1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iommu.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/log2.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/slab.h>
19#include <linux/dmi.h>
20#include <linux/dma-mapping.h>
21
22#include "xhci.h"
23#include "xhci-trace.h"
24#include "xhci-debugfs.h"
25#include "xhci-dbgcap.h"
26
27#define DRIVER_AUTHOR "Sarah Sharp"
28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33static int link_quirk;
34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37static unsigned long long quirks;
38module_param(quirks, ullong, S_IRUGO);
39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42{
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54}
55
56/*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70{
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82}
83
84/*
85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86 * exit_state parameter, and bails out with an error immediately when xhc_state
87 * has exit_state flag set.
88 */
89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 u32 mask, u32 done, int usec, unsigned int exit_state)
91{
92 u32 result;
93 int ret;
94
95 ret = readl_poll_timeout_atomic(ptr, result,
96 (result & mask) == done ||
97 result == U32_MAX ||
98 xhci->xhc_state & exit_state,
99 1, usec);
100
101 if (result == U32_MAX || xhci->xhc_state & exit_state)
102 return -ENODEV;
103
104 return ret;
105}
106
107/*
108 * Disable interrupts and begin the xHCI halting process.
109 */
110void xhci_quiesce(struct xhci_hcd *xhci)
111{
112 u32 halted;
113 u32 cmd;
114 u32 mask;
115
116 mask = ~(XHCI_IRQS);
117 halted = readl(addr: &xhci->op_regs->status) & STS_HALT;
118 if (!halted)
119 mask &= ~CMD_RUN;
120
121 cmd = readl(addr: &xhci->op_regs->command);
122 cmd &= mask;
123 writel(val: cmd, addr: &xhci->op_regs->command);
124}
125
126/*
127 * Force HC into halt state.
128 *
129 * Disable any IRQs and clear the run/stop bit.
130 * HC will complete any current and actively pipelined transactions, and
131 * should halt within 16 ms of the run/stop bit being cleared.
132 * Read HC Halted bit in the status register to see when the HC is finished.
133 */
134int xhci_halt(struct xhci_hcd *xhci)
135{
136 int ret;
137
138 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "// Halt the HC");
139 xhci_quiesce(xhci);
140
141 ret = xhci_handshake(ptr: &xhci->op_regs->status,
142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 if (ret) {
144 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 return ret;
146 }
147
148 xhci->xhc_state |= XHCI_STATE_HALTED;
149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151 return ret;
152}
153
154/*
155 * Set the run bit and wait for the host to be running.
156 */
157int xhci_start(struct xhci_hcd *xhci)
158{
159 u32 temp;
160 int ret;
161
162 temp = readl(addr: &xhci->op_regs->command);
163 temp |= (CMD_RUN);
164 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "// Turn on HC, cmd = 0x%x.",
165 temp);
166 writel(val: temp, addr: &xhci->op_regs->command);
167
168 /*
169 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 * running.
171 */
172 ret = xhci_handshake(ptr: &xhci->op_regs->status,
173 STS_HALT, done: 0, XHCI_MAX_HALT_USEC);
174 if (ret == -ETIMEDOUT)
175 xhci_err(xhci, "Host took too long to start, "
176 "waited %u microseconds.\n",
177 XHCI_MAX_HALT_USEC);
178 if (!ret) {
179 /* clear state flags. Including dying, halted or removing */
180 xhci->xhc_state = 0;
181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(m: 500);
182 }
183
184 return ret;
185}
186
187/*
188 * Reset a halted HC.
189 *
190 * This resets pipelines, timers, counters, state machines, etc.
191 * Transactions will be terminated immediately, and operational registers
192 * will be set to their defaults.
193 */
194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195{
196 u32 command;
197 u32 state;
198 int ret;
199
200 state = readl(addr: &xhci->op_regs->status);
201
202 if (state == ~(u32)0) {
203 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 return -ENODEV;
205 }
206
207 if ((state & STS_HALT) == 0) {
208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 return 0;
210 }
211
212 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "// Reset the HC");
213 command = readl(addr: &xhci->op_regs->command);
214 command |= CMD_RESET;
215 writel(val: command, addr: &xhci->op_regs->command);
216
217 /* Existing Intel xHCI controllers require a delay of 1 mS,
218 * after setting the CMD_RESET bit, and before accessing any
219 * HC registers. This allows the HC to complete the
220 * reset operation and be ready for HC register access.
221 * Without this delay, the subsequent HC register access,
222 * may result in a system hang very rarely.
223 */
224 if (xhci->quirks & XHCI_INTEL_HOST)
225 udelay(1000);
226
227 ret = xhci_handshake_check_state(xhci, ptr: &xhci->op_regs->command,
228 CMD_RESET, done: 0, usec: timeout_us, XHCI_STATE_REMOVING);
229 if (ret)
230 return ret;
231
232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
236 fmt: "Wait for controller to be ready for doorbell rings");
237 /*
238 * xHCI cannot write to any doorbells or operational registers other
239 * than status until the "Controller Not Ready" flag is cleared.
240 */
241 ret = xhci_handshake(ptr: &xhci->op_regs->status, STS_CNR, done: 0, timeout_us);
242
243 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250 return ret;
251}
252
253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254{
255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 struct iommu_domain *domain;
257 int err, i;
258 u64 val;
259 u32 intrs;
260
261 /*
262 * Some Renesas controllers get into a weird state if they are
263 * reset while programmed with 64bit addresses (they will preserve
264 * the top half of the address in internal, non visible
265 * registers). You end up with half the address coming from the
266 * kernel, and the other half coming from the firmware. Also,
267 * changing the programming leads to extra accesses even if the
268 * controller is supposed to be halted. The controller ends up with
269 * a fatal fault, and is then ripe for being properly reset.
270 *
271 * Special care is taken to only apply this if the device is behind
272 * an iommu. Doing anything when there is no iommu is definitely
273 * unsafe...
274 */
275 domain = iommu_get_domain_for_dev(dev);
276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 domain->type == IOMMU_DOMAIN_IDENTITY)
278 return;
279
280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282 /* Clear HSEIE so that faults do not get signaled */
283 val = readl(addr: &xhci->op_regs->command);
284 val &= ~CMD_HSEIE;
285 writel(val, addr: &xhci->op_regs->command);
286
287 /* Clear HSE (aka FATAL) */
288 val = readl(addr: &xhci->op_regs->status);
289 val |= STS_FATAL;
290 writel(val, addr: &xhci->op_regs->status);
291
292 /* Now zero the registers, and brace for impact */
293 val = xhci_read_64(xhci, regs: &xhci->op_regs->dcbaa_ptr);
294 if (upper_32_bits(val))
295 xhci_write_64(xhci, val: 0, regs: &xhci->op_regs->dcbaa_ptr);
296 val = xhci_read_64(xhci, regs: &xhci->op_regs->cmd_ring);
297 if (upper_32_bits(val))
298 xhci_write_64(xhci, val: 0, regs: &xhci->op_regs->cmd_ring);
299
300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 ARRAY_SIZE(xhci->run_regs->ir_set));
302
303 for (i = 0; i < intrs; i++) {
304 struct xhci_intr_reg __iomem *ir;
305
306 ir = &xhci->run_regs->ir_set[i];
307 val = xhci_read_64(xhci, regs: &ir->erst_base);
308 if (upper_32_bits(val))
309 xhci_write_64(xhci, val: 0, regs: &ir->erst_base);
310 val= xhci_read_64(xhci, regs: &ir->erst_dequeue);
311 if (upper_32_bits(val))
312 xhci_write_64(xhci, val: 0, regs: &ir->erst_dequeue);
313 }
314
315 /* Wait for the fault to appear. It will be cleared on reset */
316 err = xhci_handshake(ptr: &xhci->op_regs->status,
317 STS_FATAL, STS_FATAL,
318 XHCI_MAX_HALT_USEC);
319 if (!err)
320 xhci_info(xhci, "Fault detected\n");
321}
322
323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324{
325 u32 iman;
326
327 if (!ir || !ir->ir_set)
328 return -EINVAL;
329
330 iman = readl(addr: &ir->ir_set->irq_pending);
331 writel(ER_IRQ_ENABLE(iman), addr: &ir->ir_set->irq_pending);
332
333 return 0;
334}
335
336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337{
338 u32 iman;
339
340 if (!ir || !ir->ir_set)
341 return -EINVAL;
342
343 iman = readl(addr: &ir->ir_set->irq_pending);
344 writel(ER_IRQ_DISABLE(iman), addr: &ir->ir_set->irq_pending);
345
346 return 0;
347}
348
349static void compliance_mode_recovery(struct timer_list *t)
350{
351 struct xhci_hcd *xhci;
352 struct usb_hcd *hcd;
353 struct xhci_hub *rhub;
354 u32 temp;
355 int i;
356
357 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
358 rhub = &xhci->usb3_rhub;
359 hcd = rhub->hcd;
360
361 if (!hcd)
362 return;
363
364 for (i = 0; i < rhub->num_ports; i++) {
365 temp = readl(addr: rhub->ports[i]->addr);
366 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
367 /*
368 * Compliance Mode Detected. Letting USB Core
369 * handle the Warm Reset
370 */
371 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
372 fmt: "Compliance mode detected->port %d",
373 i + 1);
374 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
375 fmt: "Attempting compliance mode recovery");
376
377 if (hcd->state == HC_STATE_SUSPENDED)
378 usb_hcd_resume_root_hub(hcd);
379
380 usb_hcd_poll_rh_status(hcd);
381 }
382 }
383
384 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
385 mod_timer(timer: &xhci->comp_mode_recovery_timer,
386 expires: jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
387}
388
389/*
390 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
391 * that causes ports behind that hardware to enter compliance mode sometimes.
392 * The quirk creates a timer that polls every 2 seconds the link state of
393 * each host controller's port and recovers it by issuing a Warm reset
394 * if Compliance mode is detected, otherwise the port will become "dead" (no
395 * device connections or disconnections will be detected anymore). Becasue no
396 * status event is generated when entering compliance mode (per xhci spec),
397 * this quirk is needed on systems that have the failing hardware installed.
398 */
399static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
400{
401 xhci->port_status_u0 = 0;
402 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
403 0);
404 xhci->comp_mode_recovery_timer.expires = jiffies +
405 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
406
407 add_timer(timer: &xhci->comp_mode_recovery_timer);
408 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
409 fmt: "Compliance mode recovery timer initialized");
410}
411
412/*
413 * This function identifies the systems that have installed the SN65LVPE502CP
414 * USB3.0 re-driver and that need the Compliance Mode Quirk.
415 * Systems:
416 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
417 */
418static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
419{
420 const char *dmi_product_name, *dmi_sys_vendor;
421
422 dmi_product_name = dmi_get_system_info(field: DMI_PRODUCT_NAME);
423 dmi_sys_vendor = dmi_get_system_info(field: DMI_SYS_VENDOR);
424 if (!dmi_product_name || !dmi_sys_vendor)
425 return false;
426
427 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
428 return false;
429
430 if (strstr(dmi_product_name, "Z420") ||
431 strstr(dmi_product_name, "Z620") ||
432 strstr(dmi_product_name, "Z820") ||
433 strstr(dmi_product_name, "Z1 Workstation"))
434 return true;
435
436 return false;
437}
438
439static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
440{
441 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
442}
443
444
445/*
446 * Initialize memory for HCD and xHC (one-time init).
447 *
448 * Program the PAGESIZE register, initialize the device context array, create
449 * device contexts (?), set up a command ring segment (or two?), create event
450 * ring (one for now).
451 */
452static int xhci_init(struct usb_hcd *hcd)
453{
454 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
455 int retval;
456
457 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "xhci_init");
458 spin_lock_init(&xhci->lock);
459 if (xhci->hci_version == 0x95 && link_quirk) {
460 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
461 fmt: "QUIRK: Not clearing Link TRB chain bits.");
462 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
463 } else {
464 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
465 fmt: "xHCI doesn't need link TRB QUIRK");
466 }
467 retval = xhci_mem_init(xhci, GFP_KERNEL);
468 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Finished xhci_init");
469
470 /* Initializing Compliance Mode Recovery Data If Needed */
471 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
472 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
473 compliance_mode_recovery_timer_init(xhci);
474 }
475
476 return retval;
477}
478
479/*-------------------------------------------------------------------------*/
480
481static int xhci_run_finished(struct xhci_hcd *xhci)
482{
483 struct xhci_interrupter *ir = xhci->interrupter;
484 unsigned long flags;
485 u32 temp;
486
487 /*
488 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
489 * Protect the short window before host is running with a lock
490 */
491 spin_lock_irqsave(&xhci->lock, flags);
492
493 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Enable interrupts");
494 temp = readl(addr: &xhci->op_regs->command);
495 temp |= (CMD_EIE);
496 writel(val: temp, addr: &xhci->op_regs->command);
497
498 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Enable primary interrupter");
499 xhci_enable_interrupter(ir);
500
501 if (xhci_start(xhci)) {
502 xhci_halt(xhci);
503 spin_unlock_irqrestore(lock: &xhci->lock, flags);
504 return -ENODEV;
505 }
506
507 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
508
509 if (xhci->quirks & XHCI_NEC_HOST)
510 xhci_ring_cmd_db(xhci);
511
512 spin_unlock_irqrestore(lock: &xhci->lock, flags);
513
514 return 0;
515}
516
517/*
518 * Start the HC after it was halted.
519 *
520 * This function is called by the USB core when the HC driver is added.
521 * Its opposite is xhci_stop().
522 *
523 * xhci_init() must be called once before this function can be called.
524 * Reset the HC, enable device slot contexts, program DCBAAP, and
525 * set command ring pointer and event ring pointer.
526 *
527 * Setup MSI-X vectors and enable interrupts.
528 */
529int xhci_run(struct usb_hcd *hcd)
530{
531 u32 temp;
532 u64 temp_64;
533 int ret;
534 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
535 struct xhci_interrupter *ir = xhci->interrupter;
536 /* Start the xHCI host controller running only after the USB 2.0 roothub
537 * is setup.
538 */
539
540 hcd->uses_new_polling = 1;
541 if (!usb_hcd_is_primary_hcd(hcd))
542 return xhci_run_finished(xhci);
543
544 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "xhci_run");
545
546 temp_64 = xhci_read_64(xhci, regs: &ir->ir_set->erst_dequeue);
547 temp_64 &= ERST_PTR_MASK;
548 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
549 fmt: "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
550
551 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
552 fmt: "// Set the interrupt modulation register");
553 temp = readl(addr: &ir->ir_set->irq_control);
554 temp &= ~ER_IRQ_INTERVAL_MASK;
555 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
556 writel(val: temp, addr: &ir->ir_set->irq_control);
557
558 if (xhci->quirks & XHCI_NEC_HOST) {
559 struct xhci_command *command;
560
561 command = xhci_alloc_command(xhci, allocate_completion: false, GFP_KERNEL);
562 if (!command)
563 return -ENOMEM;
564
565 ret = xhci_queue_vendor_command(xhci, cmd: command, field1: 0, field2: 0, field3: 0,
566 TRB_TYPE(TRB_NEC_GET_FW));
567 if (ret)
568 xhci_free_command(xhci, command);
569 }
570 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
571 fmt: "Finished %s for main hcd", __func__);
572
573 xhci_create_dbc_dev(xhci);
574
575 xhci_debugfs_init(xhci);
576
577 if (xhci_has_one_roothub(xhci))
578 return xhci_run_finished(xhci);
579
580 set_bit(HCD_FLAG_DEFER_RH_REGISTER, addr: &hcd->flags);
581
582 return 0;
583}
584EXPORT_SYMBOL_GPL(xhci_run);
585
586/*
587 * Stop xHCI driver.
588 *
589 * This function is called by the USB core when the HC driver is removed.
590 * Its opposite is xhci_run().
591 *
592 * Disable device contexts, disable IRQs, and quiesce the HC.
593 * Reset the HC, finish any completed transactions, and cleanup memory.
594 */
595void xhci_stop(struct usb_hcd *hcd)
596{
597 u32 temp;
598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 struct xhci_interrupter *ir = xhci->interrupter;
600
601 mutex_lock(&xhci->mutex);
602
603 /* Only halt host and free memory after both hcds are removed */
604 if (!usb_hcd_is_primary_hcd(hcd)) {
605 mutex_unlock(lock: &xhci->mutex);
606 return;
607 }
608
609 xhci_remove_dbc_dev(xhci);
610
611 spin_lock_irq(lock: &xhci->lock);
612 xhci->xhc_state |= XHCI_STATE_HALTED;
613 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
614 xhci_halt(xhci);
615 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
616 spin_unlock_irq(lock: &xhci->lock);
617
618 /* Deleting Compliance Mode Recovery Timer */
619 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
620 (!(xhci_all_ports_seen_u0(xhci)))) {
621 del_timer_sync(timer: &xhci->comp_mode_recovery_timer);
622 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
623 fmt: "%s: compliance mode recovery timer deleted",
624 __func__);
625 }
626
627 if (xhci->quirks & XHCI_AMD_PLL_FIX)
628 usb_amd_dev_put();
629
630 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
631 fmt: "// Disabling event ring interrupts");
632 temp = readl(addr: &xhci->op_regs->status);
633 writel(val: (temp & ~0x1fff) | STS_EINT, addr: &xhci->op_regs->status);
634 xhci_disable_interrupter(ir);
635
636 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "cleaning up memory");
637 xhci_mem_cleanup(xhci);
638 xhci_debugfs_exit(xhci);
639 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
640 fmt: "xhci_stop completed - status = %x",
641 readl(addr: &xhci->op_regs->status));
642 mutex_unlock(lock: &xhci->mutex);
643}
644EXPORT_SYMBOL_GPL(xhci_stop);
645
646/*
647 * Shutdown HC (not bus-specific)
648 *
649 * This is called when the machine is rebooting or halting. We assume that the
650 * machine will be powered off, and the HC's internal state will be reset.
651 * Don't bother to free memory.
652 *
653 * This will only ever be called with the main usb_hcd (the USB3 roothub).
654 */
655void xhci_shutdown(struct usb_hcd *hcd)
656{
657 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
658
659 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
660 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
661
662 /* Don't poll the roothubs after shutdown. */
663 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
664 __func__, hcd->self.busnum);
665 clear_bit(HCD_FLAG_POLL_RH, addr: &hcd->flags);
666 del_timer_sync(timer: &hcd->rh_timer);
667
668 if (xhci->shared_hcd) {
669 clear_bit(HCD_FLAG_POLL_RH, addr: &xhci->shared_hcd->flags);
670 del_timer_sync(timer: &xhci->shared_hcd->rh_timer);
671 }
672
673 spin_lock_irq(lock: &xhci->lock);
674 xhci_halt(xhci);
675
676 /*
677 * Workaround for spurious wakeps at shutdown with HSW, and for boot
678 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
679 */
680 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
681 xhci->quirks & XHCI_RESET_TO_DEFAULT)
682 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
683
684 spin_unlock_irq(lock: &xhci->lock);
685
686 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
687 fmt: "xhci_shutdown completed - status = %x",
688 readl(addr: &xhci->op_regs->status));
689}
690EXPORT_SYMBOL_GPL(xhci_shutdown);
691
692#ifdef CONFIG_PM
693static void xhci_save_registers(struct xhci_hcd *xhci)
694{
695 struct xhci_interrupter *ir = xhci->interrupter;
696
697 xhci->s3.command = readl(addr: &xhci->op_regs->command);
698 xhci->s3.dev_nt = readl(addr: &xhci->op_regs->dev_notification);
699 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, regs: &xhci->op_regs->dcbaa_ptr);
700 xhci->s3.config_reg = readl(addr: &xhci->op_regs->config_reg);
701
702 if (!ir)
703 return;
704
705 ir->s3_erst_size = readl(addr: &ir->ir_set->erst_size);
706 ir->s3_erst_base = xhci_read_64(xhci, regs: &ir->ir_set->erst_base);
707 ir->s3_erst_dequeue = xhci_read_64(xhci, regs: &ir->ir_set->erst_dequeue);
708 ir->s3_irq_pending = readl(addr: &ir->ir_set->irq_pending);
709 ir->s3_irq_control = readl(addr: &ir->ir_set->irq_control);
710}
711
712static void xhci_restore_registers(struct xhci_hcd *xhci)
713{
714 struct xhci_interrupter *ir = xhci->interrupter;
715
716 writel(val: xhci->s3.command, addr: &xhci->op_regs->command);
717 writel(val: xhci->s3.dev_nt, addr: &xhci->op_regs->dev_notification);
718 xhci_write_64(xhci, val: xhci->s3.dcbaa_ptr, regs: &xhci->op_regs->dcbaa_ptr);
719 writel(val: xhci->s3.config_reg, addr: &xhci->op_regs->config_reg);
720 writel(val: ir->s3_erst_size, addr: &ir->ir_set->erst_size);
721 xhci_write_64(xhci, val: ir->s3_erst_base, regs: &ir->ir_set->erst_base);
722 xhci_write_64(xhci, val: ir->s3_erst_dequeue, regs: &ir->ir_set->erst_dequeue);
723 writel(val: ir->s3_irq_pending, addr: &ir->ir_set->irq_pending);
724 writel(val: ir->s3_irq_control, addr: &ir->ir_set->irq_control);
725}
726
727static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
728{
729 u64 val_64;
730
731 /* step 2: initialize command ring buffer */
732 val_64 = xhci_read_64(xhci, regs: &xhci->op_regs->cmd_ring);
733 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
734 (xhci_trb_virt_to_dma(seg: xhci->cmd_ring->deq_seg,
735 trb: xhci->cmd_ring->dequeue) &
736 (u64) ~CMD_RING_RSVD_BITS) |
737 xhci->cmd_ring->cycle_state;
738 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
739 fmt: "// Setting command ring address to 0x%llx",
740 (long unsigned long) val_64);
741 xhci_write_64(xhci, val: val_64, regs: &xhci->op_regs->cmd_ring);
742}
743
744/*
745 * The whole command ring must be cleared to zero when we suspend the host.
746 *
747 * The host doesn't save the command ring pointer in the suspend well, so we
748 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
749 * aligned, because of the reserved bits in the command ring dequeue pointer
750 * register. Therefore, we can't just set the dequeue pointer back in the
751 * middle of the ring (TRBs are 16-byte aligned).
