1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10
11#include <net/sock.h>
12#include <net/af_rxrpc.h>
13#include "internal.h"
14#include "afs_cm.h"
15#include "protocol_yfs.h"
16#define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17#include <trace/events/rxrpc.h>
18
19struct workqueue_struct *afs_async_calls;
20
21static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
22static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
23static void afs_process_async_call(struct work_struct *);
24static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
25static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
26static int afs_deliver_cm_op_id(struct afs_call *);
27
28/* asynchronous incoming call initial processing */
29static const struct afs_call_type afs_RXCMxxxx = {
30 .name = "CB.xxxx",
31 .deliver = afs_deliver_cm_op_id,
32};
33
34/*
35 * open an RxRPC socket and bind it to be a server for callback notifications
36 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37 */
38int afs_open_socket(struct afs_net *net)
39{
40 struct sockaddr_rxrpc srx;
41 struct socket *socket;
42 int ret;
43
44 _enter("");
45
46 ret = sock_create_kern(net: net->net, AF_RXRPC, type: SOCK_DGRAM, PF_INET6, res: &socket);
47 if (ret < 0)
48 goto error_1;
49
50 socket->sk->sk_allocation = GFP_NOFS;
51
52 /* bind the callback manager's address to make this a server socket */
53 memset(&srx, 0, sizeof(srx));
54 srx.srx_family = AF_RXRPC;
55 srx.srx_service = CM_SERVICE;
56 srx.transport_type = SOCK_DGRAM;
57 srx.transport_len = sizeof(srx.transport.sin6);
58 srx.transport.sin6.sin6_family = AF_INET6;
59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
60
61 ret = rxrpc_sock_set_min_security_level(sk: socket->sk,
62 RXRPC_SECURITY_ENCRYPT);
63 if (ret < 0)
64 goto error_2;
65
66 ret = kernel_bind(sock: socket, addr: (struct sockaddr *) &srx, addrlen: sizeof(srx));
67 if (ret == -EADDRINUSE) {
68 srx.transport.sin6.sin6_port = 0;
69 ret = kernel_bind(sock: socket, addr: (struct sockaddr *) &srx, addrlen: sizeof(srx));
70 }
71 if (ret < 0)
72 goto error_2;
73
74 srx.srx_service = YFS_CM_SERVICE;
75 ret = kernel_bind(sock: socket, addr: (struct sockaddr *) &srx, addrlen: sizeof(srx));
76 if (ret < 0)
77 goto error_2;
78
79 /* Ideally, we'd turn on service upgrade here, but we can't because
80 * OpenAFS is buggy and leaks the userStatus field from packet to
81 * packet and between FS packets and CB packets - so if we try to do an
82 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83 * it sends back to us.
84 */
85
86 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87 afs_rx_discard_new_call);
88
89 ret = kernel_listen(sock: socket, INT_MAX);
90 if (ret < 0)
91 goto error_2;
92
93 net->socket = socket;
94 afs_charge_preallocation(&net->charge_preallocation_work);
95 _leave(" = 0");
96 return 0;
97
98error_2:
99 sock_release(sock: socket);
100error_1:
101 _leave(" = %d", ret);
102 return ret;
103}
104
105/*
106 * close the RxRPC socket AFS was using
107 */
108void afs_close_socket(struct afs_net *net)
109{
110 _enter("");
111
112 kernel_listen(sock: net->socket, backlog: 0);
113 flush_workqueue(afs_async_calls);
114
115 if (net->spare_incoming_call) {
116 afs_put_call(net->spare_incoming_call);
117 net->spare_incoming_call = NULL;
118 }
119
120 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121 wait_var_event(&net->nr_outstanding_calls,
122 !atomic_read(&net->nr_outstanding_calls));
123 _debug("no outstanding calls");
124
125 kernel_sock_shutdown(sock: net->socket, how: SHUT_RDWR);
126 flush_workqueue(afs_async_calls);
127 sock_release(sock: net->socket);
128
129 _debug("dework");
130 _leave("");
131}
132
133/*
134 * Allocate a call.
