1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2001-2004 by David Brownell
4 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 */
6
7/* this file is part of ehci-hcd.c */
8
9/*-------------------------------------------------------------------------*/
10
11/*
12 * EHCI scheduled transaction support: interrupt, iso, split iso
13 * These are called "periodic" transactions in the EHCI spec.
14 *
15 * Note that for interrupt transfers, the QH/QTD manipulation is shared
16 * with the "asynchronous" transaction support (control/bulk transfers).
17 * The only real difference is in how interrupt transfers are scheduled.
18 *
19 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
20 * It keeps track of every ITD (or SITD) that's linked, and holds enough
21 * pre-calculated schedule data to make appending to the queue be quick.
22 */
23
24static int ehci_get_frame(struct usb_hcd *hcd);
25
26/*
27 * periodic_next_shadow - return "next" pointer on shadow list
28 * @periodic: host pointer to qh/itd/sitd
29 * @tag: hardware tag for type of this record
30 */
31static union ehci_shadow *
32periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
33 __hc32 tag)
34{
35 switch (hc32_to_cpu(ehci, x: tag)) {
36 case Q_TYPE_QH:
37 return &periodic->qh->qh_next;
38 case Q_TYPE_FSTN:
39 return &periodic->fstn->fstn_next;
40 case Q_TYPE_ITD:
41 return &periodic->itd->itd_next;
42 /* case Q_TYPE_SITD: */
43 default:
44 return &periodic->sitd->sitd_next;
45 }
46}
47
48static __hc32 *
49shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
50 __hc32 tag)
51{
52 switch (hc32_to_cpu(ehci, x: tag)) {
53 /* our ehci_shadow.qh is actually software part */
54 case Q_TYPE_QH:
55 return &periodic->qh->hw->hw_next;
56 /* others are hw parts */
57 default:
58 return periodic->hw_next;
59 }
60}
61
62/* caller must hold ehci->lock */
63static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
64{
65 union ehci_shadow *prev_p = &ehci->pshadow[frame];
66 __hc32 *hw_p = &ehci->periodic[frame];
67 union ehci_shadow here = *prev_p;
68
69 /* find predecessor of "ptr"; hw and shadow lists are in sync */
70 while (here.ptr && here.ptr != ptr) {
71 prev_p = periodic_next_shadow(ehci, periodic: prev_p,
72 Q_NEXT_TYPE(ehci, *hw_p));
73 hw_p = shadow_next_periodic(ehci, periodic: &here,
74 Q_NEXT_TYPE(ehci, *hw_p));
75 here = *prev_p;
76 }
77 /* an interrupt entry (at list end) could have been shared */
78 if (!here.ptr)
79 return;
80
81 /* update shadow and hardware lists ... the old "next" pointers
82 * from ptr may still be in use, the caller updates them.
83 */
84 *prev_p = *periodic_next_shadow(ehci, periodic: &here,
85 Q_NEXT_TYPE(ehci, *hw_p));
86
87 if (!ehci->use_dummy_qh ||
88 *shadow_next_periodic(ehci, periodic: &here, Q_NEXT_TYPE(ehci, *hw_p))
89 != EHCI_LIST_END(ehci))
90 *hw_p = *shadow_next_periodic(ehci, periodic: &here,
91 Q_NEXT_TYPE(ehci, *hw_p));
92 else
93 *hw_p = cpu_to_hc32(ehci, x: ehci->dummy->qh_dma);
94}
95
96/*-------------------------------------------------------------------------*/
97
98/* Bandwidth and TT management */
99
100/* Find the TT data structure for this device; create it if necessary */
101static struct ehci_tt *find_tt(struct usb_device *udev)
102{
103 struct usb_tt *utt = udev->tt;
104 struct ehci_tt *tt, **tt_index, **ptt;
105 unsigned port;
106 bool allocated_index = false;
107
108 if (!utt)
109 return NULL; /* Not below a TT */
110
111 /*
112 * Find/create our data structure.
113 * For hubs with a single TT, we get it directly.
114 * For hubs with multiple TTs, there's an extra level of pointers.
115 */
116 tt_index = NULL;
117 if (utt->multi) {
118 tt_index = utt->hcpriv;
119 if (!tt_index) { /* Create the index array */
120 tt_index = kcalloc(n: utt->hub->maxchild,
121 size: sizeof(*tt_index),
122 GFP_ATOMIC);
123 if (!tt_index)
124 return ERR_PTR(error: -ENOMEM);
125 utt->hcpriv = tt_index;
126 allocated_index = true;
127 }
128 port = udev->ttport - 1;
129 ptt = &tt_index[port];
130 } else {
131 port = 0;
132 ptt = (struct ehci_tt **) &utt->hcpriv;
133 }
134
135 tt = *ptt;
136 if (!tt) { /* Create the ehci_tt */
137 struct ehci_hcd *ehci =
138 hcd_to_ehci(hcd: bus_to_hcd(bus: udev->bus));
139
140 tt = kzalloc(size: sizeof(*tt), GFP_ATOMIC);
141 if (!tt) {
142 if (allocated_index) {
143 utt->hcpriv = NULL;
144 kfree(objp: tt_index);
145 }
146 return ERR_PTR(error: -ENOMEM);
147 }
148 list_add_tail(new: &tt->tt_list, head: &ehci->tt_list);
149 INIT_LIST_HEAD(list: &tt->ps_list);
150 tt->usb_tt = utt;
151 tt->tt_port = port;
152 *ptt = tt;
153 }
154
155 return tt;
156}
157
158/* Release the TT above udev, if it's not in use */
159static void drop_tt(struct usb_device *udev)
160{
161 struct usb_tt *utt = udev->tt;
162 struct ehci_tt *tt, **tt_index, **ptt;
163 int cnt, i;
164
165 if (!utt || !utt->hcpriv)
166 return; /* Not below a TT, or never allocated */
167
168 cnt = 0;
169 if (utt->multi) {
170 tt_index = utt->hcpriv;
171 ptt = &tt_index[udev->ttport - 1];
172
173 /* How many entries are left in tt_index? */
174 for (i = 0; i < utt->hub->maxchild; ++i)
175 cnt += !!tt_index[i];
176 } else {
177 tt_index = NULL;
178 ptt = (struct ehci_tt **) &utt->hcpriv;
179 }
180
181 tt = *ptt;
182 if (!tt || !list_empty(head: &tt->ps_list))
183 return; /* never allocated, or still in use */
184
185 list_del(entry: &tt->tt_list);
186 *ptt = NULL;
187 kfree(objp: tt);
188 if (cnt == 1) {
189 utt->hcpriv = NULL;
190 kfree(objp: tt_index);
191 }
192}
193
194static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
195 struct ehci_per_sched *ps)
196{
197 dev_dbg(&ps->udev->dev,
198 "ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
199 ps->ep->desc.bEndpointAddress,
200 (sign >= 0 ? "reserve" : "release"), type,
201 (ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
202 ps->phase, ps->phase_uf, ps->period,
203 ps->usecs, ps->c_usecs, ps->cs_mask);
204}
205
206static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
207 struct ehci_qh *qh, int sign)
208{
209 unsigned start_uf;
210 unsigned i, j, m;
211 int usecs = qh->ps.usecs;
212 int c_usecs = qh->ps.c_usecs;
213 int tt_usecs = qh->ps.tt_usecs;
214 struct ehci_tt *tt;
215
216 if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
217 return;
218 start_uf = qh->ps.bw_phase << 3;
219
220 bandwidth_dbg(ehci, sign, type: "intr", ps: &qh->ps);
221
222 if (sign < 0) { /* Release bandwidth */
223 usecs = -usecs;
224 c_usecs = -c_usecs;
225 tt_usecs = -tt_usecs;
226 }
227
228 /* Entire transaction (high speed) or start-split (full/low speed) */
229 for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
230 i += qh->ps.bw_uperiod)
231 ehci->bandwidth[i] += usecs;
232
233 /* Complete-split (full/low speed) */
234 if (qh->ps.c_usecs) {
235 /* NOTE: adjustments needed for FSTN */
236 for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
237 i += qh->ps.bw_uperiod) {
238 for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
239 if (qh->ps.cs_mask & m)
240 ehci->bandwidth[i+j] += c_usecs;
241 }
242 }
243 }
244
245 /* FS/LS bus bandwidth */
246 if (tt_usecs) {
247 /*
248 * find_tt() will not return any error here as we have
249 * already called find_tt() before calling this function
250 * and checked for any error return. The previous call
251 * would have created the data structure.
252 */
253 tt = find_tt(udev: qh->ps.udev);
254 if (sign > 0)
255 list_add_tail(new: &qh->ps.ps_list, head: &tt->ps_list);
256 else
257 list_del(entry: &qh->ps.ps_list);
258
259 for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
260 i += qh->ps.bw_period)
261 tt->bandwidth[i] += tt_usecs;
262 }
263}
264
265/*-------------------------------------------------------------------------*/
266
267static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
268 struct ehci_tt *tt)
269{
270 struct ehci_per_sched *ps;
271 unsigned uframe, uf, x;
272 u8 *budget_line;
273
274 if (!tt)
275 return;
276 memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
277
278 /* Add up the contributions from all the endpoints using this TT */
279 list_for_each_entry(ps, &tt->ps_list, ps_list) {
280 for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
281 uframe += ps->bw_uperiod) {
282 budget_line = &budget_table[uframe];
283 x = ps->tt_usecs;
284
285 /* propagate the time forward */
286 for (uf = ps->phase_uf; uf < 8; ++uf) {
287 x += budget_line[uf];
288
289 /* Each microframe lasts 125 us */
290 if (x <= 125) {
291 budget_line[uf] = x;
292 break;
293 }
294 budget_line[uf] = 125;
295 x -= 125;
296 }
297 }
298 }
299}
300
301static int __maybe_unused same_tt(struct usb_device *dev1,
302 struct usb_device *dev2)
303{
304 if (!dev1->tt || !dev2->tt)
305 return 0;
306 if (dev1->tt != dev2->tt)
307 return 0;
308 if (dev1->tt->multi)
309 return dev1->ttport == dev2->ttport;
310 else
311 return 1;
312}
313
314#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
315
316static const unsigned char
317max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
318
319/* carryover low/fullspeed bandwidth that crosses uframe boundries */
320static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
321{
322 int i;
323
324 for (i = 0; i < 7; i++) {
325 if (max_tt_usecs[i] < tt_usecs[i]) {
326 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
327 tt_usecs[i] = max_tt_usecs[i];
328 }
329 }
330}
331
332/*
333 * Return true if the device's tt's downstream bus is available for a
334 * periodic transfer of the specified length (usecs), starting at the
335 * specified frame/uframe. Note that (as summarized in section 11.19
336 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
337 * uframe.