752 */
753static void xhci_clear_command_ring(struct xhci_hcd *xhci)
754{
755 struct xhci_ring *ring;
756 struct xhci_segment *seg;
757
758 ring = xhci->cmd_ring;
759 seg = ring->deq_seg;
760 do {
761 memset(seg->trbs, 0,
762 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
763 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
764 cpu_to_le32(~TRB_CYCLE);
765 seg = seg->next;
766 } while (seg != ring->deq_seg);
767
768 /* Reset the software enqueue and dequeue pointers */
769 ring->deq_seg = ring->first_seg;
770 ring->dequeue = ring->first_seg->trbs;
771 ring->enq_seg = ring->deq_seg;
772 ring->enqueue = ring->dequeue;
773
774 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
775 /*
776 * Ring is now zeroed, so the HW should look for change of ownership
777 * when the cycle bit is set to 1.
778 */
779 ring->cycle_state = 1;
780
781 /*
782 * Reset the hardware dequeue pointer.
783 * Yes, this will need to be re-written after resume, but we're paranoid
784 * and want to make sure the hardware doesn't access bogus memory
785 * because, say, the BIOS or an SMI started the host without changing
786 * the command ring pointers.
787 */
788 xhci_set_cmd_ring_deq(xhci);
789}
790
791/*
792 * Disable port wake bits if do_wakeup is not set.
793 *
794 * Also clear a possible internal port wake state left hanging for ports that
795 * detected termination but never successfully enumerated (trained to 0U).
796 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
797 * at enumeration clears this wake, force one here as well for unconnected ports
798 */
799
800static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
801 struct xhci_hub *rhub,
802 bool do_wakeup)
803{
804 unsigned long flags;
805 u32 t1, t2, portsc;
806 int i;
807
808 spin_lock_irqsave(&xhci->lock, flags);
809
810 for (i = 0; i < rhub->num_ports; i++) {
811 portsc = readl(addr: rhub->ports[i]->addr);
812 t1 = xhci_port_state_to_neutral(state: portsc);
813 t2 = t1;
814
815 /* clear wake bits if do_wake is not set */
816 if (!do_wakeup)
817 t2 &= ~PORT_WAKE_BITS;
818
819 /* Don't touch csc bit if connected or connect change is set */
820 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
821 t2 |= PORT_CSC;
822
823 if (t1 != t2) {
824 writel(val: t2, addr: rhub->ports[i]->addr);
825 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
826 rhub->hcd->self.busnum, i + 1, portsc, t2);
827 }
828 }
829 spin_unlock_irqrestore(lock: &xhci->lock, flags);
830}
831
832static bool xhci_pending_portevent(struct xhci_hcd *xhci)
833{
834 struct xhci_port **ports;
835 int port_index;
836 u32 status;
837 u32 portsc;
838
839 status = readl(addr: &xhci->op_regs->status);
840 if (status & STS_EINT)
841 return true;
842 /*
843 * Checking STS_EINT is not enough as there is a lag between a change
844 * bit being set and the Port Status Change Event that it generated
845 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
846 */
847
848 port_index = xhci->usb2_rhub.num_ports;
849 ports = xhci->usb2_rhub.ports;
850 while (port_index--) {
851 portsc = readl(addr: ports[port_index]->addr);
852 if (portsc & PORT_CHANGE_MASK ||
853 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
854 return true;
855 }
856 port_index = xhci->usb3_rhub.num_ports;
857 ports = xhci->usb3_rhub.ports;
858 while (port_index--) {
859 portsc = readl(addr: ports[port_index]->addr);
860 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
861 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
862 return true;
863 }
864 return false;
865}
866
867/*
868 * Stop HC (not bus-specific)
869 *
870 * This is called when the machine transition into S3/S4 mode.
871 *
872 */
873int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
874{
875 int rc = 0;
876 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
877 struct usb_hcd *hcd = xhci_to_hcd(xhci);
878 u32 command;
879 u32 res;
880
881 if (!hcd->state)
882 return 0;
883
884 if (hcd->state != HC_STATE_SUSPENDED ||
885 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
886 return -EINVAL;
887
888 /* Clear root port wake on bits if wakeup not allowed. */
889 xhci_disable_hub_port_wake(xhci, rhub: &xhci->usb3_rhub, do_wakeup);
890 xhci_disable_hub_port_wake(xhci, rhub: &xhci->usb2_rhub, do_wakeup);
891
892 if (!HCD_HW_ACCESSIBLE(hcd))
893 return 0;
894
895 xhci_dbc_suspend(xhci);
896
897 /* Don't poll the roothubs on bus suspend. */
898 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
899 __func__, hcd->self.busnum);
900 clear_bit(HCD_FLAG_POLL_RH, addr: &hcd->flags);
901 del_timer_sync(timer: &hcd->rh_timer);
902 if (xhci->shared_hcd) {
903 clear_bit(HCD_FLAG_POLL_RH, addr: &xhci->shared_hcd->flags);
904 del_timer_sync(timer: &xhci->shared_hcd->rh_timer);
905 }
906
907 if (xhci->quirks & XHCI_SUSPEND_DELAY)
908 usleep_range(min: 1000, max: 1500);
909
910 spin_lock_irq(lock: &xhci->lock);
911 clear_bit(HCD_FLAG_HW_ACCESSIBLE, addr: &hcd->flags);
912 if (xhci->shared_hcd)
913 clear_bit(HCD_FLAG_HW_ACCESSIBLE, addr: &xhci->shared_hcd->flags);
914 /* step 1: stop endpoint */
915 /* skipped assuming that port suspend has done */
916
917 /* step 2: clear Run/Stop bit */
918 command = readl(addr: &xhci->op_regs->command);
919 command &= ~CMD_RUN;
920 writel(val: command, addr: &xhci->op_regs->command);
921
922 /* Some chips from Fresco Logic need an extraordinary delay */
923 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
924
925 if (xhci_handshake(ptr: &xhci->op_regs->status,
926 STS_HALT, STS_HALT, timeout_us: delay)) {
927 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
928 spin_unlock_irq(lock: &xhci->lock);
929 return -ETIMEDOUT;
930 }
931 xhci_clear_command_ring(xhci);
932
933 /* step 3: save registers */
934 xhci_save_registers(xhci);
935
936 /* step 4: set CSS flag */
937 command = readl(addr: &xhci->op_regs->command);
938 command |= CMD_CSS;
939 writel(val: command, addr: &xhci->op_regs->command);
940 xhci->broken_suspend = 0;
941 if (xhci_handshake(ptr: &xhci->op_regs->status,
942 STS_SAVE, done: 0, timeout_us: 20 * 1000)) {
943 /*
944 * AMD SNPS xHC 3.0 occasionally does not clear the
945 * SSS bit of USBSTS and when driver tries to poll
946 * to see if the xHC clears BIT(8) which never happens
947 * and driver assumes that controller is not responding
948 * and times out. To workaround this, its good to check
949 * if SRE and HCE bits are not set (as per xhci
950 * Section 5.4.2) and bypass the timeout.
951 */
952 res = readl(addr: &xhci->op_regs->status);
953 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
954 (((res & STS_SRE) == 0) &&
955 ((res & STS_HCE) == 0))) {
956 xhci->broken_suspend = 1;
957 } else {
958 xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 spin_unlock_irq(lock: &xhci->lock);
960 return -ETIMEDOUT;
961 }
962 }
963 spin_unlock_irq(lock: &xhci->lock);
964
965 /*
966 * Deleting Compliance Mode Recovery Timer because the xHCI Host
967 * is about to be suspended.
968 */
969 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970 (!(xhci_all_ports_seen_u0(xhci)))) {
971 del_timer_sync(timer: &xhci->comp_mode_recovery_timer);
972 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
973 fmt: "%s: compliance mode recovery timer deleted",
974 __func__);
975 }
976
977 return rc;
978}
979EXPORT_SYMBOL_GPL(xhci_suspend);
980
981/*
982 * start xHC (not bus-specific)
983 *
984 * This is called when the machine transition from S3/S4 mode.
985 *
986 */
987int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
988{
989 bool hibernated = (msg.event == PM_EVENT_RESTORE);
990 u32 command, temp = 0;
991 struct usb_hcd *hcd = xhci_to_hcd(xhci);
992 int retval = 0;
993 bool comp_timer_running = false;
994 bool pending_portevent = false;
995 bool suspended_usb3_devs = false;
996 bool reinit_xhc = false;
997
998 if (!hcd->state)
999 return 0;
1000
1001 /* Wait a bit if either of the roothubs need to settle from the
1002 * transition into bus suspend.
1003 */
1004
1005 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1006 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1007 msleep(msecs: 100);
1008
1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, addr: &hcd->flags);
1010 if (xhci->shared_hcd)
1011 set_bit(HCD_FLAG_HW_ACCESSIBLE, addr: &xhci->shared_hcd->flags);
1012
1013 spin_lock_irq(lock: &xhci->lock);
1014
1015 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1016 reinit_xhc = true;
1017
1018 if (!reinit_xhc) {
1019 /*
1020 * Some controllers might lose power during suspend, so wait
1021 * for controller not ready bit to clear, just as in xHC init.
1022 */
1023 retval = xhci_handshake(ptr: &xhci->op_regs->status,
1024 STS_CNR, done: 0, timeout_us: 10 * 1000 * 1000);
1025 if (retval) {
1026 xhci_warn(xhci, "Controller not ready at resume %d\n",
1027 retval);
1028 spin_unlock_irq(lock: &xhci->lock);
1029 return retval;
1030 }
1031 /* step 1: restore register */
1032 xhci_restore_registers(xhci);
1033 /* step 2: initialize command ring buffer */
1034 xhci_set_cmd_ring_deq(xhci);
1035 /* step 3: restore state and start state*/
1036 /* step 3: set CRS flag */
1037 command = readl(addr: &xhci->op_regs->command);
1038 command |= CMD_CRS;
1039 writel(val: command, addr: &xhci->op_regs->command);
1040 /*
1041 * Some controllers take up to 55+ ms to complete the controller
1042 * restore so setting the timeout to 100ms. Xhci specification
1043 * doesn't mention any timeout value.
1044 */
1045 if (xhci_handshake(ptr: &xhci->op_regs->status,
1046 STS_RESTORE, done: 0, timeout_us: 100 * 1000)) {
1047 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1048 spin_unlock_irq(lock: &xhci->lock);
1049 return -ETIMEDOUT;
1050 }
1051 }
1052
1053 temp = readl(addr: &xhci->op_regs->status);
1054
1055 /* re-initialize the HC on Restore Error, or Host Controller Error */
1056 if ((temp & (STS_SRE | STS_HCE)) &&
1057 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1058 reinit_xhc = true;
1059 if (!xhci->broken_suspend)
1060 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1061 }
1062
1063 if (reinit_xhc) {
1064 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065 !(xhci_all_ports_seen_u0(xhci))) {
1066 del_timer_sync(timer: &xhci->comp_mode_recovery_timer);
1067 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
1068 fmt: "Compliance Mode Recovery Timer deleted!");
1069 }
1070
1071 /* Let the USB core know _both_ roothubs lost power. */
1072 usb_root_hub_lost_power(rhdev: xhci->main_hcd->self.root_hub);
1073 if (xhci->shared_hcd)
1074 usb_root_hub_lost_power(rhdev: xhci->shared_hcd->self.root_hub);
1075
1076 xhci_dbg(xhci, "Stop HCD\n");
1077 xhci_halt(xhci);
1078 xhci_zero_64b_regs(xhci);
1079 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1080 spin_unlock_irq(lock: &xhci->lock);
1081 if (retval)
1082 return retval;
1083
1084 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1085 temp = readl(addr: &xhci->op_regs->status);
1086 writel(val: (temp & ~0x1fff) | STS_EINT, addr: &xhci->op_regs->status);
1087 xhci_disable_interrupter(ir: xhci->interrupter);
1088
1089 xhci_dbg(xhci, "cleaning up memory\n");
1090 xhci_mem_cleanup(xhci);
1091 xhci_debugfs_exit(xhci);
1092 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1093 readl(&xhci->op_regs->status));
1094
1095 /* USB core calls the PCI reinit and start functions twice:
1096 * first with the primary HCD, and then with the secondary HCD.
1097 * If we don't do the same, the host will never be started.
1098 */
1099 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1100 retval = xhci_init(hcd);
1101 if (retval)
1102 return retval;
1103 comp_timer_running = true;
1104
1105 xhci_dbg(xhci, "Start the primary HCD\n");
1106 retval = xhci_run(hcd);
1107 if (!retval && xhci->shared_hcd) {
1108 xhci_dbg(xhci, "Start the secondary HCD\n");
1109 retval = xhci_run(xhci->shared_hcd);
1110 }
1111
1112 hcd->state = HC_STATE_SUSPENDED;
1113 if (xhci->shared_hcd)
1114 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1115 goto done;
1116 }
1117
1118 /* step 4: set Run/Stop bit */
1119 command = readl(addr: &xhci->op_regs->command);
1120 command |= CMD_RUN;
1121 writel(val: command, addr: &xhci->op_regs->command);
1122 xhci_handshake(ptr: &xhci->op_regs->status, STS_HALT,
1123 done: 0, timeout_us: 250 * 1000);
1124
1125 /* step 5: walk topology and initialize portsc,
1126 * portpmsc and portli
1127 */
1128 /* this is done in bus_resume */
1129
1130 /* step 6: restart each of the previously
1131 * Running endpoints by ringing their doorbells
1132 */
1133
1134 spin_unlock_irq(lock: &xhci->lock);
1135
1136 xhci_dbc_resume(xhci);
1137
1138 done:
1139 if (retval == 0) {
1140 /*
1141 * Resume roothubs only if there are pending events.
1142 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1143 * the first wake signalling failed, give it that chance if
1144 * there are suspended USB 3 devices.
1145 */
1146 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1147 xhci->usb3_rhub.bus_state.bus_suspended)
1148 suspended_usb3_devs = true;
1149
1150 pending_portevent = xhci_pending_portevent(xhci);
1151
1152 if (suspended_usb3_devs && !pending_portevent &&
1153 msg.event == PM_EVENT_AUTO_RESUME) {
1154 msleep(msecs: 120);
1155 pending_portevent = xhci_pending_portevent(xhci);
1156 }
1157
1158 if (pending_portevent) {
1159 if (xhci->shared_hcd)
1160 usb_hcd_resume_root_hub(hcd: xhci->shared_hcd);
1161 usb_hcd_resume_root_hub(hcd);
1162 }
1163 }
1164 /*
1165 * If system is subject to the Quirk, Compliance Mode Timer needs to
1166 * be re-initialized Always after a system resume. Ports are subject
1167 * to suffer the Compliance Mode issue again. It doesn't matter if
1168 * ports have entered previously to U0 before system's suspension.
1169 */
1170 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1171 compliance_mode_recovery_timer_init(xhci);
1172
1173 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1174 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1175
1176 /* Re-enable port polling. */
1177 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1178 __func__, hcd->self.busnum);
1179 if (xhci->shared_hcd) {
1180 set_bit(HCD_FLAG_POLL_RH, addr: &xhci->shared_hcd->flags);
1181 usb_hcd_poll_rh_status(hcd: xhci->shared_hcd);
1182 }
1183 set_bit(HCD_FLAG_POLL_RH, addr: &hcd->flags);
1184 usb_hcd_poll_rh_status(hcd);
1185
1186 return retval;
1187}
1188EXPORT_SYMBOL_GPL(xhci_resume);
1189#endif /* CONFIG_PM */
1190
1191/*-------------------------------------------------------------------------*/
1192
1193static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1194{
1195 void *temp;
1196 int ret = 0;
1197 unsigned int buf_len;
1198 enum dma_data_direction dir;
1199
1200 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1201 buf_len = urb->transfer_buffer_length;
1202
1203 temp = kzalloc_node(size: buf_len, GFP_ATOMIC,
1204 node: dev_to_node(dev: hcd->self.sysdev));
1205
1206 if (usb_urb_dir_out(urb))
1207 sg_pcopy_to_buffer(sgl: urb->sg, nents: urb->num_sgs,
1208 buf: temp, buflen: buf_len, skip: 0);
1209
1210 urb->transfer_buffer = temp;
1211 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1212 urb->transfer_buffer,
1213 urb->transfer_buffer_length,
1214 dir);
1215
1216 if (dma_mapping_error(dev: hcd->self.sysdev,
1217 dma_addr: urb->transfer_dma)) {
1218 ret = -EAGAIN;
1219 kfree(objp: temp);
1220 } else {
1221 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1222 }
1223
1224 return ret;
1225}
1226
1227static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1228 struct urb *urb)
1229{
1230 bool ret = false;
1231 unsigned int i;
1232 unsigned int len = 0;
1233 unsigned int trb_size;
1234 unsigned int max_pkt;
1235 struct scatterlist *sg;
1236 struct scatterlist *tail_sg;
1237
1238 tail_sg = urb->sg;
1239 max_pkt = usb_endpoint_maxp(epd: &urb->ep->desc);
1240
1241 if (!urb->num_sgs)
1242 return ret;
1243
1244 if (urb->dev->speed >= USB_SPEED_SUPER)
1245 trb_size = TRB_CACHE_SIZE_SS;
1246 else
1247 trb_size = TRB_CACHE_SIZE_HS;
1248
1249 if (urb->transfer_buffer_length != 0 &&
1250 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1251 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1252 len = len + sg->length;
1253 if (i > trb_size - 2) {
1254 len = len - tail_sg->length;
1255 if (len < max_pkt) {
1256 ret = true;
1257 break;
1258 }
1259
1260 tail_sg = sg_next(tail_sg);
1261 }
1262 }
1263 }
1264 return ret;
1265}
1266
1267static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1268{
1269 unsigned int len;
1270 unsigned int buf_len;
1271 enum dma_data_direction dir;
1272
1273 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274
1275 buf_len = urb->transfer_buffer_length;
1276
1277 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1278 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1279 dma_unmap_single(hcd->self.sysdev,
1280 urb->transfer_dma,
1281 urb->transfer_buffer_length,
1282 dir);
1283
1284 if (usb_urb_dir_in(urb)) {
1285 len = sg_pcopy_from_buffer(sgl: urb->sg, nents: urb->num_sgs,
1286 buf: urb->transfer_buffer,
1287 buflen: buf_len,
1288 skip: 0);
1289 if (len != buf_len) {
1290 xhci_dbg(hcd_to_xhci(hcd),
1291 "Copy from tmp buf to urb sg list failed\n");
1292 urb->actual_length = len;
1293 }
1294 }
1295 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1296 kfree(objp: urb->transfer_buffer);
1297 urb->transfer_buffer = NULL;
1298}
1299
1300/*
1301 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1302 * we'll copy the actual data into the TRB address register. This is limited to
1303 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1304 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1305 */
1306static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1307 gfp_t mem_flags)
1308{
1309 struct xhci_hcd *xhci;
1310
1311 xhci = hcd_to_xhci(hcd);
1312
1313 if (xhci_urb_suitable_for_idt(urb))
1314 return 0;
1315
1316 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1317 if (xhci_urb_temp_buffer_required(hcd, urb))
1318 return xhci_map_temp_buffer(hcd, urb);
1319 }
1320 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1321}
1322
1323static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1324{
1325 struct xhci_hcd *xhci;
1326 bool unmap_temp_buf = false;
1327
1328 xhci = hcd_to_xhci(hcd);
1329
1330 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1331 unmap_temp_buf = true;
1332
1333 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1334 xhci_unmap_temp_buf(hcd, urb);
1335 else
1336 usb_hcd_unmap_urb_for_dma(hcd, urb);
1337}
1338
1339/**
1340 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1341 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1342 * value to right shift 1 for the bitmask.
1343 *
1344 * Index = (epnum * 2) + direction - 1,
1345 * where direction = 0 for OUT, 1 for IN.
1346 * For control endpoints, the IN index is used (OUT index is unused), so
1347 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1348 */
1349unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1350{
1351 unsigned int index;
1352 if (usb_endpoint_xfer_control(epd: desc))
1353 index = (unsigned int) (usb_endpoint_num(epd: desc)*2);
1354 else
1355 index = (unsigned int) (usb_endpoint_num(epd: desc)*2) +
1356 (usb_endpoint_dir_in(epd: desc) ? 1 : 0) - 1;
1357 return index;
1358}
1359EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1360
1361/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1362 * address from the XHCI endpoint index.
1363 */
1364static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1365{
1366 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1367 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1368 return direction | number;
1369}
1370
1371/* Find the flag for this endpoint (for use in the control context). Use the
1372 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1373 * bit 1, etc.
1374 */
1375static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1376{
1377 return 1 << (xhci_get_endpoint_index(desc) + 1);
1378}
1379
1380/* Compute the last valid endpoint context index. Basically, this is the
1381 * endpoint index plus one. For slot contexts with more than valid endpoint,
1382 * we find the most significant bit set in the added contexts flags.
1383 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1384 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1385 */
1386unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1387{
1388 return fls(x: added_ctxs) - 1;
1389}
1390
1391/* Returns 1 if the arguments are OK;
1392 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1393 */
1394static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1395 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1396 const char *func) {
1397 struct xhci_hcd *xhci;
1398 struct xhci_virt_device *virt_dev;
1399
1400 if (!hcd || (check_ep && !ep) || !udev) {
1401 pr_debug("xHCI %s called with invalid args\n", func);
1402 return -EINVAL;
1403 }
1404 if (!udev->parent) {
1405 pr_debug("xHCI %s called for root hub\n", func);
1406 return 0;
1407 }
1408
1409 xhci = hcd_to_xhci(hcd);
1410 if (check_virt_dev) {
1411 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1412 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1413 func);
1414 return -EINVAL;
1415 }
1416
1417 virt_dev = xhci->devs[udev->slot_id];
1418 if (virt_dev->udev != udev) {
1419 xhci_dbg(xhci, "xHCI %s called with udev and "
1420 "virt_dev does not match\n", func);
1421 return -EINVAL;
1422 }
1423 }
1424
1425 if (xhci->xhc_state & XHCI_STATE_HALTED)
1426 return -ENODEV;
1427
1428 return 1;
1429}
1430
1431static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1432 struct usb_device *udev, struct xhci_command *command,
1433 bool ctx_change, bool must_succeed);
1434
1435/*
1436 * Full speed devices may have a max packet size greater than 8 bytes, but the
1437 * USB core doesn't know that until it reads the first 8 bytes of the
1438 * descriptor. If the usb_device's max packet size changes after that point,
1439 * we need to issue an evaluate context command and wait on it.