135 */
136static struct afs_call *afs_alloc_call(struct afs_net *net,
137 const struct afs_call_type *type,
138 gfp_t gfp)
139{
140 struct afs_call *call;
141 int o;
142
143 call = kzalloc(size: sizeof(*call), flags: gfp);
144 if (!call)
145 return NULL;
146
147 call->type = type;
148 call->net = net;
149 call->debug_id = atomic_inc_return(v: &rxrpc_debug_id);
150 refcount_set(r: &call->ref, n: 1);
151 INIT_WORK(&call->async_work, afs_process_async_call);
152 init_waitqueue_head(&call->waitq);
153 spin_lock_init(&call->state_lock);
154 call->iter = &call->def_iter;
155
156 o = atomic_inc_return(v: &net->nr_outstanding_calls);
157 trace_afs_call(call_debug_id: call->debug_id, op: afs_call_trace_alloc, ref: 1, outstanding: o,
158 where: __builtin_return_address(0));
159 return call;
160}
161
162/*
163 * Dispose of a reference on a call.
164 */
165void afs_put_call(struct afs_call *call)
166{
167 struct afs_net *net = call->net;
168 unsigned int debug_id = call->debug_id;
169 bool zero;
170 int r, o;
171
172 zero = __refcount_dec_and_test(r: &call->ref, oldp: &r);
173 o = atomic_read(v: &net->nr_outstanding_calls);
174 trace_afs_call(call_debug_id: debug_id, op: afs_call_trace_put, ref: r - 1, outstanding: o,
175 where: __builtin_return_address(0));
176
177 if (zero) {
178 ASSERT(!work_pending(&call->async_work));
179 ASSERT(call->type->name != NULL);
180
181 if (call->rxcall) {
182 rxrpc_kernel_shutdown_call(sock: net->socket, call: call->rxcall);
183 rxrpc_kernel_put_call(sock: net->socket, call: call->rxcall);
184 call->rxcall = NULL;
185 }
186 if (call->type->destructor)
187 call->type->destructor(call);
188
189 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
190 afs_put_addrlist(call->alist);
191 kfree(objp: call->request);
192
193 trace_afs_call(call_debug_id: call->debug_id, op: afs_call_trace_free, ref: 0, outstanding: o,
194 where: __builtin_return_address(0));
195 kfree(objp: call);
196
197 o = atomic_dec_return(v: &net->nr_outstanding_calls);
198 if (o == 0)
199 wake_up_var(var: &net->nr_outstanding_calls);
200 }
201}
202
203static struct afs_call *afs_get_call(struct afs_call *call,
204 enum afs_call_trace why)
205{
206 int r;
207
208 __refcount_inc(r: &call->ref, oldp: &r);
209
210 trace_afs_call(call_debug_id: call->debug_id, op: why, ref: r + 1,
211 outstanding: atomic_read(v: &call->net->nr_outstanding_calls),
212 where: __builtin_return_address(0));
213 return call;
214}
215
216/*
217 * Queue the call for actual work.
218 */
219static void afs_queue_call_work(struct afs_call *call)
220{
221 if (call->type->work) {
222 INIT_WORK(&call->work, call->type->work);
223
224 afs_get_call(call, why: afs_call_trace_work);
225 if (!queue_work(wq: afs_wq, work: &call->work))
226 afs_put_call(call);
227 }
228}
229
230/*
231 * allocate a call with flat request and reply buffers
232 */
233struct afs_call *afs_alloc_flat_call(struct afs_net *net,
234 const struct afs_call_type *type,
235 size_t request_size, size_t reply_max)
236{
237 struct afs_call *call;
238
239 call = afs_alloc_call(net, type, GFP_NOFS);
240 if (!call)
241 goto nomem_call;
242
243 if (request_size) {
244 call->request_size = request_size;
245 call->request = kmalloc(size: request_size, GFP_NOFS);
246 if (!call->request)
247 goto nomem_free;
248 }
249
250 if (reply_max) {
251 call->reply_max = reply_max;
252 call->buffer = kmalloc(size: reply_max, GFP_NOFS);
253 if (!call->buffer)
254 goto nomem_free;
255 }
256
257 afs_extract_to_buf(call, size: call->reply_max);
258 call->operation_ID = type->op;
259 init_waitqueue_head(&call->waitq);
260 return call;
261
262nomem_free:
263 afs_put_call(call);
264nomem_call:
265 return NULL;
266}
267
268/*
269 * clean up a call with flat buffer
270 */
271void afs_flat_call_destructor(struct afs_call *call)
272{
273 _enter("");
274
275 kfree(objp: call->request);
276 call->request = NULL;
277 kfree(objp: call->buffer);
278 call->buffer = NULL;
279}
280
281/*
282 * Advance the AFS call state when the RxRPC call ends the transmit phase.