338 *
339 * The uframe parameter is when the fullspeed/lowspeed transfer
340 * should be executed in "B-frame" terms, which is the same as the
341 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
342 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
343 * See the EHCI spec sec 4.5 and fig 4.7.
344 *
345 * This checks if the full/lowspeed bus, at the specified starting uframe,
346 * has the specified bandwidth available, according to rules listed
347 * in USB 2.0 spec section 11.18.1 fig 11-60.
348 *
349 * This does not check if the transfer would exceed the max ssplit
350 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
351 * since proper scheduling limits ssplits to less than 16 per uframe.
352 */
353static int tt_available(
354 struct ehci_hcd *ehci,
355 struct ehci_per_sched *ps,
356 struct ehci_tt *tt,
357 unsigned frame,
358 unsigned uframe
359)
360{
361 unsigned period = ps->bw_period;
362 unsigned usecs = ps->tt_usecs;
363
364 if ((period == 0) || (uframe >= 7)) /* error */
365 return 0;
366
367 for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
368 frame += period) {
369 unsigned i, uf;
370 unsigned short tt_usecs[8];
371
372 if (tt->bandwidth[frame] + usecs > 900)
373 return 0;
374
375 uf = frame << 3;
376 for (i = 0; i < 8; (++i, ++uf))
377 tt_usecs[i] = ehci->tt_budget[uf];
378
379 if (max_tt_usecs[uframe] <= tt_usecs[uframe])
380 return 0;
381
382 /* special case for isoc transfers larger than 125us:
383 * the first and each subsequent fully used uframe
384 * must be empty, so as to not illegally delay
385 * already scheduled transactions
386 */
387 if (usecs > 125) {
388 int ufs = (usecs / 125);
389
390 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
391 if (tt_usecs[i] > 0)
392 return 0;
393 }
394
395 tt_usecs[uframe] += usecs;
396
397 carryover_tt_bandwidth(tt_usecs);
398
399 /* fail if the carryover pushed bw past the last uframe's limit */
400 if (max_tt_usecs[7] < tt_usecs[7])
401 return 0;
402 }
403
404 return 1;
405}
406
407#else
408
409/* return true iff the device's transaction translator is available
410 * for a periodic transfer starting at the specified frame, using
411 * all the uframes in the mask.
412 */
413static int tt_no_collision(
414 struct ehci_hcd *ehci,
415 unsigned period,
416 struct usb_device *dev,
417 unsigned frame,
418 u32 uf_mask
419)
420{
421 if (period == 0) /* error */
422 return 0;
423
424 /* note bandwidth wastage: split never follows csplit
425 * (different dev or endpoint) until the next uframe.
426 * calling convention doesn't make that distinction.
427 */
428 for (; frame < ehci->periodic_size; frame += period) {
429 union ehci_shadow here;
430 __hc32 type;
431 struct ehci_qh_hw *hw;
432
433 here = ehci->pshadow[frame];
434 type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
435 while (here.ptr) {
436 switch (hc32_to_cpu(ehci, type)) {
437 case Q_TYPE_ITD:
438 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
439 here = here.itd->itd_next;
440 continue;
441 case Q_TYPE_QH:
442 hw = here.qh->hw;
443 if (same_tt(dev, here.qh->ps.udev)) {
444 u32 mask;
445
446 mask = hc32_to_cpu(ehci,
447 hw->hw_info2);
448 /* "knows" no gap is needed */
449 mask |= mask >> 8;
450 if (mask & uf_mask)
451 break;
452 }
453 type = Q_NEXT_TYPE(ehci, hw->hw_next);
454 here = here.qh->qh_next;
455 continue;
456 case Q_TYPE_SITD:
457 if (same_tt(dev, here.sitd->urb->dev)) {
458 u16 mask;
459
460 mask = hc32_to_cpu(ehci, here.sitd
461 ->hw_uframe);
462 /* FIXME assumes no gap for IN! */
463 mask |= mask >> 8;
464 if (mask & uf_mask)
465 break;
466 }
467 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
468 here = here.sitd->sitd_next;
469 continue;
470 /* case Q_TYPE_FSTN: */
471 default:
472 ehci_dbg(ehci,
473 "periodic frame %d bogus type %d\n",
474 frame, type);
475 }
476
477 /* collision or error */
478 return 0;
479 }
480 }
481
482 /* no collision */
483 return 1;
484}
485
486#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
487
488/*-------------------------------------------------------------------------*/
489
490static void enable_periodic(struct ehci_hcd *ehci)
491{
492 if (ehci->periodic_count++)
493 goto out;
494
495 /* Stop waiting to turn off the periodic schedule */
496 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
497
498 /* Don't start the schedule until PSS is 0 */
499 ehci_poll_PSS(ehci);
500out:
501 turn_on_io_watchdog(ehci);
502}
503
504static void disable_periodic(struct ehci_hcd *ehci)
505{
506 if (--ehci->periodic_count)
507 return;
508
509 /* Don't turn off the schedule until PSS is 1 */
510 ehci_poll_PSS(ehci);
511}
512
513/*-------------------------------------------------------------------------*/
514
515/* periodic schedule slots have iso tds (normal or split) first, then a
516 * sparse tree for active interrupt transfers.
517 *
518 * this just links in a qh; caller guarantees uframe masks are set right.
519 * no FSTN support (yet; ehci 0.96+)
520 */
521static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
522{
523 unsigned i;
524 unsigned period = qh->ps.period;
525
526 dev_dbg(&qh->ps.udev->dev,
527 "link qh%d-%04x/%p start %d [%d/%d us]\n",
528 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
529 & (QH_CMASK | QH_SMASK),
530 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
531
532 /* high bandwidth, or otherwise every microframe */
533 if (period == 0)
534 period = 1;
535
536 for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
537 union ehci_shadow *prev = &ehci->pshadow[i];
538 __hc32 *hw_p = &ehci->periodic[i];
539 union ehci_shadow here = *prev;
540 __hc32 type = 0;
541
542 /* skip the iso nodes at list head */
543 while (here.ptr) {
544 type = Q_NEXT_TYPE(ehci, *hw_p);
545 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
546 break;
547 prev = periodic_next_shadow(ehci, periodic: prev, tag: type);
548 hw_p = shadow_next_periodic(ehci, periodic: &here, tag: type);
549 here = *prev;
550 }
551
552 /* sorting each branch by period (slow-->fast)
553 * enables sharing interior tree nodes
554 */
555 while (here.ptr && qh != here.qh) {
556 if (qh->ps.period > here.qh->ps.period)
557 break;
558 prev = &here.qh->qh_next;
559 hw_p = &here.qh->hw->hw_next;
560 here = *prev;
561 }
562 /* link in this qh, unless some earlier pass did that */
563 if (qh != here.qh) {
564 qh->qh_next = here;
565 if (here.qh)
566 qh->hw->hw_next = *hw_p;
567 wmb();
568 prev->qh = qh;
569 *hw_p = QH_NEXT(ehci, qh->qh_dma);
570 }
571 }
572 qh->qh_state = QH_STATE_LINKED;
573 qh->xacterrs = 0;
574 qh->unlink_reason = 0;
575
576 /* update per-qh bandwidth for debugfs */
577 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
578 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
579 : (qh->ps.usecs * 8);
580
581 list_add(new: &qh->intr_node, head: &ehci->intr_qh_list);
582
583 /* maybe enable periodic schedule processing */
584 ++ehci->intr_count;
585 enable_periodic(ehci);
586}
587
588static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
589{
590 unsigned i;
591 unsigned period;
592
593 /*
594 * If qh is for a low/full-speed device, simply unlinking it
595 * could interfere with an ongoing split transaction. To unlink
596 * it safely would require setting the QH_INACTIVATE bit and
597 * waiting at least one frame, as described in EHCI 4.12.2.5.
598 *
599 * We won't bother with any of this. Instead, we assume that the
600 * only reason for unlinking an interrupt QH while the current URB
601 * is still active is to dequeue all the URBs (flush the whole
602 * endpoint queue).
603 *
604 * If rebalancing the periodic schedule is ever implemented, this
605 * approach will no longer be valid.
606 */
607
608 /* high bandwidth, or otherwise part of every microframe */
609 period = qh->ps.period ? : 1;
610
611 for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
612 periodic_unlink(ehci, frame: i, ptr: qh);
613
614 /* update per-qh bandwidth for debugfs */
615 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
616 ? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
617 : (qh->ps.usecs * 8);
618
619 dev_dbg(&qh->ps.udev->dev,
620 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
621 qh->ps.period,
622 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
623 qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
624
625 /* qh->qh_next still "live" to HC */
626 qh->qh_state = QH_STATE_UNLINK;
627 qh->qh_next.ptr = NULL;
628
629 if (ehci->qh_scan_next == qh)
630 ehci->qh_scan_next = list_entry(qh->intr_node.next,
631 struct ehci_qh, intr_node);
632 list_del(entry: &qh->intr_node);
633}
634
635static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
636{
637 if (qh->qh_state != QH_STATE_LINKED ||
638 list_empty(head: &qh->unlink_node))
639 return;
640
641 list_del_init(entry: &qh->unlink_node);
642
643 /*
644 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
645 * avoiding unnecessary CPU wakeup
646 */
647}
648
649static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
650{
651 /* If the QH isn't linked then there's nothing we can do. */
652 if (qh->qh_state != QH_STATE_LINKED)
653 return;
654
655 /* if the qh is waiting for unlink, cancel it now */
656 cancel_unlink_wait_intr(ehci, qh);
657
658 qh_unlink_periodic(ehci, qh);
659
660 /* Make sure the unlinks are visible before starting the timer */
661 wmb();
662
663 /*
664 * The EHCI spec doesn't say how long it takes the controller to
665 * stop accessing an unlinked interrupt QH. The timer delay is
666 * 9 uframes; presumably that will be long enough.