1440 */
1441static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1442 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1443{
1444 struct xhci_container_ctx *out_ctx;
1445 struct xhci_input_control_ctx *ctrl_ctx;
1446 struct xhci_ep_ctx *ep_ctx;
1447 struct xhci_command *command;
1448 int max_packet_size;
1449 int hw_max_packet_size;
1450 int ret = 0;
1451
1452 out_ctx = xhci->devs[slot_id]->out_ctx;
1453 ep_ctx = xhci_get_ep_ctx(xhci, ctx: out_ctx, ep_index);
1454 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1455 max_packet_size = usb_endpoint_maxp(epd: &urb->dev->ep0.desc);
1456 if (hw_max_packet_size != max_packet_size) {
1457 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
1458 fmt: "Max Packet Size for ep 0 changed.");
1459 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
1460 fmt: "Max packet size in usb_device = %d",
1461 max_packet_size);
1462 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
1463 fmt: "Max packet size in xHCI HW = %d",
1464 hw_max_packet_size);
1465 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
1466 fmt: "Issuing evaluate context command.");
1467
1468 /* Set up the input context flags for the command */
1469 /* FIXME: This won't work if a non-default control endpoint
1470 * changes max packet sizes.
1471 */
1472
1473 command = xhci_alloc_command(xhci, allocate_completion: true, mem_flags);
1474 if (!command)
1475 return -ENOMEM;
1476
1477 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1478 ctrl_ctx = xhci_get_input_control_ctx(ctx: command->in_ctx);
1479 if (!ctrl_ctx) {
1480 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1481 __func__);
1482 ret = -ENOMEM;
1483 goto command_cleanup;
1484 }
1485 /* Set up the modified control endpoint 0 */
1486 xhci_endpoint_copy(xhci, in_ctx: xhci->devs[slot_id]->in_ctx,
1487 out_ctx: xhci->devs[slot_id]->out_ctx, ep_index);
1488
1489 ep_ctx = xhci_get_ep_ctx(xhci, ctx: command->in_ctx, ep_index);
1490 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1491 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1492 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1493
1494 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1495 ctrl_ctx->drop_flags = 0;
1496
1497 ret = xhci_configure_endpoint(xhci, udev: urb->dev, command,
1498 ctx_change: true, must_succeed: false);
1499
1500 /* Clean up the input context for later use by bandwidth
1501 * functions.
1502 */
1503 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1504command_cleanup:
1505 kfree(objp: command->completion);
1506 kfree(objp: command);
1507 }
1508 return ret;
1509}
1510
1511/*
1512 * non-error returns are a promise to giveback() the urb later
1513 * we drop ownership so next owner (or urb unlink) can get it
1514 */
1515static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1516{
1517 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1518 unsigned long flags;
1519 int ret = 0;
1520 unsigned int slot_id, ep_index;
1521 unsigned int *ep_state;
1522 struct urb_priv *urb_priv;
1523 int num_tds;
1524
1525 if (!urb)
1526 return -EINVAL;
1527 ret = xhci_check_args(hcd, udev: urb->dev, ep: urb->ep,
1528 check_ep: true, check_virt_dev: true, func: __func__);
1529 if (ret <= 0)
1530 return ret ? ret : -EINVAL;
1531
1532 slot_id = urb->dev->slot_id;
1533 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1534 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1535
1536 if (!HCD_HW_ACCESSIBLE(hcd))
1537 return -ESHUTDOWN;
1538
1539 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1540 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1541 return -ENODEV;
1542 }
1543
1544 if (usb_endpoint_xfer_isoc(epd: &urb->ep->desc))
1545 num_tds = urb->number_of_packets;
1546 else if (usb_endpoint_is_bulk_out(epd: &urb->ep->desc) &&
1547 urb->transfer_buffer_length > 0 &&
1548 urb->transfer_flags & URB_ZERO_PACKET &&
1549 !(urb->transfer_buffer_length % usb_endpoint_maxp(epd: &urb->ep->desc)))
1550 num_tds = 2;
1551 else
1552 num_tds = 1;
1553
1554 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), flags: mem_flags);
1555 if (!urb_priv)
1556 return -ENOMEM;
1557
1558 urb_priv->num_tds = num_tds;
1559 urb_priv->num_tds_done = 0;
1560 urb->hcpriv = urb_priv;
1561
1562 trace_xhci_urb_enqueue(urb);
1563
1564 if (usb_endpoint_xfer_control(epd: &urb->ep->desc)) {
1565 /* Check to see if the max packet size for the default control
1566 * endpoint changed during FS device enumeration
1567 */
1568 if (urb->dev->speed == USB_SPEED_FULL) {
1569 ret = xhci_check_maxpacket(xhci, slot_id,
1570 ep_index, urb, mem_flags);
1571 if (ret < 0) {
1572 xhci_urb_free_priv(urb_priv);
1573 urb->hcpriv = NULL;
1574 return ret;
1575 }
1576 }
1577 }
1578
1579 spin_lock_irqsave(&xhci->lock, flags);
1580
1581 if (xhci->xhc_state & XHCI_STATE_DYING) {
1582 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1583 urb->ep->desc.bEndpointAddress, urb);
1584 ret = -ESHUTDOWN;
1585 goto free_priv;
1586 }
1587 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1588 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1589 *ep_state);
1590 ret = -EINVAL;
1591 goto free_priv;
1592 }
1593 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1594 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1595 ret = -EINVAL;
1596 goto free_priv;
1597 }
1598
1599 switch (usb_endpoint_type(epd: &urb->ep->desc)) {
1600
1601 case USB_ENDPOINT_XFER_CONTROL:
1602 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1603 slot_id, ep_index);
1604 break;
1605 case USB_ENDPOINT_XFER_BULK:
1606 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1607 slot_id, ep_index);
1608 break;
1609 case USB_ENDPOINT_XFER_INT:
1610 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1611 slot_id, ep_index);
1612 break;
1613 case USB_ENDPOINT_XFER_ISOC:
1614 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1615 slot_id, ep_index);
1616 }
1617
1618 if (ret) {
1619free_priv:
1620 xhci_urb_free_priv(urb_priv);
1621 urb->hcpriv = NULL;
1622 }
1623 spin_unlock_irqrestore(lock: &xhci->lock, flags);
1624 return ret;
1625}
1626
1627/*
1628 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1629 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1630 * should pick up where it left off in the TD, unless a Set Transfer Ring
1631 * Dequeue Pointer is issued.
1632 *
1633 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1634 * the ring. Since the ring is a contiguous structure, they can't be physically
1635 * removed. Instead, there are two options:
1636 *
1637 * 1) If the HC is in the middle of processing the URB to be canceled, we
1638 * simply move the ring's dequeue pointer past those TRBs using the Set
1639 * Transfer Ring Dequeue Pointer command. This will be the common case,
1640 * when drivers timeout on the last submitted URB and attempt to cancel.
1641 *
1642 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1643 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1644 * HC will need to invalidate the any TRBs it has cached after the stop
1645 * endpoint command, as noted in the xHCI 0.95 errata.
1646 *
1647 * 3) The TD may have completed by the time the Stop Endpoint Command
1648 * completes, so software needs to handle that case too.
1649 *
1650 * This function should protect against the TD enqueueing code ringing the
1651 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1652 * It also needs to account for multiple cancellations on happening at the same
1653 * time for the same endpoint.
1654 *
1655 * Note that this function can be called in any context, or so says
1656 * usb_hcd_unlink_urb()
1657 */
1658static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1659{
1660 unsigned long flags;
1661 int ret, i;
1662 u32 temp;
1663 struct xhci_hcd *xhci;
1664 struct urb_priv *urb_priv;
1665 struct xhci_td *td;
1666 unsigned int ep_index;
1667 struct xhci_ring *ep_ring;
1668 struct xhci_virt_ep *ep;
1669 struct xhci_command *command;
1670 struct xhci_virt_device *vdev;
1671
1672 xhci = hcd_to_xhci(hcd);
1673 spin_lock_irqsave(&xhci->lock, flags);
1674
1675 trace_xhci_urb_dequeue(urb);
1676
1677 /* Make sure the URB hasn't completed or been unlinked already */
1678 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1679 if (ret)
1680 goto done;
1681
1682 /* give back URB now if we can't queue it for cancel */
1683 vdev = xhci->devs[urb->dev->slot_id];
1684 urb_priv = urb->hcpriv;
1685 if (!vdev || !urb_priv)
1686 goto err_giveback;
1687
1688 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1689 ep = &vdev->eps[ep_index];
1690 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1691 if (!ep || !ep_ring)
1692 goto err_giveback;
1693
1694 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1695 temp = readl(addr: &xhci->op_regs->status);
1696 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1697 xhci_hc_died(xhci);
1698 goto done;
1699 }
1700
1701 /*
1702 * check ring is not re-allocated since URB was enqueued. If it is, then
1703 * make sure none of the ring related pointers in this URB private data
1704 * are touched, such as td_list, otherwise we overwrite freed data
1705 */
1706 if (!td_on_ring(td: &urb_priv->td[0], ring: ep_ring)) {
1707 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1708 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1709 td = &urb_priv->td[i];
1710 if (!list_empty(head: &td->cancelled_td_list))
1711 list_del_init(entry: &td->cancelled_td_list);
1712 }
1713 goto err_giveback;
1714 }
1715
1716 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1717 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_cancel_urb,
1718 fmt: "HC halted, freeing TD manually.");
1719 for (i = urb_priv->num_tds_done;
1720 i < urb_priv->num_tds;
1721 i++) {
1722 td = &urb_priv->td[i];
1723 if (!list_empty(head: &td->td_list))
1724 list_del_init(entry: &td->td_list);
1725 if (!list_empty(head: &td->cancelled_td_list))
1726 list_del_init(entry: &td->cancelled_td_list);
1727 }
1728 goto err_giveback;
1729 }
1730
1731 i = urb_priv->num_tds_done;
1732 if (i < urb_priv->num_tds)
1733 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_cancel_urb,
1734 fmt: "Cancel URB %p, dev %s, ep 0x%x, "
1735 "starting at offset 0x%llx",
1736 urb, urb->dev->devpath,
1737 urb->ep->desc.bEndpointAddress,
1738 (unsigned long long) xhci_trb_virt_to_dma(
1739 seg: urb_priv->td[i].start_seg,
1740 trb: urb_priv->td[i].first_trb));
1741
1742 for (; i < urb_priv->num_tds; i++) {
1743 td = &urb_priv->td[i];
1744 /* TD can already be on cancelled list if ep halted on it */
1745 if (list_empty(head: &td->cancelled_td_list)) {
1746 td->cancel_status = TD_DIRTY;
1747 list_add_tail(new: &td->cancelled_td_list,
1748 head: &ep->cancelled_td_list);
1749 }
1750 }
1751
1752 /* Queue a stop endpoint command, but only if this is
1753 * the first cancellation to be handled.
1754 */
1755 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1756 command = xhci_alloc_command(xhci, allocate_completion: false, GFP_ATOMIC);
1757 if (!command) {
1758 ret = -ENOMEM;
1759 goto done;
1760 }
1761 ep->ep_state |= EP_STOP_CMD_PENDING;
1762 xhci_queue_stop_endpoint(xhci, cmd: command, slot_id: urb->dev->slot_id,
1763 ep_index, suspend: 0);
1764 xhci_ring_cmd_db(xhci);
1765 }
1766done:
1767 spin_unlock_irqrestore(lock: &xhci->lock, flags);
1768 return ret;
1769
1770err_giveback:
1771 if (urb_priv)
1772 xhci_urb_free_priv(urb_priv);
1773 usb_hcd_unlink_urb_from_ep(hcd, urb);
1774 spin_unlock_irqrestore(lock: &xhci->lock, flags);
1775 usb_hcd_giveback_urb(hcd, urb, status: -ESHUTDOWN);
1776 return ret;
1777}
1778
1779/* Drop an endpoint from a new bandwidth configuration for this device.
1780 * Only one call to this function is allowed per endpoint before
1781 * check_bandwidth() or reset_bandwidth() must be called.
1782 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1783 * add the endpoint to the schedule with possibly new parameters denoted by a
1784 * different endpoint descriptor in usb_host_endpoint.
1785 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1786 * not allowed.
1787 *
1788 * The USB core will not allow URBs to be queued to an endpoint that is being
1789 * disabled, so there's no need for mutual exclusion to protect
1790 * the xhci->devs[slot_id] structure.
1791 */
1792int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1793 struct usb_host_endpoint *ep)
1794{
1795 struct xhci_hcd *xhci;
1796 struct xhci_container_ctx *in_ctx, *out_ctx;
1797 struct xhci_input_control_ctx *ctrl_ctx;
1798 unsigned int ep_index;
1799 struct xhci_ep_ctx *ep_ctx;
1800 u32 drop_flag;
1801 u32 new_add_flags, new_drop_flags;
1802 int ret;
1803
1804 ret = xhci_check_args(hcd, udev, ep, check_ep: 1, check_virt_dev: true, func: __func__);
1805 if (ret <= 0)
1806 return ret;
1807 xhci = hcd_to_xhci(hcd);
1808 if (xhci->xhc_state & XHCI_STATE_DYING)
1809 return -ENODEV;
1810
1811 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1812 drop_flag = xhci_get_endpoint_flag(desc: &ep->desc);
1813 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1814 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1815 __func__, drop_flag);
1816 return 0;
1817 }
1818
1819 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1820 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1821 ctrl_ctx = xhci_get_input_control_ctx(ctx: in_ctx);
1822 if (!ctrl_ctx) {
1823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1824 __func__);
1825 return 0;
1826 }
1827
1828 ep_index = xhci_get_endpoint_index(&ep->desc);
1829 ep_ctx = xhci_get_ep_ctx(xhci, ctx: out_ctx, ep_index);
1830 /* If the HC already knows the endpoint is disabled,
1831 * or the HCD has noted it is disabled, ignore this request
1832 */
1833 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1834 le32_to_cpu(ctrl_ctx->drop_flags) &
1835 xhci_get_endpoint_flag(desc: &ep->desc)) {
1836 /* Do not warn when called after a usb_device_reset */
1837 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1838 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1839 __func__, ep);
1840 return 0;
1841 }
1842
1843 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1844 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1845
1846 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1847 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1848
1849 xhci_debugfs_remove_endpoint(xhci, virt_dev: xhci->devs[udev->slot_id], ep_index);
1850
1851 xhci_endpoint_zero(xhci, virt_dev: xhci->devs[udev->slot_id], ep);
1852
1853 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1854 (unsigned int) ep->desc.bEndpointAddress,
1855 udev->slot_id,
1856 (unsigned int) new_drop_flags,
1857 (unsigned int) new_add_flags);
1858 return 0;
1859}
1860EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1861
1862/* Add an endpoint to a new possible bandwidth configuration for this device.
1863 * Only one call to this function is allowed per endpoint before
1864 * check_bandwidth() or reset_bandwidth() must be called.
1865 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1866 * add the endpoint to the schedule with possibly new parameters denoted by a
1867 * different endpoint descriptor in usb_host_endpoint.
1868 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1869 * not allowed.
1870 *
1871 * The USB core will not allow URBs to be queued to an endpoint until the
1872 * configuration or alt setting is installed in the device, so there's no need
1873 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1874 */
1875int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1876 struct usb_host_endpoint *ep)
1877{
1878 struct xhci_hcd *xhci;
1879 struct xhci_container_ctx *in_ctx;
1880 unsigned int ep_index;
1881 struct xhci_input_control_ctx *ctrl_ctx;
1882 struct xhci_ep_ctx *ep_ctx;
1883 u32 added_ctxs;
1884 u32 new_add_flags, new_drop_flags;
1885 struct xhci_virt_device *virt_dev;
1886 int ret = 0;
1887
1888 ret = xhci_check_args(hcd, udev, ep, check_ep: 1, check_virt_dev: true, func: __func__);
1889 if (ret <= 0) {
1890 /* So we won't queue a reset ep command for a root hub */
1891 ep->hcpriv = NULL;
1892 return ret;
1893 }
1894 xhci = hcd_to_xhci(hcd);
1895 if (xhci->xhc_state & XHCI_STATE_DYING)
1896 return -ENODEV;
1897
1898 added_ctxs = xhci_get_endpoint_flag(desc: &ep->desc);
1899 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1900 /* FIXME when we have to issue an evaluate endpoint command to
1901 * deal with ep0 max packet size changing once we get the
1902 * descriptors
1903 */
1904 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1905 __func__, added_ctxs);
1906 return 0;
1907 }
1908
1909 virt_dev = xhci->devs[udev->slot_id];
1910 in_ctx = virt_dev->in_ctx;
1911 ctrl_ctx = xhci_get_input_control_ctx(ctx: in_ctx);
1912 if (!ctrl_ctx) {
1913 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1914 __func__);
1915 return 0;
1916 }
1917
1918 ep_index = xhci_get_endpoint_index(&ep->desc);
1919 /* If this endpoint is already in use, and the upper layers are trying
1920 * to add it again without dropping it, reject the addition.
1921 */
1922 if (virt_dev->eps[ep_index].ring &&
1923 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1924 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1925 "without dropping it.\n",
1926 (unsigned int) ep->desc.bEndpointAddress);
1927 return -EINVAL;
1928 }
1929
1930 /* If the HCD has already noted the endpoint is enabled,
1931 * ignore this request.
1932 */
1933 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1934 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1935 __func__, ep);
1936 return 0;
1937 }
1938
1939 /*
1940 * Configuration and alternate setting changes must be done in
1941 * process context, not interrupt context (or so documenation
1942 * for usb_set_interface() and usb_set_configuration() claim).
1943 */
1944 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1945 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1946 __func__, ep->desc.bEndpointAddress);
1947 return -ENOMEM;
1948 }
1949
1950 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1951 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1952
1953 /* If xhci_endpoint_disable() was called for this endpoint, but the
1954 * xHC hasn't been notified yet through the check_bandwidth() call,
1955 * this re-adds a new state for the endpoint from the new endpoint
1956 * descriptors. We must drop and re-add this endpoint, so we leave the
1957 * drop flags alone.
1958 */
1959 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1960
1961 /* Store the usb_device pointer for later use */
1962 ep->hcpriv = udev;
1963
1964 ep_ctx = xhci_get_ep_ctx(xhci, ctx: virt_dev->in_ctx, ep_index);
1965 trace_xhci_add_endpoint(ctx: ep_ctx);
1966
1967 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1968 (unsigned int) ep->desc.bEndpointAddress,
1969 udev->slot_id,
1970 (unsigned int) new_drop_flags,
1971 (unsigned int) new_add_flags);
1972 return 0;
1973}
1974EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1975
1976static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1977{
1978 struct xhci_input_control_ctx *ctrl_ctx;
1979 struct xhci_ep_ctx *ep_ctx;
1980 struct xhci_slot_ctx *slot_ctx;
1981 int i;
1982
1983 ctrl_ctx = xhci_get_input_control_ctx(ctx: virt_dev->in_ctx);
1984 if (!ctrl_ctx) {
1985 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1986 __func__);
1987 return;
1988 }
1989
1990 /* When a device's add flag and drop flag are zero, any subsequent
1991 * configure endpoint command will leave that endpoint's state
1992 * untouched. Make sure we don't leave any old state in the input
1993 * endpoint contexts.
1994 */
1995 ctrl_ctx->drop_flags = 0;
1996 ctrl_ctx->add_flags = 0;
1997 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->in_ctx);
1998 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1999 /* Endpoint 0 is always valid */
2000 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2001 for (i = 1; i < 31; i++) {
2002 ep_ctx = xhci_get_ep_ctx(xhci, ctx: virt_dev->in_ctx, ep_index: i);
2003 ep_ctx->ep_info = 0;
2004 ep_ctx->ep_info2 = 0;
2005 ep_ctx->deq = 0;
2006 ep_ctx->tx_info = 0;
2007 }
2008}
2009
2010static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2011 struct usb_device *udev, u32 *cmd_status)
2012{
2013 int ret;
2014
2015 switch (*cmd_status) {
2016 case COMP_COMMAND_ABORTED:
2017 case COMP_COMMAND_RING_STOPPED:
2018 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2019 ret = -ETIME;
2020 break;
2021 case COMP_RESOURCE_ERROR:
2022 dev_warn(&udev->dev,
2023 "Not enough host controller resources for new device state.\n");
2024 ret = -ENOMEM;
2025 /* FIXME: can we allocate more resources for the HC? */
2026 break;
2027 case COMP_BANDWIDTH_ERROR:
2028 case COMP_SECONDARY_BANDWIDTH_ERROR:
2029 dev_warn(&udev->dev,
2030 "Not enough bandwidth for new device state.\n");
2031 ret = -ENOSPC;
2032 /* FIXME: can we go back to the old state? */
2033 break;
2034 case COMP_TRB_ERROR:
2035 /* the HCD set up something wrong */
2036 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2037 "add flag = 1, "
2038 "and endpoint is not disabled.\n");
2039 ret = -EINVAL;
2040 break;
2041 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2042 dev_warn(&udev->dev,
2043 "ERROR: Incompatible device for endpoint configure command.\n");
2044 ret = -ENODEV;
2045 break;
2046 case COMP_SUCCESS:
2047 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
2048 fmt: "Successful Endpoint Configure command");
2049 ret = 0;
2050 break;
2051 default:
2052 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2053 *cmd_status);
2054 ret = -EINVAL;
2055 break;
2056 }
2057 return ret;
2058}
2059
2060static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2061 struct usb_device *udev, u32 *cmd_status)
2062{
2063 int ret;
2064
2065 switch (*cmd_status) {
2066 case COMP_COMMAND_ABORTED:
2067 case COMP_COMMAND_RING_STOPPED:
2068 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2069 ret = -ETIME;
2070 break;
2071 case COMP_PARAMETER_ERROR:
2072 dev_warn(&udev->dev,
2073 "WARN: xHCI driver setup invalid evaluate context command.\n");
2074 ret = -EINVAL;
2075 break;
2076 case COMP_SLOT_NOT_ENABLED_ERROR:
2077 dev_warn(&udev->dev,
2078 "WARN: slot not enabled for evaluate context command.\n");
2079 ret = -EINVAL;
2080 break;
2081 case COMP_CONTEXT_STATE_ERROR:
2082 dev_warn(&udev->dev,
2083 "WARN: invalid context state for evaluate context command.\n");
2084 ret = -EINVAL;
2085 break;
2086 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2087 dev_warn(&udev->dev,
2088 "ERROR: Incompatible device for evaluate context command.\n");
2089 ret = -ENODEV;
2090 break;
2091 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2092 /* Max Exit Latency too large error */
2093 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2094 ret = -EINVAL;
2095 break;
2096 case COMP_SUCCESS:
2097 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
2098 fmt: "Successful evaluate context command");
2099 ret = 0;
2100 break;
2101 default:
2102 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2103 *cmd_status);
2104 ret = -EINVAL;
2105 break;
2106 }
2107 return ret;
2108}
2109
2110static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2111 struct xhci_input_control_ctx *ctrl_ctx)
2112{
2113 u32 valid_add_flags;
2114 u32 valid_drop_flags;
2115
2116 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2117 * (bit 1). The default control endpoint is added during the Address
2118 * Device command and is never removed until the slot is disabled.