283 */
284static void afs_notify_end_request_tx(struct sock *sock,
285 struct rxrpc_call *rxcall,
286 unsigned long call_user_ID)
287{
288 struct afs_call *call = (struct afs_call *)call_user_ID;
289
290 afs_set_call_state(call, from: AFS_CALL_CL_REQUESTING, to: AFS_CALL_CL_AWAIT_REPLY);
291}
292
293/*
294 * Initiate a call and synchronously queue up the parameters for dispatch. Any
295 * error is stored into the call struct, which the caller must check for.
296 */
297void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
298{
299 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
300 struct rxrpc_call *rxcall;
301 struct msghdr msg;
302 struct kvec iov[1];
303 size_t len;
304 s64 tx_total_len;
305 int ret;
306
307 _enter(",{%pISp},", &srx->transport);
308
309 ASSERT(call->type != NULL);
310 ASSERT(call->type->name != NULL);
311
312 _debug("____MAKE %p{%s,%x} [%d]____",
313 call, call->type->name, key_serial(call->key),
314 atomic_read(&call->net->nr_outstanding_calls));
315
316 call->addr_ix = ac->index;
317 call->alist = afs_get_addrlist(alist: ac->alist);
318
319 /* Work out the length we're going to transmit. This is awkward for
320 * calls such as FS.StoreData where there's an extra injection of data
321 * after the initial fixed part.
322 */
323 tx_total_len = call->request_size;
324 if (call->write_iter)
325 tx_total_len += iov_iter_count(i: call->write_iter);
326
327 /* If the call is going to be asynchronous, we need an extra ref for
328 * the call to hold itself so the caller need not hang on to its ref.
329 */
330 if (call->async) {
331 afs_get_call(call, why: afs_call_trace_get);
332 call->drop_ref = true;
333 }
334
335 /* create a call */
336 rxcall = rxrpc_kernel_begin_call(sock: call->net->socket, srx, key: call->key,
337 user_call_ID: (unsigned long)call,
338 tx_total_len,
339 hard_timeout: call->max_lifespan,
340 gfp,
341 notify_rx: (call->async ?
342 afs_wake_up_async_call :
343 afs_wake_up_call_waiter),
344 upgrade: call->upgrade,
345 interruptibility: (call->intr ? RXRPC_PREINTERRUPTIBLE :
346 RXRPC_UNINTERRUPTIBLE),
347 debug_id: call->debug_id);
348 if (IS_ERR(ptr: rxcall)) {
349 ret = PTR_ERR(ptr: rxcall);
350 call->error = ret;
351 goto error_kill_call;
352 }
353
354 call->rxcall = rxcall;
355 call->issue_time = ktime_get_real();
356
357 /* send the request */
358 iov[0].iov_base = call->request;
359 iov[0].iov_len = call->request_size;
360
361 msg.msg_name = NULL;
362 msg.msg_namelen = 0;
363 iov_iter_kvec(i: &msg.msg_iter, ITER_SOURCE, kvec: iov, nr_segs: 1, count: call->request_size);
364 msg.msg_control = NULL;
365 msg.msg_controllen = 0;
366 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
367
368 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
369 &msg, call->request_size,
370 afs_notify_end_request_tx);
371 if (ret < 0)
372 goto error_do_abort;
373
374 if (call->write_iter) {
375 msg.msg_iter = *call->write_iter;
376 msg.msg_flags &= ~MSG_MORE;
377 trace_afs_send_data(call, msg: &msg);
378
379 ret = rxrpc_kernel_send_data(call->net->socket,
380 call->rxcall, &msg,
381 iov_iter_count(i: &msg.msg_iter),
382 afs_notify_end_request_tx);
383 *call->write_iter = msg.msg_iter;
384
385 trace_afs_sent_data(call, msg: &msg, ret);
386 if (ret < 0)
387 goto error_do_abort;
388 }
389
390 /* Note that at this point, we may have received the reply or an abort
391 * - and an asynchronous call may already have completed.