667 */
668 qh->unlink_cycle = ehci->intr_unlink_cycle;
669
670 /* New entries go at the end of the intr_unlink list */
671 list_add_tail(new: &qh->unlink_node, head: &ehci->intr_unlink);
672
673 if (ehci->intr_unlinking)
674 ; /* Avoid recursive calls */
675 else if (ehci->rh_state < EHCI_RH_RUNNING)
676 ehci_handle_intr_unlinks(ehci);
677 else if (ehci->intr_unlink.next == &qh->unlink_node) {
678 ehci_enable_event(ehci, event: EHCI_HRTIMER_UNLINK_INTR, resched: true);
679 ++ehci->intr_unlink_cycle;
680 }
681}
682
683/*
684 * It is common only one intr URB is scheduled on one qh, and
685 * given complete() is run in tasklet context, introduce a bit
686 * delay to avoid unlink qh too early.
687 */
688static void start_unlink_intr_wait(struct ehci_hcd *ehci,
689 struct ehci_qh *qh)
690{
691 qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
692
693 /* New entries go at the end of the intr_unlink_wait list */
694 list_add_tail(new: &qh->unlink_node, head: &ehci->intr_unlink_wait);
695
696 if (ehci->rh_state < EHCI_RH_RUNNING)
697 ehci_handle_start_intr_unlinks(ehci);
698 else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
699 ehci_enable_event(ehci, event: EHCI_HRTIMER_START_UNLINK_INTR, resched: true);
700 ++ehci->intr_unlink_wait_cycle;
701 }
702}
703
704static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
705{
706 struct ehci_qh_hw *hw = qh->hw;
707 int rc;
708
709 qh->qh_state = QH_STATE_IDLE;
710 hw->hw_next = EHCI_LIST_END(ehci);
711
712 if (!list_empty(head: &qh->qtd_list))
713 qh_completions(ehci, qh);
714
715 /* reschedule QH iff another request is queued */
716 if (!list_empty(head: &qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
717 rc = qh_schedule(ehci, qh);
718 if (rc == 0) {
719 qh_refresh(ehci, qh);
720 qh_link_periodic(ehci, qh);
721 }
722
723 /* An error here likely indicates handshake failure
724 * or no space left in the schedule. Neither fault
725 * should happen often ...
726 *
727 * FIXME kill the now-dysfunctional queued urbs
728 */
729 else {
730 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
731 qh, rc);
732 }
733 }
734
735 /* maybe turn off periodic schedule */
736 --ehci->intr_count;
737 disable_periodic(ehci);
738}
739
740/*-------------------------------------------------------------------------*/
741
742static int check_period(
743 struct ehci_hcd *ehci,
744 unsigned frame,
745 unsigned uframe,
746 unsigned uperiod,
747 unsigned usecs
748) {
749 /* complete split running into next frame?
750 * given FSTN support, we could sometimes check...
751 */
752 if (uframe >= 8)
753 return 0;
754
755 /* convert "usecs we need" to "max already claimed" */
756 usecs = ehci->uframe_periodic_max - usecs;
757
758 for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
759 uframe += uperiod) {
760 if (ehci->bandwidth[uframe] > usecs)
761 return 0;
762 }
763
764 /* success! */
765 return 1;
766}
767
768static int check_intr_schedule(
769 struct ehci_hcd *ehci,
770 unsigned frame,
771 unsigned uframe,
772 struct ehci_qh *qh,
773 unsigned *c_maskp,
774 struct ehci_tt *tt
775)
776{
777 int retval = -ENOSPC;
778 u8 mask = 0;
779
780 if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
781 goto done;
782
783 if (!check_period(ehci, frame, uframe, uperiod: qh->ps.bw_uperiod, usecs: qh->ps.usecs))
784 goto done;
785 if (!qh->ps.c_usecs) {
786 retval = 0;
787 *c_maskp = 0;
788 goto done;
789 }
790
791#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
792 if (tt_available(ehci, ps: &qh->ps, tt, frame, uframe)) {
793 unsigned i;
794
795 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
796 for (i = uframe+2; i < 8 && i <= uframe+4; i++)
797 if (!check_period(ehci, frame, uframe: i,
798 uperiod: qh->ps.bw_uperiod, usecs: qh->ps.c_usecs))
799 goto done;
800 else
801 mask |= 1 << i;
802
803 retval = 0;
804
805 *c_maskp = mask;
806 }
807#else
808 /* Make sure this tt's buffer is also available for CSPLITs.
809 * We pessimize a bit; probably the typical full speed case
810 * doesn't need the second CSPLIT.
811 *
812 * NOTE: both SPLIT and CSPLIT could be checked in just
813 * one smart pass...
814 */
815 mask = 0x03 << (uframe + qh->gap_uf);
816 *c_maskp = mask;
817
818 mask |= 1 << uframe;
819 if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
820 if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
821 qh->ps.bw_uperiod, qh->ps.c_usecs))
822 goto done;
823 if (!check_period(ehci, frame, uframe + qh->gap_uf,
824 qh->ps.bw_uperiod, qh->ps.c_usecs))
825 goto done;
826 retval = 0;
827 }
828#endif
829done:
830 return retval;
831}
832
833/* "first fit" scheduling policy used the first time through,
834 * or when the previous schedule slot can't be re-used.
835 */
836static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
837{
838 int status = 0;
839 unsigned uframe;
840 unsigned c_mask;
841 struct ehci_qh_hw *hw = qh->hw;
842 struct ehci_tt *tt;
843
844 hw->hw_next = EHCI_LIST_END(ehci);
845
846 /* reuse the previous schedule slots, if we can */
847 if (qh->ps.phase != NO_FRAME) {
848 ehci_dbg(ehci, "reused qh %p schedule\n", qh);
849 return 0;
850 }
851
852 uframe = 0;
853 c_mask = 0;
854 tt = find_tt(udev: qh->ps.udev);
855 if (IS_ERR(ptr: tt)) {
856 status = PTR_ERR(ptr: tt);
857 goto done;
858 }
859 compute_tt_budget(budget_table: ehci->tt_budget, tt);
860
861 /* else scan the schedule to find a group of slots such that all
862 * uframes have enough periodic bandwidth available.
863 */
864 /* "normal" case, uframing flexible except with splits */
865 if (qh->ps.bw_period) {
866 int i;
867 unsigned frame;
868
869 for (i = qh->ps.bw_period; i > 0; --i) {
870 frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
871 for (uframe = 0; uframe < 8; uframe++) {
872 status = check_intr_schedule(ehci,
873 frame, uframe, qh, c_maskp: &c_mask, tt);
874 if (status == 0)
875 goto got_it;
876 }
877 }
878
879 /* qh->ps.bw_period == 0 means every uframe */
880 } else {
881 status = check_intr_schedule(ehci, frame: 0, uframe: 0, qh, c_maskp: &c_mask, tt);
882 }
883 if (status)
884 goto done;
885
886 got_it:
887 qh->ps.phase = (qh->ps.period ? ehci->random_frame &
888 (qh->ps.period - 1) : 0);
889 qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
890 qh->ps.phase_uf = uframe;
891 qh->ps.cs_mask = qh->ps.period ?
892 (c_mask << 8) | (1 << uframe) :
893 QH_SMASK;
894
895 /* reset S-frame and (maybe) C-frame masks */
896 hw->hw_info2 &= cpu_to_hc32(ehci, x: ~(QH_CMASK | QH_SMASK));
897 hw->hw_info2 |= cpu_to_hc32(ehci, x: qh->ps.cs_mask);
898 reserve_release_intr_bandwidth(ehci, qh, sign: 1);
899
900done:
901 return status;
902}
903
904static int intr_submit(
905 struct ehci_hcd *ehci,
906 struct urb *urb,
907 struct list_head *qtd_list,
908 gfp_t mem_flags
909) {
910 unsigned epnum;
911 unsigned long flags;
912 struct ehci_qh *qh;
913 int status;
914 struct list_head empty;
915
916 /* get endpoint and transfer/schedule data */
917 epnum = urb->ep->desc.bEndpointAddress;
918
919 spin_lock_irqsave(&ehci->lock, flags);
920
921 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
922 status = -ESHUTDOWN;
923 goto done_not_linked;
924 }
925 status = usb_hcd_link_urb_to_ep(hcd: ehci_to_hcd(ehci), urb);
926 if (unlikely(status))
927 goto done_not_linked;
928
929 /* get qh and force any scheduling errors */
930 INIT_LIST_HEAD(list: &empty);
931 qh = qh_append_tds(ehci, urb, qtd_list: &empty, epnum, ptr: &urb->ep->hcpriv);
932 if (qh == NULL) {
933 status = -ENOMEM;
934 goto done;
935 }
936 if (qh->qh_state == QH_STATE_IDLE) {
937 status = qh_schedule(ehci, qh);
938 if (status)
939 goto done;
940 }
941
942 /* then queue the urb's tds to the qh */
943 qh = qh_append_tds(ehci, urb, qtd_list, epnum, ptr: &urb->ep->hcpriv);
944 BUG_ON(qh == NULL);
945
946 /* stuff into the periodic schedule */
947 if (qh->qh_state == QH_STATE_IDLE) {
948 qh_refresh(ehci, qh);
949 qh_link_periodic(ehci, qh);
950 } else {
951 /* cancel unlink wait for the qh */
952 cancel_unlink_wait_intr(ehci, qh);
953 }
954
955 /* ... update usbfs periodic stats */
956 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
957
958done:
959 if (unlikely(status))
960 usb_hcd_unlink_urb_from_ep(hcd: ehci_to_hcd(ehci), urb);
961done_not_linked:
962 spin_unlock_irqrestore(lock: &ehci->lock, flags);
963 if (status)
964 qtd_list_free(ehci, urb, qtd_list);
965
966 return status;
967}
968
969static void scan_intr(struct ehci_hcd *ehci)
970{
971 struct ehci_qh *qh;
972
973 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
974 intr_node) {
975
976 /* clean any finished work for this qh */
977 if (!list_empty(head: &qh->qtd_list)) {
978 int temp;
979
980 /*
981 * Unlinks could happen here; completion reporting
982 * drops the lock. That's why ehci->qh_scan_next
983 * always holds the next qh to scan; if the next qh
984 * gets unlinked then ehci->qh_scan_next is adjusted
985 * in qh_unlink_periodic().