2119 */
2120 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2121 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2122
2123 /* Use hweight32 to count the number of ones in the add flags, or
2124 * number of endpoints added. Don't count endpoints that are changed
2125 * (both added and dropped).
2126 */
2127 return hweight32(valid_add_flags) -
2128 hweight32(valid_add_flags & valid_drop_flags);
2129}
2130
2131static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2132 struct xhci_input_control_ctx *ctrl_ctx)
2133{
2134 u32 valid_add_flags;
2135 u32 valid_drop_flags;
2136
2137 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2138 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2139
2140 return hweight32(valid_drop_flags) -
2141 hweight32(valid_add_flags & valid_drop_flags);
2142}
2143
2144/*
2145 * We need to reserve the new number of endpoints before the configure endpoint
2146 * command completes. We can't subtract the dropped endpoints from the number
2147 * of active endpoints until the command completes because we can oversubscribe
2148 * the host in this case:
2149 *
2150 * - the first configure endpoint command drops more endpoints than it adds
2151 * - a second configure endpoint command that adds more endpoints is queued
2152 * - the first configure endpoint command fails, so the config is unchanged
2153 * - the second command may succeed, even though there isn't enough resources
2154 *
2155 * Must be called with xhci->lock held.
2156 */
2157static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2158 struct xhci_input_control_ctx *ctrl_ctx)
2159{
2160 u32 added_eps;
2161
2162 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2163 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2164 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2165 fmt: "Not enough ep ctxs: "
2166 "%u active, need to add %u, limit is %u.",
2167 xhci->num_active_eps, added_eps,
2168 xhci->limit_active_eps);
2169 return -ENOMEM;
2170 }
2171 xhci->num_active_eps += added_eps;
2172 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2173 fmt: "Adding %u ep ctxs, %u now active.", added_eps,
2174 xhci->num_active_eps);
2175 return 0;
2176}
2177
2178/*
2179 * The configure endpoint was failed by the xHC for some other reason, so we
2180 * need to revert the resources that failed configuration would have used.
2181 *
2182 * Must be called with xhci->lock held.
2183 */
2184static void xhci_free_host_resources(struct xhci_hcd *xhci,
2185 struct xhci_input_control_ctx *ctrl_ctx)
2186{
2187 u32 num_failed_eps;
2188
2189 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2190 xhci->num_active_eps -= num_failed_eps;
2191 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2192 fmt: "Removing %u failed ep ctxs, %u now active.",
2193 num_failed_eps,
2194 xhci->num_active_eps);
2195}
2196
2197/*
2198 * Now that the command has completed, clean up the active endpoint count by
2199 * subtracting out the endpoints that were dropped (but not changed).
2200 *
2201 * Must be called with xhci->lock held.
2202 */
2203static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2204 struct xhci_input_control_ctx *ctrl_ctx)
2205{
2206 u32 num_dropped_eps;
2207
2208 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2209 xhci->num_active_eps -= num_dropped_eps;
2210 if (num_dropped_eps)
2211 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2212 fmt: "Removing %u dropped ep ctxs, %u now active.",
2213 num_dropped_eps,
2214 xhci->num_active_eps);
2215}
2216
2217static unsigned int xhci_get_block_size(struct usb_device *udev)
2218{
2219 switch (udev->speed) {
2220 case USB_SPEED_LOW:
2221 case USB_SPEED_FULL:
2222 return FS_BLOCK;
2223 case USB_SPEED_HIGH:
2224 return HS_BLOCK;
2225 case USB_SPEED_SUPER:
2226 case USB_SPEED_SUPER_PLUS:
2227 return SS_BLOCK;
2228 case USB_SPEED_UNKNOWN:
2229 default:
2230 /* Should never happen */
2231 return 1;
2232 }
2233}
2234
2235static unsigned int
2236xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2237{
2238 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2239 return LS_OVERHEAD;
2240 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2241 return FS_OVERHEAD;
2242 return HS_OVERHEAD;
2243}
2244
2245/* If we are changing a LS/FS device under a HS hub,
2246 * make sure (if we are activating a new TT) that the HS bus has enough
2247 * bandwidth for this new TT.
2248 */
2249static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2250 struct xhci_virt_device *virt_dev,
2251 int old_active_eps)
2252{
2253 struct xhci_interval_bw_table *bw_table;
2254 struct xhci_tt_bw_info *tt_info;
2255
2256 /* Find the bandwidth table for the root port this TT is attached to. */
2257 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2258 tt_info = virt_dev->tt_info;
2259 /* If this TT already had active endpoints, the bandwidth for this TT
2260 * has already been added. Removing all periodic endpoints (and thus
2261 * making the TT enactive) will only decrease the bandwidth used.
2262 */
2263 if (old_active_eps)
2264 return 0;
2265 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2266 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2267 return -ENOMEM;
2268 return 0;
2269 }
2270 /* Not sure why we would have no new active endpoints...
2271 *
2272 * Maybe because of an Evaluate Context change for a hub update or a
2273 * control endpoint 0 max packet size change?
2274 * FIXME: skip the bandwidth calculation in that case.
2275 */
2276 return 0;
2277}
2278
2279static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2280 struct xhci_virt_device *virt_dev)
2281{
2282 unsigned int bw_reserved;
2283
2284 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2285 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2286 return -ENOMEM;
2287
2288 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2289 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2290 return -ENOMEM;
2291
2292 return 0;
2293}
2294
2295/*
2296 * This algorithm is a very conservative estimate of the worst-case scheduling
2297 * scenario for any one interval. The hardware dynamically schedules the
2298 * packets, so we can't tell which microframe could be the limiting factor in
2299 * the bandwidth scheduling. This only takes into account periodic endpoints.
2300 *
2301 * Obviously, we can't solve an NP complete problem to find the minimum worst
2302 * case scenario. Instead, we come up with an estimate that is no less than
2303 * the worst case bandwidth used for any one microframe, but may be an
2304 * over-estimate.
2305 *
2306 * We walk the requirements for each endpoint by interval, starting with the
2307 * smallest interval, and place packets in the schedule where there is only one
2308 * possible way to schedule packets for that interval. In order to simplify
2309 * this algorithm, we record the largest max packet size for each interval, and
2310 * assume all packets will be that size.
2311 *
2312 * For interval 0, we obviously must schedule all packets for each interval.
2313 * The bandwidth for interval 0 is just the amount of data to be transmitted
2314 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2315 * the number of packets).
2316 *
2317 * For interval 1, we have two possible microframes to schedule those packets
2318 * in. For this algorithm, if we can schedule the same number of packets for
2319 * each possible scheduling opportunity (each microframe), we will do so. The
2320 * remaining number of packets will be saved to be transmitted in the gaps in
2321 * the next interval's scheduling sequence.
2322 *
2323 * As we move those remaining packets to be scheduled with interval 2 packets,
2324 * we have to double the number of remaining packets to transmit. This is
2325 * because the intervals are actually powers of 2, and we would be transmitting
2326 * the previous interval's packets twice in this interval. We also have to be
2327 * sure that when we look at the largest max packet size for this interval, we
2328 * also look at the largest max packet size for the remaining packets and take
2329 * the greater of the two.
2330 *
2331 * The algorithm continues to evenly distribute packets in each scheduling
2332 * opportunity, and push the remaining packets out, until we get to the last
2333 * interval. Then those packets and their associated overhead are just added
2334 * to the bandwidth used.
2335 */
2336static int xhci_check_bw_table(struct xhci_hcd *xhci,
2337 struct xhci_virt_device *virt_dev,
2338 int old_active_eps)
2339{
2340 unsigned int bw_reserved;
2341 unsigned int max_bandwidth;
2342 unsigned int bw_used;
2343 unsigned int block_size;
2344 struct xhci_interval_bw_table *bw_table;
2345 unsigned int packet_size = 0;
2346 unsigned int overhead = 0;
2347 unsigned int packets_transmitted = 0;
2348 unsigned int packets_remaining = 0;
2349 unsigned int i;
2350
2351 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2352 return xhci_check_ss_bw(xhci, virt_dev);
2353
2354 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2355 max_bandwidth = HS_BW_LIMIT;
2356 /* Convert percent of bus BW reserved to blocks reserved */
2357 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2358 } else {
2359 max_bandwidth = FS_BW_LIMIT;
2360 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2361 }
2362
2363 bw_table = virt_dev->bw_table;
2364 /* We need to translate the max packet size and max ESIT payloads into
2365 * the units the hardware uses.
2366 */
2367 block_size = xhci_get_block_size(udev: virt_dev->udev);
2368
2369 /* If we are manipulating a LS/FS device under a HS hub, double check
2370 * that the HS bus has enough bandwidth if we are activing a new TT.
2371 */
2372 if (virt_dev->tt_info) {
2373 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2374 fmt: "Recalculating BW for rootport %u",
2375 virt_dev->real_port);
2376 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2377 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2378 "newly activated TT.\n");
2379 return -ENOMEM;
2380 }
2381 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2382 fmt: "Recalculating BW for TT slot %u port %u",
2383 virt_dev->tt_info->slot_id,
2384 virt_dev->tt_info->ttport);
2385 } else {
2386 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2387 fmt: "Recalculating BW for rootport %u",
2388 virt_dev->real_port);
2389 }
2390
2391 /* Add in how much bandwidth will be used for interval zero, or the
2392 * rounded max ESIT payload + number of packets * largest overhead.
2393 */
2394 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2395 bw_table->interval_bw[0].num_packets *
2396 xhci_get_largest_overhead(interval_bw: &bw_table->interval_bw[0]);
2397
2398 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2399 unsigned int bw_added;
2400 unsigned int largest_mps;
2401 unsigned int interval_overhead;
2402
2403 /*
2404 * How many packets could we transmit in this interval?
2405 * If packets didn't fit in the previous interval, we will need
2406 * to transmit that many packets twice within this interval.
2407 */
2408 packets_remaining = 2 * packets_remaining +
2409 bw_table->interval_bw[i].num_packets;
2410
2411 /* Find the largest max packet size of this or the previous
2412 * interval.
2413 */
2414 if (list_empty(head: &bw_table->interval_bw[i].endpoints))
2415 largest_mps = 0;
2416 else {
2417 struct xhci_virt_ep *virt_ep;
2418 struct list_head *ep_entry;
2419
2420 ep_entry = bw_table->interval_bw[i].endpoints.next;
2421 virt_ep = list_entry(ep_entry,
2422 struct xhci_virt_ep, bw_endpoint_list);
2423 /* Convert to blocks, rounding up */
2424 largest_mps = DIV_ROUND_UP(
2425 virt_ep->bw_info.max_packet_size,
2426 block_size);
2427 }
2428 if (largest_mps > packet_size)
2429 packet_size = largest_mps;
2430
2431 /* Use the larger overhead of this or the previous interval. */
2432 interval_overhead = xhci_get_largest_overhead(
2433 interval_bw: &bw_table->interval_bw[i]);
2434 if (interval_overhead > overhead)
2435 overhead = interval_overhead;
2436
2437 /* How many packets can we evenly distribute across
2438 * (1 << (i + 1)) possible scheduling opportunities?
2439 */
2440 packets_transmitted = packets_remaining >> (i + 1);
2441
2442 /* Add in the bandwidth used for those scheduled packets */
2443 bw_added = packets_transmitted * (overhead + packet_size);
2444
2445 /* How many packets do we have remaining to transmit? */
2446 packets_remaining = packets_remaining % (1 << (i + 1));
2447
2448 /* What largest max packet size should those packets have? */
2449 /* If we've transmitted all packets, don't carry over the
2450 * largest packet size.
2451 */
2452 if (packets_remaining == 0) {
2453 packet_size = 0;
2454 overhead = 0;
2455 } else if (packets_transmitted > 0) {
2456 /* Otherwise if we do have remaining packets, and we've
2457 * scheduled some packets in this interval, take the
2458 * largest max packet size from endpoints with this
2459 * interval.
2460 */
2461 packet_size = largest_mps;
2462 overhead = interval_overhead;
2463 }
2464 /* Otherwise carry over packet_size and overhead from the last
2465 * time we had a remainder.
2466 */
2467 bw_used += bw_added;
2468 if (bw_used > max_bandwidth) {
2469 xhci_warn(xhci, "Not enough bandwidth. "
2470 "Proposed: %u, Max: %u\n",
2471 bw_used, max_bandwidth);
2472 return -ENOMEM;
2473 }
2474 }
2475 /*
2476 * Ok, we know we have some packets left over after even-handedly
2477 * scheduling interval 15. We don't know which microframes they will
2478 * fit into, so we over-schedule and say they will be scheduled every
2479 * microframe.
2480 */
2481 if (packets_remaining > 0)
2482 bw_used += overhead + packet_size;
2483
2484 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2485 unsigned int port_index = virt_dev->real_port - 1;
2486
2487 /* OK, we're manipulating a HS device attached to a
2488 * root port bandwidth domain. Include the number of active TTs
2489 * in the bandwidth used.
2490 */
2491 bw_used += TT_HS_OVERHEAD *
2492 xhci->rh_bw[port_index].num_active_tts;
2493 }
2494
2495 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
2496 fmt: "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2497 "Available: %u " "percent",
2498 bw_used, max_bandwidth, bw_reserved,
2499 (max_bandwidth - bw_used - bw_reserved) * 100 /
2500 max_bandwidth);
2501
2502 bw_used += bw_reserved;
2503 if (bw_used > max_bandwidth) {
2504 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2505 bw_used, max_bandwidth);
2506 return -ENOMEM;
2507 }
2508
2509 bw_table->bw_used = bw_used;
2510 return 0;
2511}
2512
2513static bool xhci_is_async_ep(unsigned int ep_type)
2514{
2515 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2516 ep_type != ISOC_IN_EP &&
2517 ep_type != INT_IN_EP);
2518}
2519
2520static bool xhci_is_sync_in_ep(unsigned int ep_type)
2521{
2522 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2523}
2524
2525static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2526{
2527 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2528
2529 if (ep_bw->ep_interval == 0)
2530 return SS_OVERHEAD_BURST +
2531 (ep_bw->mult * ep_bw->num_packets *
2532 (SS_OVERHEAD + mps));
2533 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2534 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2535 1 << ep_bw->ep_interval);
2536
2537}
2538
2539static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2540 struct xhci_bw_info *ep_bw,
2541 struct xhci_interval_bw_table *bw_table,
2542 struct usb_device *udev,
2543 struct xhci_virt_ep *virt_ep,
2544 struct xhci_tt_bw_info *tt_info)
2545{
2546 struct xhci_interval_bw *interval_bw;
2547 int normalized_interval;
2548
2549 if (xhci_is_async_ep(ep_type: ep_bw->type))
2550 return;
2551
2552 if (udev->speed >= USB_SPEED_SUPER) {
2553 if (xhci_is_sync_in_ep(ep_type: ep_bw->type))
2554 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2555 xhci_get_ss_bw_consumed(ep_bw);
2556 else
2557 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2558 xhci_get_ss_bw_consumed(ep_bw);
2559 return;
2560 }
2561
2562 /* SuperSpeed endpoints never get added to intervals in the table, so
2563 * this check is only valid for HS/FS/LS devices.
2564 */
2565 if (list_empty(head: &virt_ep->bw_endpoint_list))
2566 return;
2567 /* For LS/FS devices, we need to translate the interval expressed in
2568 * microframes to frames.
2569 */
2570 if (udev->speed == USB_SPEED_HIGH)
2571 normalized_interval = ep_bw->ep_interval;
2572 else
2573 normalized_interval = ep_bw->ep_interval - 3;
2574
2575 if (normalized_interval == 0)
2576 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2577 interval_bw = &bw_table->interval_bw[normalized_interval];
2578 interval_bw->num_packets -= ep_bw->num_packets;
2579 switch (udev->speed) {
2580 case USB_SPEED_LOW:
2581 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2582 break;
2583 case USB_SPEED_FULL:
2584 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2585 break;
2586 case USB_SPEED_HIGH:
2587 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2588 break;
2589 default:
2590 /* Should never happen because only LS/FS/HS endpoints will get
2591 * added to the endpoint list.
2592 */
2593 return;
2594 }
2595 if (tt_info)
2596 tt_info->active_eps -= 1;
2597 list_del_init(entry: &virt_ep->bw_endpoint_list);
2598}
2599
2600static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2601 struct xhci_bw_info *ep_bw,
2602 struct xhci_interval_bw_table *bw_table,
2603 struct usb_device *udev,
2604 struct xhci_virt_ep *virt_ep,
2605 struct xhci_tt_bw_info *tt_info)
2606{
2607 struct xhci_interval_bw *interval_bw;
2608 struct xhci_virt_ep *smaller_ep;
2609 int normalized_interval;
2610
2611 if (xhci_is_async_ep(ep_type: ep_bw->type))
2612 return;
2613
2614 if (udev->speed == USB_SPEED_SUPER) {
2615 if (xhci_is_sync_in_ep(ep_type: ep_bw->type))
2616 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2617 xhci_get_ss_bw_consumed(ep_bw);
2618 else
2619 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2620 xhci_get_ss_bw_consumed(ep_bw);
2621 return;
2622 }
2623
2624 /* For LS/FS devices, we need to translate the interval expressed in
2625 * microframes to frames.
2626 */
2627 if (udev->speed == USB_SPEED_HIGH)
2628 normalized_interval = ep_bw->ep_interval;
2629 else
2630 normalized_interval = ep_bw->ep_interval - 3;
2631
2632 if (normalized_interval == 0)
2633 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2634 interval_bw = &bw_table->interval_bw[normalized_interval];
2635 interval_bw->num_packets += ep_bw->num_packets;
2636 switch (udev->speed) {
2637 case USB_SPEED_LOW:
2638 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2639 break;
2640 case USB_SPEED_FULL:
2641 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2642 break;
2643 case USB_SPEED_HIGH:
2644 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2645 break;
2646 default:
2647 /* Should never happen because only LS/FS/HS endpoints will get
2648 * added to the endpoint list.
2649 */
2650 return;
2651 }
2652
2653 if (tt_info)
2654 tt_info->active_eps += 1;
2655 /* Insert the endpoint into the list, largest max packet size first. */
2656 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2657 bw_endpoint_list) {
2658 if (ep_bw->max_packet_size >=
2659 smaller_ep->bw_info.max_packet_size) {
2660 /* Add the new ep before the smaller endpoint */
2661 list_add_tail(new: &virt_ep->bw_endpoint_list,
2662 head: &smaller_ep->bw_endpoint_list);
2663 return;
2664 }
2665 }
2666 /* Add the new endpoint at the end of the list. */
2667 list_add_tail(new: &virt_ep->bw_endpoint_list,
2668 head: &interval_bw->endpoints);
2669}
2670
2671void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2672 struct xhci_virt_device *virt_dev,
2673 int old_active_eps)
2674{
2675 struct xhci_root_port_bw_info *rh_bw_info;
2676 if (!virt_dev->tt_info)
2677 return;
2678
2679 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2680 if (old_active_eps == 0 &&
2681 virt_dev->tt_info->active_eps != 0) {
2682 rh_bw_info->num_active_tts += 1;
2683 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2684 } else if (old_active_eps != 0 &&
2685 virt_dev->tt_info->active_eps == 0) {
2686 rh_bw_info->num_active_tts -= 1;
2687 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2688 }
2689}
2690
2691static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2692 struct xhci_virt_device *virt_dev,
2693 struct xhci_container_ctx *in_ctx)
2694{
2695 struct xhci_bw_info ep_bw_info[31];
2696 int i;
2697 struct xhci_input_control_ctx *ctrl_ctx;
2698 int old_active_eps = 0;
2699
2700 if (virt_dev->tt_info)
2701 old_active_eps = virt_dev->tt_info->active_eps;
2702
2703 ctrl_ctx = xhci_get_input_control_ctx(ctx: in_ctx);
2704 if (!ctrl_ctx) {
2705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2706 __func__);
2707 return -ENOMEM;
2708 }
2709
2710 for (i = 0; i < 31; i++) {
2711 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2712 continue;
2713
2714 /* Make a copy of the BW info in case we need to revert this */
2715 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2716 sizeof(ep_bw_info[i]));
2717 /* Drop the endpoint from the interval table if the endpoint is
2718 * being dropped or changed.
2719 */
2720 if (EP_IS_DROPPED(ctrl_ctx, i))
2721 xhci_drop_ep_from_interval_table(xhci,
2722 ep_bw: &virt_dev->eps[i].bw_info,
2723 bw_table: virt_dev->bw_table,
2724 udev: virt_dev->udev,
2725 virt_ep: &virt_dev->eps[i],
2726 tt_info: virt_dev->tt_info);
2727 }
2728 /* Overwrite the information stored in the endpoints' bw_info */
2729 xhci_update_bw_info(xhci, in_ctx: virt_dev->in_ctx, ctrl_ctx, virt_dev);
2730 for (i = 0; i < 31; i++) {
2731 /* Add any changed or added endpoints to the interval table */
2732 if (EP_IS_ADDED(ctrl_ctx, i))
2733 xhci_add_ep_to_interval_table(xhci,
2734 ep_bw: &virt_dev->eps[i].bw_info,
2735 bw_table: virt_dev->bw_table,
2736 udev: virt_dev->udev,
2737 virt_ep: &virt_dev->eps[i],
2738 tt_info: virt_dev->tt_info);
2739 }
2740
2741 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2742 /* Ok, this fits in the bandwidth we have.