392 *
393 * afs_wait_for_call_to_complete(call, ac)
394 * must be called to synchronously clean up.
395 */
396 return;
397
398error_do_abort:
399 if (ret != -ECONNABORTED) {
400 rxrpc_kernel_abort_call(call->net->socket, rxcall,
401 RX_USER_ABORT, ret,
402 afs_abort_send_data_error);
403 } else {
404 len = 0;
405 iov_iter_kvec(i: &msg.msg_iter, ITER_DEST, NULL, nr_segs: 0, count: 0);
406 rxrpc_kernel_recv_data(call->net->socket, rxcall,
407 &msg.msg_iter, &len, false,
408 &call->abort_code, &call->service_id);
409 ac->abort_code = call->abort_code;
410 ac->responded = true;
411 }
412 call->error = ret;
413 trace_afs_call_done(call);
414error_kill_call:
415 if (call->type->done)
416 call->type->done(call);
417
418 /* We need to dispose of the extra ref we grabbed for an async call.
419 * The call, however, might be queued on afs_async_calls and we need to
420 * make sure we don't get any more notifications that might requeue it.
421 */
422 if (call->rxcall)
423 rxrpc_kernel_shutdown_call(sock: call->net->socket, call: call->rxcall);
424 if (call->async) {
425 if (cancel_work_sync(work: &call->async_work))
426 afs_put_call(call);
427 afs_put_call(call);
428 }
429
430 ac->error = ret;
431 call->state = AFS_CALL_COMPLETE;
432 _leave(" = %d", ret);
433}
434
435/*
436 * Log remote abort codes that indicate that we have a protocol disagreement
437 * with the server.
438 */
439static void afs_log_error(struct afs_call *call, s32 remote_abort)
440{
441 static int max = 0;
442 const char *msg;
443 int m;
444
445 switch (remote_abort) {
446 case RX_EOF: msg = "unexpected EOF"; break;
447 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
448 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
449 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
450 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
451 case RXGEN_DECODE: msg = "opcode decode"; break;
452 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
453 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
454 case -32: msg = "insufficient data"; break;
455 default:
456 return;
457 }
458
459 m = max;
460 if (m < 3) {
461 max = m + 1;
462 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
463 msg, call->type->name,
464 &call->alist->addrs[call->addr_ix].transport);
465 }
466}
467
468/*
469 * deliver messages to a call
470 */
471static void afs_deliver_to_call(struct afs_call *call)
472{
473 enum afs_call_state state;
474 size_t len;
475 u32 abort_code, remote_abort = 0;
476 int ret;
477
478 _enter("%s", call->type->name);
479
480 while (state = READ_ONCE(call->state),
481 state == AFS_CALL_CL_AWAIT_REPLY ||
482 state == AFS_CALL_SV_AWAIT_OP_ID ||
483 state == AFS_CALL_SV_AWAIT_REQUEST ||
484 state == AFS_CALL_SV_AWAIT_ACK
485 ) {
486 if (state == AFS_CALL_SV_AWAIT_ACK) {
487 len = 0;
488 iov_iter_kvec(i: &call->def_iter, ITER_DEST, NULL, nr_segs: 0, count: 0);
489 ret = rxrpc_kernel_recv_data(call->net->socket,
490 call->rxcall, &call->def_iter,
491 &len, false, &remote_abort,
492 &call->service_id);
493 trace_afs_receive_data(call, iter: &call->def_iter, want_more: false, ret);
494
495 if (ret == -EINPROGRESS || ret == -EAGAIN)
496 return;
497 if (ret < 0 || ret == 1) {
498 if (ret == 1)
499 ret = 0;
500 goto call_complete;
501 }
502 return;
503 }
504
505 ret = call->type->deliver(call);
506 state = READ_ONCE(call->state);
507 if (ret == 0 && call->unmarshalling_error)
508 ret = -EBADMSG;
509 switch (ret) {
510 case 0:
511 afs_queue_call_work(call);
512 if (state == AFS_CALL_CL_PROC_REPLY) {
513 if (call->op)
514 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
515 addr: &call->op->server->flags);
516 goto call_complete;
517 }
518 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
519 goto done;
520 case -EINPROGRESS:
521 case -EAGAIN:
522 goto out;
523 case -ECONNABORTED:
524 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
525 afs_log_error(call, remote_abort: call->abort_code);
526 goto done;
527 case -ENOTSUPP:
528 abort_code = RXGEN_OPCODE;
529 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
530 abort_code, ret,
531 afs_abort_op_not_supported);