986 */
987 temp = qh_completions(ehci, qh);
988 if (unlikely(temp))
989 start_unlink_intr(ehci, qh);
990 else if (unlikely(list_empty(&qh->qtd_list) &&
991 qh->qh_state == QH_STATE_LINKED))
992 start_unlink_intr_wait(ehci, qh);
993 }
994 }
995}
996
997/*-------------------------------------------------------------------------*/
998
999/* ehci_iso_stream ops work with both ITD and SITD */
1000
1001static struct ehci_iso_stream *
1002iso_stream_alloc(gfp_t mem_flags)
1003{
1004 struct ehci_iso_stream *stream;
1005
1006 stream = kzalloc(size: sizeof(*stream), flags: mem_flags);
1007 if (likely(stream != NULL)) {
1008 INIT_LIST_HEAD(list: &stream->td_list);
1009 INIT_LIST_HEAD(list: &stream->free_list);
1010 stream->next_uframe = NO_FRAME;
1011 stream->ps.phase = NO_FRAME;
1012 }
1013 return stream;
1014}
1015
1016static void
1017iso_stream_init(
1018 struct ehci_hcd *ehci,
1019 struct ehci_iso_stream *stream,
1020 struct urb *urb
1021)
1022{
1023 static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1024
1025 struct usb_device *dev = urb->dev;
1026 u32 buf1;
1027 unsigned epnum, maxp;
1028 int is_input;
1029 unsigned tmp;
1030
1031 /*
1032 * this might be a "high bandwidth" highspeed endpoint,
1033 * as encoded in the ep descriptor's wMaxPacket field
1034 */
1035 epnum = usb_pipeendpoint(urb->pipe);
1036 is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1037 maxp = usb_endpoint_maxp(epd: &urb->ep->desc);
1038 buf1 = is_input ? 1 << 11 : 0;
1039
1040 /* knows about ITD vs SITD */
1041 if (dev->speed == USB_SPEED_HIGH) {
1042 unsigned multi = usb_endpoint_maxp_mult(epd: &urb->ep->desc);
1043
1044 stream->highspeed = 1;
1045
1046 buf1 |= maxp;
1047 maxp *= multi;
1048
1049 stream->buf0 = cpu_to_hc32(ehci, x: (epnum << 8) | dev->devnum);
1050 stream->buf1 = cpu_to_hc32(ehci, x: buf1);
1051 stream->buf2 = cpu_to_hc32(ehci, x: multi);
1052
1053 /* usbfs wants to report the average usecs per frame tied up
1054 * when transfers on this endpoint are scheduled ...
1055 */
1056 stream->ps.usecs = HS_USECS_ISO(maxp);
1057
1058 /* period for bandwidth allocation */
1059 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1060 1 << (urb->ep->desc.bInterval - 1));
1061
1062 /* Allow urb->interval to override */
1063 stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1064
1065 stream->uperiod = urb->interval;
1066 stream->ps.period = urb->interval >> 3;
1067 stream->bandwidth = stream->ps.usecs * 8 /
1068 stream->ps.bw_uperiod;
1069
1070 } else {
1071 u32 addr;
1072 int think_time;
1073 int hs_transfers;
1074
1075 addr = dev->ttport << 24;
1076 if (!ehci_is_TDI(ehci)
1077 || (dev->tt->hub !=
1078 ehci_to_hcd(ehci)->self.root_hub))
1079 addr |= dev->tt->hub->devnum << 16;
1080 addr |= epnum << 8;
1081 addr |= dev->devnum;
1082 stream->ps.usecs = HS_USECS_ISO(maxp);
1083 think_time = dev->tt->think_time;
1084 stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1085 dev->speed, is_input, 1, maxp));
1086 hs_transfers = max(1u, (maxp + 187) / 188);
1087 if (is_input) {
1088 u32 tmp;
1089
1090 addr |= 1 << 31;
1091 stream->ps.c_usecs = stream->ps.usecs;
1092 stream->ps.usecs = HS_USECS_ISO(1);
1093 stream->ps.cs_mask = 1;
1094
1095 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1096 tmp = (1 << (hs_transfers + 2)) - 1;
1097 stream->ps.cs_mask |= tmp << (8 + 2);
1098 } else
1099 stream->ps.cs_mask = smask_out[hs_transfers - 1];
1100
1101 /* period for bandwidth allocation */
1102 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1103 1 << (urb->ep->desc.bInterval - 1));
1104
1105 /* Allow urb->interval to override */
1106 stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1107 stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1108
1109 stream->ps.period = urb->interval;
1110 stream->uperiod = urb->interval << 3;
1111 stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1112 stream->ps.bw_period;
1113
1114 /* stream->splits gets created from cs_mask later */
1115 stream->address = cpu_to_hc32(ehci, x: addr);
1116 }
1117
1118 stream->ps.udev = dev;
1119 stream->ps.ep = urb->ep;
1120
1121 stream->bEndpointAddress = is_input | epnum;
1122 stream->maxp = maxp;
1123}
1124
1125static struct ehci_iso_stream *
1126iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1127{
1128 unsigned epnum;
1129 struct ehci_iso_stream *stream;
1130 struct usb_host_endpoint *ep;
1131 unsigned long flags;
1132
1133 epnum = usb_pipeendpoint (urb->pipe);
1134 if (usb_pipein(urb->pipe))
1135 ep = urb->dev->ep_in[epnum];
1136 else
1137 ep = urb->dev->ep_out[epnum];
1138
1139 spin_lock_irqsave(&ehci->lock, flags);
1140 stream = ep->hcpriv;
1141
1142 if (unlikely(stream == NULL)) {
1143 stream = iso_stream_alloc(GFP_ATOMIC);
1144 if (likely(stream != NULL)) {
1145 ep->hcpriv = stream;
1146 iso_stream_init(ehci, stream, urb);
1147 }
1148
1149 /* if dev->ep [epnum] is a QH, hw is set */
1150 } else if (unlikely(stream->hw != NULL)) {
1151 ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1152 urb->dev->devpath, epnum,
1153 usb_pipein(urb->pipe) ? "in" : "out");
1154 stream = NULL;
1155 }
1156
1157 spin_unlock_irqrestore(lock: &ehci->lock, flags);
1158 return stream;
1159}
1160
1161/*-------------------------------------------------------------------------*/
1162
1163/* ehci_iso_sched ops can be ITD-only or SITD-only */
1164
1165static struct ehci_iso_sched *
1166iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1167{
1168 struct ehci_iso_sched *iso_sched;
1169
1170 iso_sched = kzalloc(struct_size(iso_sched, packet, packets), flags: mem_flags);
1171 if (likely(iso_sched != NULL))
1172 INIT_LIST_HEAD(list: &iso_sched->td_list);
1173
1174 return iso_sched;
1175}
1176
1177static inline void
1178itd_sched_init(
1179 struct ehci_hcd *ehci,
1180 struct ehci_iso_sched *iso_sched,
1181 struct ehci_iso_stream *stream,
1182 struct urb *urb
1183)
1184{
1185 unsigned i;
1186 dma_addr_t dma = urb->transfer_dma;
1187
1188 /* how many uframes are needed for these transfers */
1189 iso_sched->span = urb->number_of_packets * stream->uperiod;
1190
1191 /* figure out per-uframe itd fields that we'll need later
1192 * when we fit new itds into the schedule.
1193 */
1194 for (i = 0; i < urb->number_of_packets; i++) {
1195 struct ehci_iso_packet *uframe = &iso_sched->packet[i];
1196 unsigned length;
1197 dma_addr_t buf;
1198 u32 trans;
1199
1200 length = urb->iso_frame_desc[i].length;
1201 buf = dma + urb->iso_frame_desc[i].offset;
1202
1203 trans = EHCI_ISOC_ACTIVE;
1204 trans |= buf & 0x0fff;
1205 if (unlikely(((i + 1) == urb->number_of_packets))
1206 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1207 trans |= EHCI_ITD_IOC;
1208 trans |= length << 16;
1209 uframe->transaction = cpu_to_hc32(ehci, x: trans);
1210
1211 /* might need to cross a buffer page within a uframe */
1212 uframe->bufp = (buf & ~(u64)0x0fff);
1213 buf += length;
1214 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1215 uframe->cross = 1;
1216 }
1217}
1218
1219static void
1220iso_sched_free(
1221 struct ehci_iso_stream *stream,
1222 struct ehci_iso_sched *iso_sched
1223)
1224{
1225 if (!iso_sched)
1226 return;
1227 /* caller must hold ehci->lock! */
1228 list_splice(list: &iso_sched->td_list, head: &stream->free_list);
1229 kfree(objp: iso_sched);
1230}
1231
1232static int
1233itd_urb_transaction(
1234 struct ehci_iso_stream *stream,
1235 struct ehci_hcd *ehci,
1236 struct urb *urb,
1237 gfp_t mem_flags
1238)
1239{
1240 struct ehci_itd *itd;
1241 dma_addr_t itd_dma;
1242 int i;
1243 unsigned num_itds;
1244 struct ehci_iso_sched *sched;
1245 unsigned long flags;
1246
1247 sched = iso_sched_alloc(packets: urb->number_of_packets, mem_flags);
1248 if (unlikely(sched == NULL))
1249 return -ENOMEM;
1250
1251 itd_sched_init(ehci, iso_sched: sched, stream, urb);
1252
1253 if (urb->interval < 8)
1254 num_itds = 1 + (sched->span + 7) / 8;
1255 else
1256 num_itds = urb->number_of_packets;
1257
1258 /* allocate/init ITDs */
1259 spin_lock_irqsave(&ehci->lock, flags);
1260 for (i = 0; i < num_itds; i++) {
1261
1262 /*
1263 * Use iTDs from the free list, but not iTDs that may
1264 * still be in use by the hardware.