2743 * Update the number of active TTs.
2744 */
2745 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2746 return 0;
2747 }
2748
2749 /* We don't have enough bandwidth for this, revert the stored info. */
2750 for (i = 0; i < 31; i++) {
2751 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2752 continue;
2753
2754 /* Drop the new copies of any added or changed endpoints from
2755 * the interval table.
2756 */
2757 if (EP_IS_ADDED(ctrl_ctx, i)) {
2758 xhci_drop_ep_from_interval_table(xhci,
2759 ep_bw: &virt_dev->eps[i].bw_info,
2760 bw_table: virt_dev->bw_table,
2761 udev: virt_dev->udev,
2762 virt_ep: &virt_dev->eps[i],
2763 tt_info: virt_dev->tt_info);
2764 }
2765 /* Revert the endpoint back to its old information */
2766 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2767 sizeof(ep_bw_info[i]));
2768 /* Add any changed or dropped endpoints back into the table */
2769 if (EP_IS_DROPPED(ctrl_ctx, i))
2770 xhci_add_ep_to_interval_table(xhci,
2771 ep_bw: &virt_dev->eps[i].bw_info,
2772 bw_table: virt_dev->bw_table,
2773 udev: virt_dev->udev,
2774 virt_ep: &virt_dev->eps[i],
2775 tt_info: virt_dev->tt_info);
2776 }
2777 return -ENOMEM;
2778}
2779
2780
2781/* Issue a configure endpoint command or evaluate context command
2782 * and wait for it to finish.
2783 */
2784static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2785 struct usb_device *udev,
2786 struct xhci_command *command,
2787 bool ctx_change, bool must_succeed)
2788{
2789 int ret;
2790 unsigned long flags;
2791 struct xhci_input_control_ctx *ctrl_ctx;
2792 struct xhci_virt_device *virt_dev;
2793 struct xhci_slot_ctx *slot_ctx;
2794
2795 if (!command)
2796 return -EINVAL;
2797
2798 spin_lock_irqsave(&xhci->lock, flags);
2799
2800 if (xhci->xhc_state & XHCI_STATE_DYING) {
2801 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2802 return -ESHUTDOWN;
2803 }
2804
2805 virt_dev = xhci->devs[udev->slot_id];
2806
2807 ctrl_ctx = xhci_get_input_control_ctx(ctx: command->in_ctx);
2808 if (!ctrl_ctx) {
2809 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2810 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2811 __func__);
2812 return -ENOMEM;
2813 }
2814
2815 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2816 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2817 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2818 xhci_warn(xhci, "Not enough host resources, "
2819 "active endpoint contexts = %u\n",
2820 xhci->num_active_eps);
2821 return -ENOMEM;
2822 }
2823 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2824 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx: command->in_ctx)) {
2825 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2826 xhci_free_host_resources(xhci, ctrl_ctx);
2827 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2828 xhci_warn(xhci, "Not enough bandwidth\n");
2829 return -ENOMEM;
2830 }
2831
2832 slot_ctx = xhci_get_slot_ctx(xhci, ctx: command->in_ctx);
2833
2834 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2835 trace_xhci_configure_endpoint(ctx: slot_ctx);
2836
2837 if (!ctx_change)
2838 ret = xhci_queue_configure_endpoint(xhci, cmd: command,
2839 in_ctx_ptr: command->in_ctx->dma,
2840 slot_id: udev->slot_id, command_must_succeed: must_succeed);
2841 else
2842 ret = xhci_queue_evaluate_context(xhci, cmd: command,
2843 in_ctx_ptr: command->in_ctx->dma,
2844 slot_id: udev->slot_id, command_must_succeed: must_succeed);
2845 if (ret < 0) {
2846 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2847 xhci_free_host_resources(xhci, ctrl_ctx);
2848 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2849 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
2850 fmt: "FIXME allocate a new ring segment");
2851 return -ENOMEM;
2852 }
2853 xhci_ring_cmd_db(xhci);
2854 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2855
2856 /* Wait for the configure endpoint command to complete */
2857 wait_for_completion(command->completion);
2858
2859 if (!ctx_change)
2860 ret = xhci_configure_endpoint_result(xhci, udev,
2861 cmd_status: &command->status);
2862 else
2863 ret = xhci_evaluate_context_result(xhci, udev,
2864 cmd_status: &command->status);
2865
2866 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2867 spin_lock_irqsave(&xhci->lock, flags);
2868 /* If the command failed, remove the reserved resources.
2869 * Otherwise, clean up the estimate to include dropped eps.
2870 */
2871 if (ret)
2872 xhci_free_host_resources(xhci, ctrl_ctx);
2873 else
2874 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2875 spin_unlock_irqrestore(lock: &xhci->lock, flags);
2876 }
2877 return ret;
2878}
2879
2880static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2881 struct xhci_virt_device *vdev, int i)
2882{
2883 struct xhci_virt_ep *ep = &vdev->eps[i];
2884
2885 if (ep->ep_state & EP_HAS_STREAMS) {
2886 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2887 xhci_get_endpoint_address(i));
2888 xhci_free_stream_info(xhci, stream_info: ep->stream_info);
2889 ep->stream_info = NULL;
2890 ep->ep_state &= ~EP_HAS_STREAMS;
2891 }
2892}
2893
2894/* Called after one or more calls to xhci_add_endpoint() or
2895 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2896 * to call xhci_reset_bandwidth().
2897 *
2898 * Since we are in the middle of changing either configuration or
2899 * installing a new alt setting, the USB core won't allow URBs to be
2900 * enqueued for any endpoint on the old config or interface. Nothing
2901 * else should be touching the xhci->devs[slot_id] structure, so we
2902 * don't need to take the xhci->lock for manipulating that.
2903 */
2904int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2905{
2906 int i;
2907 int ret = 0;
2908 struct xhci_hcd *xhci;
2909 struct xhci_virt_device *virt_dev;
2910 struct xhci_input_control_ctx *ctrl_ctx;
2911 struct xhci_slot_ctx *slot_ctx;
2912 struct xhci_command *command;
2913
2914 ret = xhci_check_args(hcd, udev, NULL, check_ep: 0, check_virt_dev: true, func: __func__);
2915 if (ret <= 0)
2916 return ret;
2917 xhci = hcd_to_xhci(hcd);
2918 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2919 (xhci->xhc_state & XHCI_STATE_REMOVING))
2920 return -ENODEV;
2921
2922 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2923 virt_dev = xhci->devs[udev->slot_id];
2924
2925 command = xhci_alloc_command(xhci, allocate_completion: true, GFP_KERNEL);
2926 if (!command)
2927 return -ENOMEM;
2928
2929 command->in_ctx = virt_dev->in_ctx;
2930
2931 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2932 ctrl_ctx = xhci_get_input_control_ctx(ctx: command->in_ctx);
2933 if (!ctrl_ctx) {
2934 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2935 __func__);
2936 ret = -ENOMEM;
2937 goto command_cleanup;
2938 }
2939 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2940 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2941 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2942
2943 /* Don't issue the command if there's no endpoints to update. */
2944 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2945 ctrl_ctx->drop_flags == 0) {
2946 ret = 0;
2947 goto command_cleanup;
2948 }
2949 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2950 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->in_ctx);
2951 for (i = 31; i >= 1; i--) {
2952 __le32 le32 = cpu_to_le32(BIT(i));
2953
2954 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2955 || (ctrl_ctx->add_flags & le32) || i == 1) {
2956 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2957 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2958 break;
2959 }
2960 }
2961
2962 ret = xhci_configure_endpoint(xhci, udev, command,
2963 ctx_change: false, must_succeed: false);
2964 if (ret)
2965 /* Callee should call reset_bandwidth() */
2966 goto command_cleanup;
2967
2968 /* Free any rings that were dropped, but not changed. */
2969 for (i = 1; i < 31; i++) {
2970 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2971 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2972 xhci_free_endpoint_ring(xhci, virt_dev, ep_index: i);
2973 xhci_check_bw_drop_ep_streams(xhci, vdev: virt_dev, i);
2974 }
2975 }
2976 xhci_zero_in_ctx(xhci, virt_dev);
2977 /*
2978 * Install any rings for completely new endpoints or changed endpoints,
2979 * and free any old rings from changed endpoints.
2980 */
2981 for (i = 1; i < 31; i++) {
2982 if (!virt_dev->eps[i].new_ring)
2983 continue;
2984 /* Only free the old ring if it exists.
2985 * It may not if this is the first add of an endpoint.
2986 */
2987 if (virt_dev->eps[i].ring) {
2988 xhci_free_endpoint_ring(xhci, virt_dev, ep_index: i);
2989 }
2990 xhci_check_bw_drop_ep_streams(xhci, vdev: virt_dev, i);
2991 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2992 virt_dev->eps[i].new_ring = NULL;
2993 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index: i);
2994 }
2995command_cleanup:
2996 kfree(objp: command->completion);
2997 kfree(objp: command);
2998
2999 return ret;
3000}
3001EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3002
3003void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3004{
3005 struct xhci_hcd *xhci;
3006 struct xhci_virt_device *virt_dev;
3007 int i, ret;
3008
3009 ret = xhci_check_args(hcd, udev, NULL, check_ep: 0, check_virt_dev: true, func: __func__);
3010 if (ret <= 0)
3011 return;
3012 xhci = hcd_to_xhci(hcd);
3013
3014 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3015 virt_dev = xhci->devs[udev->slot_id];
3016 /* Free any rings allocated for added endpoints */
3017 for (i = 0; i < 31; i++) {
3018 if (virt_dev->eps[i].new_ring) {
3019 xhci_debugfs_remove_endpoint(xhci, virt_dev, ep_index: i);
3020 xhci_ring_free(xhci, ring: virt_dev->eps[i].new_ring);
3021 virt_dev->eps[i].new_ring = NULL;
3022 }
3023 }
3024 xhci_zero_in_ctx(xhci, virt_dev);
3025}
3026EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3027
3028static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3029 struct xhci_container_ctx *in_ctx,
3030 struct xhci_container_ctx *out_ctx,
3031 struct xhci_input_control_ctx *ctrl_ctx,
3032 u32 add_flags, u32 drop_flags)
3033{
3034 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3035 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3036 xhci_slot_copy(xhci, in_ctx, out_ctx);
3037 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3038}
3039
3040static void xhci_endpoint_disable(struct usb_hcd *hcd,
3041 struct usb_host_endpoint *host_ep)
3042{
3043 struct xhci_hcd *xhci;
3044 struct xhci_virt_device *vdev;
3045 struct xhci_virt_ep *ep;
3046 struct usb_device *udev;
3047 unsigned long flags;
3048 unsigned int ep_index;
3049
3050 xhci = hcd_to_xhci(hcd);
3051rescan:
3052 spin_lock_irqsave(&xhci->lock, flags);
3053
3054 udev = (struct usb_device *)host_ep->hcpriv;
3055 if (!udev || !udev->slot_id)
3056 goto done;
3057
3058 vdev = xhci->devs[udev->slot_id];
3059 if (!vdev)
3060 goto done;
3061
3062 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3063 ep = &vdev->eps[ep_index];
3064
3065 /* wait for hub_tt_work to finish clearing hub TT */
3066 if (ep->ep_state & EP_CLEARING_TT) {
3067 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3068 schedule_timeout_uninterruptible(timeout: 1);
3069 goto rescan;
3070 }
3071
3072 if (ep->ep_state)
3073 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3074 ep->ep_state);
3075done:
3076 host_ep->hcpriv = NULL;
3077 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3078}
3079
3080/*
3081 * Called after usb core issues a clear halt control message.
3082 * The host side of the halt should already be cleared by a reset endpoint
3083 * command issued when the STALL event was received.
3084 *
3085 * The reset endpoint command may only be issued to endpoints in the halted
3086 * state. For software that wishes to reset the data toggle or sequence number
3087 * of an endpoint that isn't in the halted state this function will issue a
3088 * configure endpoint command with the Drop and Add bits set for the target
3089 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3090 */
3091
3092static void xhci_endpoint_reset(struct usb_hcd *hcd,
3093 struct usb_host_endpoint *host_ep)
3094{
3095 struct xhci_hcd *xhci;
3096 struct usb_device *udev;
3097 struct xhci_virt_device *vdev;
3098 struct xhci_virt_ep *ep;
3099 struct xhci_input_control_ctx *ctrl_ctx;
3100 struct xhci_command *stop_cmd, *cfg_cmd;
3101 unsigned int ep_index;
3102 unsigned long flags;
3103 u32 ep_flag;
3104 int err;
3105
3106 xhci = hcd_to_xhci(hcd);
3107 if (!host_ep->hcpriv)
3108 return;
3109 udev = (struct usb_device *) host_ep->hcpriv;
3110 vdev = xhci->devs[udev->slot_id];
3111
3112 /*
3113 * vdev may be lost due to xHC restore error and re-initialization
3114 * during S3/S4 resume. A new vdev will be allocated later by
3115 * xhci_discover_or_reset_device()
3116 */
3117 if (!udev->slot_id || !vdev)
3118 return;
3119 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3120 ep = &vdev->eps[ep_index];
3121
3122 /* Bail out if toggle is already being cleared by a endpoint reset */
3123 spin_lock_irqsave(&xhci->lock, flags);
3124 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3125 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3126 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3127 return;
3128 }
3129 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3130 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3131 if (usb_endpoint_xfer_control(epd: &host_ep->desc) ||
3132 usb_endpoint_xfer_isoc(epd: &host_ep->desc))
3133 return;
3134
3135 ep_flag = xhci_get_endpoint_flag(desc: &host_ep->desc);
3136
3137 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3138 return;
3139
3140 stop_cmd = xhci_alloc_command(xhci, allocate_completion: true, GFP_NOWAIT);
3141 if (!stop_cmd)
3142 return;
3143
3144 cfg_cmd = xhci_alloc_command_with_ctx(xhci, allocate_completion: true, GFP_NOWAIT);
3145 if (!cfg_cmd)
3146 goto cleanup;
3147
3148 spin_lock_irqsave(&xhci->lock, flags);
3149
3150 /* block queuing new trbs and ringing ep doorbell */
3151 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3152
3153 /*
3154 * Make sure endpoint ring is empty before resetting the toggle/seq.
3155 * Driver is required to synchronously cancel all transfer request.
3156 * Stop the endpoint to force xHC to update the output context
3157 */
3158
3159 if (!list_empty(head: &ep->ring->td_list)) {
3160 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3161 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3162 xhci_free_command(xhci, command: cfg_cmd);
3163 goto cleanup;
3164 }
3165
3166 err = xhci_queue_stop_endpoint(xhci, cmd: stop_cmd, slot_id: udev->slot_id,
3167 ep_index, suspend: 0);
3168 if (err < 0) {
3169 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3170 xhci_free_command(xhci, command: cfg_cmd);
3171 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3172 __func__, err);
3173 goto cleanup;
3174 }
3175
3176 xhci_ring_cmd_db(xhci);
3177 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3178
3179 wait_for_completion(stop_cmd->completion);
3180
3181 spin_lock_irqsave(&xhci->lock, flags);
3182
3183 /* config ep command clears toggle if add and drop ep flags are set */
3184 ctrl_ctx = xhci_get_input_control_ctx(ctx: cfg_cmd->in_ctx);
3185 if (!ctrl_ctx) {
3186 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3187 xhci_free_command(xhci, command: cfg_cmd);
3188 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3189 __func__);
3190 goto cleanup;
3191 }
3192
3193 xhci_setup_input_ctx_for_config_ep(xhci, in_ctx: cfg_cmd->in_ctx, out_ctx: vdev->out_ctx,
3194 ctrl_ctx, add_flags: ep_flag, drop_flags: ep_flag);
3195 xhci_endpoint_copy(xhci, in_ctx: cfg_cmd->in_ctx, out_ctx: vdev->out_ctx, ep_index);
3196
3197 err = xhci_queue_configure_endpoint(xhci, cmd: cfg_cmd, in_ctx_ptr: cfg_cmd->in_ctx->dma,
3198 slot_id: udev->slot_id, command_must_succeed: false);
3199 if (err < 0) {
3200 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3201 xhci_free_command(xhci, command: cfg_cmd);
3202 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3203 __func__, err);
3204 goto cleanup;
3205 }
3206
3207 xhci_ring_cmd_db(xhci);
3208 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3209
3210 wait_for_completion(cfg_cmd->completion);
3211
3212 xhci_free_command(xhci, command: cfg_cmd);
3213cleanup:
3214 xhci_free_command(xhci, command: stop_cmd);
3215 spin_lock_irqsave(&xhci->lock, flags);
3216 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3217 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3218 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3219}
3220
3221static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3222 struct usb_device *udev, struct usb_host_endpoint *ep,
3223 unsigned int slot_id)
3224{
3225 int ret;
3226 unsigned int ep_index;
3227 unsigned int ep_state;
3228
3229 if (!ep)
3230 return -EINVAL;
3231 ret = xhci_check_args(hcd: xhci_to_hcd(xhci), udev, ep, check_ep: 1, check_virt_dev: true, func: __func__);
3232 if (ret <= 0)
3233 return ret ? ret : -EINVAL;
3234 if (usb_ss_max_streams(comp: &ep->ss_ep_comp) == 0) {
3235 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3236 " descriptor for ep 0x%x does not support streams\n",
3237 ep->desc.bEndpointAddress);
3238 return -EINVAL;
3239 }
3240
3241 ep_index = xhci_get_endpoint_index(&ep->desc);
3242 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3243 if (ep_state & EP_HAS_STREAMS ||
3244 ep_state & EP_GETTING_STREAMS) {
3245 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3246 "already has streams set up.\n",
3247 ep->desc.bEndpointAddress);
3248 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3249 "dynamic stream context array reallocation.\n");
3250 return -EINVAL;
3251 }
3252 if (!list_empty(head: &xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3253 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3254 "endpoint 0x%x; URBs are pending.\n",
3255 ep->desc.bEndpointAddress);
3256 return -EINVAL;
3257 }
3258 return 0;
3259}
3260
3261static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3262 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3263{
3264 unsigned int max_streams;
3265
3266 /* The stream context array size must be a power of two */
3267 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3268 /*
3269 * Find out how many primary stream array entries the host controller
3270 * supports. Later we may use secondary stream arrays (similar to 2nd
3271 * level page entries), but that's an optional feature for xHCI host
3272 * controllers. xHCs must support at least 4 stream IDs.
3273 */
3274 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3275 if (*num_stream_ctxs > max_streams) {
3276 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3277 max_streams);
3278 *num_stream_ctxs = max_streams;
3279 *num_streams = max_streams;
3280 }
3281}
3282
3283/* Returns an error code if one of the endpoint already has streams.
3284 * This does not change any data structures, it only checks and gathers
3285 * information.
3286 */
3287static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3288 struct usb_device *udev,
3289 struct usb_host_endpoint **eps, unsigned int num_eps,
3290 unsigned int *num_streams, u32 *changed_ep_bitmask)
3291{
3292 unsigned int max_streams;
3293 unsigned int endpoint_flag;
3294 int i;
3295 int ret;
3296
3297 for (i = 0; i < num_eps; i++) {
3298 ret = xhci_check_streams_endpoint(xhci, udev,
3299 ep: eps[i], slot_id: udev->slot_id);
3300 if (ret < 0)
3301 return ret;
3302
3303 max_streams = usb_ss_max_streams(comp: &eps[i]->ss_ep_comp);
3304 if (max_streams < (*num_streams - 1)) {
3305 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3306 eps[i]->desc.bEndpointAddress,
3307 max_streams);
3308 *num_streams = max_streams+1;
3309 }
3310
3311 endpoint_flag = xhci_get_endpoint_flag(desc: &eps[i]->desc);
3312 if (*changed_ep_bitmask & endpoint_flag)
3313 return -EINVAL;
3314 *changed_ep_bitmask |= endpoint_flag;
3315 }
3316 return 0;
3317}
3318
3319static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3320 struct usb_device *udev,
3321 struct usb_host_endpoint **eps, unsigned int num_eps)
3322{
3323 u32 changed_ep_bitmask = 0;
3324 unsigned int slot_id;
3325 unsigned int ep_index;
3326 unsigned int ep_state;
3327 int i;
3328
3329 slot_id = udev->slot_id;
3330 if (!xhci->devs[slot_id])
3331 return 0;
3332
3333 for (i = 0; i < num_eps; i++) {
3334 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3335 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3336 /* Are streams already being freed for the endpoint? */
3337 if (ep_state & EP_GETTING_NO_STREAMS) {
3338 xhci_warn(xhci, "WARN Can't disable streams for "
3339 "endpoint 0x%x, "
3340 "streams are being disabled already\n",
3341 eps[i]->desc.bEndpointAddress);
3342 return 0;
3343 }
3344 /* Are there actually any streams to free? */
3345 if (!(ep_state & EP_HAS_STREAMS) &&
3346 !(ep_state & EP_GETTING_STREAMS)) {
3347 xhci_warn(xhci, "WARN Can't disable streams for "
3348 "endpoint 0x%x, "
3349 "streams are already disabled!\n",
3350 eps[i]->desc.bEndpointAddress);
3351 xhci_warn(xhci, "WARN xhci_free_streams() called "
3352 "with non-streams endpoint\n");
3353 return 0;
3354 }
3355 changed_ep_bitmask |= xhci_get_endpoint_flag(desc: &eps[i]->desc);
3356 }
3357 return changed_ep_bitmask;
3358}
3359
3360/*
3361 * The USB device drivers use this function (through the HCD interface in USB
3362 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3363 * coordinate mass storage command queueing across multiple endpoints (basically
3364 * a stream ID == a task ID).
3365 *
3366 * Setting up streams involves allocating the same size stream context array
3367 * for each endpoint and issuing a configure endpoint command for all endpoints.