532 goto local_abort;
533 case -EIO:
534 pr_err("kAFS: Call %u in bad state %u\n",
535 call->debug_id, state);
536 fallthrough;
537 case -ENODATA:
538 case -EBADMSG:
539 case -EMSGSIZE:
540 case -ENOMEM:
541 case -EFAULT:
542 abort_code = RXGEN_CC_UNMARSHAL;
543 if (state != AFS_CALL_CL_AWAIT_REPLY)
544 abort_code = RXGEN_SS_UNMARSHAL;
545 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
546 abort_code, ret,
547 afs_abort_unmarshal_error);
548 goto local_abort;
549 default:
550 abort_code = RX_CALL_DEAD;
551 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
552 abort_code, ret,
553 afs_abort_general_error);
554 goto local_abort;
555 }
556 }
557
558done:
559 if (call->type->done)
560 call->type->done(call);
561out:
562 _leave("");
563 return;
564
565local_abort:
566 abort_code = 0;
567call_complete:
568 afs_set_call_complete(call, error: ret, remote_abort);
569 state = AFS_CALL_COMPLETE;
570 goto done;
571}
572
573/*
574 * Wait synchronously for a call to complete and clean up the call struct.
575 */
576long afs_wait_for_call_to_complete(struct afs_call *call,
577 struct afs_addr_cursor *ac)
578{
579 long ret;
580 bool rxrpc_complete = false;
581
582 DECLARE_WAITQUEUE(myself, current);
583
584 _enter("");
585
586 ret = call->error;
587 if (ret < 0)
588 goto out;
589
590 add_wait_queue(wq_head: &call->waitq, wq_entry: &myself);
591 for (;;) {
592 set_current_state(TASK_UNINTERRUPTIBLE);
593
594 /* deliver any messages that are in the queue */
595 if (!afs_check_call_state(call, state: AFS_CALL_COMPLETE) &&
596 call->need_attention) {
597 call->need_attention = false;
598 __set_current_state(TASK_RUNNING);
599 afs_deliver_to_call(call);
600 continue;
601 }
602
603 if (afs_check_call_state(call, state: AFS_CALL_COMPLETE))
604 break;
605
606 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
607 /* rxrpc terminated the call. */
608 rxrpc_complete = true;
609 break;
610 }
611
612 schedule();
613 }
614
615 remove_wait_queue(wq_head: &call->waitq, wq_entry: &myself);
616 __set_current_state(TASK_RUNNING);
617
618 if (!afs_check_call_state(call, state: AFS_CALL_COMPLETE)) {
619 if (rxrpc_complete) {
620 afs_set_call_complete(call, error: call->error, remote_abort: call->abort_code);
621 } else {
622 /* Kill off the call if it's still live. */
623 _debug("call interrupted");
624 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
625 RX_USER_ABORT, -EINTR,
626 afs_abort_interrupted))
627 afs_set_call_complete(call, error: -EINTR, remote_abort: 0);
628 }
629 }
630
631 spin_lock_bh(lock: &call->state_lock);
632 ac->abort_code = call->abort_code;
633 ac->error = call->error;
634 spin_unlock_bh(lock: &call->state_lock);
635
636 ret = ac->error;
637 switch (ret) {
638 case 0:
639 ret = call->ret0;
640 call->ret0 = 0;
641
642 fallthrough;
643 case -ECONNABORTED:
644 ac->responded = true;
645 break;
646 }
647
648out:
649 _debug("call complete");
650 afs_put_call(call);
651 _leave(" = %p", (void *)ret);
652 return ret;
653}
654
655/*
656 * wake up a waiting call
657 */
658static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
659 unsigned long call_user_ID)
660{
661 struct afs_call *call = (struct afs_call *)call_user_ID;
662
663 call->need_attention = true;
664 wake_up(&call->waitq);
665}
666
667/*
668 * wake up an asynchronous call
669 */
670static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
671 unsigned long call_user_ID)
672{
673 struct afs_call *call = (struct afs_call *)call_user_ID;
674 int r;
675
676 trace_afs_notify_call(rxcall, call);
677 call->need_attention = true;
678
679 if (__refcount_inc_not_zero(r: &call->ref, oldp: &r)) {
680 trace_afs_call(call_debug_id: call->debug_id, op: afs_call_trace_wake, ref: r + 1,
681 outstanding: atomic_read(v: &call->net->nr_outstanding_calls),
682 where: __builtin_return_address(0));
683
684 if (!queue_work(wq: afs_async_calls, work: &call->async_work))
685 afs_put_call(call);
686 }
687}
688
689/*
690 * Perform I/O processing on an asynchronous call. The work item carries a ref
691 * to the call struct that we either need to release or to pass on.