1265 */
1266 if (likely(!list_empty(&stream->free_list))) {
1267 itd = list_first_entry(&stream->free_list,
1268 struct ehci_itd, itd_list);
1269 if (itd->frame == ehci->now_frame)
1270 goto alloc_itd;
1271 list_del(entry: &itd->itd_list);
1272 itd_dma = itd->itd_dma;
1273 } else {
1274 alloc_itd:
1275 spin_unlock_irqrestore(lock: &ehci->lock, flags);
1276 itd = dma_pool_alloc(pool: ehci->itd_pool, mem_flags,
1277 handle: &itd_dma);
1278 spin_lock_irqsave(&ehci->lock, flags);
1279 if (!itd) {
1280 iso_sched_free(stream, iso_sched: sched);
1281 spin_unlock_irqrestore(lock: &ehci->lock, flags);
1282 return -ENOMEM;
1283 }
1284 }
1285
1286 memset(itd, 0, sizeof(*itd));
1287 itd->itd_dma = itd_dma;
1288 itd->frame = NO_FRAME;
1289 list_add(new: &itd->itd_list, head: &sched->td_list);
1290 }
1291 spin_unlock_irqrestore(lock: &ehci->lock, flags);
1292
1293 /* temporarily store schedule info in hcpriv */
1294 urb->hcpriv = sched;
1295 urb->error_count = 0;
1296 return 0;
1297}
1298
1299/*-------------------------------------------------------------------------*/
1300
1301static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1302 struct ehci_iso_stream *stream, int sign)
1303{
1304 unsigned uframe;
1305 unsigned i, j;
1306 unsigned s_mask, c_mask, m;
1307 int usecs = stream->ps.usecs;
1308 int c_usecs = stream->ps.c_usecs;
1309 int tt_usecs = stream->ps.tt_usecs;
1310 struct ehci_tt *tt;
1311
1312 if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
1313 return;
1314 uframe = stream->ps.bw_phase << 3;
1315
1316 bandwidth_dbg(ehci, sign, type: "iso", ps: &stream->ps);
1317
1318 if (sign < 0) { /* Release bandwidth */
1319 usecs = -usecs;
1320 c_usecs = -c_usecs;
1321 tt_usecs = -tt_usecs;
1322 }
1323
1324 if (!stream->splits) { /* High speed */
1325 for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1326 i += stream->ps.bw_uperiod)
1327 ehci->bandwidth[i] += usecs;
1328
1329 } else { /* Full speed */
1330 s_mask = stream->ps.cs_mask;
1331 c_mask = s_mask >> 8;
1332
1333 /* NOTE: adjustment needed for frame overflow */
1334 for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1335 i += stream->ps.bw_uperiod) {
1336 for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1337 (++j, m <<= 1)) {
1338 if (s_mask & m)
1339 ehci->bandwidth[i+j] += usecs;
1340 else if (c_mask & m)
1341 ehci->bandwidth[i+j] += c_usecs;
1342 }
1343 }
1344
1345 /*
1346 * find_tt() will not return any error here as we have
1347 * already called find_tt() before calling this function
1348 * and checked for any error return. The previous call
1349 * would have created the data structure.
1350 */
1351 tt = find_tt(udev: stream->ps.udev);
1352 if (sign > 0)
1353 list_add_tail(new: &stream->ps.ps_list, head: &tt->ps_list);
1354 else
1355 list_del(entry: &stream->ps.ps_list);
1356
1357 for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1358 i += stream->ps.bw_period)
1359 tt->bandwidth[i] += tt_usecs;
1360 }
1361}
1362
1363static inline int
1364itd_slot_ok(
1365 struct ehci_hcd *ehci,
1366 struct ehci_iso_stream *stream,
1367 unsigned uframe
1368)
1369{
1370 unsigned usecs;
1371
1372 /* convert "usecs we need" to "max already claimed" */
1373 usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1374
1375 for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1376 uframe += stream->ps.bw_uperiod) {
1377 if (ehci->bandwidth[uframe] > usecs)
1378 return 0;
1379 }
1380 return 1;
1381}
1382
1383static inline int
1384sitd_slot_ok(
1385 struct ehci_hcd *ehci,
1386 struct ehci_iso_stream *stream,
1387 unsigned uframe,
1388 struct ehci_iso_sched *sched,
1389 struct ehci_tt *tt
1390)
1391{
1392 unsigned mask, tmp;
1393 unsigned frame, uf;
1394
1395 mask = stream->ps.cs_mask << (uframe & 7);
1396
1397 /* for OUT, don't wrap SSPLIT into H-microframe 7 */
1398 if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1399 return 0;
1400
1401 /* for IN, don't wrap CSPLIT into the next frame */
1402 if (mask & ~0xffff)
1403 return 0;
1404
1405 /* check bandwidth */
1406 uframe &= stream->ps.bw_uperiod - 1;
1407 frame = uframe >> 3;
1408
1409#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1410 /* The tt's fullspeed bus bandwidth must be available.
1411 * tt_available scheduling guarantees 10+% for control/bulk.
1412 */
1413 uf = uframe & 7;
1414 if (!tt_available(ehci, ps: &stream->ps, tt, frame, uframe: uf))
1415 return 0;
1416#else
1417 /* tt must be idle for start(s), any gap, and csplit.
1418 * assume scheduling slop leaves 10+% for control/bulk.
1419 */
1420 if (!tt_no_collision(ehci, stream->ps.bw_period,
1421 stream->ps.udev, frame, mask))
1422 return 0;
1423#endif
1424
1425 do {
1426 unsigned max_used;
1427 unsigned i;
1428
1429 /* check starts (OUT uses more than one) */
1430 uf = uframe;
1431 max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1432 for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1433 if (ehci->bandwidth[uf] > max_used)
1434 return 0;
1435 }
1436
1437 /* for IN, check CSPLIT */
1438 if (stream->ps.c_usecs) {
1439 max_used = ehci->uframe_periodic_max -
1440 stream->ps.c_usecs;
1441 uf = uframe & ~7;
1442 tmp = 1 << (2+8);
1443 for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1444 if ((stream->ps.cs_mask & tmp) == 0)
1445 continue;
1446 if (ehci->bandwidth[uf+i] > max_used)
1447 return 0;
1448 }
1449 }
1450
1451 uframe += stream->ps.bw_uperiod;
1452 } while (uframe < EHCI_BANDWIDTH_SIZE);
1453
1454 stream->ps.cs_mask <<= uframe & 7;
1455 stream->splits = cpu_to_hc32(ehci, x: stream->ps.cs_mask);
1456 return 1;
1457}
1458
1459/*
1460 * This scheduler plans almost as far into the future as it has actual
1461 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1462 * "as small as possible" to be cache-friendlier.) That limits the size
1463 * transfers you can stream reliably; avoid more than 64 msec per urb.
1464 * Also avoid queue depths of less than ehci's worst irq latency (affected
1465 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1466 * and other factors); or more than about 230 msec total (for portability,
1467 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1468 */
1469
1470static int
1471iso_stream_schedule(
1472 struct ehci_hcd *ehci,
1473 struct urb *urb,
1474 struct ehci_iso_stream *stream
1475)
1476{
1477 u32 now, base, next, start, period, span, now2;
1478 u32 wrap = 0, skip = 0;
1479 int status = 0;
1480 unsigned mod = ehci->periodic_size << 3;
1481 struct ehci_iso_sched *sched = urb->hcpriv;
1482 bool empty = list_empty(head: &stream->td_list);
1483 bool new_stream = false;
1484
1485 period = stream->uperiod;
1486 span = sched->span;
1487 if (!stream->highspeed)
1488 span <<= 3;
1489
1490 /* Start a new isochronous stream? */
1491 if (unlikely(empty && !hcd_periodic_completion_in_progress(
1492 ehci_to_hcd(ehci), urb->ep))) {
1493
1494 /* Schedule the endpoint */
1495 if (stream->ps.phase == NO_FRAME) {
1496 int done = 0;
1497 struct ehci_tt *tt = find_tt(udev: stream->ps.udev);
1498
1499 if (IS_ERR(ptr: tt)) {
1500 status = PTR_ERR(ptr: tt);
1501 goto fail;
1502 }
1503 compute_tt_budget(budget_table: ehci->tt_budget, tt);
1504
1505 start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1506
1507 /* find a uframe slot with enough bandwidth.
1508 * Early uframes are more precious because full-speed
1509 * iso IN transfers can't use late uframes,
1510 * and therefore they should be allocated last.
1511 */
1512 next = start;
1513 start += period;
1514 do {
1515 start--;
1516 /* check schedule: enough space? */
1517 if (stream->highspeed) {
1518 if (itd_slot_ok(ehci, stream, uframe: start))
1519 done = 1;
1520 } else {
1521 if ((start % 8) >= 6)
1522 continue;
1523 if (sitd_slot_ok(ehci, stream, uframe: start,
1524 sched, tt))
1525 done = 1;
1526 }
1527 } while (start > next && !done);
1528
1529 /* no room in the schedule */
1530 if (!done) {
1531 ehci_dbg(ehci, "iso sched full %p", urb);
1532 status = -ENOSPC;
1533 goto fail;
1534 }
1535 stream->ps.phase = (start >> 3) &
1536 (stream->ps.period - 1);
1537 stream->ps.bw_phase = stream->ps.phase &
1538 (stream->ps.bw_period - 1);
1539 stream->ps.phase_uf = start & 7;
1540 reserve_release_iso_bandwidth(ehci, stream, sign: 1);
1541 }
1542
1543 /* New stream is already scheduled; use the upcoming slot */
1544 else {
1545 start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1546 }
1547
1548 stream->next_uframe = start;
1549 new_stream = true;
1550 }
1551
1552 now = ehci_read_frame_index(ehci) & (mod - 1);
1553
1554 /* Take the isochronous scheduling threshold into account */
1555 if (ehci->i_thresh)
1556 next = now + ehci->i_thresh; /* uframe cache */
1557 else
1558 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1559
1560 /* If needed, initialize last_iso_frame so that this URB will be seen */
1561 if (ehci->isoc_count == 0)
1562 ehci->last_iso_frame = now >> 3;
1563
1564 /*
1565 * Use ehci->last_iso_frame as the base. There can't be any
1566 * TDs scheduled for earlier than that.
1567 */
1568 base = ehci->last_iso_frame << 3;
1569 next = (next - base) & (mod - 1);
1570 start = (stream->next_uframe - base) & (mod - 1);
1571
1572 if (unlikely(new_stream))
1573 goto do_ASAP;
1574
1575 /*
1576 * Typical case: reuse current schedule, stream may still be active.
1577 * Hopefully there are no gaps from the host falling behind
1578 * (irq delays etc). If there are, the behavior depends on
1579 * whether URB_ISO_ASAP is set.