3368 *
3369 * Don't allow the call to succeed if one endpoint only supports one stream
3370 * (which means it doesn't support streams at all).
3371 *
3372 * Drivers may get less stream IDs than they asked for, if the host controller
3373 * hardware or endpoints claim they can't support the number of requested
3374 * stream IDs.
3375 */
3376static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3377 struct usb_host_endpoint **eps, unsigned int num_eps,
3378 unsigned int num_streams, gfp_t mem_flags)
3379{
3380 int i, ret;
3381 struct xhci_hcd *xhci;
3382 struct xhci_virt_device *vdev;
3383 struct xhci_command *config_cmd;
3384 struct xhci_input_control_ctx *ctrl_ctx;
3385 unsigned int ep_index;
3386 unsigned int num_stream_ctxs;
3387 unsigned int max_packet;
3388 unsigned long flags;
3389 u32 changed_ep_bitmask = 0;
3390
3391 if (!eps)
3392 return -EINVAL;
3393
3394 /* Add one to the number of streams requested to account for
3395 * stream 0 that is reserved for xHCI usage.
3396 */
3397 num_streams += 1;
3398 xhci = hcd_to_xhci(hcd);
3399 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3400 num_streams);
3401
3402 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3403 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3404 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3405 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3406 return -ENOSYS;
3407 }
3408
3409 config_cmd = xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags);
3410 if (!config_cmd)
3411 return -ENOMEM;
3412
3413 ctrl_ctx = xhci_get_input_control_ctx(ctx: config_cmd->in_ctx);
3414 if (!ctrl_ctx) {
3415 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3416 __func__);
3417 xhci_free_command(xhci, command: config_cmd);
3418 return -ENOMEM;
3419 }
3420
3421 /* Check to make sure all endpoints are not already configured for
3422 * streams. While we're at it, find the maximum number of streams that
3423 * all the endpoints will support and check for duplicate endpoints.
3424 */
3425 spin_lock_irqsave(&xhci->lock, flags);
3426 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3427 num_eps, num_streams: &num_streams, changed_ep_bitmask: &changed_ep_bitmask);
3428 if (ret < 0) {
3429 xhci_free_command(xhci, command: config_cmd);
3430 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3431 return ret;
3432 }
3433 if (num_streams <= 1) {
3434 xhci_warn(xhci, "WARN: endpoints can't handle "
3435 "more than one stream.\n");
3436 xhci_free_command(xhci, command: config_cmd);
3437 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3438 return -EINVAL;
3439 }
3440 vdev = xhci->devs[udev->slot_id];
3441 /* Mark each endpoint as being in transition, so
3442 * xhci_urb_enqueue() will reject all URBs.
3443 */
3444 for (i = 0; i < num_eps; i++) {
3445 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3446 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3447 }
3448 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3449
3450 /* Setup internal data structures and allocate HW data structures for
3451 * streams (but don't install the HW structures in the input context
3452 * until we're sure all memory allocation succeeded).
3453 */
3454 xhci_calculate_streams_entries(xhci, num_streams: &num_streams, num_stream_ctxs: &num_stream_ctxs);
3455 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3456 num_stream_ctxs, num_streams);
3457
3458 for (i = 0; i < num_eps; i++) {
3459 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3460 max_packet = usb_endpoint_maxp(epd: &eps[i]->desc);
3461 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3462 num_stream_ctxs,
3463 num_streams,
3464 max_packet, flags: mem_flags);
3465 if (!vdev->eps[ep_index].stream_info)
3466 goto cleanup;
3467 /* Set maxPstreams in endpoint context and update deq ptr to
3468 * point to stream context array. FIXME
3469 */
3470 }
3471
3472 /* Set up the input context for a configure endpoint command. */
3473 for (i = 0; i < num_eps; i++) {
3474 struct xhci_ep_ctx *ep_ctx;
3475
3476 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3477 ep_ctx = xhci_get_ep_ctx(xhci, ctx: config_cmd->in_ctx, ep_index);
3478
3479 xhci_endpoint_copy(xhci, in_ctx: config_cmd->in_ctx,
3480 out_ctx: vdev->out_ctx, ep_index);
3481 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3482 stream_info: vdev->eps[ep_index].stream_info);
3483 }
3484 /* Tell the HW to drop its old copy of the endpoint context info
3485 * and add the updated copy from the input context.
3486 */
3487 xhci_setup_input_ctx_for_config_ep(xhci, in_ctx: config_cmd->in_ctx,
3488 out_ctx: vdev->out_ctx, ctrl_ctx,
3489 add_flags: changed_ep_bitmask, drop_flags: changed_ep_bitmask);
3490
3491 /* Issue and wait for the configure endpoint command */
3492 ret = xhci_configure_endpoint(xhci, udev, command: config_cmd,
3493 ctx_change: false, must_succeed: false);
3494
3495 /* xHC rejected the configure endpoint command for some reason, so we
3496 * leave the old ring intact and free our internal streams data
3497 * structure.
3498 */
3499 if (ret < 0)
3500 goto cleanup;
3501
3502 spin_lock_irqsave(&xhci->lock, flags);
3503 for (i = 0; i < num_eps; i++) {
3504 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3506 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3507 udev->slot_id, ep_index);
3508 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3509 }
3510 xhci_free_command(xhci, command: config_cmd);
3511 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3512
3513 for (i = 0; i < num_eps; i++) {
3514 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515 xhci_debugfs_create_stream_files(xhci, virt_dev: vdev, ep_index);
3516 }
3517 /* Subtract 1 for stream 0, which drivers can't use */
3518 return num_streams - 1;
3519
3520cleanup:
3521 /* If it didn't work, free the streams! */
3522 for (i = 0; i < num_eps; i++) {
3523 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3524 xhci_free_stream_info(xhci, stream_info: vdev->eps[ep_index].stream_info);
3525 vdev->eps[ep_index].stream_info = NULL;
3526 /* FIXME Unset maxPstreams in endpoint context and
3527 * update deq ptr to point to normal string ring.
3528 */
3529 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3531 xhci_endpoint_zero(xhci, virt_dev: vdev, ep: eps[i]);
3532 }
3533 xhci_free_command(xhci, command: config_cmd);
3534 return -ENOMEM;
3535}
3536
3537/* Transition the endpoint from using streams to being a "normal" endpoint
3538 * without streams.
3539 *
3540 * Modify the endpoint context state, submit a configure endpoint command,
3541 * and free all endpoint rings for streams if that completes successfully.
3542 */
3543static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3544 struct usb_host_endpoint **eps, unsigned int num_eps,
3545 gfp_t mem_flags)
3546{
3547 int i, ret;
3548 struct xhci_hcd *xhci;
3549 struct xhci_virt_device *vdev;
3550 struct xhci_command *command;
3551 struct xhci_input_control_ctx *ctrl_ctx;
3552 unsigned int ep_index;
3553 unsigned long flags;
3554 u32 changed_ep_bitmask;
3555
3556 xhci = hcd_to_xhci(hcd);
3557 vdev = xhci->devs[udev->slot_id];
3558
3559 /* Set up a configure endpoint command to remove the streams rings */
3560 spin_lock_irqsave(&xhci->lock, flags);
3561 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3562 udev, eps, num_eps);
3563 if (changed_ep_bitmask == 0) {
3564 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3565 return -EINVAL;
3566 }
3567
3568 /* Use the xhci_command structure from the first endpoint. We may have
3569 * allocated too many, but the driver may call xhci_free_streams() for
3570 * each endpoint it grouped into one call to xhci_alloc_streams().
3571 */
3572 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3573 command = vdev->eps[ep_index].stream_info->free_streams_command;
3574 ctrl_ctx = xhci_get_input_control_ctx(ctx: command->in_ctx);
3575 if (!ctrl_ctx) {
3576 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3578 __func__);
3579 return -EINVAL;
3580 }
3581
3582 for (i = 0; i < num_eps; i++) {
3583 struct xhci_ep_ctx *ep_ctx;
3584
3585 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3586 ep_ctx = xhci_get_ep_ctx(xhci, ctx: command->in_ctx, ep_index);
3587 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3588 EP_GETTING_NO_STREAMS;
3589
3590 xhci_endpoint_copy(xhci, in_ctx: command->in_ctx,
3591 out_ctx: vdev->out_ctx, ep_index);
3592 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3593 ep: &vdev->eps[ep_index]);
3594 }
3595 xhci_setup_input_ctx_for_config_ep(xhci, in_ctx: command->in_ctx,
3596 out_ctx: vdev->out_ctx, ctrl_ctx,
3597 add_flags: changed_ep_bitmask, drop_flags: changed_ep_bitmask);
3598 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3599
3600 /* Issue and wait for the configure endpoint command,
3601 * which must succeed.
3602 */
3603 ret = xhci_configure_endpoint(xhci, udev, command,
3604 ctx_change: false, must_succeed: true);
3605
3606 /* xHC rejected the configure endpoint command for some reason, so we
3607 * leave the streams rings intact.
3608 */
3609 if (ret < 0)
3610 return ret;
3611
3612 spin_lock_irqsave(&xhci->lock, flags);
3613 for (i = 0; i < num_eps; i++) {
3614 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3615 xhci_free_stream_info(xhci, stream_info: vdev->eps[ep_index].stream_info);
3616 vdev->eps[ep_index].stream_info = NULL;
3617 /* FIXME Unset maxPstreams in endpoint context and
3618 * update deq ptr to point to normal string ring.
3619 */
3620 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3621 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3622 }
3623 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3624
3625 return 0;
3626}
3627
3628/*
3629 * Deletes endpoint resources for endpoints that were active before a Reset
3630 * Device command, or a Disable Slot command. The Reset Device command leaves
3631 * the control endpoint intact, whereas the Disable Slot command deletes it.
3632 *
3633 * Must be called with xhci->lock held.
3634 */
3635void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3636 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3637{
3638 int i;
3639 unsigned int num_dropped_eps = 0;
3640 unsigned int drop_flags = 0;
3641
3642 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3643 if (virt_dev->eps[i].ring) {
3644 drop_flags |= 1 << i;
3645 num_dropped_eps++;
3646 }
3647 }
3648 xhci->num_active_eps -= num_dropped_eps;
3649 if (num_dropped_eps)
3650 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
3651 fmt: "Dropped %u ep ctxs, flags = 0x%x, "
3652 "%u now active.",
3653 num_dropped_eps, drop_flags,
3654 xhci->num_active_eps);
3655}
3656
3657/*
3658 * This submits a Reset Device Command, which will set the device state to 0,
3659 * set the device address to 0, and disable all the endpoints except the default
3660 * control endpoint. The USB core should come back and call
3661 * xhci_address_device(), and then re-set up the configuration. If this is
3662 * called because of a usb_reset_and_verify_device(), then the old alternate
3663 * settings will be re-installed through the normal bandwidth allocation
3664 * functions.
3665 *
3666 * Wait for the Reset Device command to finish. Remove all structures
3667 * associated with the endpoints that were disabled. Clear the input device
3668 * structure? Reset the control endpoint 0 max packet size?
3669 *
3670 * If the virt_dev to be reset does not exist or does not match the udev,
3671 * it means the device is lost, possibly due to the xHC restore error and
3672 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3673 * re-allocate the device.
3674 */
3675static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3676 struct usb_device *udev)
3677{
3678 int ret, i;
3679 unsigned long flags;
3680 struct xhci_hcd *xhci;
3681 unsigned int slot_id;
3682 struct xhci_virt_device *virt_dev;
3683 struct xhci_command *reset_device_cmd;
3684 struct xhci_slot_ctx *slot_ctx;
3685 int old_active_eps = 0;
3686
3687 ret = xhci_check_args(hcd, udev, NULL, check_ep: 0, check_virt_dev: false, func: __func__);
3688 if (ret <= 0)
3689 return ret;
3690 xhci = hcd_to_xhci(hcd);
3691 slot_id = udev->slot_id;
3692 virt_dev = xhci->devs[slot_id];
3693 if (!virt_dev) {
3694 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3695 "not exist. Re-allocate the device\n", slot_id);
3696 ret = xhci_alloc_dev(hcd, udev);
3697 if (ret == 1)
3698 return 0;
3699 else
3700 return -EINVAL;
3701 }
3702
3703 if (virt_dev->tt_info)
3704 old_active_eps = virt_dev->tt_info->active_eps;
3705
3706 if (virt_dev->udev != udev) {
3707 /* If the virt_dev and the udev does not match, this virt_dev
3708 * may belong to another udev.
3709 * Re-allocate the device.
3710 */
3711 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3712 "not match the udev. Re-allocate the device\n",
3713 slot_id);
3714 ret = xhci_alloc_dev(hcd, udev);
3715 if (ret == 1)
3716 return 0;
3717 else
3718 return -EINVAL;
3719 }
3720
3721 /* If device is not setup, there is no point in resetting it */
3722 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->out_ctx);
3723 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3724 SLOT_STATE_DISABLED)
3725 return 0;
3726
3727 trace_xhci_discover_or_reset_device(ctx: slot_ctx);
3728
3729 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3730 /* Allocate the command structure that holds the struct completion.
3731 * Assume we're in process context, since the normal device reset
3732 * process has to wait for the device anyway. Storage devices are
3733 * reset as part of error handling, so use GFP_NOIO instead of
3734 * GFP_KERNEL.
3735 */
3736 reset_device_cmd = xhci_alloc_command(xhci, allocate_completion: true, GFP_NOIO);
3737 if (!reset_device_cmd) {
3738 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3739 return -ENOMEM;
3740 }
3741
3742 /* Attempt to submit the Reset Device command to the command ring */
3743 spin_lock_irqsave(&xhci->lock, flags);
3744
3745 ret = xhci_queue_reset_device(xhci, cmd: reset_device_cmd, slot_id);
3746 if (ret) {
3747 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3748 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3749 goto command_cleanup;
3750 }
3751 xhci_ring_cmd_db(xhci);
3752 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3753
3754 /* Wait for the Reset Device command to finish */
3755 wait_for_completion(reset_device_cmd->completion);
3756
3757 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3758 * unless we tried to reset a slot ID that wasn't enabled,
3759 * or the device wasn't in the addressed or configured state.
3760 */
3761 ret = reset_device_cmd->status;
3762 switch (ret) {
3763 case COMP_COMMAND_ABORTED:
3764 case COMP_COMMAND_RING_STOPPED:
3765 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3766 ret = -ETIME;
3767 goto command_cleanup;
3768 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3769 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3770 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3771 slot_id,
3772 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3773 xhci_dbg(xhci, "Not freeing device rings.\n");
3774 /* Don't treat this as an error. May change my mind later. */
3775 ret = 0;
3776 goto command_cleanup;
3777 case COMP_SUCCESS:
3778 xhci_dbg(xhci, "Successful reset device command.\n");
3779 break;
3780 default:
3781 if (xhci_is_vendor_info_code(xhci, trb_comp_code: ret))
3782 break;
3783 xhci_warn(xhci, "Unknown completion code %u for "
3784 "reset device command.\n", ret);
3785 ret = -EINVAL;
3786 goto command_cleanup;
3787 }
3788
3789 /* Free up host controller endpoint resources */
3790 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3791 spin_lock_irqsave(&xhci->lock, flags);
3792 /* Don't delete the default control endpoint resources */
3793 xhci_free_device_endpoint_resources(xhci, virt_dev, drop_control_ep: false);
3794 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3795 }
3796
3797 /* Everything but endpoint 0 is disabled, so free the rings. */
3798 for (i = 1; i < 31; i++) {
3799 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3800
3801 if (ep->ep_state & EP_HAS_STREAMS) {
3802 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3803 xhci_get_endpoint_address(i));
3804 xhci_free_stream_info(xhci, stream_info: ep->stream_info);
3805 ep->stream_info = NULL;
3806 ep->ep_state &= ~EP_HAS_STREAMS;
3807 }
3808
3809 if (ep->ring) {
3810 xhci_debugfs_remove_endpoint(xhci, virt_dev, ep_index: i);
3811 xhci_free_endpoint_ring(xhci, virt_dev, ep_index: i);
3812 }
3813 if (!list_empty(head: &virt_dev->eps[i].bw_endpoint_list))
3814 xhci_drop_ep_from_interval_table(xhci,
3815 ep_bw: &virt_dev->eps[i].bw_info,
3816 bw_table: virt_dev->bw_table,
3817 udev,
3818 virt_ep: &virt_dev->eps[i],
3819 tt_info: virt_dev->tt_info);
3820 xhci_clear_endpoint_bw_info(bw_info: &virt_dev->eps[i].bw_info);
3821 }
3822 /* If necessary, update the number of active TTs on this root port */
3823 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3824 virt_dev->flags = 0;
3825 ret = 0;
3826
3827command_cleanup:
3828 xhci_free_command(xhci, command: reset_device_cmd);
3829 return ret;
3830}
3831
3832/*
3833 * At this point, the struct usb_device is about to go away, the device has
3834 * disconnected, and all traffic has been stopped and the endpoints have been
3835 * disabled. Free any HC data structures associated with that device.
3836 */
3837static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3838{
3839 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3840 struct xhci_virt_device *virt_dev;
3841 struct xhci_slot_ctx *slot_ctx;
3842 unsigned long flags;
3843 int i, ret;
3844
3845 /*
3846 * We called pm_runtime_get_noresume when the device was attached.
3847 * Decrement the counter here to allow controller to runtime suspend
3848 * if no devices remain.
3849 */
3850 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3851 pm_runtime_put_noidle(dev: hcd->self.controller);
3852
3853 ret = xhci_check_args(hcd, udev, NULL, check_ep: 0, check_virt_dev: true, func: __func__);
3854 /* If the host is halted due to driver unload, we still need to free the
3855 * device.
3856 */
3857 if (ret <= 0 && ret != -ENODEV)
3858 return;
3859
3860 virt_dev = xhci->devs[udev->slot_id];
3861 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->out_ctx);
3862 trace_xhci_free_dev(ctx: slot_ctx);
3863
3864 /* Stop any wayward timer functions (which may grab the lock) */
3865 for (i = 0; i < 31; i++)
3866 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3867 virt_dev->udev = NULL;
3868 xhci_disable_slot(xhci, slot_id: udev->slot_id);
3869
3870 spin_lock_irqsave(&xhci->lock, flags);
3871 xhci_free_virt_device(xhci, slot_id: udev->slot_id);
3872 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3873
3874}
3875
3876int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3877{
3878 struct xhci_command *command;
3879 unsigned long flags;
3880 u32 state;
3881 int ret;
3882
3883 command = xhci_alloc_command(xhci, allocate_completion: true, GFP_KERNEL);
3884 if (!command)
3885 return -ENOMEM;
3886
3887 xhci_debugfs_remove_slot(xhci, slot_id);
3888
3889 spin_lock_irqsave(&xhci->lock, flags);
3890 /* Don't disable the slot if the host controller is dead. */
3891 state = readl(addr: &xhci->op_regs->status);
3892 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3893 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3894 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3895 kfree(objp: command);
3896 return -ENODEV;
3897 }
3898
3899 ret = xhci_queue_slot_control(xhci, cmd: command, TRB_DISABLE_SLOT,
3900 slot_id);
3901 if (ret) {
3902 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3903 kfree(objp: command);
3904 return ret;
3905 }
3906 xhci_ring_cmd_db(xhci);
3907 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3908
3909 wait_for_completion(command->completion);
3910
3911 if (command->status != COMP_SUCCESS)
3912 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3913 slot_id, command->status);
3914
3915 xhci_free_command(xhci, command);
3916
3917 return 0;
3918}
3919
3920/*
3921 * Checks if we have enough host controller resources for the default control
3922 * endpoint.
3923 *
3924 * Must be called with xhci->lock held.
3925 */
3926static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3927{
3928 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3929 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
3930 fmt: "Not enough ep ctxs: "
3931 "%u active, need to add 1, limit is %u.",
3932 xhci->num_active_eps, xhci->limit_active_eps);
3933 return -ENOMEM;
3934 }
3935 xhci->num_active_eps += 1;
3936 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_quirks,
3937 fmt: "Adding 1 ep ctx, %u now active.",
3938 xhci->num_active_eps);
3939 return 0;
3940}
3941
3942
3943/*
3944 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3945 * timed out, or allocating memory failed. Returns 1 on success.
3946 */
3947int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3948{
3949 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3950 struct xhci_virt_device *vdev;
3951 struct xhci_slot_ctx *slot_ctx;
3952 unsigned long flags;
3953 int ret, slot_id;
3954 struct xhci_command *command;
3955
3956 command = xhci_alloc_command(xhci, allocate_completion: true, GFP_KERNEL);
3957 if (!command)
3958 return 0;
3959
3960 spin_lock_irqsave(&xhci->lock, flags);
3961 ret = xhci_queue_slot_control(xhci, cmd: command, TRB_ENABLE_SLOT, slot_id: 0);
3962 if (ret) {
3963 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3964 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3965 xhci_free_command(xhci, command);
3966 return 0;
3967 }
3968 xhci_ring_cmd_db(xhci);
3969 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3970
3971 wait_for_completion(command->completion);
3972 slot_id = command->slot_id;
3973
3974 if (!slot_id || command->status != COMP_SUCCESS) {
3975 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3976 xhci_trb_comp_code_string(command->status));
3977 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3978 HCS_MAX_SLOTS(
3979 readl(&xhci->cap_regs->hcs_params1)));
3980 xhci_free_command(xhci, command);
3981 return 0;
3982 }
3983
3984 xhci_free_command(xhci, command);
3985
3986 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3987 spin_lock_irqsave(&xhci->lock, flags);
3988 ret = xhci_reserve_host_control_ep_resources(xhci);
3989 if (ret) {
3990 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3991 xhci_warn(xhci, "Not enough host resources, "
3992 "active endpoint contexts = %u\n",
3993 xhci->num_active_eps);
3994 goto disable_slot;
3995 }
3996 spin_unlock_irqrestore(lock: &xhci->lock, flags);
3997 }
3998 /* Use GFP_NOIO, since this function can be called from
3999 * xhci_discover_or_reset_device(), which may be called as part of
4000 * mass storage driver error handling.