692 */
693static void afs_process_async_call(struct work_struct *work)
694{
695 struct afs_call *call = container_of(work, struct afs_call, async_work);
696
697 _enter("");
698
699 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
700 call->need_attention = false;
701 afs_deliver_to_call(call);
702 }
703
704 afs_put_call(call);
705 _leave("");
706}
707
708static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
709{
710 struct afs_call *call = (struct afs_call *)user_call_ID;
711
712 call->rxcall = rxcall;
713}
714
715/*
716 * Charge the incoming call preallocation.
717 */
718void afs_charge_preallocation(struct work_struct *work)
719{
720 struct afs_net *net =
721 container_of(work, struct afs_net, charge_preallocation_work);
722 struct afs_call *call = net->spare_incoming_call;
723
724 for (;;) {
725 if (!call) {
726 call = afs_alloc_call(net, type: &afs_RXCMxxxx, GFP_KERNEL);
727 if (!call)
728 break;
729
730 call->drop_ref = true;
731 call->async = true;
732 call->state = AFS_CALL_SV_AWAIT_OP_ID;
733 init_waitqueue_head(&call->waitq);
734 afs_extract_to_tmp(call);
735 }
736
737 if (rxrpc_kernel_charge_accept(net->socket,
738 afs_wake_up_async_call,
739 afs_rx_attach,
740 (unsigned long)call,
741 GFP_KERNEL,
742 call->debug_id) < 0)
743 break;
744 call = NULL;
745 }
746 net->spare_incoming_call = call;
747}
748
749/*
750 * Discard a preallocated call when a socket is shut down.
751 */
752static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
753 unsigned long user_call_ID)
754{
755 struct afs_call *call = (struct afs_call *)user_call_ID;
756
757 call->rxcall = NULL;
758 afs_put_call(call);
759}
760
761/*
762 * Notification of an incoming call.
763 */
764static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
765 unsigned long user_call_ID)
766{
767 struct afs_net *net = afs_sock2net(sk);
768
769 queue_work(wq: afs_wq, work: &net->charge_preallocation_work);
770}
771
772/*
773 * Grab the operation ID from an incoming cache manager call. The socket
774 * buffer is discarded on error or if we don't yet have sufficient data.
775 */
776static int afs_deliver_cm_op_id(struct afs_call *call)
777{
778 int ret;
779
780 _enter("{%zu}", iov_iter_count(call->iter));
781
782 /* the operation ID forms the first four bytes of the request data */
783 ret = afs_extract_data(call, true);
784 if (ret < 0)
785 return ret;
786
787 call->operation_ID = ntohl(call->tmp);
788 afs_set_call_state(call, from: AFS_CALL_SV_AWAIT_OP_ID, to: AFS_CALL_SV_AWAIT_REQUEST);
789
790 /* ask the cache manager to route the call (it'll change the call type
791 * if successful) */
792 if (!afs_cm_incoming_call(call))
793 return -ENOTSUPP;
794
795 trace_afs_cb_call(call);
796
797 /* pass responsibility for the remainer of this message off to the
798 * cache manager op */
799 return call->type->deliver(call);
800}
801
802/*
803 * Advance the AFS call state when an RxRPC service call ends the transmit
804 * phase.