1580 */
1581 now2 = (now - base) & (mod - 1);
1582
1583 /* Is the schedule about to wrap around? */
1584 if (unlikely(!empty && start < period)) {
1585 ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1586 urb, stream->next_uframe, base, period, mod);
1587 status = -EFBIG;
1588 goto fail;
1589 }
1590
1591 /* Is the next packet scheduled after the base time? */
1592 if (likely(!empty || start <= now2 + period)) {
1593
1594 /* URB_ISO_ASAP: make sure that start >= next */
1595 if (unlikely(start < next &&
1596 (urb->transfer_flags & URB_ISO_ASAP)))
1597 goto do_ASAP;
1598
1599 /* Otherwise use start, if it's not in the past */
1600 if (likely(start >= now2))
1601 goto use_start;
1602
1603 /* Otherwise we got an underrun while the queue was empty */
1604 } else {
1605 if (urb->transfer_flags & URB_ISO_ASAP)
1606 goto do_ASAP;
1607 wrap = mod;
1608 now2 += mod;
1609 }
1610
1611 /* How many uframes and packets do we need to skip? */
1612 skip = (now2 - start + period - 1) & -period;
1613 if (skip >= span) { /* Entirely in the past? */
1614 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1615 urb, start + base, span - period, now2 + base,
1616 base);
1617
1618 /* Try to keep the last TD intact for scanning later */
1619 skip = span - period;
1620
1621 /* Will it come before the current scan position? */
1622 if (empty) {
1623 skip = span; /* Skip the entire URB */
1624 status = 1; /* and give it back immediately */
1625 iso_sched_free(stream, iso_sched: sched);
1626 sched = NULL;
1627 }
1628 }
1629 urb->error_count = skip / period;
1630 if (sched)
1631 sched->first_packet = urb->error_count;
1632 goto use_start;
1633
1634 do_ASAP:
1635 /* Use the first slot after "next" */
1636 start = next + ((start - next) & (period - 1));
1637
1638 use_start:
1639 /* Tried to schedule too far into the future? */
1640 if (unlikely(start + span - period >= mod + wrap)) {
1641 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1642 urb, start, span - period, mod + wrap);
1643 status = -EFBIG;
1644 goto fail;
1645 }
1646
1647 start += base;
1648 stream->next_uframe = (start + skip) & (mod - 1);
1649
1650 /* report high speed start in uframes; full speed, in frames */
1651 urb->start_frame = start & (mod - 1);
1652 if (!stream->highspeed)
1653 urb->start_frame >>= 3;
1654 return status;
1655
1656 fail:
1657 iso_sched_free(stream, iso_sched: sched);
1658 urb->hcpriv = NULL;
1659 return status;
1660}
1661
1662/*-------------------------------------------------------------------------*/
1663
1664static inline void
1665itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1666 struct ehci_itd *itd)
1667{
1668 int i;
1669
1670 /* it's been recently zeroed */
1671 itd->hw_next = EHCI_LIST_END(ehci);
1672 itd->hw_bufp[0] = stream->buf0;
1673 itd->hw_bufp[1] = stream->buf1;
1674 itd->hw_bufp[2] = stream->buf2;
1675
1676 for (i = 0; i < 8; i++)
1677 itd->index[i] = -1;
1678
1679 /* All other fields are filled when scheduling */
1680}
1681
1682static inline void
1683itd_patch(
1684 struct ehci_hcd *ehci,
1685 struct ehci_itd *itd,
1686 struct ehci_iso_sched *iso_sched,
1687 unsigned index,
1688 u16 uframe
1689)
1690{
1691 struct ehci_iso_packet *uf = &iso_sched->packet[index];
1692 unsigned pg = itd->pg;
1693
1694 /* BUG_ON(pg == 6 && uf->cross); */
1695
1696 uframe &= 0x07;
1697 itd->index[uframe] = index;
1698
1699 itd->hw_transaction[uframe] = uf->transaction;
1700 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, x: pg << 12);
1701 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, x: uf->bufp & ~(u32)0);
1702 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, x: (u32)(uf->bufp >> 32));
1703
1704 /* iso_frame_desc[].offset must be strictly increasing */
1705 if (unlikely(uf->cross)) {
1706 u64 bufp = uf->bufp + 4096;
1707
1708 itd->pg = ++pg;
1709 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, x: bufp & ~(u32)0);
1710 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, x: (u32)(bufp >> 32));
1711 }
1712}
1713
1714static inline void
1715itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1716{
1717 union ehci_shadow *prev = &ehci->pshadow[frame];
1718 __hc32 *hw_p = &ehci->periodic[frame];
1719 union ehci_shadow here = *prev;
1720 __hc32 type = 0;
1721
1722 /* skip any iso nodes which might belong to previous microframes */
1723 while (here.ptr) {
1724 type = Q_NEXT_TYPE(ehci, *hw_p);
1725 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1726 break;
1727 prev = periodic_next_shadow(ehci, periodic: prev, tag: type);
1728 hw_p = shadow_next_periodic(ehci, periodic: &here, tag: type);
1729 here = *prev;
1730 }
1731
1732 itd->itd_next = here;
1733 itd->hw_next = *hw_p;
1734 prev->itd = itd;
1735 itd->frame = frame;
1736 wmb();
1737 *hw_p = cpu_to_hc32(ehci, x: itd->itd_dma | Q_TYPE_ITD);
1738}
1739
1740/* fit urb's itds into the selected schedule slot; activate as needed */
1741static void itd_link_urb(
1742 struct ehci_hcd *ehci,
1743 struct urb *urb,
1744 unsigned mod,
1745 struct ehci_iso_stream *stream
1746)
1747{
1748 int packet;
1749 unsigned next_uframe, uframe, frame;
1750 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1751 struct ehci_itd *itd;
1752
1753 next_uframe = stream->next_uframe & (mod - 1);
1754
1755 if (unlikely(list_empty(&stream->td_list)))
1756 ehci_to_hcd(ehci)->self.bandwidth_allocated
1757 += stream->bandwidth;
1758
1759 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1760 if (ehci->amd_pll_fix == 1)
1761 usb_amd_quirk_pll_disable();
1762 }
1763
1764 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1765
1766 /* fill iTDs uframe by uframe */
1767 for (packet = iso_sched->first_packet, itd = NULL;
1768 packet < urb->number_of_packets;) {
1769 if (itd == NULL) {
1770 /* ASSERT: we have all necessary itds */
1771 /* BUG_ON(list_empty(&iso_sched->td_list)); */
1772
1773 /* ASSERT: no itds for this endpoint in this uframe */
1774
1775 itd = list_entry(iso_sched->td_list.next,
1776 struct ehci_itd, itd_list);
1777 list_move_tail(list: &itd->itd_list, head: &stream->td_list);
1778 itd->stream = stream;
1779 itd->urb = urb;
1780 itd_init(ehci, stream, itd);
1781 }
1782
1783 uframe = next_uframe & 0x07;
1784 frame = next_uframe >> 3;
1785
1786 itd_patch(ehci, itd, iso_sched, index: packet, uframe);
1787
1788 next_uframe += stream->uperiod;
1789 next_uframe &= mod - 1;
1790 packet++;
1791
1792 /* link completed itds into the schedule */
1793 if (((next_uframe >> 3) != frame)
1794 || packet == urb->number_of_packets) {
1795 itd_link(ehci, frame: frame & (ehci->periodic_size - 1), itd);
1796 itd = NULL;
1797 }
1798 }
1799 stream->next_uframe = next_uframe;
1800
1801 /* don't need that schedule data any more */
1802 iso_sched_free(stream, iso_sched);
1803 urb->hcpriv = stream;
1804
1805 ++ehci->isoc_count;
1806 enable_periodic(ehci);
1807}
1808
1809#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1810
1811/* Process and recycle a completed ITD. Return true iff its urb completed,
1812 * and hence its completion callback probably added things to the hardware
1813 * schedule.
1814 *
1815 * Note that we carefully avoid recycling this descriptor until after any
1816 * completion callback runs, so that it won't be reused quickly. That is,
1817 * assuming (a) no more than two urbs per frame on this endpoint, and also
1818 * (b) only this endpoint's completions submit URBs. It seems some silicon
1819 * corrupts things if you reuse completed descriptors very quickly...
1820 */
1821static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1822{
1823 struct urb *urb = itd->urb;
1824 struct usb_iso_packet_descriptor *desc;
1825 u32 t;
1826 unsigned uframe;
1827 int urb_index = -1;
1828 struct ehci_iso_stream *stream = itd->stream;
1829 bool retval = false;
1830
1831 /* for each uframe with a packet */
1832 for (uframe = 0; uframe < 8; uframe++) {
1833 if (likely(itd->index[uframe] == -1))
1834 continue;
1835 urb_index = itd->index[uframe];
1836 desc = &urb->iso_frame_desc[urb_index];
1837
1838 t = hc32_to_cpup(ehci, x: &itd->hw_transaction[uframe]);
1839 itd->hw_transaction[uframe] = 0;
1840
1841 /* report transfer status */
1842 if (unlikely(t & ISO_ERRS)) {
1843 urb->error_count++;
1844 if (t & EHCI_ISOC_BUF_ERR)
1845 desc->status = usb_pipein(urb->pipe)
1846 ? -ENOSR /* hc couldn't read */
1847 : -ECOMM; /* hc couldn't write */
1848 else if (t & EHCI_ISOC_BABBLE)
1849 desc->status = -EOVERFLOW;
1850 else /* (t & EHCI_ISOC_XACTERR) */
1851 desc->status = -EPROTO;
1852
1853 /* HC need not update length with this error */
1854 if (!(t & EHCI_ISOC_BABBLE)) {
1855 desc->actual_length = EHCI_ITD_LENGTH(t);
1856 urb->actual_length += desc->actual_length;
1857 }
1858 } else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1859 desc->status = 0;
1860 desc->actual_length = EHCI_ITD_LENGTH(t);
1861 urb->actual_length += desc->actual_length;
1862 } else {
1863 /* URB was too late */
1864 urb->error_count++;
1865 }
1866 }
1867
1868 /* handle completion now? */
1869 if (likely((urb_index + 1) != urb->number_of_packets))
1870 goto done;
1871
1872 /*
1873 * ASSERT: it's really the last itd for this urb
1874 * list_for_each_entry (itd, &stream->td_list, itd_list)
1875 * BUG_ON(itd->urb == urb);
1876 */
1877
1878 /* give urb back to the driver; completion often (re)submits */
1879 ehci_urb_done(ehci, urb, status: 0);
1880 retval = true;
1881 urb = NULL;
1882
1883 --ehci->isoc_count;
1884 disable_periodic(ehci);
1885
1886 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1887 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1888 if (ehci->amd_pll_fix == 1)
1889 usb_amd_quirk_pll_enable();
1890 }
1891
1892 if (unlikely(list_is_singular(&stream->td_list)))
1893 ehci_to_hcd(ehci)->self.bandwidth_allocated
1894 -= stream->bandwidth;
1895
1896done:
1897 itd->urb = NULL;
1898
1899 /* Add to the end of the free list for later reuse */
1900 list_move_tail(list: &itd->itd_list, head: &stream->free_list);
1901
1902 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1903 if (list_empty(head: &stream->td_list)) {
1904 list_splice_tail_init(list: &stream->free_list,
1905 head: &ehci->cached_itd_list);
1906 start_free_itds(ehci);
1907 }
1908
1909 return retval;
1910}
1911
1912/*-------------------------------------------------------------------------*/
1913
1914static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1915 gfp_t mem_flags)
1916{
1917 int status = -EINVAL;
1918 unsigned long flags;
1919 struct ehci_iso_stream *stream;
1920
1921 /* Get iso_stream head */
1922 stream = iso_stream_find(ehci, urb);
1923 if (unlikely(stream == NULL)) {
1924 ehci_dbg(ehci, "can't get iso stream\n");
1925 return -ENOMEM;
1926 }
1927 if (unlikely(urb->interval != stream->uperiod)) {
1928 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1929 stream->uperiod, urb->interval);
1930 goto done;
1931 }
1932
1933#ifdef EHCI_URB_TRACE
1934 ehci_dbg(ehci,
1935 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1936 __func__, urb->dev->devpath, urb,
1937 usb_pipeendpoint(urb->pipe),
1938 usb_pipein(urb->pipe) ? "in" : "out",
1939 urb->transfer_buffer_length,
1940 urb->number_of_packets, urb->interval,
1941 stream);
1942#endif
1943
1944 /* allocate ITDs w/o locking anything */
1945 status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1946 if (unlikely(status < 0)) {
1947 ehci_dbg(ehci, "can't init itds\n");
1948 goto done;
1949 }
1950
1951 /* schedule ... need to lock */
1952 spin_lock_irqsave(&ehci->lock, flags);
1953 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1954 status = -ESHUTDOWN;
1955 goto done_not_linked;
1956 }
1957 status = usb_hcd_link_urb_to_ep(hcd: ehci_to_hcd(ehci), urb);
1958 if (unlikely(status))
1959 goto done_not_linked;
1960 status = iso_stream_schedule(ehci, urb, stream);
1961 if (likely(status == 0)) {
1962 itd_link_urb(ehci, urb, mod: ehci->periodic_size << 3, stream);
1963 } else if (status > 0) {
1964 status = 0;
1965 ehci_urb_done(ehci, urb, status: 0);
1966 } else {
1967 usb_hcd_unlink_urb_from_ep(hcd: ehci_to_hcd(ehci), urb);
1968 }
1969 done_not_linked:
1970 spin_unlock_irqrestore(lock: &ehci->lock, flags);
1971 done:
1972 return status;
1973}
1974
1975/*-------------------------------------------------------------------------*/
1976
1977/*
1978 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1979 * TTs in USB 2.0 hubs. These need microframe scheduling.