4001 */
4002 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4003 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4004 goto disable_slot;
4005 }
4006 vdev = xhci->devs[slot_id];
4007 slot_ctx = xhci_get_slot_ctx(xhci, ctx: vdev->out_ctx);
4008 trace_xhci_alloc_dev(ctx: slot_ctx);
4009
4010 udev->slot_id = slot_id;
4011
4012 xhci_debugfs_create_slot(xhci, slot_id);
4013
4014 /*
4015 * If resetting upon resume, we can't put the controller into runtime
4016 * suspend if there is a device attached.
4017 */
4018 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4019 pm_runtime_get_noresume(dev: hcd->self.controller);
4020
4021 /* Is this a LS or FS device under a HS hub? */
4022 /* Hub or peripherial? */
4023 return 1;
4024
4025disable_slot:
4026 xhci_disable_slot(xhci, slot_id: udev->slot_id);
4027 xhci_free_virt_device(xhci, slot_id: udev->slot_id);
4028
4029 return 0;
4030}
4031
4032/*
4033 * Issue an Address Device command and optionally send a corresponding
4034 * SetAddress request to the device.
4035 */
4036static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4037 enum xhci_setup_dev setup)
4038{
4039 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4040 unsigned long flags;
4041 struct xhci_virt_device *virt_dev;
4042 int ret = 0;
4043 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4044 struct xhci_slot_ctx *slot_ctx;
4045 struct xhci_input_control_ctx *ctrl_ctx;
4046 u64 temp_64;
4047 struct xhci_command *command = NULL;
4048
4049 mutex_lock(&xhci->mutex);
4050
4051 if (xhci->xhc_state) { /* dying, removing or halted */
4052 ret = -ESHUTDOWN;
4053 goto out;
4054 }
4055
4056 if (!udev->slot_id) {
4057 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4058 fmt: "Bad Slot ID %d", udev->slot_id);
4059 ret = -EINVAL;
4060 goto out;
4061 }
4062
4063 virt_dev = xhci->devs[udev->slot_id];
4064
4065 if (WARN_ON(!virt_dev)) {
4066 /*
4067 * In plug/unplug torture test with an NEC controller,
4068 * a zero-dereference was observed once due to virt_dev = 0.
4069 * Print useful debug rather than crash if it is observed again!
4070 */
4071 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4072 udev->slot_id);
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->out_ctx);
4077 trace_xhci_setup_device_slot(ctx: slot_ctx);
4078
4079 if (setup == SETUP_CONTEXT_ONLY) {
4080 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4081 SLOT_STATE_DEFAULT) {
4082 xhci_dbg(xhci, "Slot already in default state\n");
4083 goto out;
4084 }
4085 }
4086
4087 command = xhci_alloc_command(xhci, allocate_completion: true, GFP_KERNEL);
4088 if (!command) {
4089 ret = -ENOMEM;
4090 goto out;
4091 }
4092
4093 command->in_ctx = virt_dev->in_ctx;
4094
4095 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->in_ctx);
4096 ctrl_ctx = xhci_get_input_control_ctx(ctx: virt_dev->in_ctx);
4097 if (!ctrl_ctx) {
4098 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4099 __func__);
4100 ret = -EINVAL;
4101 goto out;
4102 }
4103 /*
4104 * If this is the first Set Address since device plug-in or
4105 * virt_device realloaction after a resume with an xHCI power loss,
4106 * then set up the slot context.
4107 */
4108 if (!slot_ctx->dev_info)
4109 xhci_setup_addressable_virt_dev(xhci, udev);
4110 /* Otherwise, update the control endpoint ring enqueue pointer. */
4111 else
4112 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4113 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4114 ctrl_ctx->drop_flags = 0;
4115
4116 trace_xhci_address_ctx(xhci, ctx: virt_dev->in_ctx,
4117 le32_to_cpu(slot_ctx->dev_info) >> 27);
4118
4119 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4120 spin_lock_irqsave(&xhci->lock, flags);
4121 trace_xhci_setup_device(vdev: virt_dev);
4122 ret = xhci_queue_address_device(xhci, cmd: command, in_ctx_ptr: virt_dev->in_ctx->dma,
4123 slot_id: udev->slot_id, setup);
4124 if (ret) {
4125 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4126 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4127 fmt: "FIXME: allocate a command ring segment");
4128 goto out;
4129 }
4130 xhci_ring_cmd_db(xhci);
4131 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4132
4133 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4134 wait_for_completion(command->completion);
4135
4136 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4137 * the SetAddress() "recovery interval" required by USB and aborting the
4138 * command on a timeout.
4139 */
4140 switch (command->status) {
4141 case COMP_COMMAND_ABORTED:
4142 case COMP_COMMAND_RING_STOPPED:
4143 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4144 ret = -ETIME;
4145 break;
4146 case COMP_CONTEXT_STATE_ERROR:
4147 case COMP_SLOT_NOT_ENABLED_ERROR:
4148 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4149 act, udev->slot_id);
4150 ret = -EINVAL;
4151 break;
4152 case COMP_USB_TRANSACTION_ERROR:
4153 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4154
4155 mutex_unlock(lock: &xhci->mutex);
4156 ret = xhci_disable_slot(xhci, slot_id: udev->slot_id);
4157 xhci_free_virt_device(xhci, slot_id: udev->slot_id);
4158 if (!ret)
4159 xhci_alloc_dev(hcd, udev);
4160 kfree(objp: command->completion);
4161 kfree(objp: command);
4162 return -EPROTO;
4163 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4164 dev_warn(&udev->dev,
4165 "ERROR: Incompatible device for setup %s command\n", act);
4166 ret = -ENODEV;
4167 break;
4168 case COMP_SUCCESS:
4169 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4170 fmt: "Successful setup %s command", act);
4171 break;
4172 default:
4173 xhci_err(xhci,
4174 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4175 act, command->status);
4176 trace_xhci_address_ctx(xhci, ctx: virt_dev->out_ctx, ep_num: 1);
4177 ret = -EINVAL;
4178 break;
4179 }
4180 if (ret)
4181 goto out;
4182 temp_64 = xhci_read_64(xhci, regs: &xhci->op_regs->dcbaa_ptr);
4183 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4184 fmt: "Op regs DCBAA ptr = %#016llx", temp_64);
4185 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4186 fmt: "Slot ID %d dcbaa entry @%p = %#016llx",
4187 udev->slot_id,
4188 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4189 (unsigned long long)
4190 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4191 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4192 fmt: "Output Context DMA address = %#08llx",
4193 (unsigned long long)virt_dev->out_ctx->dma);
4194 trace_xhci_address_ctx(xhci, ctx: virt_dev->in_ctx,
4195 le32_to_cpu(slot_ctx->dev_info) >> 27);
4196 /*
4197 * USB core uses address 1 for the roothubs, so we add one to the
4198 * address given back to us by the HC.
4199 */
4200 trace_xhci_address_ctx(xhci, ctx: virt_dev->out_ctx,
4201 le32_to_cpu(slot_ctx->dev_info) >> 27);
4202 /* Zero the input context control for later use */
4203 ctrl_ctx->add_flags = 0;
4204 ctrl_ctx->drop_flags = 0;
4205 slot_ctx = xhci_get_slot_ctx(xhci, ctx: virt_dev->out_ctx);
4206 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4207
4208 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_address,
4209 fmt: "Internal device address = %d",
4210 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4211out:
4212 mutex_unlock(lock: &xhci->mutex);
4213 if (command) {
4214 kfree(objp: command->completion);
4215 kfree(objp: command);
4216 }
4217 return ret;
4218}
4219
4220static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4221{
4222 return xhci_setup_device(hcd, udev, setup: SETUP_CONTEXT_ADDRESS);
4223}
4224
4225static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4226{
4227 return xhci_setup_device(hcd, udev, setup: SETUP_CONTEXT_ONLY);
4228}
4229
4230/*
4231 * Transfer the port index into real index in the HW port status
4232 * registers. Caculate offset between the port's PORTSC register
4233 * and port status base. Divide the number of per port register
4234 * to get the real index. The raw port number bases 1.
4235 */
4236int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4237{
4238 struct xhci_hub *rhub;
4239
4240 rhub = xhci_get_rhub(hcd);
4241 return rhub->ports[port1 - 1]->hw_portnum + 1;
4242}
4243
4244/*
4245 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4246 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4247 */
4248static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4249 struct usb_device *udev, u16 max_exit_latency)
4250{
4251 struct xhci_virt_device *virt_dev;
4252 struct xhci_command *command;
4253 struct xhci_input_control_ctx *ctrl_ctx;
4254 struct xhci_slot_ctx *slot_ctx;
4255 unsigned long flags;
4256 int ret;
4257
4258 command = xhci_alloc_command_with_ctx(xhci, allocate_completion: true, GFP_KERNEL);
4259 if (!command)
4260 return -ENOMEM;
4261
4262 spin_lock_irqsave(&xhci->lock, flags);
4263
4264 virt_dev = xhci->devs[udev->slot_id];
4265
4266 /*
4267 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4268 * xHC was re-initialized. Exit latency will be set later after
4269 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4270 */
4271
4272 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4273 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4274 xhci_free_command(xhci, command);
4275 return 0;
4276 }
4277
4278 /* Attempt to issue an Evaluate Context command to change the MEL. */
4279 ctrl_ctx = xhci_get_input_control_ctx(ctx: command->in_ctx);
4280 if (!ctrl_ctx) {
4281 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4282 xhci_free_command(xhci, command);
4283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4284 __func__);
4285 return -ENOMEM;
4286 }
4287
4288 xhci_slot_copy(xhci, in_ctx: command->in_ctx, out_ctx: virt_dev->out_ctx);
4289 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4290
4291 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4292 slot_ctx = xhci_get_slot_ctx(xhci, ctx: command->in_ctx);
4293 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4294 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4295 slot_ctx->dev_state = 0;
4296
4297 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
4298 fmt: "Set up evaluate context for LPM MEL change.");
4299
4300 /* Issue and wait for the evaluate context command. */
4301 ret = xhci_configure_endpoint(xhci, udev, command,
4302 ctx_change: true, must_succeed: true);
4303
4304 if (!ret) {
4305 spin_lock_irqsave(&xhci->lock, flags);
4306 virt_dev->current_mel = max_exit_latency;
4307 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4308 }
4309
4310 xhci_free_command(xhci, command);
4311
4312 return ret;
4313}
4314
4315#ifdef CONFIG_PM
4316
4317/* BESL to HIRD Encoding array for USB2 LPM */
4318static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4319 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4320
4321/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4322static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4323 struct usb_device *udev)
4324{
4325 int u2del, besl, besl_host;
4326 int besl_device = 0;
4327 u32 field;
4328
4329 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4330 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4331
4332 if (field & USB_BESL_SUPPORT) {
4333 for (besl_host = 0; besl_host < 16; besl_host++) {
4334 if (xhci_besl_encoding[besl_host] >= u2del)
4335 break;
4336 }
4337 /* Use baseline BESL value as default */
4338 if (field & USB_BESL_BASELINE_VALID)
4339 besl_device = USB_GET_BESL_BASELINE(field);
4340 else if (field & USB_BESL_DEEP_VALID)
4341 besl_device = USB_GET_BESL_DEEP(field);
4342 } else {
4343 if (u2del <= 50)
4344 besl_host = 0;
4345 else
4346 besl_host = (u2del - 51) / 75 + 1;
4347 }
4348
4349 besl = besl_host + besl_device;
4350 if (besl > 15)
4351 besl = 15;
4352
4353 return besl;
4354}
4355
4356/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4357static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4358{
4359 u32 field;
4360 int l1;
4361 int besld = 0;
4362 int hirdm = 0;
4363
4364 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4365
4366 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4367 l1 = udev->l1_params.timeout / 256;
4368
4369 /* device has preferred BESLD */
4370 if (field & USB_BESL_DEEP_VALID) {
4371 besld = USB_GET_BESL_DEEP(field);
4372 hirdm = 1;
4373 }
4374
4375 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4376}
4377
4378static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4379 struct usb_device *udev, int enable)
4380{
4381 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4382 struct xhci_port **ports;
4383 __le32 __iomem *pm_addr, *hlpm_addr;
4384 u32 pm_val, hlpm_val, field;
4385 unsigned int port_num;
4386 unsigned long flags;
4387 int hird, exit_latency;
4388 int ret;
4389
4390 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4391 return -EPERM;
4392
4393 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4394 !udev->lpm_capable)
4395 return -EPERM;
4396
4397 if (!udev->parent || udev->parent->parent ||
4398 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4399 return -EPERM;
4400
4401 if (udev->usb2_hw_lpm_capable != 1)
4402 return -EPERM;
4403
4404 spin_lock_irqsave(&xhci->lock, flags);
4405
4406 ports = xhci->usb2_rhub.ports;
4407 port_num = udev->portnum - 1;
4408 pm_addr = ports[port_num]->addr + PORTPMSC;
4409 pm_val = readl(addr: pm_addr);
4410 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4411
4412 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4413 enable ? "enable" : "disable", port_num + 1);
4414
4415 if (enable) {
4416 /* Host supports BESL timeout instead of HIRD */
4417 if (udev->usb2_hw_lpm_besl_capable) {
4418 /* if device doesn't have a preferred BESL value use a
4419 * default one which works with mixed HIRD and BESL
4420 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4421 */
4422 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4423 if ((field & USB_BESL_SUPPORT) &&
4424 (field & USB_BESL_BASELINE_VALID))
4425 hird = USB_GET_BESL_BASELINE(field);
4426 else
4427 hird = udev->l1_params.besl;
4428
4429 exit_latency = xhci_besl_encoding[hird];
4430 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4431
4432 ret = xhci_change_max_exit_latency(xhci, udev,
4433 max_exit_latency: exit_latency);
4434 if (ret < 0)
4435 return ret;
4436 spin_lock_irqsave(&xhci->lock, flags);
4437
4438 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4439 writel(val: hlpm_val, addr: hlpm_addr);
4440 /* flush write */
4441 readl(addr: hlpm_addr);
4442 } else {
4443 hird = xhci_calculate_hird_besl(xhci, udev);
4444 }
4445
4446 pm_val &= ~PORT_HIRD_MASK;
4447 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4448 writel(val: pm_val, addr: pm_addr);
4449 pm_val = readl(addr: pm_addr);
4450 pm_val |= PORT_HLE;
4451 writel(val: pm_val, addr: pm_addr);
4452 /* flush write */
4453 readl(addr: pm_addr);
4454 } else {
4455 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4456 writel(val: pm_val, addr: pm_addr);
4457 /* flush write */
4458 readl(addr: pm_addr);
4459 if (udev->usb2_hw_lpm_besl_capable) {
4460 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4461 xhci_change_max_exit_latency(xhci, udev, max_exit_latency: 0);
4462 readl_poll_timeout(ports[port_num]->addr, pm_val,
4463 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4464 100, 10000);
4465 return 0;
4466 }
4467 }
4468
4469 spin_unlock_irqrestore(lock: &xhci->lock, flags);
4470 return 0;
4471}
4472
4473/* check if a usb2 port supports a given extened capability protocol
4474 * only USB2 ports extended protocol capability values are cached.
4475 * Return 1 if capability is supported
4476 */
4477static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4478 unsigned capability)
4479{
4480 u32 port_offset, port_count;
4481 int i;
4482
4483 for (i = 0; i < xhci->num_ext_caps; i++) {
4484 if (xhci->ext_caps[i] & capability) {
4485 /* port offsets starts at 1 */
4486 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4487 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4488 if (port >= port_offset &&
4489 port < port_offset + port_count)
4490 return 1;
4491 }
4492 }
4493 return 0;
4494}
4495
4496static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4497{
4498 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4499 int portnum = udev->portnum - 1;
4500
4501 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4502 return 0;
4503
4504 /* we only support lpm for non-hub device connected to root hub yet */
4505 if (!udev->parent || udev->parent->parent ||
4506 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4507 return 0;
4508
4509 if (xhci->hw_lpm_support == 1 &&
4510 xhci_check_usb2_port_capability(
4511 xhci, port: portnum, XHCI_HLC)) {
4512 udev->usb2_hw_lpm_capable = 1;
4513 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4514 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4515 if (xhci_check_usb2_port_capability(xhci, port: portnum,
4516 XHCI_BLC))
4517 udev->usb2_hw_lpm_besl_capable = 1;
4518 }
4519
4520 return 0;
4521}
4522
4523/*---------------------- USB 3.0 Link PM functions ------------------------*/
4524
4525/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4526static unsigned long long xhci_service_interval_to_ns(
4527 struct usb_endpoint_descriptor *desc)
4528{
4529 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4530}
4531
4532static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4533 enum usb3_link_state state)
4534{
4535 unsigned long long sel;
4536 unsigned long long pel;
4537 unsigned int max_sel_pel;
4538 char *state_name;
4539
4540 switch (state) {
4541 case USB3_LPM_U1:
4542 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4543 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4544 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4545 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4546 state_name = "U1";
4547 break;
4548 case USB3_LPM_U2:
4549 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4550 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4551 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4552 state_name = "U2";
4553 break;
4554 default:
4555 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4556 __func__);
4557 return USB3_LPM_DISABLED;
4558 }
4559
4560 if (sel <= max_sel_pel && pel <= max_sel_pel)
4561 return USB3_LPM_DEVICE_INITIATED;
4562
4563 if (sel > max_sel_pel)
4564 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4565 "due to long SEL %llu ms\n",
4566 state_name, sel);
4567 else
4568 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4569 "due to long PEL %llu ms\n",
4570 state_name, pel);
4571 return USB3_LPM_DISABLED;
4572}
4573
4574/* The U1 timeout should be the maximum of the following values:
4575 * - For control endpoints, U1 system exit latency (SEL) * 3
4576 * - For bulk endpoints, U1 SEL * 5
4577 * - For interrupt endpoints:
4578 * - Notification EPs, U1 SEL * 3
4579 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4580 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4581 */
4582static unsigned long long xhci_calculate_intel_u1_timeout(
4583 struct usb_device *udev,
4584 struct usb_endpoint_descriptor *desc)
4585{
4586 unsigned long long timeout_ns;
4587 int ep_type;
4588 int intr_type;
4589
4590 ep_type = usb_endpoint_type(epd: desc);
4591 switch (ep_type) {
4592 case USB_ENDPOINT_XFER_CONTROL:
4593 timeout_ns = udev->u1_params.sel * 3;
4594 break;
4595 case USB_ENDPOINT_XFER_BULK:
4596 timeout_ns = udev->u1_params.sel * 5;
4597 break;
4598 case USB_ENDPOINT_XFER_INT:
4599 intr_type = usb_endpoint_interrupt_type(epd: desc);
4600 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4601 timeout_ns = udev->u1_params.sel * 3;
4602 break;
4603 }
4604 /* Otherwise the calculation is the same as isoc eps */
4605 fallthrough;
4606 case USB_ENDPOINT_XFER_ISOC:
4607 timeout_ns = xhci_service_interval_to_ns(desc);
4608 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4609 if (timeout_ns < udev->u1_params.sel * 2)
4610 timeout_ns = udev->u1_params.sel * 2;
4611 break;
4612 default:
4613 return 0;
4614 }
4615
4616 return timeout_ns;
4617}
4618
4619/* Returns the hub-encoded U1 timeout value. */
4620static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4621 struct usb_device *udev,
4622 struct usb_endpoint_descriptor *desc)
4623{
4624 unsigned long long timeout_ns;
4625
4626 /* Prevent U1 if service interval is shorter than U1 exit latency */
4627 if (usb_endpoint_xfer_int(epd: desc) || usb_endpoint_xfer_isoc(epd: desc)) {
4628 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4629 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4630 return USB3_LPM_DISABLED;
4631 }
4632 }
4633
4634 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4635 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4636 else
4637 timeout_ns = udev->u1_params.sel;
4638
4639 /* The U1 timeout is encoded in 1us intervals.
4640 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4641 */
4642 if (timeout_ns == USB3_LPM_DISABLED)
4643 timeout_ns = 1;
4644 else
4645 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4646
4647 /* If the necessary timeout value is bigger than what we can set in the
4648 * USB 3.0 hub, we have to disable hub-initiated U1.
4649 */
4650 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4651 return timeout_ns;
4652 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4653 "due to long timeout %llu ms\n", timeout_ns);
4654 return xhci_get_timeout_no_hub_lpm(udev, state: USB3_LPM_U1);
4655}
4656
4657/* The U2 timeout should be the maximum of:
4658 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4659 * - largest bInterval of any active periodic endpoint (to avoid going
4660 * into lower power link states between intervals).
4661 * - the U2 Exit Latency of the device
4662 */
4663static unsigned long long xhci_calculate_intel_u2_timeout(
4664 struct usb_device *udev,
4665 struct usb_endpoint_descriptor *desc)
4666{
4667 unsigned long long timeout_ns;
4668 unsigned long long u2_del_ns;
4669
4670 timeout_ns = 10 * 1000 * 1000;
4671
4672 if ((usb_endpoint_xfer_int(epd: desc) || usb_endpoint_xfer_isoc(epd: desc)) &&
4673 (xhci_service_interval_to_ns(desc) > timeout_ns))
4674 timeout_ns = xhci_service_interval_to_ns(desc);
4675
4676 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4677 if (u2_del_ns > timeout_ns)
4678 timeout_ns = u2_del_ns;
4679
4680 return timeout_ns;
4681}
4682
4683/* Returns the hub-encoded U2 timeout value. */
4684static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4685 struct usb_device *udev,
4686 struct usb_endpoint_descriptor *desc)
4687{
4688 unsigned long long timeout_ns;
4689
4690 /* Prevent U2 if service interval is shorter than U2 exit latency */
4691 if (usb_endpoint_xfer_int(epd: desc) || usb_endpoint_xfer_isoc(epd: desc)) {
4692 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4693 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4694 return USB3_LPM_DISABLED;
4695 }
4696 }
4697
4698 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4699 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4700 else
4701 timeout_ns = udev->u2_params.sel;
4702
4703 /* The U2 timeout is encoded in 256us intervals */
4704 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4705 /* If the necessary timeout value is bigger than what we can set in the
4706 * USB 3.0 hub, we have to disable hub-initiated U2.