805 */
806static void afs_notify_end_reply_tx(struct sock *sock,
807 struct rxrpc_call *rxcall,
808 unsigned long call_user_ID)
809{
810 struct afs_call *call = (struct afs_call *)call_user_ID;
811
812 afs_set_call_state(call, from: AFS_CALL_SV_REPLYING, to: AFS_CALL_SV_AWAIT_ACK);
813}
814
815/*
816 * send an empty reply
817 */
818void afs_send_empty_reply(struct afs_call *call)
819{
820 struct afs_net *net = call->net;
821 struct msghdr msg;
822
823 _enter("");
824
825 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
826
827 msg.msg_name = NULL;
828 msg.msg_namelen = 0;
829 iov_iter_kvec(i: &msg.msg_iter, ITER_SOURCE, NULL, nr_segs: 0, count: 0);
830 msg.msg_control = NULL;
831 msg.msg_controllen = 0;
832 msg.msg_flags = 0;
833
834 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
835 afs_notify_end_reply_tx)) {
836 case 0:
837 _leave(" [replied]");
838 return;
839
840 case -ENOMEM:
841 _debug("oom");
842 rxrpc_kernel_abort_call(net->socket, call->rxcall,
843 RXGEN_SS_MARSHAL, -ENOMEM,
844 afs_abort_oom);
845 fallthrough;
846 default:
847 _leave(" [error]");
848 return;
849 }
850}
851
852/*
853 * send a simple reply
854 */
855void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
856{
857 struct afs_net *net = call->net;
858 struct msghdr msg;
859 struct kvec iov[1];
860 int n;
861
862 _enter("");
863
864 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
865
866 iov[0].iov_base = (void *) buf;
867 iov[0].iov_len = len;
868 msg.msg_name = NULL;
869 msg.msg_namelen = 0;
870 iov_iter_kvec(i: &msg.msg_iter, ITER_SOURCE, kvec: iov, nr_segs: 1, count: len);
871 msg.msg_control = NULL;
872 msg.msg_controllen = 0;
873 msg.msg_flags = 0;
874
875 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
876 afs_notify_end_reply_tx);
877 if (n >= 0) {
878 /* Success */
879 _leave(" [replied]");
880 return;
881 }
882
883 if (n == -ENOMEM) {
884 _debug("oom");
885 rxrpc_kernel_abort_call(net->socket, call->rxcall,
886 RXGEN_SS_MARSHAL, -ENOMEM,
887 afs_abort_oom);
888 }
889 _leave(" [error]");
890}
891
892/*
893 * Extract a piece of data from the received data socket buffers.
894 */
895int afs_extract_data(struct afs_call *call, bool want_more)
896{
897 struct afs_net *net = call->net;
898 struct iov_iter *iter = call->iter;
899 enum afs_call_state state;
900 u32 remote_abort = 0;
901 int ret;
902
903 _enter("{%s,%zu,%zu},%d",
904 call->type->name, call->iov_len, iov_iter_count(iter), want_more);
905
906 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
907 &call->iov_len, want_more, &remote_abort,
908 &call->service_id);
909 trace_afs_receive_data(call, iter: call->iter, want_more, ret);
910 if (ret == 0 || ret == -EAGAIN)
911 return ret;
912
913 state = READ_ONCE(call->state);
914 if (ret == 1) {
915 switch (state) {
916 case AFS_CALL_CL_AWAIT_REPLY:
917 afs_set_call_state(call, from: state, to: AFS_CALL_CL_PROC_REPLY);
918 break;
919 case AFS_CALL_SV_AWAIT_REQUEST:
920 afs_set_call_state(call, from: state, to: AFS_CALL_SV_REPLYING);
921 break;
922 case AFS_CALL_COMPLETE:
923 kdebug("prem complete %d", call->error);
924 return afs_io_error(call, where: afs_io_error_extract);
925 default:
926 break;
927 }
928 return 0;
929 }
930
931 afs_set_call_complete(call, error: ret, remote_abort);
932 return ret;
933}
934
935/*
936 * Log protocol error production.
937 */
938noinline int afs_protocol_error(struct afs_call *call,
939 enum afs_eproto_cause cause)
940{
941 trace_afs_protocol_error(call, cause);
942 if (call)
943 call->unmarshalling_error = true;
944 return -EBADMSG;
945}
946

source code of linux/fs/afs/rxrpc.c