1980 */
1981
1982static inline void
1983sitd_sched_init(
1984 struct ehci_hcd *ehci,
1985 struct ehci_iso_sched *iso_sched,
1986 struct ehci_iso_stream *stream,
1987 struct urb *urb
1988)
1989{
1990 unsigned i;
1991 dma_addr_t dma = urb->transfer_dma;
1992
1993 /* how many frames are needed for these transfers */
1994 iso_sched->span = urb->number_of_packets * stream->ps.period;
1995
1996 /* figure out per-frame sitd fields that we'll need later
1997 * when we fit new sitds into the schedule.
1998 */
1999 for (i = 0; i < urb->number_of_packets; i++) {
2000 struct ehci_iso_packet *packet = &iso_sched->packet[i];
2001 unsigned length;
2002 dma_addr_t buf;
2003 u32 trans;
2004
2005 length = urb->iso_frame_desc[i].length & 0x03ff;
2006 buf = dma + urb->iso_frame_desc[i].offset;
2007
2008 trans = SITD_STS_ACTIVE;
2009 if (((i + 1) == urb->number_of_packets)
2010 && !(urb->transfer_flags & URB_NO_INTERRUPT))
2011 trans |= SITD_IOC;
2012 trans |= length << 16;
2013 packet->transaction = cpu_to_hc32(ehci, x: trans);
2014
2015 /* might need to cross a buffer page within a td */
2016 packet->bufp = buf;
2017 packet->buf1 = (buf + length) & ~0x0fff;
2018 if (packet->buf1 != (buf & ~(u64)0x0fff))
2019 packet->cross = 1;
2020
2021 /* OUT uses multiple start-splits */
2022 if (stream->bEndpointAddress & USB_DIR_IN)
2023 continue;
2024 length = (length + 187) / 188;
2025 if (length > 1) /* BEGIN vs ALL */
2026 length |= 1 << 3;
2027 packet->buf1 |= length;
2028 }
2029}
2030
2031static int
2032sitd_urb_transaction(
2033 struct ehci_iso_stream *stream,
2034 struct ehci_hcd *ehci,
2035 struct urb *urb,
2036 gfp_t mem_flags
2037)
2038{
2039 struct ehci_sitd *sitd;
2040 dma_addr_t sitd_dma;
2041 int i;
2042 struct ehci_iso_sched *iso_sched;
2043 unsigned long flags;
2044
2045 iso_sched = iso_sched_alloc(packets: urb->number_of_packets, mem_flags);
2046 if (iso_sched == NULL)
2047 return -ENOMEM;
2048
2049 sitd_sched_init(ehci, iso_sched, stream, urb);
2050
2051 /* allocate/init sITDs */
2052 spin_lock_irqsave(&ehci->lock, flags);
2053 for (i = 0; i < urb->number_of_packets; i++) {
2054
2055 /* NOTE: for now, we don't try to handle wraparound cases
2056 * for IN (using sitd->hw_backpointer, like a FSTN), which
2057 * means we never need two sitds for full speed packets.
2058 */
2059
2060 /*
2061 * Use siTDs from the free list, but not siTDs that may
2062 * still be in use by the hardware.
2063 */
2064 if (likely(!list_empty(&stream->free_list))) {
2065 sitd = list_first_entry(&stream->free_list,
2066 struct ehci_sitd, sitd_list);
2067 if (sitd->frame == ehci->now_frame)
2068 goto alloc_sitd;
2069 list_del(entry: &sitd->sitd_list);
2070 sitd_dma = sitd->sitd_dma;
2071 } else {
2072 alloc_sitd:
2073 spin_unlock_irqrestore(lock: &ehci->lock, flags);
2074 sitd = dma_pool_alloc(pool: ehci->sitd_pool, mem_flags,
2075 handle: &sitd_dma);
2076 spin_lock_irqsave(&ehci->lock, flags);
2077 if (!sitd) {
2078 iso_sched_free(stream, iso_sched);
2079 spin_unlock_irqrestore(lock: &ehci->lock, flags);
2080 return -ENOMEM;
2081 }
2082 }
2083
2084 memset(sitd, 0, sizeof(*sitd));
2085 sitd->sitd_dma = sitd_dma;
2086 sitd->frame = NO_FRAME;
2087 list_add(new: &sitd->sitd_list, head: &iso_sched->td_list);
2088 }
2089
2090 /* temporarily store schedule info in hcpriv */
2091 urb->hcpriv = iso_sched;
2092 urb->error_count = 0;
2093
2094 spin_unlock_irqrestore(lock: &ehci->lock, flags);
2095 return 0;
2096}
2097
2098/*-------------------------------------------------------------------------*/
2099
2100static inline void
2101sitd_patch(
2102 struct ehci_hcd *ehci,
2103 struct ehci_iso_stream *stream,
2104 struct ehci_sitd *sitd,
2105 struct ehci_iso_sched *iso_sched,
2106 unsigned index
2107)
2108{
2109 struct ehci_iso_packet *uf = &iso_sched->packet[index];
2110 u64 bufp;
2111
2112 sitd->hw_next = EHCI_LIST_END(ehci);
2113 sitd->hw_fullspeed_ep = stream->address;
2114 sitd->hw_uframe = stream->splits;
2115 sitd->hw_results = uf->transaction;
2116 sitd->hw_backpointer = EHCI_LIST_END(ehci);
2117
2118 bufp = uf->bufp;
2119 sitd->hw_buf[0] = cpu_to_hc32(ehci, x: bufp);
2120 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, x: bufp >> 32);
2121
2122 sitd->hw_buf[1] = cpu_to_hc32(ehci, x: uf->buf1);
2123 if (uf->cross)
2124 bufp += 4096;
2125 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, x: bufp >> 32);
2126 sitd->index = index;
2127}
2128
2129static inline void
2130sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2131{
2132 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2133 sitd->sitd_next = ehci->pshadow[frame];
2134 sitd->hw_next = ehci->periodic[frame];
2135 ehci->pshadow[frame].sitd = sitd;
2136 sitd->frame = frame;
2137 wmb();
2138 ehci->periodic[frame] = cpu_to_hc32(ehci, x: sitd->sitd_dma | Q_TYPE_SITD);
2139}
2140
2141/* fit urb's sitds into the selected schedule slot; activate as needed */
2142static void sitd_link_urb(
2143 struct ehci_hcd *ehci,
2144 struct urb *urb,
2145 unsigned mod,
2146 struct ehci_iso_stream *stream
2147)
2148{
2149 int packet;
2150 unsigned next_uframe;
2151 struct ehci_iso_sched *sched = urb->hcpriv;
2152 struct ehci_sitd *sitd;
2153
2154 next_uframe = stream->next_uframe;
2155
2156 if (list_empty(head: &stream->td_list))
2157 /* usbfs ignores TT bandwidth */
2158 ehci_to_hcd(ehci)->self.bandwidth_allocated
2159 += stream->bandwidth;
2160
2161 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2162 if (ehci->amd_pll_fix == 1)
2163 usb_amd_quirk_pll_disable();
2164 }
2165
2166 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2167
2168 /* fill sITDs frame by frame */
2169 for (packet = sched->first_packet, sitd = NULL;
2170 packet < urb->number_of_packets;
2171 packet++) {
2172
2173 /* ASSERT: we have all necessary sitds */
2174 BUG_ON(list_empty(&sched->td_list));
2175
2176 /* ASSERT: no itds for this endpoint in this frame */
2177
2178 sitd = list_entry(sched->td_list.next,
2179 struct ehci_sitd, sitd_list);
2180 list_move_tail(list: &sitd->sitd_list, head: &stream->td_list);
2181 sitd->stream = stream;
2182 sitd->urb = urb;
2183
2184 sitd_patch(ehci, stream, sitd, iso_sched: sched, index: packet);
2185 sitd_link(ehci, frame: (next_uframe >> 3) & (ehci->periodic_size - 1),
2186 sitd);
2187
2188 next_uframe += stream->uperiod;
2189 }
2190 stream->next_uframe = next_uframe & (mod - 1);
2191
2192 /* don't need that schedule data any more */
2193 iso_sched_free(stream, iso_sched: sched);
2194 urb->hcpriv = stream;
2195
2196 ++ehci->isoc_count;
2197 enable_periodic(ehci);
2198}
2199
2200/*-------------------------------------------------------------------------*/
2201
2202#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2203 | SITD_STS_XACT | SITD_STS_MMF)
2204
2205/* Process and recycle a completed SITD. Return true iff its urb completed,
2206 * and hence its completion callback probably added things to the hardware
2207 * schedule.