4707 */
4708 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4709 return timeout_ns;
4710 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4711 "due to long timeout %llu ms\n", timeout_ns);
4712 return xhci_get_timeout_no_hub_lpm(udev, state: USB3_LPM_U2);
4713}
4714
4715static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4716 struct usb_device *udev,
4717 struct usb_endpoint_descriptor *desc,
4718 enum usb3_link_state state,
4719 u16 *timeout)
4720{
4721 if (state == USB3_LPM_U1)
4722 return xhci_calculate_u1_timeout(xhci, udev, desc);
4723 else if (state == USB3_LPM_U2)
4724 return xhci_calculate_u2_timeout(xhci, udev, desc);
4725
4726 return USB3_LPM_DISABLED;
4727}
4728
4729static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4730 struct usb_device *udev,
4731 struct usb_endpoint_descriptor *desc,
4732 enum usb3_link_state state,
4733 u16 *timeout)
4734{
4735 u16 alt_timeout;
4736
4737 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4738 desc, state, timeout);
4739
4740 /* If we found we can't enable hub-initiated LPM, and
4741 * the U1 or U2 exit latency was too high to allow
4742 * device-initiated LPM as well, then we will disable LPM
4743 * for this device, so stop searching any further.
4744 */
4745 if (alt_timeout == USB3_LPM_DISABLED) {
4746 *timeout = alt_timeout;
4747 return -E2BIG;
4748 }
4749 if (alt_timeout > *timeout)
4750 *timeout = alt_timeout;
4751 return 0;
4752}
4753
4754static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4755 struct usb_device *udev,
4756 struct usb_host_interface *alt,
4757 enum usb3_link_state state,
4758 u16 *timeout)
4759{
4760 int j;
4761
4762 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4763 if (xhci_update_timeout_for_endpoint(xhci, udev,
4764 desc: &alt->endpoint[j].desc, state, timeout))
4765 return -E2BIG;
4766 }
4767 return 0;
4768}
4769
4770static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4771 struct usb_device *udev,
4772 enum usb3_link_state state)
4773{
4774 struct usb_device *parent = udev->parent;
4775 int tier = 1; /* roothub is tier1 */
4776
4777 while (parent) {
4778 parent = parent->parent;
4779 tier++;
4780 }
4781
4782 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4783 goto fail;
4784 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4785 goto fail;
4786
4787 return 0;
4788fail:
4789 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4790 tier);
4791 return -E2BIG;
4792}
4793
4794/* Returns the U1 or U2 timeout that should be enabled.
4795 * If the tier check or timeout setting functions return with a non-zero exit
4796 * code, that means the timeout value has been finalized and we shouldn't look
4797 * at any more endpoints.
4798 */
4799static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4800 struct usb_device *udev, enum usb3_link_state state)
4801{
4802 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4803 struct usb_host_config *config;
4804 char *state_name;
4805 int i;
4806 u16 timeout = USB3_LPM_DISABLED;
4807
4808 if (state == USB3_LPM_U1)
4809 state_name = "U1";
4810 else if (state == USB3_LPM_U2)
4811 state_name = "U2";
4812 else {
4813 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4814 state);
4815 return timeout;
4816 }
4817
4818 /* Gather some information about the currently installed configuration
4819 * and alternate interface settings.
4820 */
4821 if (xhci_update_timeout_for_endpoint(xhci, udev, desc: &udev->ep0.desc,
4822 state, timeout: &timeout))
4823 return timeout;
4824
4825 config = udev->actconfig;
4826 if (!config)
4827 return timeout;
4828
4829 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4830 struct usb_driver *driver;
4831 struct usb_interface *intf = config->interface[i];
4832
4833 if (!intf)
4834 continue;
4835
4836 /* Check if any currently bound drivers want hub-initiated LPM
4837 * disabled.
4838 */
4839 if (intf->dev.driver) {
4840 driver = to_usb_driver(intf->dev.driver);
4841 if (driver && driver->disable_hub_initiated_lpm) {
4842 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4843 state_name, driver->name);
4844 timeout = xhci_get_timeout_no_hub_lpm(udev,
4845 state);
4846 if (timeout == USB3_LPM_DISABLED)
4847 return timeout;
4848 }
4849 }
4850
4851 /* Not sure how this could happen... */
4852 if (!intf->cur_altsetting)
4853 continue;
4854
4855 if (xhci_update_timeout_for_interface(xhci, udev,
4856 alt: intf->cur_altsetting,
4857 state, timeout: &timeout))
4858 return timeout;
4859 }
4860 return timeout;
4861}
4862
4863static int calculate_max_exit_latency(struct usb_device *udev,
4864 enum usb3_link_state state_changed,
4865 u16 hub_encoded_timeout)
4866{
4867 unsigned long long u1_mel_us = 0;
4868 unsigned long long u2_mel_us = 0;
4869 unsigned long long mel_us = 0;
4870 bool disabling_u1;
4871 bool disabling_u2;
4872 bool enabling_u1;
4873 bool enabling_u2;
4874
4875 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4876 hub_encoded_timeout == USB3_LPM_DISABLED);
4877 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4878 hub_encoded_timeout == USB3_LPM_DISABLED);
4879
4880 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4881 hub_encoded_timeout != USB3_LPM_DISABLED);
4882 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4883 hub_encoded_timeout != USB3_LPM_DISABLED);
4884
4885 /* If U1 was already enabled and we're not disabling it,
4886 * or we're going to enable U1, account for the U1 max exit latency.
4887 */
4888 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4889 enabling_u1)
4890 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4891 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4892 enabling_u2)
4893 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4894
4895 mel_us = max(u1_mel_us, u2_mel_us);
4896
4897 /* xHCI host controller max exit latency field is only 16 bits wide. */
4898 if (mel_us > MAX_EXIT) {
4899 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4900 "is too big.\n", mel_us);
4901 return -E2BIG;
4902 }
4903 return mel_us;
4904}
4905
4906/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4907static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4908 struct usb_device *udev, enum usb3_link_state state)
4909{
4910 struct xhci_hcd *xhci;
4911 struct xhci_port *port;
4912 u16 hub_encoded_timeout;
4913 int mel;
4914 int ret;
4915
4916 xhci = hcd_to_xhci(hcd);
4917 /* The LPM timeout values are pretty host-controller specific, so don't
4918 * enable hub-initiated timeouts unless the vendor has provided
4919 * information about their timeout algorithm.
4920 */
4921 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4922 !xhci->devs[udev->slot_id])
4923 return USB3_LPM_DISABLED;
4924
4925 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4926 return USB3_LPM_DISABLED;
4927
4928 /* If connected to root port then check port can handle lpm */
4929 if (udev->parent && !udev->parent->parent) {
4930 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4931 if (port->lpm_incapable)
4932 return USB3_LPM_DISABLED;
4933 }
4934
4935 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4936 mel = calculate_max_exit_latency(udev, state_changed: state, hub_encoded_timeout);
4937 if (mel < 0) {
4938 /* Max Exit Latency is too big, disable LPM. */
4939 hub_encoded_timeout = USB3_LPM_DISABLED;
4940 mel = 0;
4941 }
4942
4943 ret = xhci_change_max_exit_latency(xhci, udev, max_exit_latency: mel);
4944 if (ret)
4945 return ret;
4946 return hub_encoded_timeout;
4947}
4948
4949static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4950 struct usb_device *udev, enum usb3_link_state state)
4951{
4952 struct xhci_hcd *xhci;
4953 u16 mel;
4954
4955 xhci = hcd_to_xhci(hcd);
4956 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957 !xhci->devs[udev->slot_id])
4958 return 0;
4959
4960 mel = calculate_max_exit_latency(udev, state_changed: state, USB3_LPM_DISABLED);
4961 return xhci_change_max_exit_latency(xhci, udev, max_exit_latency: mel);
4962}
4963#else /* CONFIG_PM */
4964
4965static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4966 struct usb_device *udev, int enable)
4967{
4968 return 0;
4969}
4970
4971static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4972{
4973 return 0;
4974}
4975
4976static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4977 struct usb_device *udev, enum usb3_link_state state)
4978{
4979 return USB3_LPM_DISABLED;
4980}
4981
4982static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4983 struct usb_device *udev, enum usb3_link_state state)
4984{
4985 return 0;
4986}
4987#endif /* CONFIG_PM */
4988
4989/*-------------------------------------------------------------------------*/
4990
4991/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4992 * internal data structures for the device.
4993 */
4994int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4995 struct usb_tt *tt, gfp_t mem_flags)
4996{
4997 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4998 struct xhci_virt_device *vdev;
4999 struct xhci_command *config_cmd;
5000 struct xhci_input_control_ctx *ctrl_ctx;
5001 struct xhci_slot_ctx *slot_ctx;
5002 unsigned long flags;
5003 unsigned think_time;
5004 int ret;
5005
5006 /* Ignore root hubs */
5007 if (!hdev->parent)
5008 return 0;
5009
5010 vdev = xhci->devs[hdev->slot_id];
5011 if (!vdev) {
5012 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5013 return -EINVAL;
5014 }
5015
5016 config_cmd = xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags);
5017 if (!config_cmd)
5018 return -ENOMEM;
5019
5020 ctrl_ctx = xhci_get_input_control_ctx(ctx: config_cmd->in_ctx);
5021 if (!ctrl_ctx) {
5022 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5023 __func__);
5024 xhci_free_command(xhci, command: config_cmd);
5025 return -ENOMEM;
5026 }
5027
5028 spin_lock_irqsave(&xhci->lock, flags);
5029 if (hdev->speed == USB_SPEED_HIGH &&
5030 xhci_alloc_tt_info(xhci, virt_dev: vdev, hdev, tt, GFP_ATOMIC)) {
5031 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5032 xhci_free_command(xhci, command: config_cmd);
5033 spin_unlock_irqrestore(lock: &xhci->lock, flags);
5034 return -ENOMEM;
5035 }
5036
5037 xhci_slot_copy(xhci, in_ctx: config_cmd->in_ctx, out_ctx: vdev->out_ctx);
5038 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5039 slot_ctx = xhci_get_slot_ctx(xhci, ctx: config_cmd->in_ctx);
5040 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5041 /*
5042 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5043 * but it may be already set to 1 when setup an xHCI virtual
5044 * device, so clear it anyway.
5045 */
5046 if (tt->multi)
5047 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5048 else if (hdev->speed == USB_SPEED_FULL)
5049 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5050
5051 if (xhci->hci_version > 0x95) {
5052 xhci_dbg(xhci, "xHCI version %x needs hub "
5053 "TT think time and number of ports\n",
5054 (unsigned int) xhci->hci_version);
5055 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5056 /* Set TT think time - convert from ns to FS bit times.
5057 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5058 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5059 *
5060 * xHCI 1.0: this field shall be 0 if the device is not a
5061 * High-spped hub.
5062 */
5063 think_time = tt->think_time;
5064 if (think_time != 0)
5065 think_time = (think_time / 666) - 1;
5066 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5067 slot_ctx->tt_info |=
5068 cpu_to_le32(TT_THINK_TIME(think_time));
5069 } else {
5070 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5071 "TT think time or number of ports\n",
5072 (unsigned int) xhci->hci_version);
5073 }
5074 slot_ctx->dev_state = 0;
5075 spin_unlock_irqrestore(lock: &xhci->lock, flags);
5076
5077 xhci_dbg(xhci, "Set up %s for hub device.\n",
5078 (xhci->hci_version > 0x95) ?
5079 "configure endpoint" : "evaluate context");
5080
5081 /* Issue and wait for the configure endpoint or
5082 * evaluate context command.
5083 */
5084 if (xhci->hci_version > 0x95)
5085 ret = xhci_configure_endpoint(xhci, udev: hdev, command: config_cmd,
5086 ctx_change: false, must_succeed: false);
5087 else
5088 ret = xhci_configure_endpoint(xhci, udev: hdev, command: config_cmd,
5089 ctx_change: true, must_succeed: false);
5090
5091 xhci_free_command(xhci, command: config_cmd);
5092 return ret;
5093}
5094EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5095
5096static int xhci_get_frame(struct usb_hcd *hcd)
5097{
5098 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5099 /* EHCI mods by the periodic size. Why? */
5100 return readl(addr: &xhci->run_regs->microframe_index) >> 3;
5101}
5102
5103static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5104{
5105 xhci->usb2_rhub.hcd = hcd;
5106 hcd->speed = HCD_USB2;
5107 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5108 /*
5109 * USB 2.0 roothub under xHCI has an integrated TT,
5110 * (rate matching hub) as opposed to having an OHCI/UHCI
5111 * companion controller.
5112 */
5113 hcd->has_tt = 1;
5114}
5115
5116static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5117{
5118 unsigned int minor_rev;
5119
5120 /*
5121 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5122 * should return 0x31 for sbrn, or that the minor revision
5123 * is a two digit BCD containig minor and sub-minor numbers.
5124 * This was later clarified in xHCI 1.2.
5125 *
5126 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5127 * minor revision set to 0x1 instead of 0x10.
5128 */
5129 if (xhci->usb3_rhub.min_rev == 0x1)
5130 minor_rev = 1;
5131 else
5132 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5133
5134 switch (minor_rev) {
5135 case 2:
5136 hcd->speed = HCD_USB32;
5137 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5138 hcd->self.root_hub->rx_lanes = 2;
5139 hcd->self.root_hub->tx_lanes = 2;
5140 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5141 break;
5142 case 1:
5143 hcd->speed = HCD_USB31;
5144 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5145 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5146 break;
5147 }
5148 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5149 minor_rev, minor_rev ? "Enhanced " : "");
5150
5151 xhci->usb3_rhub.hcd = hcd;
5152}
5153
5154int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5155{
5156 struct xhci_hcd *xhci;
5157 /*
5158 * TODO: Check with DWC3 clients for sysdev according to
5159 * quirks
5160 */
5161 struct device *dev = hcd->self.sysdev;
5162 int retval;
5163
5164 /* Accept arbitrarily long scatter-gather lists */
5165 hcd->self.sg_tablesize = ~0;
5166
5167 /* support to build packet from discontinuous buffers */
5168 hcd->self.no_sg_constraint = 1;
5169
5170 /* XHCI controllers don't stop the ep queue on short packets :| */
5171 hcd->self.no_stop_on_short = 1;
5172
5173 xhci = hcd_to_xhci(hcd);
5174
5175 if (!usb_hcd_is_primary_hcd(hcd)) {
5176 xhci_hcd_init_usb3_data(xhci, hcd);
5177 return 0;
5178 }
5179
5180 mutex_init(&xhci->mutex);
5181 xhci->main_hcd = hcd;
5182 xhci->cap_regs = hcd->regs;
5183 xhci->op_regs = hcd->regs +
5184 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5185 xhci->run_regs = hcd->regs +
5186 (readl(addr: &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5187 /* Cache read-only capability registers */
5188 xhci->hcs_params1 = readl(addr: &xhci->cap_regs->hcs_params1);
5189 xhci->hcs_params2 = readl(addr: &xhci->cap_regs->hcs_params2);
5190 xhci->hcs_params3 = readl(addr: &xhci->cap_regs->hcs_params3);
5191 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5192 xhci->hcc_params = readl(addr: &xhci->cap_regs->hcc_params);
5193 if (xhci->hci_version > 0x100)
5194 xhci->hcc_params2 = readl(addr: &xhci->cap_regs->hcc_params2);
5195
5196 /* xhci-plat or xhci-pci might have set max_interrupters already */
5197 if ((!xhci->max_interrupters) ||
5198 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5199 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5200
5201 xhci->quirks |= quirks;
5202
5203 if (get_quirks)
5204 get_quirks(dev, xhci);
5205
5206 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5207 * success event after a short transfer. This quirk will ignore such
5208 * spurious event.
5209 */
5210 if (xhci->hci_version > 0x96)
5211 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5212
5213 /* Make sure the HC is halted. */
5214 retval = xhci_halt(xhci);
5215 if (retval)
5216 return retval;
5217
5218 xhci_zero_64b_regs(xhci);
5219
5220 xhci_dbg(xhci, "Resetting HCD\n");
5221 /* Reset the internal HC memory state and registers. */
5222 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5223 if (retval)
5224 return retval;
5225 xhci_dbg(xhci, "Reset complete\n");
5226
5227 /*
5228 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5229 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5230 * address memory pointers actually. So, this driver clears the AC64
5231 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5232 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5233 */
5234 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5235 xhci->hcc_params &= ~BIT(0);
5236
5237 /* Set dma_mask and coherent_dma_mask to 64-bits,
5238 * if xHC supports 64-bit addressing */
5239 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5240 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5241 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5242 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5243 } else {
5244 /*
5245 * This is to avoid error in cases where a 32-bit USB
5246 * controller is used on a 64-bit capable system.
5247 */
5248 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5249 if (retval)
5250 return retval;
5251 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5252 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5253 }
5254
5255 xhci_dbg(xhci, "Calling HCD init\n");
5256 /* Initialize HCD and host controller data structures. */
5257 retval = xhci_init(hcd);
5258 if (retval)
5259 return retval;
5260 xhci_dbg(xhci, "Called HCD init\n");
5261
5262 if (xhci_hcd_is_usb3(hcd))
5263 xhci_hcd_init_usb3_data(xhci, hcd);
5264 else
5265 xhci_hcd_init_usb2_data(xhci, hcd);
5266
5267 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270 return 0;
5271}
5272EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275 struct usb_host_endpoint *ep)
5276{
5277 struct xhci_hcd *xhci;
5278 struct usb_device *udev;
5279 unsigned int slot_id;
5280 unsigned int ep_index;
5281 unsigned long flags;
5282
5283 xhci = hcd_to_xhci(hcd);
5284
5285 spin_lock_irqsave(&xhci->lock, flags);
5286 udev = (struct usb_device *)ep->hcpriv;
5287 slot_id = udev->slot_id;
5288 ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292 spin_unlock_irqrestore(lock: &xhci->lock, flags);
5293}
5294
5295static const struct hc_driver xhci_hc_driver = {
5296 .description = "xhci-hcd",
5297 .product_desc = "xHCI Host Controller",
5298 .hcd_priv_size = sizeof(struct xhci_hcd),
5299
5300 /*
5301 * generic hardware linkage
5302 */
5303 .irq = xhci_irq,
5304 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5305 HCD_BH,
5306
5307 /*
5308 * basic lifecycle operations
5309 */
5310 .reset = NULL, /* set in xhci_init_driver() */
5311 .start = xhci_run,
5312 .stop = xhci_stop,
5313 .shutdown = xhci_shutdown,
5314
5315 /*
5316 * managing i/o requests and associated device resources
5317 */
5318 .map_urb_for_dma = xhci_map_urb_for_dma,
5319 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5320 .urb_enqueue = xhci_urb_enqueue,
5321 .urb_dequeue = xhci_urb_dequeue,
5322 .alloc_dev = xhci_alloc_dev,
5323 .free_dev = xhci_free_dev,
5324 .alloc_streams = xhci_alloc_streams,
5325 .free_streams = xhci_free_streams,
5326 .add_endpoint = xhci_add_endpoint,
5327 .drop_endpoint = xhci_drop_endpoint,
5328 .endpoint_disable = xhci_endpoint_disable,
5329 .endpoint_reset = xhci_endpoint_reset,
5330 .check_bandwidth = xhci_check_bandwidth,
5331 .reset_bandwidth = xhci_reset_bandwidth,
5332 .address_device = xhci_address_device,
5333 .enable_device = xhci_enable_device,
5334 .update_hub_device = xhci_update_hub_device,
5335 .reset_device = xhci_discover_or_reset_device,
5336
5337 /*
5338 * scheduling support
5339 */
5340 .get_frame_number = xhci_get_frame,
5341
5342 /*
5343 * root hub support
5344 */
5345 .hub_control = xhci_hub_control,
5346 .hub_status_data = xhci_hub_status_data,
5347 .bus_suspend = xhci_bus_suspend,
5348 .bus_resume = xhci_bus_resume,
5349 .get_resuming_ports = xhci_get_resuming_ports,
5350
5351 /*
5352 * call back when device connected and addressed
5353 */
5354 .update_device = xhci_update_device,
5355 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5356 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5357 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5358 .find_raw_port_number = xhci_find_raw_port_number,
5359 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5360};
5361
5362void xhci_init_driver(struct hc_driver *drv,
5363 const struct xhci_driver_overrides *over)
5364{
5365 BUG_ON(!over);
5366
5367 /* Copy the generic table to drv then apply the overrides */
5368 *drv = xhci_hc_driver;
5369
5370 if (over) {
5371 drv->hcd_priv_size += over->extra_priv_size;
5372 if (over->reset)
5373 drv->reset = over->reset;
5374 if (over->start)
5375 drv->start = over->start;
5376 if (over->add_endpoint)
5377 drv->add_endpoint = over->add_endpoint;
5378 if (over->drop_endpoint)
5379 drv->drop_endpoint = over->drop_endpoint;
5380 if (over->check_bandwidth)
5381 drv->check_bandwidth = over->check_bandwidth;
5382 if (over->reset_bandwidth)
5383 drv->reset_bandwidth = over->reset_bandwidth;
5384 if (over->update_hub_device)
5385 drv->update_hub_device = over->update_hub_device;
5386 if (over->hub_control)
5387 drv->hub_control = over->hub_control;
5388 }
5389}
5390EXPORT_SYMBOL_GPL(xhci_init_driver);
5391
5392MODULE_DESCRIPTION(DRIVER_DESC);
5393MODULE_AUTHOR(DRIVER_AUTHOR);
5394MODULE_LICENSE("GPL");
5395
5396static int __init xhci_hcd_init(void)
5397{
5398 /*
5399 * Check the compiler generated sizes of structures that must be laid
5400 * out in specific ways for hardware access.
5401 */
5402 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5403 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5404 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5405 /* xhci_device_control has eight fields, and also
5406 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5407 */
5408 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5409 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5410 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5411 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5412 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5413 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5414 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5415
5416 if (usb_disabled())
5417 return -ENODEV;
5418
5419 xhci_debugfs_create_root();
5420 xhci_dbc_init();
5421
5422 return 0;
5423}
5424
5425/*
5426 * If an init function is provided, an exit function must also be provided
5427 * to allow module unload.
5428 */
5429static void __exit xhci_hcd_fini(void)
5430{
5431 xhci_debugfs_remove_root();
5432 xhci_dbc_exit();
5433}
5434
5435module_init(xhci_hcd_init);
5436module_exit(xhci_hcd_fini);
5437

source code of linux/drivers/usb/host/xhci.c