_groups, fmt: "console");
3637 if (IS_ERR(ptr: consdev))
3638 consdev = NULL;
3639
3640#ifdef CONFIG_VT
3641 vty_init(console_fops: &console_fops);
3642#endif
3643 return 0;
3644}
3645

source code of linux/drivers/tty/tty_io.c