2208 *
2209 * Note that we carefully avoid recycling this descriptor until after any
2210 * completion callback runs, so that it won't be reused quickly. That is,
2211 * assuming (a) no more than two urbs per frame on this endpoint, and also
2212 * (b) only this endpoint's completions submit URBs. It seems some silicon
2213 * corrupts things if you reuse completed descriptors very quickly...
2214 */
2215static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2216{
2217 struct urb *urb = sitd->urb;
2218 struct usb_iso_packet_descriptor *desc;
2219 u32 t;
2220 int urb_index;
2221 struct ehci_iso_stream *stream = sitd->stream;
2222 bool retval = false;
2223
2224 urb_index = sitd->index;
2225 desc = &urb->iso_frame_desc[urb_index];
2226 t = hc32_to_cpup(ehci, x: &sitd->hw_results);
2227
2228 /* report transfer status */
2229 if (unlikely(t & SITD_ERRS)) {
2230 urb->error_count++;
2231 if (t & SITD_STS_DBE)
2232 desc->status = usb_pipein(urb->pipe)
2233 ? -ENOSR /* hc couldn't read */
2234 : -ECOMM; /* hc couldn't write */
2235 else if (t & SITD_STS_BABBLE)
2236 desc->status = -EOVERFLOW;
2237 else /* XACT, MMF, etc */
2238 desc->status = -EPROTO;
2239 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2240 /* URB was too late */
2241 urb->error_count++;
2242 } else {
2243 desc->status = 0;
2244 desc->actual_length = desc->length - SITD_LENGTH(t);
2245 urb->actual_length += desc->actual_length;
2246 }
2247
2248 /* handle completion now? */
2249 if ((urb_index + 1) != urb->number_of_packets)
2250 goto done;
2251
2252 /*
2253 * ASSERT: it's really the last sitd for this urb
2254 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2255 * BUG_ON(sitd->urb == urb);
2256 */
2257
2258 /* give urb back to the driver; completion often (re)submits */
2259 ehci_urb_done(ehci, urb, status: 0);
2260 retval = true;
2261 urb = NULL;
2262
2263 --ehci->isoc_count;
2264 disable_periodic(ehci);
2265
2266 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2267 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2268 if (ehci->amd_pll_fix == 1)
2269 usb_amd_quirk_pll_enable();
2270 }
2271
2272 if (list_is_singular(head: &stream->td_list))
2273 ehci_to_hcd(ehci)->self.bandwidth_allocated
2274 -= stream->bandwidth;
2275
2276done:
2277 sitd->urb = NULL;
2278
2279 /* Add to the end of the free list for later reuse */
2280 list_move_tail(list: &sitd->sitd_list, head: &stream->free_list);
2281
2282 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2283 if (list_empty(head: &stream->td_list)) {
2284 list_splice_tail_init(list: &stream->free_list,
2285 head: &ehci->cached_sitd_list);
2286 start_free_itds(ehci);
2287 }
2288
2289 return retval;
2290}
2291
2292
2293static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2294 gfp_t mem_flags)
2295{
2296 int status = -EINVAL;
2297 unsigned long flags;
2298 struct ehci_iso_stream *stream;
2299
2300 /* Get iso_stream head */
2301 stream = iso_stream_find(ehci, urb);
2302 if (stream == NULL) {
2303 ehci_dbg(ehci, "can't get iso stream\n");
2304 return -ENOMEM;
2305 }
2306 if (urb->interval != stream->ps.period) {
2307 ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2308 stream->ps.period, urb->interval);
2309 goto done;
2310 }
2311
2312#ifdef EHCI_URB_TRACE
2313 ehci_dbg(ehci,
2314 "submit %p dev%s ep%d%s-iso len %d\n",
2315 urb, urb->dev->devpath,
2316 usb_pipeendpoint(urb->pipe),
2317 usb_pipein(urb->pipe) ? "in" : "out",
2318 urb->transfer_buffer_length);
2319#endif
2320
2321 /* allocate SITDs */
2322 status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2323 if (status < 0) {
2324 ehci_dbg(ehci, "can't init sitds\n");
2325 goto done;
2326 }
2327
2328 /* schedule ... need to lock */
2329 spin_lock_irqsave(&ehci->lock, flags);
2330 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2331 status = -ESHUTDOWN;
2332 goto done_not_linked;
2333 }
2334 status = usb_hcd_link_urb_to_ep(hcd: ehci_to_hcd(ehci), urb);
2335 if (unlikely(status))
2336 goto done_not_linked;
2337 status = iso_stream_schedule(ehci, urb, stream);
2338 if (likely(status == 0)) {
2339 sitd_link_urb(ehci, urb, mod: ehci->periodic_size << 3, stream);
2340 } else if (status > 0) {
2341 status = 0;
2342 ehci_urb_done(ehci, urb, status: 0);
2343 } else {
2344 usb_hcd_unlink_urb_from_ep(hcd: ehci_to_hcd(ehci), urb);
2345 }
2346 done_not_linked:
2347 spin_unlock_irqrestore(lock: &ehci->lock, flags);
2348 done:
2349 return status;
2350}
2351
2352/*-------------------------------------------------------------------------*/
2353
2354static void scan_isoc(struct ehci_hcd *ehci)
2355{
2356 unsigned uf, now_frame, frame;
2357 unsigned fmask = ehci->periodic_size - 1;
2358 bool modified, live;
2359 union ehci_shadow q, *q_p;
2360 __hc32 type, *hw_p;
2361
2362 /*
2363 * When running, scan from last scan point up to "now"
2364 * else clean up by scanning everything that's left.
2365 * Touches as few pages as possible: cache-friendly.
2366 */
2367 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2368 uf = ehci_read_frame_index(ehci);
2369 now_frame = (uf >> 3) & fmask;
2370 live = true;
2371 } else {
2372 now_frame = (ehci->last_iso_frame - 1) & fmask;
2373 live = false;
2374 }
2375 ehci->now_frame = now_frame;
2376
2377 frame = ehci->last_iso_frame;
2378
2379restart:
2380 /* Scan each element in frame's queue for completions */
2381 q_p = &ehci->pshadow[frame];
2382 hw_p = &ehci->periodic[frame];
2383 q.ptr = q_p->ptr;
2384 type = Q_NEXT_TYPE(ehci, *hw_p);
2385 modified = false;
2386
2387 while (q.ptr != NULL) {
2388 switch (hc32_to_cpu(ehci, x: type)) {
2389 case Q_TYPE_ITD:
2390 /*
2391 * If this ITD is still active, leave it for
2392 * later processing ... check the next entry.
2393 * No need to check for activity unless the
2394 * frame is current.
2395 */
2396 if (frame == now_frame && live) {
2397 rmb();
2398 for (uf = 0; uf < 8; uf++) {
2399 if (q.itd->hw_transaction[uf] &
2400 ITD_ACTIVE(ehci))
2401 break;
2402 }
2403 if (uf < 8) {
2404 q_p = &q.itd->itd_next;
2405 hw_p = &q.itd->hw_next;
2406 type = Q_NEXT_TYPE(ehci,
2407 q.itd->hw_next);
2408 q = *q_p;
2409 break;
2410 }
2411 }
2412
2413 /*
2414 * Take finished ITDs out of the schedule
2415 * and process them: recycle, maybe report
2416 * URB completion. HC won't cache the
2417 * pointer for much longer, if at all.
2418 */
2419 *q_p = q.itd->itd_next;
2420 if (!ehci->use_dummy_qh ||
2421 q.itd->hw_next != EHCI_LIST_END(ehci))
2422 *hw_p = q.itd->hw_next;
2423 else
2424 *hw_p = cpu_to_hc32(ehci, x: ehci->dummy->qh_dma);
2425 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2426 wmb();
2427 modified = itd_complete(ehci, itd: q.itd);
2428 q = *q_p;
2429 break;
2430 case Q_TYPE_SITD:
2431 /*
2432 * If this SITD is still active, leave it for
2433 * later processing ... check the next entry.
2434 * No need to check for activity unless the
2435 * frame is current.
2436 */
2437 if (((frame == now_frame) ||
2438 (((frame + 1) & fmask) == now_frame))
2439 && live
2440 && (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2441
2442 q_p = &q.sitd->sitd_next;
2443 hw_p = &q.sitd->hw_next;
2444 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2445 q = *q_p;
2446 break;
2447 }
2448
2449 /*
2450 * Take finished SITDs out of the schedule
2451 * and process them: recycle, maybe report
2452 * URB completion.
2453 */
2454 *q_p = q.sitd->sitd_next;
2455 if (!ehci->use_dummy_qh ||
2456 q.sitd->hw_next != EHCI_LIST_END(ehci))
2457 *hw_p = q.sitd->hw_next;
2458 else
2459 *hw_p = cpu_to_hc32(ehci, x: ehci->dummy->qh_dma);
2460 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2461 wmb();
2462 modified = sitd_complete(ehci, sitd: q.sitd);
2463 q = *q_p;
2464 break;
2465 default:
2466 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2467 type, frame, q.ptr);
2468 /* BUG(); */
2469 fallthrough;
2470 case Q_TYPE_QH:
2471 case Q_TYPE_FSTN:
2472 /* End of the iTDs and siTDs */
2473 q.ptr = NULL;
2474 break;
2475 }
2476
2477 /* Assume completion callbacks modify the queue */
2478 if (unlikely(modified && ehci->isoc_count > 0))
2479 goto restart;
2480 }
2481
2482 /* Stop when we have reached the current frame */
2483 if (frame == now_frame)
2484 return;
2485
2486 /* The last frame may still have active siTDs */
2487 ehci->last_iso_frame = frame;
2488 frame = (frame + 1) & fmask;
2489
2490 goto restart;
2491}
2492

source code of linux/drivers/usb/host/ehci-sched.c